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ABSTRACT 23 

A positive family history of hypertension (+FH) is a risk factor for the future development of 24 

hypertension. Hypertension is associated with reductions in baroreflex sensitivity (BRS). 25 

Therefore, we hypothesized that young women with a +FH (n=12, 22±1 yrs, BMI 21±1 kg/m2, 26 

MAP 79±1 mmHg) would have lower BRS compared to young women without a family history 27 

of hypertension (-FH) (n=13, 22±1 yrs, BMI 21±1 kg/m2, MAP 77±2 mmHg, all P>0.05 28 

between groups). Continuous measurements of muscle sympathetic nerve activity (MSNA), 29 

blood pressure, and electrocardiogram derived R-R interval were recorded at rest and during a 30 

Valsalva maneuver. Both cardiovagal and vascular sympathetic BRS were assessed. Resting 31 

cardiovagal BRS was reduced in the +FH women (all sequences: -FH 32.3±3.7 vs. +FH 20.2±2.9 32 

ms/mmHg, P = 0.02). Cardiovagal BRS during phase IV (-FH 16.5±2.7 vs. +FH 7.6±1.3 33 

ms/mmHg, P < 0.01) but not phase II (-FH 5.5±0.9 vs. +FH 5.0±0.8 ms/mmHg, P = 0.67) of the 34 

Valsalva maneuver was also lower in the +FH women. Vascular sympathetic BRS at rest (-FH -35 

2.38±0.7 vs. +FH -2.33±0.3 bursts/min/mmHg, P = 0.58) and during the Valsalva (-FH -36 

0.74±0.23 vs. +FH -0.66±0.18 bursts/15s/mmHg, P = 0.79) were not different between groups. 37 

These data suggest that healthy young women with a positive family history of hypertension 38 

have reduced cardiovagal BRS. This may be one mechanism contributing to the increased 39 

incidence of hypertension in this population later in life. 40 

 41 

  42 
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New and Noteworthy 43 

Having a family history of hypertension increases the risk of developing future 44 

hypertension. Reductions in baroreflex function have been demonstrated in hypertension, 45 

and are an important marker for future cardiovascular disease. We show that young 46 

women with a family history of hypertension have lower cardiovagal baroreflex sensitivity. 47 

This alteration in autonomic function may be one mechanism contributing to the future 48 

incidence of hypertension in this patient population.   49 

  50 
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INTRODUCTION  51 

 Cardiovascular disease is the leading cause of death in women, with hypertension being 52 

the most prevalent cardiovascular disorder (Hopkins and Hunt 2003; Mozaffarian et al. 2015). 53 

Having a positive family history of hypertension (+FH) greatly increases the risk for developing 54 

the disease (Flaa et al. 2008; Hunt et al. 1986; Matthews et al. 2004; Menkes et al. 1989). In fact, 55 

the risk of developing hypertension is approximately doubled for each first degree relative with 56 

diagnosed hypertension (Hunt et al. 1986). This association is especially important for women’s 57 

health since postmenopausal women have a greater prevalence of hypertension compared to men 58 

(Lima et al. 2012; Mozaffarian et al. 2015; Yanes and Reckelhoff 2011).  59 

 The baroreflex plays a critical role in the regulation and maintenance of blood pressure 60 

(BP). It has been well established that adults with hypertension have impaired baroreflex 61 

function (Bristow et al. 1969; Laterza et al. 2007), and as such, autonomic dysregulation has 62 

been postulated as a key mechanism in the etiology of hypertension. To this end, normotensive 63 

adults at risk of developing future hypertension because of a positive family history of 64 

hypertension (+FH) also show alterations in baroreflex function; however, these data were done 65 

solely in men (Boutcher et al. 2009; Parmer et al. 1992). Of these studies, Parmer et al. (Parmer 66 

et al. 1992) found reduced baroreflex sensitivity (BRS), and Boutcher et al. (Boutcher et al. 67 

2009) found reduced carotid BRS but no differences in cardiopulmonary BRS. Several studies 68 

have demonstrated sex differences in BP control and baroreflex function (Charkoudian et al. 69 

2005; Dutoit et al. 2010; Fu et al. 2009; Hart et al. 2011; Hart et al. 2009). Therefore, it is 70 

important to examine the impact of a +FH on autonomic function in women since decreased 71 

