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ABSTRACT 

Title of Thesis: PREDICTION INTERVALS FOR FUNCTIONAL DATA 

Nicholas Rios, Master of Science, 2018 

Thesis directed by:        Dr. Andrada E. Ivanescu 

Department of Mathematical Sciences 

The prediction of functional data samples has been the focus of several 

functional data analysis endeavors. This work describes the use of dynamic 

function-on-function regression for dynamic prediction of the future trajectory 

as well as the construction of dynamic prediction intervals for functional data. 

The overall goals of this thesis are to assess the efficacy of Dynamic Penalized 

Function-on-Function Regression (DPFFR) and to compare DPFFR prediction 

intervals with those of other dynamic prediction methods. To make these 

comparisons, metrics are used that measure prediction error, prediction interval 

width, and prediction interval coverage. Simulations and applications to 

financial stock data from Microsoft and IBM illustrate the usefulness of the 

dynamic functional prediction methods. The analysis reveals that DPFFR 

prediction intervals perform well when compared to those of other dynamic 

prediction methods in terms of the metrics considered in this paper. 
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Prediction Intervals for Functional Data 

 

1. Introduction to Functional Data 

Functional data are realizations of functions that are observed over a continuum, 

such as time. We assume that the observed data are generated by some underlying 

stochastic process, and we can observe the data over a discrete set of time points (Ramsay 

and Silverman, 2005). Various methods exist for analyzing functional data over a given set 

of time points. In formal notation, each curve is denoted as 𝑌𝑌𝑖𝑖(𝑡𝑡), with 𝑖𝑖 = 1,2, … ,𝑛𝑛. Here, 

𝑡𝑡 is a time point, with 𝑡𝑡 = 1,2, … ,𝑀𝑀. As an example, an individual curve could represent 

monthly stock highs for a year. In this case, 𝑌𝑌𝑖𝑖(𝑡𝑡) represents the stock high for month 𝑡𝑡 for 

year 𝑖𝑖. For instance, 𝑌𝑌1(2) would indicate the monthly stock high for month 2 (February) 

for year 1 in the dataset.  

Another example of functional data is the Canadian Weather dataset. This dataset 

is provided in R’s FDA package (Ramsay and Silverman, 2005; Ramsay et al., 2017). Daily 

temperatures (in degrees Celsius) were recorded at 35 locations in Canada over the years 

1960 to 1994. An average daily temperature was then calculated for each day of the year. 

In this example, 𝑌𝑌𝑖𝑖(𝑡𝑡) represents the average daily temperature for day 𝑡𝑡 at location 𝑖𝑖. Here, 

𝑡𝑡 = 1,2, … , 365 and 𝑖𝑖 = 1,2, … ,35.  This dataset also contains information on the average 

daily rainfall for each day of the year at each of the 35 locations.   
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Figure 1. Depicted are the functional data curves for average daily temperatures for n=35 
locations in Canada.  

 Figure 1 shows the average daily temperature for each day of the year for each of 

the 35 locations in Canada. It can be observed that the average daily temperature increases 

towards the middle of the year, and then decreases at the end of the year. 

1.1.    Dynamic Prediction   

The focus of this thesis is dynamic prediction, and specifically, prediction intervals 

used for dynamic prediction. Methods of dynamic functional prediction have a primary 

focus to predict the trajectory in the future based on known historical data. Formally, we 
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can call the cutoff point r, and say that we are predicting the trajectory of a curve 𝑌𝑌𝑖𝑖(𝑡̃𝑡) for 

𝑡̃𝑡 ∈ {𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑀𝑀}, based on the historical data on the curves 𝑌𝑌𝑖𝑖(𝑡𝑡) for 𝑡𝑡 ∈

{1,2, … , 𝑟𝑟}. Once the prediction for a specific curve is obtained, upper and lower bounds 

for the predicted trajectory of that curve can be computed to make a prediction interval. 

All analyses for this thesis were run in R (R Core Team, 2016). 

 

Figure 2. Depicted above is a prediction interval for the Microsoft (MSFT) stock highs in 
a fixed year, r = 5. 

As an illustrated example of dynamic prediction, Figure 2 displays a dynamic 

prediction and a prediction interval of the stock highs for Microsoft for a fixed year 

(Microsoft Historical Prices, 2016), with cutoff point r = 5. In this example, the stock high 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  12 
 

is the highest price that a stock obtains in a given month. The time points are months 𝑡𝑡 =

1,2, … ,12, and the original dataset has n = 29 curves, with each curve corresponding to one 

year from 1987 to 2015. The true trajectory of the stock highs is shown as a solid black 

curve, the dynamic prediction is shown as a dashed gray curve, and the prediction interval 

bounds are depicted as solid gray curves. The dynamic prediction method being used here 

is using historical data from the curves up to the month of May (r = 5) to generate the 

dynamic prediction of the stock highs for each month after May. It can be observed that 

this prediction interval contains the true trajectory of the stock highs for this year.  

There are already several methods in the functional data analysis literature that are used 

for dynamic prediction. One is called dynamic functional linear regression (Shang, 2015, 

Section 4.6), implemented in software as the function dynamic_FLR in the ftsa (Hyndman 

and Shang, 2017) package in R. It only uses the historical data on the samples of curves of 

interest and cannot include other predictors. This method extracts the functional principal 

components of the curves, and conditions on the estimated eigenfunctions to obtain the 

dynamic forecast based on a dynamic functional regression model (Hyndman and Shang, 

2017; Shang, 2015; Shang and Hyndman, 2016). Another method uses penalized least 

squares (Shang, 2015, Section 4.4) for dynamic prediction, where the estimated 

eigenfunctions are also used as predictive information. The penalized least squares method 

is available in R as the dynupdate function of the ftsa R package.   

 

 

1.2.   Literature Review 
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A large volume of research already exists on the topic of prediction for functional data 

analysis. A method for estimating functional data curves while accounting for uncertainty 

in functional principal components analysis was developed (Goldsmith et al., 2013). 

Predictions from scalar-on-function regression were proposed based on cross validation 

and ensemble prediction (Goldsmith and Scheipl, 2014).  A semi-functional partial linear 

regression model was developed to predict future observations (Aneiros-Pérez and Vieu, 

2008). Several methods of creating simultaneous prediction intervals were compared and 

analyzed in the context of a French electricity consumption function-valued dataset 

(Antoniadis et al., 2016). These methods demonstrate that there are a wide range of 

methods for analyzing functional data, however, dynamic prediction is not discussed. 

These papers also indicate that there might be a variety of applications in need of analysis 

that involve prediction in functional data scenarios. A good example of a functional data 

scenario that involves prediction is spectrometric data. Data gathered from a Teactor 

Infrared Spectrometer was used to predict the fat content of meat using absorbance as a 

predictor in the context of functional regression (Goldsmith and Scheipl, 2014). Another 

application of prediction in functional data analysis is atmospheric ozone concentration. 

Regression for functional data was used in an application to predict future ozone 

concentrations based on historical functional data on ozone, nitrogen dioxide, and sulfur 

dioxide levels (Aneiros-Pérez and Vieu, 2008). In this application, chemical measurements 

of ozone, nitrogen dioxide, and sulfur dioxide were taken every hour over 124 days in 2005 

in Madrid, Spain, and these chemical measurements were used as predictors of future ozone 

concentration in 7 non-functional regression models and 7 regression models that are 

classified as either functional or semi-functional (Aneiros-Pérez and Vieu, 2008). 
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2. Research Goals 

A main goal of this thesis is to assess the efficacy of the dynamic predictions and 

dynamic prediction intervals produced by Dynamic Penalized Function-on-Function 

Regression (DPFFR). DPFFR will be compared with other dynamic prediction methods 

(BEnchmark DYnamic, Dynamic Linear Model, Dynamic Penalized Functional 

Regression, Dynamic Functional Linear Regression, and Penalized Least Squares) in terms 

of prediction error, prediction interval width, and prediction interval coverage. These 

metrics will be evaluated for several different simulated datasets. In addition, this research 

intends to apply these dynamic prediction algorithms to real financial stock data and see 

the prediction performance when applied to real data. R software is used for the 

implementations of methods for dynamic prediction intervals.   

The next section describes the six dynamic prediction methods that will be used to 

construct dynamic predictions and prediction intervals. Section 4 describes the metrics that 

will be used to compare the dynamic predictions and prediction intervals. Section 5 

explains how functional data curves were simulated, and it also provides a numerical 

analysis of the performance of the six dynamic prediction methods in simulations. Section 

6 details the application of three dynamic prediction methods (DPFFR, Dynamic 

Functional Linear Regression, Penalized Least Squares) to real financial stock data and 

provides the resulting analysis.  

 

 

3. Comparison of Methods for Dynamic Prediction 
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There are a variety of methods that have been developed for dynamic prediction, in 

the context of functional datasets. All prediction methods listed in this paper are 

implemented using leave-one-out cross validation. When predicting the future trajectory 

of a curve, that curve’s historical functional data is left out of the data set used to generate 

the model fit used for predictions. So, when predicting 𝑌𝑌𝑖𝑖(𝑡̃𝑡) (for fixed 𝑖𝑖), the corresponding 

historical functional data 𝑌𝑌𝑖𝑖(𝑡𝑡) is excluded when obtaining the model fit. Methods that will 

be discussed and compared in this paper include DPFFR, BENDY, DLM, DPFR, and the 

methods of Shang (2016) and Hyndman and Shang (2017) denoted as dynamic_FLR and 

dynupdate, respectively. 

3.1.  Dynamic Penalized Function-on-Function Regression (DPFFR) 

A main goal of this thesis is to study Dynamic Penalized Function-on-Function 

Regression (DPFFR) and compare the prediction intervals of DPFFR with those of other 

methods. DPFFR makes predictions based on historical data from the curves of interest 

and available useful covariates. DPFFR is used to make dynamic predictions within 

penalized regression (Wood, 2006) in the framework of function-on-function regression 

(Ivanescu et al., 2015). The model we study is given below.  

𝑌𝑌𝑖𝑖(𝑡̃𝑡) = 𝑊𝑊𝑖𝑖1𝛾𝛾1 + 𝑊𝑊𝑖𝑖2𝛾𝛾2 + 𝜁𝜁(𝑡̃𝑡) + ∫ 𝑌𝑌𝑖𝑖(𝑡𝑡)β(t̃, t)Τ 𝑑𝑑𝑑𝑑 + ∫ 𝑍𝑍𝑖𝑖(𝑡𝑡)𝛿𝛿(t̃, t)𝑑𝑑𝑑𝑑 + 𝜖𝜖𝑖𝑖(t̃)Τ .          (1)  

Here, the 𝑌𝑌𝑖𝑖(𝑡̃𝑡) are the functional responses over time domain 𝑡̃𝑡 ∈ {𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑀𝑀}, 

which is the future time domain where we want to make predictions. Scalar covariates 

𝑊𝑊𝑖𝑖1,𝑊𝑊𝑖𝑖2 have scalar effects on the predicted responses given by coefficients 𝛾𝛾1 and 𝛾𝛾2, 

respectively. The model term 𝜁𝜁(𝑡̃𝑡) is the functional intercept. Functional predictors 

𝑌𝑌𝑖𝑖(𝑡𝑡) and 𝑍𝑍𝑖𝑖(𝑡𝑡) are the historical curves of interest and the functional covariate, 
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respectively. Both are observed at time points 𝑡𝑡 ∈ {1,2, … , 𝑟𝑟}. Model parameters β(t̃, t) and 

𝛿𝛿(t̃, t) are bivariate functional parameters that are larger in magnitude when the data they 

are paired with at time t is useful for making predictions at time t̃. The term 𝜖𝜖𝑖𝑖(t̃) is an 

error term. The integrals in the model are taken are over the domain 𝑡𝑡 ∈ {1,2, … , 𝑟𝑟}. 

