An Extended Discrete Ricker Population Model with Allee Effects

Document Type


Publication Date



Based on the classical discrete Ricker population model, we incorporate Allee effects by assuming rectangular hyperbola, or Holling-II type functional form, for the birth or growth function and formulate an extended Ricker model. We explore the dynamics features of the extended Ricker model. We obtain domains of attraction for the trivial fixed point. We determine conditions for the existence and stability of positive fixed points and find regions where there exist no positive fixed points, two positive fixed points one of which is stable and two positive fixed points both of which are unstable. We demonstrate that the model exhibits period-doubling bifurcations and investigate the existence and stability of the cycles. We also confirm that Allee effects have stabilization effects, by different measures, through numerical simulations.



This document is currently not available here.