BRS may increase the risk of future hypertension and cardiovascular events.  72 
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 Despite women having the greater prevalence of developing hypertension later in life, to 73 

date, studies have not investigated BRS in young women with +FH. Therefore, the purpose of 74 

the present study was to examine BRS in young normotensive women with a +FH. We 75 

hypothesized that young women with a +FH would have a decreased cardiovagal and vascular 76 

sympathetic BRS compared to young women without a family history of hypertension (-FH).  77 

 78 

METHODS 79 

Subjects 80 

 Twenty-five healthy young women completed for this study: 13 women -FH (22±1 yrs) 81 

and 12 women +FH (22±0.3 yrs). Positive family history of hypertension was defined as either 82 

the subject’s mother or father having been diagnosed with hypertension. Women self-reported 83 

their family history using a standard medical history questionnaire from the University of 84 

Delaware’s Nurse Managed Primary Care Center. Five women in each group participated in our 85 

previous study (Greaney et al. 2015; Matthews et al. 2017). All subjects were normotensive 86 

(resting systolic BP < 120 mmHg and diastolic BP < 80 mmHg), non-obese (BMI < 30 kg/m2), 87 

non-smokers, and free from any known cardiovascular or chronic diseases. Subjects were not 88 

taking any over-the-counter or prescription medications or supplements with primary or 89 

secondary cardiovascular effects, such as antihypertensives, statins, or antidepressants. If 90 

subjects were taking an oral contraceptive, they were tested during the placebo phase of their 91 

regimen (-FH n=9; +FH n=7). Otherwise, subjects were tested during the early follicular phase 92 

of their menstrual cycle (-FH n=4; +FH n=5). All subjects were familiarized with the equipment 93 

and experimental protocol before the testing visit. All experimental procedures were approved by 94 

the University of Delaware Institutional Review Board and all women gave verbal and written 95 
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consent prior to study participation. All study related activities conformed to the standards 96 

outlined in the Declaration of Helsinki.  97 

Experimental Measurements 98 

 Subjects were instructed to report to the laboratory on the day of testing after fasting for 99 

at least four hours and abstaining from alcohol, caffeine, and strenuous exercise for at least 24 100 

hours. During testing procedures, heart rate was monitored using a single-lead electrocardiogram 101 

(ECG; Dinamap Dash 2000; GE Medical Systems, Milwaukee, WI, USA) and was used to 102 

calculate R-R intervals. Beat-by-beat arterial BP was measured using a Finometer (Finapres 103 

Medical Systems, Amsterdam, Netherlands), which was placed on the middle finger of the 104 

subject’s non-dominant hand and calibrated using the manufacturer’s instructions. The 105 

Finometer is a reliable and noninvasive technique to track arterial BP both at rest and during 106 

autonomic cardiovascular testing (Imholz et al. 1990; Imholz et al. 1988; Imholz et al. 1998). 107 

Automated brachial artery BP was also measured (Dinamap Dash 2000; GE Medical Systems, 108 

Milwaukee, WI, USA) and used to verify the absolute Finomoter-derived BP measurements. 109 

Respiratory rate was monitored using a strain-gauge pneumograph (Pneumotrace; UFI, Morro 110 

Bay, CA, USA) placed in a stable position around the upper abdomen.  111 

 Multiunit postganglionic muscle sympathetic nerve activity (MSNA) was measured via 112 

peroneal microneurography, as previously described (Greaney et al. 2015; Vallbo et al. 1979; 113 

Vallbo et al. 2004; Wenner et al. 2007). Briefly, nerve recordings were obtained using a standard 114 

unipolar tungsten microelectrode inserted into the peroneal nerve close to the fibular head, while 115 

a reference microelectrode was inserted approximately 3 cm away on the lower leg. The nerve 116 

signals were amplified (70,000-fold), bandpass filtered (700-2,000 Hz), rectified, and integrated 117 

(time constant: 0.1 s) using a nerve traffic analyzer (model 662c-4; University of Iowa 118 
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Bioengineering, Iowa City, IA, USA). Nerve bursts were determined to be the result of MSNA 119 

and not skin sympathetic nerve activity if electrical stimulation with the microelectrode caused a 120 

visible muscle twitch, light stroking of the skin did not elicit nerve bursts, passive stretch of the 121 

leg resulted in afferent nerve bursts, and there was an increase in burst activity in response to an 122 

end-expiratory breath hold. In accordance with recent guidelines (Hart et al. 2017; Shoemaker et 123 

al. 2018; White et al. 2015), only bursts with a >3:1 signal-to-noise ratio that were pulse 124 

synchronous were accepted for analysis.  125 

Experimental Protocol 126 

 Cardiovagal and vascular sympathetic BRS were assessed during ten minutes of rest and 127 

during a Valsalva maneuver. To perform the Valsalva maneuver, subjects were asked to expire 128 

into a mouthpiece maintaining a pressure of 40 mmHg, or best effort, for 15 s. During the 129 