For example, 𝑌𝑌𝑖𝑖(𝑡̃𝑡) could be the energy consumption of a city for the second half of the 

year, with measurements taken daily. Then 𝑌𝑌𝑖𝑖(𝑡𝑡) would be the available daily energy 

consumption for the first half of the year that can be used to obtain dynamic predictions for 

𝑌𝑌𝑖𝑖(𝑡̃𝑡). Moreover, 𝑍𝑍𝑖𝑖(𝑡𝑡) may be the temperature recorded for the first half of the year, 

measured daily, as temperature would be a useful functional predictor for energy 

consumption. Parameter β(t̃, t) would be larger when the energy consumption in the past 

is useful for making predictions in the future, and likewise, 𝛿𝛿(t̃, t) would be larger when 

the temperature in the first half of the year is useful for predicting the energy consumption 

for the future part of the year.  

The goals of DPFFR are: 

1. To fit the DPFFR model to functional data and estimate the model parameters.  

2. To obtain predictions 𝑌𝑌�𝑖𝑖(𝑡̃𝑡) as an estimate for the future trajectory 𝑌𝑌𝑖𝑖(𝑡̃𝑡). 

3. To obtain prediction intervals, upper and lower bounds.  

Model (1) is a function-on-function regression model for dynamic prediction, where 

the response variable is a functional dataset. Functional predictors are used to predict the 

functional responses in a dynamic functional regression framework. The model parameters 

are estimated by applying a penalized least squares criterion with the aim of obtaining 

estimators for the smooth functional parameters that minimize the criterion. The 
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penalization ensures that the resulting functional parameter estimates are smooth functional 

estimators. Once these model parameters are estimated, they can be used to make 

predictions for 𝑌𝑌𝑖𝑖(𝑡̃𝑡) and compute the estimated variability associated with 𝑌𝑌𝑖𝑖(𝑡̃𝑡), which 

lets us construct prediction intervals.  

More specifically, we employ functional regression that uses smoothing penalties in a 

functional regression approach based on penalized splines. Parameters 𝜁𝜁(𝑡̃𝑡),β(t̃, t) , and 

𝛿𝛿(t̃, t) are assumed to be functional. We choose a large number of splines basis functions 

to represent the DPFFR functional parameters and apply the penalties 𝜆𝜆𝜁𝜁𝑃𝑃(𝜁𝜁), 𝜆𝜆𝛽𝛽𝑃𝑃(𝛽𝛽), 

and 𝜆𝜆𝛿𝛿𝑃𝑃(𝛿𝛿). If we denote by 𝑓𝑓𝑖𝑖,𝑡̃𝑡(𝛾𝛾1,𝛾𝛾2, 𝜁𝜁,𝛽𝛽, 𝛿𝛿) the mean of the 𝑌𝑌𝑖𝑖(𝑡̃𝑡), the penalized 

criterion to be minimized is shown below  

���𝑌𝑌𝑖𝑖(𝑡̃𝑡) − 𝑓𝑓𝑖𝑖,𝑡̃𝑡(𝛾𝛾1,𝛾𝛾2, 𝜁𝜁,𝛽𝛽, 𝛿𝛿)��
2

+ 𝜆𝜆𝜁𝜁𝑃𝑃(𝜁𝜁) + 𝜆𝜆𝛽𝛽𝑃𝑃(𝛽𝛽) + 𝜆𝜆𝛿𝛿𝑃𝑃(𝛿𝛿)
𝑖𝑖,𝑡̃𝑡

. 

This is a penalized least squares criterion and corresponds to a residual sum of squares 

criterion specific for the setting of dynamic penalized functional regression. The penalized 

criterion is in alignment with popular penalization techniques for functional data, such as 

the criterion in Goldsmith et al., (2011, 2012).  

3.2. BENchmark DYnamic (BENDY)   

BENDY is the BENchmark DYnamic method of dynamic prediction. This model 

predicts the individual response 𝑌𝑌𝑖𝑖(𝑡̃𝑡) in the future time domain 𝑡̃𝑡 by using the first and last 

observations 𝑌𝑌𝑖𝑖(1) and 𝑌𝑌𝑖𝑖(𝑟𝑟) from the historical data curves and the first and last 

observations 𝑍𝑍𝑖𝑖(1) and 𝑍𝑍𝑖𝑖(𝑟𝑟) from a functional covariate. It can also account for several 

scalar covariates.  In this method, the following model is considered: 
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𝑌𝑌𝑖𝑖(𝑡̃𝑡) = 𝑊𝑊𝑖𝑖1𝛾𝛾1 + 𝑊𝑊𝑖𝑖2𝛾𝛾2 + 𝜁𝜁(𝑡̃𝑡) + 𝑌𝑌𝑖𝑖(1)𝛽𝛽(𝑡̃𝑡, 1) + 𝑌𝑌𝑖𝑖(𝑟𝑟)𝛽𝛽(𝑡̃𝑡, 𝑟𝑟) + 𝑍𝑍𝑖𝑖(1)𝛿𝛿(𝑡̃𝑡, 1)  

+ 𝑍𝑍𝑖𝑖(𝑟𝑟)𝛿𝛿(𝑡̃𝑡, 𝑟𝑟) + 𝜖𝜖𝑖𝑖(𝑡̃𝑡).                                                                      (2) 

In model (2), 𝑌𝑌𝑖𝑖(𝑡̃𝑡) is taken as a scalar response that is being predicted by the BENDY 

method at each point from the grid of 𝑡̃𝑡. This makes BENDY different from DPFFR, since 

BENDY is used to predict a scalar response at each 𝑡̃𝑡 in turn, while DPFFR is used to 

predict a functional response (i.e. the entire future curve having domain 𝑡̃𝑡). The 𝑊𝑊𝑖𝑖1 and 

𝑊𝑊𝑖𝑖2 terms are scalar covariates, 𝜁𝜁(𝑡̃𝑡) is an intercept term, and 𝜖𝜖𝑖𝑖(𝑡̃𝑡) is an error term. 

Observations from 𝑌𝑌𝑖𝑖(𝑡𝑡) and 𝑍𝑍𝑖𝑖(𝑡𝑡) are taken as covariates in the BENDY model. For 

instance, 𝑌𝑌𝑖𝑖(1) is the first observation from the historical data curves, and likewise, 𝑌𝑌𝑖𝑖(𝑟𝑟) 

is the 𝑟𝑟𝑡𝑡ℎ (the last) observation from the historical data curves. Similarly, 𝑍𝑍𝑖𝑖(1) and 𝑍𝑍𝑖𝑖(𝑟𝑟) 

are the first and 𝑟𝑟𝑡𝑡ℎ observations from the covariates. BENDY differs from other dynamic 

prediction models because it only uses the first and the 𝑟𝑟𝑡𝑡ℎ points from the historical data 

and covariates to make predictions, whereas other dynamic prediction methods (such as 

DLM, DPFR, and DPFFR) use all of the historical data from time points 1,2, … , 𝑟𝑟 available 

to make predictions.  

In R, the linear model (lm) method is used to fit the BENDY model at each time point 

𝑡̃𝑡 in turn. The resulting model fit, together with the predictive information from the 

𝑖𝑖𝑡𝑡ℎsample are used to find prediction intervals with confidence level 𝐶𝐶 = 100(1 − 𝛼𝛼)% of 

the following form: 

𝑌𝑌�𝑖𝑖(𝑡̃𝑡) ± 𝑡𝑡𝑑𝑑𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
∗ ∗ �𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌�𝑖𝑖(𝑡̃𝑡)� + 𝑉𝑉𝑉𝑉𝑉𝑉{𝜖𝜖𝑖𝑖(𝑡̃𝑡)}, 

where 𝑌𝑌�𝑖𝑖(𝑡̃𝑡) is the predicted value from the BENDY model, 𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌�𝑖𝑖(𝑡̃𝑡)� is the variance of 

the prediction at time point 𝑡̃𝑡 ∈ {𝑟𝑟 + 1, … ,𝑀𝑀}, and 𝑉𝑉𝑉𝑉𝑉𝑉{𝜖𝜖𝑖𝑖(𝑡̃𝑡)} is the variance of the error. 
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The critical value is 𝑡𝑡𝑑𝑑𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
∗ , which is a quantile of the t-distribution with the same degrees 

of freedom as the mean squared error, MSE, and corresponds to the confidence level C. 

Note that the BENDY method uses data on all curves except the left-out curve to fit the 

BENDY linear model, for a total of n-1 curves. In practice, 𝑉𝑉𝑉𝑉𝑉𝑉{𝜖𝜖𝑖𝑖(𝑡̃𝑡)} is estimated as 

shown below   

𝑀𝑀𝑀𝑀𝑀𝑀 =
1

𝑑𝑑𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀
� 𝑒𝑒𝑖𝑖2
𝑛𝑛−1

𝑖𝑖=1

, 

where 𝑒𝑒𝑖𝑖2 = �𝑌𝑌�𝑖𝑖(𝑡̃𝑡) − 𝑌𝑌𝑖𝑖(𝑡̃𝑡)�
2
is the square of the 𝑖𝑖𝑡𝑡ℎ sample residual difference between the 

fitted BENDY model and the observed data 𝑌𝑌𝑖𝑖 at time point 𝑡̃𝑡. The degrees of freedom for 

the MSE is given by 𝑑𝑑𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 , which is given as the number of curves minus the number of 

model parameters (Kutner et al., 2004, Chapter 6). The variance of the predictions is 

estimated by taking into account the estimated variance of the model parameters in a 

BENDY model.  

Let 𝑋𝑋 be the design matrix that contains the historical data on all n curves. Then 𝑋𝑋 has 

the form: 

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
1 𝑊𝑊11 𝑊𝑊12 𝑌𝑌1(1) 𝑌𝑌1(𝑟𝑟) 𝑍𝑍1(1) 𝑍𝑍1(𝑟𝑟)
1 𝑊𝑊21 𝑊𝑊22 𝑌𝑌2(1) 𝑌𝑌2(𝑟𝑟) 𝑍𝑍2(1) 𝑍𝑍2(𝑟𝑟)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑊𝑊𝑛𝑛−1,1 𝑊𝑊𝑛𝑛−1,2 𝑌𝑌𝑛𝑛−1(1) 𝑌𝑌𝑛𝑛−1(𝑟𝑟) 𝑍𝑍𝑛𝑛−1(1) 𝑍𝑍𝑛𝑛−1(𝑟𝑟)
1 𝑊𝑊𝑛𝑛,1 𝑊𝑊𝑛𝑛−1,2 𝑌𝑌𝑛𝑛(1) 𝑌𝑌𝑛𝑛(𝑟𝑟) 𝑍𝑍𝑛𝑛(1) 𝑍𝑍𝑛𝑛(𝑟𝑟) ⎦

⎥
⎥
⎥
⎤

. 

Then the design matrix used for the prediction is 𝑋𝑋−𝑖𝑖, where row 𝑖𝑖 corresponds to the 

historical data on the 𝑖𝑖𝑡𝑡ℎ curve that is being predicted. The design matrix 𝑋𝑋−𝑖𝑖 will have 𝑛𝑛 −

1 rows.  

Let the matrix 𝑋𝑋𝑖𝑖 be the prediction matrix containing the historical data (up to time 

point r) from the 𝑖𝑖𝑡𝑡ℎ curve that pertains to the predicted response 𝑌𝑌�𝑖𝑖(𝑡̃𝑡), and let 𝑋𝑋𝑖𝑖′ denote 
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the transpose of  𝑋𝑋𝑖𝑖. The prediction matrix for the 𝑖𝑖𝑡𝑡ℎ curve is a 1-row vector that takes the 

following form: 

𝑋𝑋𝑖𝑖 = [1 𝑊𝑊𝑖𝑖1 𝑊𝑊𝑖𝑖2  𝑌𝑌𝑖𝑖(1) 𝑌𝑌𝑖𝑖(𝑟𝑟) 𝑍𝑍𝑖𝑖(1) 𝑍𝑍𝑖𝑖(𝑟𝑟)].  

Then it follows that 

𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽� = 𝑀𝑀𝑀𝑀𝑀𝑀 ∗ (𝑋𝑋−𝑖𝑖′ ∗ 𝑋𝑋−𝑖𝑖)−1, 

𝑉𝑉𝑉𝑉𝑉𝑉� �𝑌𝑌�𝑖𝑖(𝑡̃𝑡)� = 𝑋𝑋𝑖𝑖 ∗ 𝑉𝑉𝑉𝑉𝑉𝑉� �𝛽̂𝛽� ∗ 𝑋𝑋𝑖𝑖′. 

BENDY is implemented in R by using the linear model (lm) routine for model fitting. 

Prediction intervals and predictions are obtained with the predict.lm function in R. 

3.3.  Dynamic Linear Model (DLM) 

DLM stands for Dynamic Linear Model. This model is similar to BENDY in the sense 

that DLM also predicts a scalar response instead of a functional response, but DLM uses 

all of the data points of interest from the historic data to make its predictions. The model 

for DLM is as follows: 

𝑌𝑌𝑖𝑖(𝑡̃𝑡) = 𝑊𝑊𝑖𝑖1𝛾𝛾1 + 𝑊𝑊𝑖𝑖2𝛾𝛾2 + 𝜁𝜁(𝑡̃𝑡) + �𝑌𝑌𝑖𝑖(𝑡𝑡)
𝑟𝑟

𝑡𝑡=1

𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) + �𝑍𝑍𝑖𝑖(𝑡𝑡)𝛿𝛿(𝑡̃𝑡, 𝑡𝑡)
𝑟𝑟

𝑡𝑡=1

+ 𝜖𝜖𝑖𝑖(𝑡̃𝑡).      (3) 

 DLM treats 𝑌𝑌𝑖𝑖(𝑡̃𝑡) as a scalar response, 𝑊𝑊𝑖𝑖1 and 𝑊𝑊𝑖𝑖2 are scalar covariates, 𝜁𝜁(𝑡̃𝑡) is an 

intercept, and 𝜖𝜖𝑖𝑖(𝑡̃𝑡) is an error term. 𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) is a parameter that assumes larger values when 

the historical data 𝑌𝑌 at time 𝑡𝑡 is more useful for predicting the response. Likewise, the 

parameter 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡) would be larger when the 𝑍𝑍 covariate data at time 𝑡𝑡 is more useful for 

predicting the response. Both 𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) and 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡) are estimated for each pair (𝑡̃𝑡, 𝑡𝑡). 

In a similar fashion to DPFFR, DLM incorporates all of the historical data from 

𝑡𝑡 = 1 to 𝑡𝑡 = 𝑟𝑟 and other covariates to make predictions, but DLM differs from DPFFR 

because instead of integrating 𝑌𝑌𝑖𝑖(𝑡𝑡)𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) over the domain, DLM sums them over a 
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discrete set of points to get a scalar response. Furthermore, in DPFFR, 𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) and 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡) 

are taken to be smooth surfaces, but the DLM model requires no such assumption. It should 

also be noted that DLM uses functional covariates 𝑍𝑍𝑖𝑖(𝑡𝑡) in its model as well, making it 

similar to BENDY and DPFFR in this regard. In R, the lm method is used to fit the DLM 

model. This can be applied to create prediction intervals by using a similar methodology 

as presented in the BENDY model while talking into account the extended DLM model.  

3.4.   Dynamic Penalized Functional Regression (DPFR)  

DPFR represents the method of Dynamic Penalized Functional Regression. The model 

for DPFR is the same as model (1) for DPFFR, with the exception that the response 𝑌𝑌𝑖𝑖(𝑡̃𝑡) 

is taken to be a scalar, not a function. So, to generate the whole predicted trajectory of a 

curve, DPFFR only needs to be run once, whereas DPFR would need to be executed one 

time for each point in the future time domain 𝑡̃𝑡 in order to construct the entire curve. This 

implies that the parameters 𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) and 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡) would be re-fitted for each time point of 𝑡̃𝑡 

by using methodology for penalized scalar-on-function regression (Goldsmith et al. 2011). 

The DPFR model integrates the historical functional data over time domain for 𝑡𝑡, while the 

DLM model uses a summation over a discrete set of time points 𝑡𝑡 ∈ {1,2, … , 𝑟𝑟}. This is 

because the form of the DPFR functional model parameters is assumed to be a smooth 

function of 𝑡𝑡. 

3.5.   Dynamic Functional Linear Regression (dynamic_FLR)  

Dynamic Functional Linear Regression, denoted as dynamic_FLR (Shang, 2015, 

Section 4.6), is a dynamic prediction method that only uses historical data on the curves of 
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interest to make predictions; therefore, it does not rely on any covariates. This is an aspect 

that makes dynamic_FLR different from DPFFR.  

This method conditions on the functional principal components of the provided 

historical data, and uses this information to obtain dynamic predictions (Shang, 2015; 

Shang and Hyndman, 2016). In a similar fashion to DPFFR, the method can be used when 

the prediction of 𝑌𝑌𝑖𝑖(𝑡̃𝑡) is a function or a scalar response. For the numerical implementations 

in this thesis, the predictions for 𝑌𝑌𝑖𝑖(𝑡̃𝑡) were requested to be a function, so one execution of 

dynamic_FLR is sufficient to obtain predictions for the trajectory of an entire future curve. 

Calling the dynamic_FLR method provided in R’s ftsa library (Hyndman and Shang, 2016) 

will implement this method. The dynamic_FLR method is also used to create dynamic 

predictions and prediction intervals. 

3.6.  Penalized Least Squares (Dynupdate)  

Another method for dynamic prediction is Penalized Least Squares (Shang, 2015, 

Section 4.4), which is implemented in R as the dynupdate method of the ftsa package. 

Dynupdate is similar to dynamic_FLR because both of these methods do not use additional 

covariates to make predictions, and both methods provide a prediction at the discretized 

time points for the functional response (similar to DPFFR). Similar to dynamic_FLR, the 

response 𝑌𝑌𝑖𝑖(𝑡̃𝑡) may also be taken to be a scalar in other implementations, even though in 

the implementations we considered the prediction was required to be a function. The model 

for dynupdate is as follows: 

𝑌𝑌�𝑖𝑖(𝑡̃𝑡) = 𝜇̂𝜇(𝑡̃𝑡) + �𝛽̂𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃
𝐾𝐾

𝑘𝑘=1

𝜙𝜙�𝑘𝑘(𝑡̃𝑡), 
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where 𝜇̂𝜇(𝑡̃𝑡) denotes an estimate of the mean function, 𝜙𝜙�𝑘𝑘(𝑡̃𝑡) is the 𝑘𝑘𝑡𝑡ℎ eigenfunction at 

time point 𝑡̃𝑡 (according to Functional Principal Components Analysis) corresponding to 

the 𝑌𝑌�𝑖𝑖(𝑡̃𝑡) process, and 𝛽̂𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 is a penalized least squares estimate of the coefficients. See 

Section 6.1 for more details on Functional Principal Components Analysis. Quadratic 

penalties are used by dynupdate (Hyndman and Shang, 2017) to estimate the regression 

coefficients 𝛽̂𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃. 

 The table below summarizes the six dynamic prediction methods that were 

considered in this thesis. 

Table 1. Summary of dynamic prediction methods. 

Method Response 
Type for 
𝑌𝑌𝑖𝑖(𝑡̃𝑡) 

Covariates in Model Uses Penalized 
Criterion to 

Estimate 
Parameters 

DPFFR Function 𝑊𝑊𝑖𝑖1,𝑊𝑊𝑖𝑖2,𝑌𝑌𝑖𝑖(𝑡𝑡),𝑍𝑍𝑖𝑖(𝑡𝑡) Yes 
BENDY Scalar 𝑊𝑊𝑖𝑖1,𝑊𝑊𝑖𝑖2,𝑌𝑌𝑖𝑖(1),𝑌𝑌𝑖𝑖(𝑟𝑟),𝑍𝑍𝑖𝑖(1),𝑍𝑍𝑖𝑖(𝑟𝑟) No 

DLM Scalar 𝑊𝑊𝑖𝑖1,𝑊𝑊𝑖𝑖2,𝑌𝑌𝑖𝑖(𝑡𝑡),𝑍𝑍𝑖𝑖(𝑡𝑡) No 
DPFR Scalar 𝑊𝑊𝑖𝑖1,𝑊𝑊𝑖𝑖2,𝑌𝑌𝑖𝑖(𝑡𝑡),𝑍𝑍𝑖𝑖(𝑡𝑡) Yes 

dynamic_FLR Function or 
Scalar 

Uses functional principal 
components from 𝑌𝑌𝑖𝑖(𝑡𝑡) 

No 

dynupdate Function or 
Scalar 

Uses functional principal 
components from 𝑌𝑌𝑖𝑖(𝑡𝑡) 

Yes 

 

 

 

4. Metrics 
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Four metrics were used in this thesis to compare the various methods of dynamic 

prediction and prediction intervals. They were the Integrated Mean Prediction Error 

(IMPE), the Average Width (AW), the Average Coverage (AC), and the CPU time. In 

simulations and the applications, all of these metrics were computed for all considered 

methods of dynamic prediction and prediction intervals. Once the predicted future 

trajectory and the prediction interval upper and lower bounds are obtained for all 𝑛𝑛 curves 

in a given dataset using the leave one-curve out cross-validation technique, we computed 

the following metrics.  