Valsalva maneuver, intrathoracic and intra-abdominal pressure increases causing a brief rise in 130 

peripheral BP (phase I), followed by a prolonged decrease in BP (phase II). Immediately 131 

following the cessation of the Valsalva maneuver a brief drop in BP occurs (phase III) followed 132 

by a sustained increase in BP (phase IV). The slope of the relation between systolic BP (SBP) 133 

and R-R interval during the two prolonged phases of the Valsalva maneuver (phases II and IV) 134 

were examined to assess cardiovagal BRS (Farquhar et al. 2000; Wenner et al. 2006). Only 135 

regressions with an r2 value of >0.7 were included in the analysis (Farquhar et al. 2000; Wenner 136 

et al. 2006). During the Valsalva maneuver, we examined the total number of bursts that 137 

occurred during exhalation to the change in diastolic BP (DBP) as an index of vascular 138 

sympathetic BRS as previously described (Cox et al. 2002; Delaney et al. 2010; Fu et al. 2009; 139 

Fu et al. 2005). The number of bursts during the 15 seconds of expiration was related to the 140 

maximal change in DBP (calculated from the highest DBP at the initiation of straining to the 141 
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minimum DBP during the maneuver) (Cox et al. 2002; Delaney et al. 2010; Fu et al. 2009; Fu et 142 

al. 2005). 143 

Data Analysis 144 

 Resting cardiovagal BRS was assessed during baseline using the sequence method and 145 

HemoLab software (Harald Stauss Scientific, Iowa City, IA, USA).  R-to-R intervals were 146 

regressed over SBP for each sequence of four or more consecutive cardiac cycles where both 147 

variables increased (up sequences) or decreased (down sequences) in unison. A minimum 148 

acceptable r value of 0.8 for each sequence was required for inclusion into the calculation of 149 

cardiovagal BRS. The average regression slope for up, down, and combined (up and down 150 

together) sequences was calculated and used to characterize cardiovagal BRS at rest. Resting 151 

vascular sympathetic BRS was determined by examining the spontaneous fluctuations in DBP 152 

and MSNA. MSNA bursts were binned in 3 mmHg bins using custom Labview software (Fairfax 153 

et al. 2013). The regression line was weighted to account for the number of cardiac cycles within 154 

each bin. Bins without MSNA activity (zeros) were included in the analysis. A minimum 155 

acceptable r value of 0.5 was used as an inclusion criterion (Wenner et al. 2007). The slope of 156 

the relationship between DBP and MSNA was used as an index of vascular sympathetic BRS, or 157 

gain around the operating point. 158 

 Heart rate variability (HRV) analysis was also performed to further assess resting 159 

autonomic function. Heart rate variability is largely dependent on modulation of vagal activity 160 

(1996) and is therefore an index of parasympathetic tone. R-R intervals were analyzed with 161 

Kubios HRV software (Tarvainen et al. 2014) (University of Eastern Finland, Joensuu, Finland). 162 

The time domain and frequency domain using the fast Fourier transformation were used to assess 163 

HRV. Frequency power was categorized as low frequency bands (LF; 0.04-0.15 Hz) and high 164 
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frequency bands (HF; 0.15-0.4 Hz).  The very low frequency band (<0.04 Hz) was not analyzed 165 

due to short recording time. 166 

Statistical Analysis 167 

 Participant characteristics and baroreflex function were compared between +FH and –FH 168 

groups using unpaired t-tests. Results are reported as means ± SE. The alpha level for 169 

significance was set at P<0.05. 170 

 171 

RESULTS   172 

 Subject characteristics are presented in Table 1. The two groups were well-matched for 173 

age, BMI, and resting BP (all P > 0.05). MSNA was obtained in a subset of women (-FH n=8; 174 

+FH n=8). Resting burst frequency (-FH 8±2 vs. +FH 9±1 bursts/min, P = 0.90) and burst 175 

incidence (-FH 14±3 vs. +FH 13±1 bursts/100 heart beats, P = 0.61) were not different between 176 

groups.  177 

Baroreflex Sensitivity 178 

 Resting cardiovagal BRS was assessed using the sequence method. The +FH group had 179 

lower resting cardiovagal BRS for up sequences (-FH 30.6±4.1 vs. +FH 18.1±2.7 ms/mmHg, P = 180 