4.1.   Integrated Mean Prediction Error (IMPE) 

The IMPE is defined as  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
1
𝑛𝑛
∗

1
𝑀𝑀 − 𝑟𝑟

� � �𝑌𝑌𝑖𝑖(𝑡̃𝑡) − 𝑌𝑌�𝑖𝑖(𝑡̃𝑡)�
2

𝑀𝑀

𝑡̃𝑡=𝑟𝑟+1

𝑛𝑛

𝑖𝑖=1

, 

where 𝑀𝑀 is the number of time points, 𝑟𝑟 is the cutoff point, and 𝑛𝑛 is the number of curves. 

The time points for the predicted curve are 𝑡̃𝑡 ∈ {𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑀𝑀}, and the summation 

begins at point 𝑟𝑟 + 1 and ends at time 𝑀𝑀. 𝑌𝑌𝑖𝑖(𝑡̃𝑡) is the observed value of curve 𝑖𝑖 at time 

point 𝑡̃𝑡, and 𝑌𝑌�𝑖𝑖(𝑡̃𝑡) is the predicted value of curve 𝑖𝑖 at time point 𝑡̃𝑡. The IMPE is a sum of 

squared differences between observed and predicted values. The lower the IMPE is, the 

less error the method has in predicting the trajectories of the future curves. The prediction 

error is only averaged over the future time domain 𝑡̃𝑡 because that is the time domain where 

predictions are made.  

 

4.2.  Average Width (AW) 
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For a given prediction interval method, the mean width (MW) of the dynamic 

prediction interval corresponding to the 𝑖𝑖𝑡𝑡ℎ curve is given below  

𝑀𝑀𝑊𝑊𝑖𝑖 =
1

𝑀𝑀 − 𝑟𝑟
� �𝑈𝑈𝐵𝐵𝑖𝑖(𝑡̃𝑡) − 𝐿𝐿𝐵𝐵𝑖𝑖(𝑡̃𝑡)�
𝑀𝑀

𝑡̃𝑡=𝑟𝑟+1

, 

where 𝑡̃𝑡 ∈ {𝑟𝑟 + 1, 𝑟𝑟 + 2, … ,𝑀𝑀}, and 𝑟𝑟 is the cutoff point. 𝑈𝑈𝐵𝐵𝑖𝑖(𝑡̃𝑡) is the upper bound of the 

level C prediction interval for the 𝑖𝑖𝑡𝑡ℎ curve at time point 𝑡̃𝑡. Likewise, 𝐿𝐿𝐵𝐵𝑖𝑖(𝑡̃𝑡) is the lower 

bound of the level C prediction interval for the 𝑖𝑖𝑡𝑡ℎ curve at time point 𝑡̃𝑡. The MW can be 

thought of as the average of the widths of each prediction interval generated by a dynamic 

prediction method. To obtain a grand mean width (referred to as the Average Width, or 

AW) for the entire sample of n curves, one can take the average of the mean widths across 

all curves. The formula for the AW is given below  

𝐴𝐴𝐴𝐴 =
1
𝑛𝑛
∗

1
𝑀𝑀 − 𝑟𝑟

� � �𝑈𝑈𝐵𝐵𝑖𝑖(𝑡̃𝑡) − 𝐿𝐿𝐵𝐵𝑖𝑖(𝑡̃𝑡)�
𝑀𝑀

𝑡̃𝑡=𝑟𝑟+1

𝑛𝑛

𝑖𝑖=1

. 

 It is preferred that the AW be consistently small at the nominal level, so that upper 

and lower prediction bounds will be precise and useful in practice.  

4.3.    Average Coverage (AC) 

The mean coverage based on a dynamic prediction interval for the 𝑖𝑖𝑡𝑡ℎ curve is given 

below  

𝑀𝑀𝐶𝐶𝑖𝑖 =
1

𝑀𝑀 − 𝑟𝑟
� 𝐼𝐼{𝑌𝑌𝑖𝑖(𝑡̃𝑡) ∈ [𝐿𝐿𝐵𝐵𝑖𝑖(𝑡̃𝑡),𝑈𝑈𝐵𝐵𝑖𝑖(𝑡̃𝑡)]} 
𝑀𝑀

𝑡̃𝑡=𝑟𝑟+1

,  
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where 𝐼𝐼 is the indicator function which is equal to 1 when 𝑌𝑌𝑖𝑖(𝑡̃𝑡) falls within the level C 

prediction interval, and is equal to 0 otherwise. The mean coverage will always take on a 

value between 0 and 1, and it can be interpreted as the proportion of observed values that 

actually fell between the lower and upper bounds of the prediction interval. The goal of 

this metric is to evaluate if the prediction intervals are providing appropriate lower and 

upper bound estimates for the trajectory of the functional curves, given a nominal level. If 

a method produced prediction intervals that always contained the actual observed value, 

then the mean coverage would be 1 (indicating 100% coverage). The overall mean 

coverage (referred to as the Average Coverage, or AC) for a particular method can be 

determined by taking the average of the mean coverages across all curves in the dataset. 

The formula for the AC is given below 

𝐴𝐴𝐴𝐴 =
1
𝑛𝑛
∗

1
𝑀𝑀 − 𝑟𝑟

� � 𝐼𝐼{𝑌𝑌𝑖𝑖(𝑡̃𝑡) ∈ [𝐿𝐿𝐵𝐵𝑖𝑖(𝑡̃𝑡),𝑈𝑈𝐵𝐵𝑖𝑖(𝑡̃𝑡)]}
𝑀𝑀

𝑡̃𝑡=𝑟𝑟+1

𝑛𝑛

𝑖𝑖=1

. 

The AC is the average of the MC, which is calculated for each curve, across all 𝑛𝑛 

curves.  

4.4. Central Processing Unit Time (CPU) 

The fourth metric considered was the Central Processing Unit time. The CPU time is 

defined as the average amount of time, in seconds, that it takes to execute one iteration of 

a dynamic prediction method for all n curves. It is generally preferred that the CPU time is 

small.  
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5. Numerical Results  

R was used to simulate functional data curves. The data are simulated for the 

context of dynamic functional regression with 𝑀𝑀 = 16 time points, 𝑛𝑛 = {25, 50} curves, 

and cutoff points 𝑟𝑟 = {8, 11}. This resulted in several different simulated functional 

datasets. Confidence levels 𝐶𝐶 = {90,95,99} were considered for the construction of 

prediction intervals. The method of generating these data sets is detailed below.  

5.1.   Simulation Design 

 We begin with a simulation study where the functional responses 𝑌𝑌𝑖𝑖(𝑡̃𝑡) are 

generated from two functional predictors and no scalar covariates. The model used is: 

𝑌𝑌𝑖𝑖(𝑡̃𝑡) = 𝜁𝜁(𝑡̃𝑡)  + ∫ 𝑌𝑌𝑖𝑖(𝑡𝑡)β(t̃, t)Τ 𝑑𝑑𝑑𝑑 + ∫ 𝑍𝑍𝑖𝑖(𝑡𝑡)𝛿𝛿(t̃, t)𝑑𝑑𝑑𝑑 + 𝜖𝜖𝑖𝑖(t̃)Τ .                                       (4)  

The data were also simulated according to the DPFFR model (1). The data are first 

simulated according to model (4), a model with two functional predictors and no scalar 

covariates, by creating several realizations of functional random variables in R, and using 

these to generate the functional responses for the model. The bivariate parameter 𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) 

was generated using the following formula: 

𝛽𝛽(𝑡̃𝑡, 𝑡𝑡) = cos�
2𝑡̃𝑡𝜋𝜋
16

� sin �
2𝑡𝑡𝑡𝑡
16

�. 

 There are two settings (denoted as setting A and setting B) for the simulation that 

determine the parameter 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡). 

Setting A. 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡) =
√𝑡𝑡 sin�2𝑡𝑡

�𝜋𝜋
16 �

4.2
 

Setting B. 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡) = √𝑡𝑡𝑡̃𝑡
4.2
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Setting A uses a combination of a sine and polynomial function to generate 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡), 

while Setting B uses a combination of polynomials to generate 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡). The functional 

intercept is 𝜁𝜁(𝑡̃𝑡) = 𝑒𝑒−(𝑡̃𝑡−12.5)2. The formulas for 𝛽𝛽(𝑡̃𝑡, 𝑡𝑡), 𝛿𝛿(𝑡̃𝑡, 𝑡𝑡), and 𝜁𝜁(𝑡̃𝑡) are similar to 

those presented in Ivanescu et al., 2015. The errors 𝜖𝜖𝑖𝑖(𝑡̃𝑡) were generated as 𝑁𝑁(0,0.222) 

random variables. A similar variance of the error terms was considered in the literature, 

see Goldsmith et al., 2013. The historical functional data were taken to be  

𝑌𝑌𝑖𝑖(𝑡𝑡) = ∑ �𝜌𝜌𝑖𝑖,𝑘𝑘1 sin �2𝑘𝑘𝑘𝑘𝑘𝑘
10
�+ 𝜌𝜌𝑖𝑖,𝑘𝑘2 cos(2𝑘𝑘𝑘𝑘𝑘𝑘)�10

𝑘𝑘=1 , 

where 𝜌𝜌𝑖𝑖,𝑘𝑘1 and 𝜌𝜌𝑖𝑖,𝑘𝑘2are generated as 𝑁𝑁(0, 1
𝑘𝑘2

) random variables that are independent across 

the curves 𝑖𝑖, where 𝑘𝑘 = 1, … ,10 (Goldsmith et al., 2011). The functional covariates are 

given by 

𝑍𝑍𝑖𝑖(𝑡𝑡) = ∑ �2√2
𝑘𝑘𝑘𝑘
�𝑈𝑈𝑖𝑖,𝑘𝑘 sin �𝑘𝑘𝑘𝑘𝑘𝑘

16
�40

𝑘𝑘=1 , 

where 𝑈𝑈𝑖𝑖,𝑘𝑘 are 𝑁𝑁(0,1) random variables.   

The second round of simulations used model (1),  

𝑌𝑌𝑖𝑖(𝑡̃𝑡) = 𝑊𝑊𝑖𝑖1𝛾𝛾1 + 𝑊𝑊𝑖𝑖2𝛾𝛾2 + 𝜁𝜁(𝑡̃𝑡)  + �𝑌𝑌𝑖𝑖(𝑡𝑡)β(t̃, t)
Τ

𝑑𝑑𝑑𝑑 + �𝑍𝑍𝑖𝑖(𝑡𝑡)𝛿𝛿(t̃, t)𝑑𝑑𝑑𝑑 + 𝜖𝜖𝑖𝑖(t̃)
Τ

 

which includes two scalar covariates 𝑊𝑊𝑖𝑖1 and 𝑊𝑊𝑖𝑖2. The scalar covariates were generated as 

𝑊𝑊𝑖𝑖1 = 𝐼𝐼{𝑈𝑈[0,1] ≥ 0.75} and 𝑊𝑊𝑖𝑖2~𝑁𝑁(0,0.12), where 𝐼𝐼 is the indicator function that returns 

1 if a standard uniform random variable is greater than or equal to 0.75. The corresponding 

scalar effects were simulated as 𝛾𝛾1 = 1, 𝛾𝛾2 = −0.5 (Ivanescu et al., 2015). 

 In Figures 3 and 4, two sets of n = 50 curves are depicted in gray lines that were 

simulated using the methods previously discussed. Three of the curves have been 

highlighted to illustrate samples of simulated dynamic functional samples. In Figure 3, the 
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historical curves 𝑌𝑌𝑖𝑖(𝑡𝑡) have been generated starting from time point 0 up to time point r = 

8. Then, model (4) was used to generate the curves from time points 𝑟𝑟 + 1 to 15, using the 

simulated 𝑌𝑌𝑖𝑖(𝑡𝑡) and other model components as outlined in model (4), for the time points 

beyond r = 8. Figure 4 illustrates simulated data for the case when r = 11. 

 

Figure 3. Illustrated are a sample of 50 Simulated Curves with r = 8. Three curves have 
been highlighted (using a black curve, gray curve, and a dashed curve) for illustrative 
purposes. 
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Figure 4. Illustrated are a sample of 50 Simulated Curves with r = 11. Three curves have 
been highlighted (using a black curve, gray curve, and a dashed curve) for illustrative 
purposes. 
 

5.2.   Construction of Dynamic Prediction Intervals 

 After generating the dynamic predictions 𝑌𝑌�𝑖𝑖(𝑡̃𝑡), we construct approximate 𝐶𝐶 =

100(1 − 𝛼𝛼)% pointwise prediction intervals of the form 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  31 
 

𝑌𝑌�𝑖𝑖(𝑡̃𝑡) ± 𝑡𝑡𝑀𝑀−𝑟𝑟∗ ∗ �𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌�𝑖𝑖(𝑡̃𝑡)� + 𝑉𝑉𝑉𝑉𝑉𝑉{𝜖𝜖𝑖𝑖(𝑡̃𝑡)}. 

 The data were analyzed and methods are compared using the metrics defined in the 

Section 4. The metrics of interest are the Integrated Mean Prediction Error (IMPE), the 

mean prediction interval width, and the average coverage. The IMPE is the mean of the 

squared residuals corresponding to all curves, taken over the time points where predictions 

were actually made. To measure the mean prediction interval width, we average the width 

of each prediction interval over the 𝑛𝑛 curves and 𝑀𝑀− 𝑟𝑟 time points. The interval coverage 

was assessed in numerical simulations when taking 100 simulated datasets, where 

𝑉𝑉𝑉𝑉𝑉𝑉{𝜖𝜖𝑖𝑖(𝑡̃𝑡)} was known, since it is specified that 𝜖𝜖𝑖𝑖(𝑡̃𝑡) ~ 𝑁𝑁(0,0.222).  

 The following pages contain figures which depict dynamic predictions and 

prediction intervals (for a specified curve) for all six dynamic prediction methods that were 

considered, with data simulated using Model (4) and setting A, with n = 25 curves and 

cutoff point r = 8. 
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Figure 5. Depicted is a prediction interval for BENDY, with r = 8, n = 25, setting A. 
Model (4) is used. 
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Figure 6. Shown above is a prediction interval for DLM, with r = 8, n = 25, setting A. 
Model (4) is used. 
 

 

 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  34 
 

 

Figure 7. Depicted is a prediction interval for DPFR, with r = 8, n = 25, setting A. Model 
(4) is used. 
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Figure 8. Illustrated is a prediction interval for DPFFR, with r = 8, n = 25, setting A. 
Model (4) is used. 
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Figure 9. Shown above is a prediction interval for dynamic_FLR, with r = 8, n = 25, and 
Setting A. Model (4) is used. 
 

 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  37 
 

 

Figure 10. Shown above is a prediction interval for dynupdate, with r = 8, n = 25, and 
Setting A. Model (4) is used. 
 

 Examples of prediction intervals for all six dynamic prediction methods examined 

in this paper are shown in Figures 5 through 10. Model (4) is used. The lower and upper 

bounds are depicted as solid dark grey curves. The historical functional data for a specified 

sample 𝑖𝑖 is shown as a solid black curve. The predicted trajectory is depicted as a dashed 

dark grey curve. It can be observed that the prediction interval for DPFFR has a stable 

width that contains the true trajectory of the curve. For this particular curve, it can also be 
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observed that the true trajectory of the curve was contained within all of the prediction 

intervals, except for the prediction interval generated by dynupdate.  

 The next set of figures depict prediction intervals for all six dynamic prediction 

methods for a simulated dataset using model (1) and setting A, with n = 25 curves and 

cutoff point r = 8. 

 

Figure 11. Shown above is a prediction interval for BENDY, with r = 8, n = 25, and 
Setting A. Model (1) is used. 
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Figure 12. Depicted is a prediction interval for DLM, with r = 8, n = 25, and Setting A. 
Model (1) is used. 
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Figure 13. Depicted is a prediction interval for DPFR, with r = 8, n = 25, and Setting A. 
Model (1) is used. 
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Figure 14. Illustrated is a prediction interval for DPFFR, with r = 8, n = 25, and Setting 
A. Model (1) is used. 
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Figure 15. Shown above is a prediction interval for dynamic_FLR, with r = 8, n = 25, and 
Setting A. Model (1) is used. 
 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  43 
 

 

Figure 16. Depicted is a prediction interval for dynupdate, with r = 8, n = 25, and Setting 
A. Model (1) is used. 
 
 Figures 11 through 16 display examples of prediction intervals for all six dynamic 

prediction methods for one simulated dataset, using model (1), which includes two 

functional predictors and two scalar covariates. It can be seen in Figure 14 that the width 

of the DPFFR prediction interval is consistently narrow, and the DPFFR prediction interval 

contains the true trajectory of the curve. In Figure 16, the lower prediction interval bound 

for dynupdate partially overlaps with the true trajectory of the curve, which indicates that 
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in this case, the prediction interval was close to not containing the true trajectory of the 

curve. The other prediction intervals shown all contained the true trajectory of the curve.  

5.3.    Simulation Results 

 For every combination of simulation settings, model (4) was used to generate 100 

simulated datasets. The number of curves 𝑛𝑛, cutoff point 𝑟𝑟, confidence level 𝐶𝐶 =

100(1 − 𝛼𝛼)%, and data structure setting were changed across the different simulation 

scenarios. The results for specific cases are summarized in the tables below, which show 

the metrics of interest for each case. All simulated cases can be viewed in the Appendix. 

5.3.1.  Increasing the Sample Size 

The number of curves 𝑛𝑛 was varied across the different simulation scenarios that 

were considered in this thesis. The table below displays the metrics for a simulated case 

where the number of curves was increased from 𝑛𝑛 = 25 to 𝑛𝑛 = 50. 

Table 2. Simulation Results for increasing the number of curves from n = 25 to n 
= 50. Results are for setting A, C = 95%, r = 8. Model (4) is used. 
 n = 25 n = 50 

Method IMPE AC AW CPU IMPE AC AW CPU 

BENDY 0.15 0.95 1.58 0.97 0.14 0.95 1.46 1.77 

DLM 0.16 0.95 1.76 1.38 0.07 0.95 1.10 2.53 

DPFR 0.19 0.89 1.36 5.72 0.13 0.90 1.19 10.92 

DPFFR 0.09 0.94 1.16 7.38 0.09 0.94 1.09 14.08 

Dynamic_FLR 0.17 0.97 2.28 12.24 0.14 0.96 1.87 29.79 

dynupdate 0.10 0.69 0.63 21.04 0.12 0.70 0.70 70.10 
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It can be observed in Table 2 that, for this case, as the number of curves increased, 

the IMPE either decreased or remained the same for all dynamic prediction methods except 

dynupdate. Similarly, as the number of curves increased, the AW of the prediction intervals 

decreased for most of the dynamic prediction methods. Additionally, as the number of 

curves increased, the CPU time for each dynamic prediction method increased, which 

makes sense, as increasing the number of curves would cause the methods to take longer 

to run. Similar results were noticed when examining other simulated cases; in the other 

cases observed in this thesis, when the number of curves increased, the IMPE, AW, and 

CPU responded as described here. Other cases may be viewed in the Appendix (Table A1 

for IMPE, Tables A2 – A4 for some other cases).  

5.3.2. Changing the Data Structure 

The data structure was also varied across the different simulation scenarios A and B.  

Table 3. Simulation Results for changing the data structure from Setting A to Setting B. 
Results are for n=25, C = 95%, r = 8. Model (4) is used. 

 Setting A Setting B 

Method IMPE AC AW CPU IMPE AC AW CPU 

BENDY 0.15 0.95 1.58 0.97 0.59 0.95 3.16 0.88 

DLM 0.16 0.95 1.76 1.38 0.16 0.95 1.76 1.25 

DPFR 0.19 0.89 1.36 5.72 0.37 0.82 1.57 5.05 

DPFFR 0.09 0.94 1.16 7.38 0.09 0.94 1.15 5.71 

Dynamic_FLR 0.17 0.97 2.28 12.24 2.34 0.95 7.15 8.97 

dynupdate 0.10 0.69 0.63 21.04 1.61 0.84 3.70 12.52 
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Table 3 shows that for this simulated case, when the data structure is changed from 

Setting A to Setting B, the IMPE increases for all methods except DPFFR, which has the 

same IMPE in both data structures. When the data structure is changed from Setting A to 

Setting B, the AW also increases for most methods, except for DPFFR. The AC remains at 

a similar level for BENDY, DLM, DPFFR, and dynamic_FLR for both Setting A and 

Setting B. For n = 25 curves, changing the setting did not greatly impact the CPU time. 

These trends were noticed in the simulated cases that were checked in this thesis, and more 

detailed tables on these simulated cases can be found in the Appendix (Table A1 for IMPE, 

Tables A2 – A4 for AC, AW, and CPU for other cases).  

5.3.3. Increasing the Confidence Level 

The confidence level was varied throughout the different simulation scenarios that 

were considered. It was of interest to see if any of the metrics changed when the confidence 

level C increased.  

Table 4. Simulation Results for changing the confidence level from C=90% to C=95%. 
Results are for n=25, Setting A, r = 11. Model (4) is used. 

 C = 90% C = 95% 

Method AC AW AC AW 

BENDY 0.90 2.35 0.94 2.84 

DLM 0.90 2.94 0.95 3.97 

DPFR 0.84 1.15 0.92 1.47 

DPFFR 0.95 1.00 0.99 1.27 

Dynamic_FLR 0.92 2.81 0.96 3.35 

dynupdate 0.56 0.79 0.63 0.93 
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Table 4 displays the AC and AW from a simulated case with n = 25 curves, Setting 

A, and r = 11. It can be seen that in this simulated case, when the nominal coverage level 

increased, the AW increased for all methods. Since the AW of the prediction intervals 

increased, there was a corresponding increase in the AC, as wider intervals would have 

greater coverage. Changes in the nominal coverage level did not have any impact on the 

IMPE. These trends are also observable in all of the other cases that were simulated for the 

purpose of this thesis, and more detailed tables on these simulated cases for model (4) can 

be found in Tables A2-A4 in the Appendix.  

5.3.4. Changing the Cutoff Point, R 

Two values for the cutoff point were considered for simulations. Several cases were 

simulated with r = 8, and the remaining cases were simulated with r = 11. It was of interest 

to see how the metrics changed when the cutoff point r increased.  