0.02) and combined up and down sequences (-FH 32.3±3.7 vs. +FH 20.2±2.9 ms/mmHg, P = 181 

0.02). There was also a trend towards lower cardiovagal BRS for down sequences (-FH 33.1±4.4 182 

vs. +FH 22.9±3.5 ms/mmHg, P = 0.09). Both groups had a similar number of cardiac cycles (-183 

FH 509±47 vs. +FH 519±60, P = 0.90) during the recording period. 184 

 Cardiovagal BRS during the Valsalva maneuver is presented in Figures 1 and 2. As 185 

shown in Figure 1, cardiovagal BRS was lower in +FH women during phase IV of the Valsalva 186 

maneuver (-FH 16.5±2.7 vs. +FH 7.6±1.3 ms/mmHg, P < 0.01). During phase II of the Valsalva 187 
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maneuver (Figure 2), there were no differences in cardiovagal BRS between groups (-FH 5.5±0.8 188 

vs. +FH 5.0±0.6 ms/mmHg, P = 0.67). Mean pressure achieved during exhalation was similar 189 

between groups (-FH 33±3 vs. +FH 31±3 mmHg, P > 0.05).  190 

 Vascular sympathetic BRS was determined in a subset of women in whom we obtained 191 

nerve recordings (-FH n=8; +FH n=8). Resting sympathetic BRS (-FH -2.38±0.7 vs. +FH -192 

2.33±0.3 burst/min/mmHg, P = 0.58) was not different between groups. During the Valsalva 193 

maneuver, the decline in DBP (-FH Δ-20±4 vs. +FH Δ-20±4 mmHg, P = 0.82) was similar 194 

between groups. Valsalva-derived vascular sympathetic BRS is presented in Figure 3.  There 195 

were no differences in vascular sympathetic BRS between groups (-FH -0.74±0.23 vs. +FH -196 

0.66±0.18 burst/min/mmHg, P = 0.79). 197 

Heart Rate Variability 198 

 HRV analysis was performed to further assess autonomic function at rest with an 199 

emphasis on HRV indices of parasympathetic function. Heart rate during the recording period 200 

tended to be lower in the –FH group (-FH 62±1 vs. +FH 69±3 beats/min, P = 0.05), whereas R-R 201 

interval tended to be higher (-FH 977±18 vs. +FH 899±44 ms, P = 0.11). The –FH group had 202 

higher pNN50 (-FH 46.8±5.2 vs. +FH 26.3±6.2 %, P = 0.02). All other time domain HRV 203 

indices (SDNN: -FH 84±10 vs. +FH 75±13 ms, P = 0.59; RMSSD: -FH 85±13 vs. +FH 73±20 204 

ms, P = 0.61), and all frequency domain HRV indices (HF: -FH 3552±1276 vs. +FH 1260±270 205 

ms2, P = 0.10; LF: -FH 2274±694 vs. +FH 1173±280 ms2, P = 0.17; total power: -FH 206 

7321±2058 vs. +FH 5880±1661 ms2, P = 0.59; LF/HF ratio: -FH 0.83±0.16 vs. +FH 1.16±0.26, 207 

P = 0.28) were not different between groups.  208 

  209 

DISCUSSION 210 
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 The main novel finding of the current study is that healthy young, normotensive women 211 

with a +FH have reduced cardiovagal BRS compared to women with a –FH. This was 212 

demonstrated using two distinct measures of BRS (resting spontaneous BRS and Valsalva-213 

derived BRS). This is important because suppressed baroreflex function is associated with 214 

established hypertension (Bristow et al. 1969; Laterza et al. 2007), and having a +FH increases 215 

the risk of developing hypertension (Hunt et al. 1986). Furthermore, low cardiovagal BRS has 216 

been proposed as a meaningful variable for risk stratification (Kiviniemi et al. 2014) (La Rovere 217 

2000). Our data suggest that young normotensive women at risk for future hypertension display 218 

alterations in autonomic function. Thus, these data are especially important for women’s health 219 

given the greater prevalence of hypertension in postmenopausal women (Lima et al. 2012; 220 

Mozaffarian et al. 2015; Yanes and Reckelhoff 2011). 221 

 Impaired BRS has been demonstrated in young men with a +FH, but to our knowledge, 222 

no studies have examined women. Parmer et al. (Parmer et al. 1992) found reduced cardiovagal 223 