Table 5. Simulation Results for increasing the cutoff point from r = 8 to r = 11. Results 
are for n=50, C = 95%, Setting B. Model (4) is used. 

 r = 8 r = 11 

Method IMPE AC AW IMPE AC AW 

BENDY 0.55 0.95 2.95 2.38 0.95 6.13 

DLM 0.07 0.95 1.10 0.09 0.95 1.20 

DPFR 0.25 0.82 1.31 0.49 0.79 1.58 

DPFFR 0.09 0.94 1.08 0.06 0.99 1.21 

Dynamic_FLR 2.01 0.95 6.53 6.58 0.95 11.76 

dynupdate 1.71 0.86 4.12 5.82 0.92 8.87 
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Table 5 displays the IMPE, AC, and AW from a simulated case with n = 50 curves, 

Setting B, and C = 95%. In this simulated case, when the cutoff point increased from r = 8 

to r = 11, the IMPE increased for all methods, except DPFFR. The AC for DPFFR and 

dynupdate increased when r increased for this case. It should also be noted that the AW of 

the prediction intervals increased when the cutoff point increased from r = 8 to r = 11.  This 

case is an example of a pattern that was noticed throughout the simulated cases. Throughout 

the cases that were simulated, when the cutoff point was increased from r = 8 to r = 11, the 

AW tended to increase, and the AC for DPFFR tended to increase as well. For the detailed 

metrics on the model (4) simulated cases, see Tables A1-A4 in the Appendix. 

5.3.5. Adding Scalar Covariates 

Simulations were also conducted for model (1), which includes the two scalar 

covariates 𝑊𝑊𝑖𝑖1 = 𝐼𝐼{𝑈𝑈[0,1] ≥ 0.75} and 𝑊𝑊𝑖𝑖2~𝑁𝑁(0,0.12) in addition to the two functional 

predictors 𝑌𝑌𝑖𝑖(𝑡𝑡) and 𝑍𝑍𝑖𝑖(𝑡𝑡). Model (1) is given by: 

𝑌𝑌𝑖𝑖(𝑡̃𝑡) = 𝑊𝑊𝑖𝑖1𝛾𝛾1 + 𝑊𝑊𝑖𝑖2𝛾𝛾2 + 𝜁𝜁(𝑡̃𝑡)  + �𝑌𝑌𝑖𝑖(𝑡𝑡)β(t̃, t)
Τ

𝑑𝑑𝑑𝑑 + �𝑍𝑍𝑖𝑖(𝑡𝑡)𝛿𝛿(t̃, t)𝑑𝑑𝑑𝑑 + 𝜖𝜖𝑖𝑖(t̃)
Τ

.   (1) 

It was of interest to see how the metrics changed when the scalar covariates were 

added to the model. The table below compares metrics between model (4), which has two 

functional covariates and no scalar covariates, and model (1), which has two functional 

covariates and two scalar covariates.  
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Table 6. Simulation Results for adding scalar covariates to the model. Results are for 
n=25, r=11, C = 95%, Setting A.  

 Model (4) Model (1) 

Method IMPE AC AW IMPE AC AW 

BENDY 0.52 0.94 2.84 0.57 0.95 3.00 

DLM 0.55 0.95 3.97 3.93 0.95 26.66 

DPFR 0.19 0.92 1.47 0.52 0.81 1.89 

DPFFR 0.07 0.99 1.27 0.07 0.99 1.30 

Dynamic_FLR 0.48 0.96 3.35 0.74 0.95 4.02 

dynupdate 0.27 0.63 0.93 0.43 0.64 1.22 

 

When the scalar covariates were considered, there were some changes in the metrics 

reported. In this simulated case, adding the scalar covariates to the simulation model 

resulted in an increase in the IMPE for all methods except DPFFR, as Table 6 indicates. 

When the scalar covariates were added to the model, the AW increased as well; in general, 

the increase widths can be observed in the tables in the Appendix. The increase in AW for 

DPFFR was relatively small, while other methods showed a more substantial increase. 

Adding the scalar covariates did not have any significant impact on the AC for most of the 

methods. The exceptions to this are DPFR and dynupdate. For all cases simulated in this 

thesis, the coverage for DPFR decreased when the scalar covariates were added.   

Adding the covariates to the model did not have a large impact on the patterns that 

were observed when changing the sample size, data structure, confidence level, and cutoff 

point. When 𝑛𝑛 increased from 25 to 50, the IMPE decreased for all methods, and the AW 
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decreased for all methods except dynupdate. When the data structure was changed from 

setting A to setting B, the AW increased for BENDY, dynamic_FLR, and dynupdate, while 

it remained relatively similar for the other methods. Going from setting A to setting B 

increased the AC of dynupdate, but had little impact on the AC for the other methods. 

When the confidence level increased from 90% to 95%, the AC and AW of the prediction 

intervals increased as expected. When 𝑟𝑟 increased from 8 to 11, the IMPE increased for all 

methods except DPFFR, which decreased. Overall, DPFFR had very low IMPE in the 

model (1) and model (4) cases, it maintained consistent AW, and it had AC that was close 

to the desired confidence level. For almost all simulated cases, DPFFR had a CPU time 

that was lower than those of dynamic_FLR and dynupdate, yet slightly larger than the CPU 

time for DPFR. Among the dynamic prediction methods that treat the predicted response 

as a function (DPFFR, dynamic_FLR, and dynupdate), DPFFR performed comparatively 

well in these simulated cases and was preferred. For detailed metrics on the model (1) 

simulated cases, see Tables A5-A8 in the Appendix.  

6. Application to Financial Stock Data 

The dynamic prediction methods were used to analyze data on monthly stock highs 

from two well-known companies: Microsoft (abbreviated as MSFT) and IBM. The data 

from Microsoft (Microsoft Historical Prices, 2016) and IBM (IBM Historical Prices, 2016) 

were obtained from an online database provided by Yahoo Finance. The monthly high 

stock price is the maximum value that the stock was known to have for a given month. 

From 1987 to 2015, the monthly high stock price for IBM and MSFT for each month was 

recorded, resulting in 12 data points per year for 29 years. Therefore, for this application, 

the sample size is n = 29, and the number of points M for the time domain is 12. This type 
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of data is known as time series functional data (Shang and Hyndman, 2016). At the outset 

of this application, the response 𝑌𝑌𝑖𝑖(𝑡𝑡) is taken to be the MSFT stock high during month 𝑡𝑡 

of year 𝑖𝑖.  Note that for the DPFFR method, the IBM monthly stock highs were taken to be 

the functional covariates 𝑍𝑍𝑖𝑖(𝑡𝑡).  

 

Figure 17. Shown is the raw data for MSFT Stock Highs over n = 29 years for each 
month. 
 

Figure 17 displays the raw data on Microsoft stock highs. The black curve is the mean 

curve (Ramsay and Silverman, 2005; Ramsay et al., 2017), which displays the average 

MSFT stock high for each month. The mean curve remains relatively constant as the 
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months progress, while individual curves display variability with respect to the mean 

functional curve. Figure 18 displays the same information for the IBM stock highs. The 

mean function for the IBM stock highs shows a slight increase after month 7. 

 

Figure 18. Shown is the raw data for IBM Stock Highs over n = 29 years for each month. 
 

6.1.  Functional Principal Components Analysis 
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The variance of the IBM and MSFT data was analyzed using Functional Principal 

Components Analysis (FPCA). FPCA can be used to obtain estimates of the functional data 

curves, denoted as 𝑌𝑌�𝑖𝑖(𝑡𝑡). Once the estimates are known, the error terms can be estimated 

as 𝜖𝜖𝑖̂𝑖(𝑡𝑡) = 𝑌𝑌�𝑖𝑖(𝑡𝑡) − 𝑌𝑌𝑖𝑖(𝑡𝑡), and then the variance of the error terms can be estimated. FPCA 

was used in this study to obtain an estimate of 𝑉𝑉𝑉𝑉𝑉𝑉{𝜖𝜖𝑖𝑖(𝑡̃𝑡)}, so that prediction intervals could 

be obtained. This method considers the covariance V at two time points t and s, and states 

that the covariance can be decomposed in the following manner: 

𝑉𝑉(𝑡𝑡, 𝑠𝑠) = �𝑑𝑑𝑘𝑘𝜉𝜉𝑘𝑘(𝑡𝑡)𝜉𝜉𝑘𝑘(𝑠𝑠)
𝐾𝐾

𝑘𝑘=1

, 

where the 𝑑𝑑𝑘𝑘 are eigenvalues and the 𝜉𝜉𝑘𝑘 are eigenfunctions. Here, 𝐾𝐾 is the number of 

functional principal components that the covariance is decomposed into. Each 𝑑𝑑𝑘𝑘 gives the 

amount of variation in the direction of 𝜉𝜉𝑘𝑘(𝑡𝑡), and 𝑑𝑑𝑘𝑘
∑𝑑𝑑𝑘𝑘

 yields the proportion of variance 

explained by the 𝑘𝑘𝑡𝑡ℎ functional principal component.  

 Then, by the Karhunen-Loève Theorem, the functional samples can be 

reconstructed as: 

𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝜇𝜇(𝑡𝑡) + �𝑓𝑓𝑘𝑘

∞

𝑘𝑘=1

𝜉𝜉𝑘𝑘(𝑡𝑡), 

where 𝜇𝜇(𝑡𝑡) is the mean function, and the coefficients 𝑓𝑓𝑘𝑘 and eigenfunctions 𝜉𝜉𝑘𝑘(𝑡𝑡) are 

obtained from the covariance decomposition in FPCA. In practice, it is sufficient to select 

the first K principal components, if most of the variance is explained by them, since a finite 

number of principal components is needed for estimation of the curves. Once K is selected, 

the curves 𝑌𝑌𝑖𝑖(𝑡𝑡) may be estimated as: 
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𝑌𝑌�𝑖𝑖(𝑡𝑡) = 𝜇̂𝜇(𝑡𝑡) + �𝑓𝑓𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝜉𝜉𝑘𝑘(𝑡𝑡). 

After the FPCA breakdown for variance was performed, it was revealed that the 

first functional principal component explained 97.7% of the variance, the second 

component explained 1.5% of the variance, and the third component explained 0.6% of the 

variance (Ramsay and Silverman, 2005; Ramsay et al., 2017; Goldsmith et al., 2017). 

Together, the first three components explain 99.8% of the variance. Since the first 

functional principal component explains so much of the variance, it would be sufficient to 

include only the first principal component or only the first two principal components, but 

for completeness, the first three principal components were provided.  
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Figure 19. Illustrated are the first three principal components for Microsoft (MSFT) data 
(PC1, PC2, and PC3, respectively).  
 

PC1 was a main vertical shift depicted in the above figure. It represents a relatively 

constant vertical shift in the MSFT stock highs from year to year. PC2 contrasts the 

beginning of the year with the end of the year. PC3 represents a minor (0.6% of variability 

explained) seasonal effect on the monthly stock highs.  
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6.2. Results in Data Analysis 

Methods DPFFR, dynamic_FLR (Shang, 2015; Shang and Hyndman, 2016), and 

dynupdate (Shang, 2015; Shang and Hyndman, 2016) were used on this data to predict the 

monthly stock highs for Microsoft after two cutoff points (r = {4,5}) in this application. 

These three dynamic prediction methods were selected because it was of interest to treat 

the predicted monthly stock highs for Microsoft as functions. The results were analyzed 

using the metrics outlined in the Methods section. The results are summarized in Table 7. 

Table 7. IMPE for three dynamic prediction methods, with r = {4,5}. 

Method IMPE 

DPFFR 324.256 (r = 4) 
379.758 (r = 5) 

 
dynamic_FLR 436.981 (r = 4) 

517.657 (r = 5) 
 

dynupdate 797.374 (r = 4) 
814.085 (r = 5) 
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Figure 20. Depicted is a graph of the IMPE, by month, when the cutoff point r = 4.  
 

 Results of the application indicate that the IMPE was lower for DPFFR than the 

other two methods (Figure 20). Additionally, the IMPE seems to increase for months 

towards the end of the year. One can observe that for all months after month 5 (May), the 

IMPE of DPFFR is less than or equal to the IMPE for the other two methods (Figure 21). 

The IMPE is smaller at months close to the cutoff point r. 
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Figure 21. Depicted is a graph of the IMPE, by month, when the cutoff point r = 5. 

 

The next two figures depict dynamic predictions for the MSFT stock highs in a 

specific year using DPFFR, for cutoff points r = 4 and r = 5. In Figure 22 and Figure 23, 

we display some examples of dynamic predictions where the predicted trajectories of the 

MSFT stock highs according to DPFFR are indicated by dashed lines. DPFFR dynamic 

predictions were close to the actual trajectories. 
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Figure 22. Depicted is a graph of a DPFFR prediction of the MSFT stock high for a 
specific year, when r = 4.  
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Figure 23. Depicted is a graph of a DPFFR prediction, for a different curve, of the MSFT 
stock highs when r = 5. 

The Intramonthly Stock Returns are a measure of stock performance (Shang, 2015) 

and were considered for analysis. For this phase of the analysis, the IBM stock highs from 

1987 to 2015 were predicted (with the MSFT stocks as predictive information for DPFFR). 

To perform this kind of analysis, the following transformation (Shang, 2015) is applied to 

the data: 
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𝑅𝑅𝑖𝑖(𝑡𝑡) = 100 ∗ �ln�𝑌𝑌𝑖𝑖(𝑡𝑡)� − ln�𝑌𝑌𝑖𝑖(1)��.  

𝑅𝑅𝑖𝑖(𝑡𝑡) is the return for the IBM stock in year 𝑖𝑖 and month  𝑡𝑡. The return can be 

thought of as the increase in the value of a stock relative to its price during the first month 

of the year.  Here, 𝑌𝑌𝑖𝑖(𝑡𝑡) is the IBM stock high during month 𝑡𝑡 of year 𝑖𝑖. 𝑌𝑌𝑖𝑖(1) is the IBM 

stock high during the first month of year 𝑖𝑖. Note that it only makes sense to consider 𝑅𝑅𝑖𝑖(𝑡𝑡) 

over the domain 𝑡𝑡 ∈ {2,3, … ,𝑀𝑀}, as 𝑅𝑅𝑖𝑖(1) = 0. 

Table 8. Average Coverage (AC), Average Width (AW), and CPU Time for three dynamic 
prediction methods, C = 95% confidence, n = 29 curves, with cutoff point r = 7.  

Method AC AW CPU Time 

DPFFR 0.897 46.446 10.40 

dynamic_FLR 0.940 54.198 11.90 

Dynupdate 0.897 41.780 25.31 

 

DPFFR has a faster run time than dynamic_FLR and dynupdate. As far as coverage 

is concerned, DPFFR performs just as well as dynupdate, and it is relatively similar to 

dynamic_FLR. The prediction intervals for dynamic_FLR had the largest width out of the 

three methods. DPFFR had an actual coverage relatively close to the nominal level of 95% 

for this data. 
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Figure 24. Depicted is a graph of mean prediction interval width for each of the three 
methods, with cutoff point r = 7 (August).  
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Figure 25. Depicted is a graph of prediction interval coverage for three dynamic 
prediction methods, for cutoff point r = 7 (August). 

The width of DPFFR is relatively constant throughout the months. In September 

DPFFR had coverage that was greater than the coverage of the other methods, while in 

November, DPFFR had the lowest coverage. In October, DPFFR and dynupdate have the 

same mean coverage (the icons overlap). The methods all have mean coverages at or above 

0.85 during September, October, and December.  
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Figure 26. Shown above is a graph of a DPFFR prediction interval for the Intramonthly 
Stock Returns for IBM for a given year, when r = 7 and C = 95% confidence.  
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Figure 27. Shown above is a graph of a dynamic_FLR prediction interval for the 
Intramonthly Stock Returns for IBM for a given year, when r = 7 and C = 95% 
confidence.  

 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  66 
 

 

Figure 28. Shown above is a graph of a dynupdate prediction interval for the 
Intramonthly Stock Returns for IBM for a given year, when r = 7 and C = 95% 
confidence.  

Figures 26 – 28 show prediction intervals for the Intramonthly Stock Returns for 

MSFT in the year 2000. The black lines in each panel indicate the actual stock returns. The 

dashed gray lines indicate the dynamic predictions that each of the methods obtained, and 

the solid gray lines are the lower and upper bounds of the prediction intervals by the 

respective methods. Note that the prediction interval for DPFFR maintains a consistent 

width and the actual monthly stock highs are included in the DPFFR prediction interval.    
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7. Conclusions 

In the numerical simulations that were considered in this thesis, it appears that 

DPFFR is a method of dynamic prediction that outperforms several other existing methods 

of dynamic prediction in terms of prediction interval width, prediction interval coverage, 

and IMPE. Of the methods that treat the predicted response as a function, DPFFR has the 

lowest CPU time in most cases. In the cases where DPFFR showed similar results to other 

methods, DPFFR performed just as well or was very competitive in terms of the metrics. 

It should be noted that these conclusions only apply to the simulated cases that were 

considered, and further study would need to be conducted to see if these conclusions are 

generalizable.   

When used in a practical application with data from Microsoft (MSFT) and IBM, 

it was observed that DPFFR had smaller IMPE than both dynamic_FLR and dynupdate, 

making it a preferable alternative to these methods. This is notable because all three of 

these methods (DPFFR, dynamic_FLR, and dynupdate) share a functional response in the 

model, and are similar in the regard that they only require one main iteration to predict the 

trajectory of the entire curve of interest. In this application, DPFFR maintained comparable 

coverage and prediction interval width to these existing methods, while also maintaining a 

coverage that was close to the nominal 95% level.  

8. Further Discussion 

This thesis can be viewed as a preliminary study into the performance of DPFFR as a 

method of creating dynamic prediction intervals. There are more simulated cases that 

would need to be checked before a more general conclusion can be made about the 
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performance of DPFFR relative to other methods of dynamic prediction. For instance, in 

the simulations used in this thesis, the error terms were taken to be 𝑁𝑁(0, 0.222). Future 

studies could investigate what happens when the error terms have different variances, such 

as 0.12 or 0.52, and it would be of interest to see if the performance of DPFFR changes in 

these scenarios. Additional cutoff points r, other than r = 8 and r = 11, should also be 

considered in future studies to have a more complete assessment of the performance of 

DPFFR.  Other forms of trigonometric and polynomial data structures for settings A and B 

could be studied as well. Future studies could also consider how well DPFFR performs in 

other real-world applications, where there are more time points, to get a better idea of the 

circumstances where DPFFR is reliable.  
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Appendix 

Table A1.  Results for IMPE for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, and two settings (A, B). Model (4) was used. 

 Method 
 BENDY DLM DPFR DPFFR dynamic_FLR dynupdate 
Setting A  

n = 25       
r = 8 0.15 0.16 0.19 0.09 0.17 0.10 

r = 11 0.52 0.55 0.19 0.07 0.48 0.27 
n = 50  

r = 8 0.14 0.07 0.13 0.09 0.14 0.12 
r = 11 0.48 0.09 0.16 0.06 0.39 0.31 

Setting B  
n = 25  

r = 8 0.59 0.16 0.37 0.09 2.34 1.61 
r = 11 2.42 0.55 0.60 0.07 7.88 5.48 

n = 50  
r = 8 0.55 0.07 0.25 0.09 2.01 1.71 

r = 11 2.38 0.09 0.49 0.06 6.58 5.82 
 

 

 

 

 

 

 

 

 

 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  70 
 

Table A2. Simulation results for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, two settings (A, B), with C = 95% confidence.  Model (4) 
was used. 

 
 Method AC AW CPU AC AW CPU 

Setting A  r=8   r=11  
n = 25        

  BENDY 0.95 1.58 0.97 0.94 2.84 0.57 
  DLM 0.95 1.76 1.38 0.95 3.97 1.00 
  DPFR 0.89 1.36 5.72 0.92 1.47 2.82 
  DPFFR 0.94 1.16 7.38 0.99 1.27 5.47 
  Dynamic_FLR 0.97 2.28 12.24 0.96 3.35 10.25 
  dynupdate 0.69 0.63 21.04 0.63 0.93 15.13 

n = 50       
  BENDY 0.95 1.46 1.77 0.95 2.68 1.11 
  DLM 0.95 1.10 2.53 0.95 1.20 1.95 
  DPFR 0.90 1.19 10.92 0.91 1.31 5.49 
  DPFFR 0.94 1.09 14.08 0.99 1.21 10.05 
  Dynamic_FLR 0.96 1.87 29.79 0.96 2.93 26.16 
  dynupdate 0.70 0.70 70.10 0.65 1.01 69.91 
Setting B       

n = 25       
  BENDY 0.95 3.16 0.88 0.95 6.33 0.56 
  DLM 0.95 1.76 1.25 0.95 3.97 0.96 
  DPFR 0.82 1.57 5.05 0.82 1.92 2.73 
  DPFFR 0.94 1.15 5.71 0.99 1.27 4.86 
  Dynamic_FLR 0.95 7.15 8.97 0.94 12.90 7.33 
  dynupdate 0.84 3.70 12.52 0.91 8.31 12.49 

n = 50       
  BENDY 0.95 2.95 1.78 0.95 6.13 1.12 
  DLM 0.95 1.10 2.49 0.95 1.20 1.93 
  DPFR 0.82 1.31 11.14 0.79 1.58 5.87 
  DPFFR 0.94 1.08 14.70 0.99 1.21 11.70 
  Dynamic_FLR 0.95 6.53 26.62 0.95 11.76 22.01 
  dynupdate 0.86 4.12 70.85 0.92 8.87 70.65 
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Table A3. Simulation results for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, two settings (A, B), with C = 90% confidence.  Model (4) 
was used.  

 
 Method AC AW CPU AC AW CPU 

Setting A  r=8   r=11  
n = 25        

  BENDY 0.90 1.31 0.94 0.90 2.35 0.60 
  DLM 0.90 1.42 1.35 0.90 2.94 1.02 
  DPFR 0.81 1.10 5.45 0.84 1.15 2.80 
  DPFFR 0.87 0.93 5.59 0.95 1.00 4.41 
  Dynamic_FLR 0.94 1.87 10.42 0.92 2.81 8.98 
  dynupdate 0.62 0.54 12.90 0.56 0.79 12.86 

n = 50       
  BENDY 0.90 1.22 1.94 0.90 2.24 1.19 
  DLM 0.90 0.92 2.79 0.90 1.00 2.11 
  DPFR 0.82 0.96 12.00 0.83 1.03 5.85 
  DPFFR 0.86 0.88 15.28 0.95 0.95 10.72 
  Dynamic_FLR 0.93 1.49 31.82 0.92 2.37 27.10 
  dynupdate 0.62 0.60 75.07 0.58 0.86 73.14 
Setting B       

n = 25       
  BENDY 0.90 2.62 1.12 0.90 5.24 0.60 
  DLM 0.90 1.42 1.56 0.90 2.94 1.00 
  DPFR 0.72 1.27 6.52 0.72 1.51 2.93 
  DPFFR 0.87 0.92 7.56 0.95 0.99 5.17 
  Dynamic_FLR 0.91 6.09 11.53 0.91 10.97 7.73 
  dynupdate 0.78 3.26 65.82 0.87 7.50 12.78 

n = 50       
  BENDY 0.90 2.46 2.00 0.90 5.11 1.19 
  DLM 0.90 0.92 2.85 0.90 1.00 2.06 
  DPFR 0.62 1.05 12.52 0.68 1.24 6.15 
  DPFFR 0.86 0.88 14.70 0.95 0.95 12.47 
  Dynamic_FLR 0.91 5.37 30.27 0.91 9.66 23.40 
  dynupdate 0.80 3.55 77.31 0.87 7.62 72.83 

 

 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  72 
 

Table A4. Simulation results for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, two settings (A, B), with C = 99% confidence.  Model (4) 
was used.  

 
 Method AC AW CPU AC AW CPU 

Setting A  r=8   r=11  
n = 25        

  BENDY 0.99 2.16 0.75 0.99 3.87 0.48 
  DLM 0.99 2.56 1.09 0.99 7.29 0.83 
  DPFR 0.98 1.98 4.55 0.99 2.31 2.37 
  DPFFR 1.00 1.68 6.14 1.00 2.00 4.54 
  Dynamic_FLR 0.98 2.66 10.03 0.98 3.82 8.31 
  dynupdate 0.77 0.75 12.81 0.72 1.13 12.75 

n = 50       
  BENDY 0.99 1.95 1.62 0.99 3.58 1.19 
  DLM 0.99 1.48 2.35 0.99 1.63 2.07 
  DPFR 0.98 1.73 10.51 0.99 2.06 6.17 
  DPFFR 0.99 1.59 34.16 1.00 1.90 15.47 
  Dynamic_FLR 0.99 2.40 36.80 0.98 3.63 33.76 
  dynupdate 0.78 0.85 91.62 0.75 1.24 462.38 
Setting B       

n = 25       
  BENDY 0.99 4.32 0.75 0.99 8.62 0.50 
  DLM 0.99 2.56 1.09 0.99 7.29 0.89 
  DPFR 0.94 2.29 4.47 0.95 3.01 2.62 
  DPFFR 1.00 1.67 6.54 1.00 2.00 5.98 
  Dynamic_FLR 0.97 7.97 8.45 0.96 14.35 7.86 
  dynupdate 0.88 4.18 12.69 0.93 8.89 23.00 

n = 50       
  BENDY 0.99 3.94 1.68 0.99 8.18 0.96 
  DLM 0.99 1.48 2.49 0.99 1.63 1.69 
  DPFR 0.94 1.90 12.15 0.93 2.48 5.33 
  DPFFR 0.99 1.58 92.09 1.00 1.89 13.97 
  Dynamic_FLR 0.98 7.92 32.79 0.98 14.19 24.58 
  dynupdate 0.92 4.84 111.42 0.96 10.16 75.19 
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Table A5.  Results for IMPE for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, and two settings (A, B). Model (1) was used.  

 Method 
 BENDY DLM DPFR DPFFR dynamic_FLR dynupdate 
Setting 
A 

 

n = 25       
r = 8 0.17 0.22 0.48 0.09 0.43 0.25 

r = 11 0.57 3.93 0.52 0.07 0.74 0.43 
n = 50  

r = 8 0.14 0.07 0.40 0.09 0.36 0.29 
r = 11 0.51 0.10 0.42 0.06 0.62 0.49 

Setting 
B 

 

n = 25  
r = 8 0.68 0.22 0.49 0.09 2.64 1.74 

r = 11 2.66 3.93 0.59 0.07 8.15 6.07 
n = 50  

r = 8 0.58 0.08 0.39 0.09 2.27 1.92 
r = 11 2.50 0.10 0.47 0.06 6.83 6.05 
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Table A6. Simulation results for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, two settings (A, B), with C = 95% confidence. Model (1) 
was used.  

 
 Method AC AW CPU AC AW CPU 

Setting A  r=8   r=11  
n = 25        

  BENDY 0.95 1.69 1.12 0.95 3.00 0.71 
  DLM 0.95 2.14 1.49 0.95 26.66 1.10 
  DPFR 0.76 1.65 5.21 0.81 1.89 2.98 
  DPFFR 0.94 1.17 5.87 0.99 1.30 4.54 
  Dynamic_FLR 0.96 3.32 10.46 0.95 4.02 9.03 
  dynupdate 0.59 0.85 12.88 0.64 1.22 12.88 

n = 50       
  BENDY 0.95 1.50 2.24 0.95 2.75 1.47 
  DLM 0.95 1.14 3.06 0.95 1.26 2.36 
  DPFR 0.72 1.37 12.02 0.76 1.56 6.67 
  DPFFR 0.94 1.10 15.68 0.99 1.22 11.74 
  Dynamic_FLR 0.96 2.82 30.96 0.96 3.66 29.01 
  dynupdate 0.59 0.91 73.24 0.65 1.31 360.27 
Setting B       

n = 25       
  BENDY 0.95 3.38 1.11 0.95 6.68 0.71 
  DLM 0.95 2.14 1.51 0.95 26.66 1.10 
  DPFR 0.77 1.68 4.81 0.81 1.98 2.86 
  DPFFR 0.94 1.16 6.11 0.99 1.29 5.22 
  Dynamic_FLR 0.95 7.66 8.82 0.95 13.30 7.51 
  dynupdate 0.86 41.12 12.94 0.91 8.54 12.93 

n = 50       
  BENDY 0.95 3.03 2.34 0.95 6.29 1.42 
  DLM 0.95 1.14 3.19 0.95 1.26 2.28 
  DPFR 0.73 1.38 10.92 0.77 1.61 6.34 
  DPFFR 0.94 1.09 17.29 0.99 1.21 13.50 
  Dynamic_FLR 0.95 6.86 28.65 0.95 11.92 23.57 
  dynupdate 0.88 4.60 383.31 0.92 9.00 74.04 
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Table A7. Simulation results for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, two settings (A, B), with C = 90% confidence. Model (1) 
was used.   

 
 Method AC AW CPU AC AW CPU 

Setting A  r=8   r=11  
n = 25        

  BENDY 0.90 1.39 1.14 0.90 2.48 0.71 
  DLM 0.90 1.70 1.54 0.90 13.25 1.13 
  DPFR 0.66 1.33 5.30 0.70 1.48 3.00 
  DPFFR 0.87 0.95 5.92 0.95 1.02 4.55 
  Dynamic_FLR 0.93 2.76 10.53 0.91 3.43 9.10 
  dynupdate 0.52 0.73 12.99 0.57 1.05 12.92 

n = 50       
  BENDY 0.90 1.25 2.28 0.90 2.29 1.43 
  DLM 0.90 0.95 3.17 0.90 1.04 2.30 
  DPFR 0.61 1.10 12.25 0.65 1.22 6.51 
  DPFFR 0.86 0.88 15.89 0.95 0.95 11.16 
  Dynamic_FLR 0.93 2.31 31.61 0.92 2.99 27.39 
  dynupdate 0.52 0.78 74.32 0.58 1.11 73.30 
Setting B       

n = 25       
  BENDY 0.90 2.79 1.12 0.90 5.52 0.72 
  DLM 0.90 1.70 1.14 0.90 13.25 1.13 
  DPFR 0.67 1.34 4.93 0.71 1.55 2.89 
  DPFFR 0.87 0.94 6.21 0.95 1.01 5.27 
  Dynamic_FLR 0.91 6.53 8.98 0.90 11.26 7.61 
  dynupdate 0.80 3.64 13.04 0.87 7.69 12.94 

n = 50       
  BENDY 0.90 2.52 2.26 0.90 5.25 1.42 
  DLM 0.90 0.95 3.15 0.90 1.04 2.30 
  DPFR 0.63 1.11 10.54 0.65 1.26 6.29 
  DPFFR 0.86 0.88 16.58 0.95 0.95 13.33 
  Dynamic_FLR 0.91 5.64 27.64 0.92 9.85 23.40 
  dynupdate 0.83 3.97 73.38 0.87 7.77 73.03 

 

 



PREDICTION INTERVALS FOR FUNCTIONAL DATA  76 
 

Table A8. Simulation results for 100 simulated datasets, with cutoff points r = {8,11}, 
number of curves n = {25, 50}, two settings (A, B), with C = 99% confidence. Model (1) 
was used.   

 
 Method AC AW CPU AC AW CPU 

Setting A  r=8   r=11  
n = 25        

  BENDY 0.99 2.31 1.12 0.99 4.11 0.71 
  DLM 0.99 3.24 1.52 0.99 133.55 1.12 
  DPFR 0.91 2.40 5.21 0.96 2.96 2.97 
  DPFFR 1.00 1.71 5.80 1.00 2.03 4.46 
  Dynamic_FLR 0.98 3.78 10.37 0.97 4.53 8.94 
  dynupdate 0.68 1.04 12.89 0.73 1.48 12.90 

n = 50       
  BENDY 0.99 2.00 2.28 0.99 3.67 1.41 
  DLM 0.99 1.53 3.14 0.99 1.70 2.29 
  DPFR 0.89 1.99 12.16 0.94 2.44 6.41 
  DPFFR 0.99 1.60 15.87 1.00 1.91 10.96 
  Dynamic_FLR 0.98 3.45 31.48 0.98 4.51 26.92 
  dynupdate 0.69 1.12 74.48 0.74 1.60 72.95 
Setting B       

n = 25       
  BENDY 0.99 4.63 1.11 0.99 9.13 0.71 
  DLM 0.99 3.24 1.54 0.99 133.55 1.13 
  DPFR 0.92 2.43 4.82 0.96 3.10 2.87 
  DPFFR 1.00 1.69 6.08 1.00 2.02 5.20 
  Dynamic_FLR 0.97 8.49 8.80 0.97 14.74 7.50 
  dynupdate 0.90 4.62 12.91 0.93 9.14 12.91 

n = 50       
  BENDY 0.99 4.05 2.26 0.99 8.41 1.40 
  DLM 0.99 1.53 3.15 0.99 1.70 2.28 
  DPFR 0.90 2.00 10.50 0.94 2.52 6.23 
  DPFFR 0.99 1.59 16.52 1.00 1.90 13.24 
  Dynamic_FLR 0.98 8.40 27.61 0.98 14.39 23.07 
  dynupdate 0.93 5.35 73.90 0.96 10.34 72.75 
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