BRS in response to both bolus phenylephrine administration and amyl nitrite inhalation in both 224 

normotensive and hypertensive men with a family history of hypertension. Boutcher et al. 225 

(Boutcher et al. 2009) used lower body negative pressure to challenge the baroreflex and found 226 

decreased carotid BRS but no differences in cardiopulmonary BRS between +FH and –FH men. 227 

We examined baroreflex function using the spontaneous technique at rest, as well as during the 228 

Valsalva maneuver. Importantly, our findings of reduced cardiovagal BRS at rest and during the 229 

Valsalva maneuver in +FH women are consistent with those studies in men utilizing vasoactive 230 

drugs (Parmer et al. 1992) or neck suction (Boutcher et al. 2009), which can elicit larger changes 231 

in blood pressure. Therefore, our data extends previous findings to show that women with a +FH 232 

also display lower cardiovagal BRS. This autonomic dysregulation may contribute to the 233 
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development of hypertension in these otherwise healthy individuals. Although data have shown 234 

this reduction in cardiovagal BRS sensitivity before in men, to our knowledge, this is the first 235 

manuscript to show this also occurs in women and is an important extension of prior work. 236 

Demonstrating these findings in women is important given the increased rates of hypertension 237 

during pregnancy as well as after menopause; additional longitudinal data are needed to 238 

understand the association between altered autonomic function in women with a family history 239 

of hypertension and the risk of preeclampsia and hypertension later in life.   240 

The current investigation did not observe differences in vascular sympathetic BRS 241 

(during rest or the Valsalva). However, it is possible that in such a young cohort (22±1 yrs) 242 

differences are masked, and older women need to be studied to determine if having +FH impacts 243 

vascular sympathetic baroreflex sensitivity. Although resting muscle sympathetic nerve activity 244 

increases with age (Ng et al. 1993), aging does not appear to effect vascular sympathetic 245 

baroreflex sensitivity in healthy men (Davy et al. 1998; Ebert et al. 1992; Tanaka et al. 1999). 246 

However, older women have lower vascular sympathetic baroreflex sensitivity compared to older 247 

men (Okada et al. 2012). Given that impaired baroreflex sensitivity may contribute to 248 

hypertension along with the known sex differences in hypertension in older adults, we speculate 249 

that vascular sympathetic baroreflex sensitivity may be reduced in women as they become older, 250 

potentially more so in those with a family history of hypertension. Indeed, estrogen replacement 251 

enhanced vascular sympathetic (but not cardiovagal) baroreflex sensitivity in postmenopausal 252 

women (Hunt et al. 2001). Thus, future studies are needed to extend the current findings to older 253 

women. 254 

Contrary to vascular sympathetic baroreflex sensitivity, cardiovagal BRS decreases with 255 

age (Rudas et al. 1999) and is also reduced in hypertension (Bristow et al. 1969; Laterza et al. 256 
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2007). The modified Oxford technique is considered the ‘gold standard’ for assessing baroreflex 257 

function, however it has recently been shown that BRS derived from Phase IV of the Valsalva 258 

maneuver was a significant predictor of cardiovascular mortality in middle-aged adults 259 

(Kiviniemi et al. 2014). Taken together with the baroreflex data in aging and hypertension, this 260 

may suggest that cardiovagal BRS is a more sensitive assessment of autonomic function and 261 

predictor of cardiovascular disease. Given this altered BRS in both men (Parmer et al. 1992) and 262 

women (current study) with a +FH, coupled with the important prognostic value of cardiovagal 263 

BRS (Kiviniemi et al. 2014), we speculate that low cardiovagal BRS may be an early marker of 264 

future disease in those at risk for developing hypertension. The impaired BRS may also help to 265 

explain the aberrant BP and sympathetic reactivity previously found in adults with a +FH 266 

(Fonkoue et al. 2016; Greaney et al. 2015; Matthews et al. 2017). Future longitudinal research in 267 

young adults with a +FH is warranted. 268 

  Given that HF power is a strong indicator of parasympathetic tone, we would anticipate 269 

this variable to be different between groups. Although the HF component of HRV did not reach 270 

statistical significance, we observed a trend toward a lower HF power in +FH women (P=0.10), 271 

which was almost 3 times lower than in women without a family history of hypertension. 272 

However, a large inter-individual variation between HRV and vagal tone has been reported 273 

(Draghici and Taylor 2016), and it has been suggested that HRV and baroreflex sensitivity have 274 

independent predictive value. Specifically, HRV is reflective of tonic vagal tone whereas 275 

baroreflex sensitivity is reflex vagal activity (Hoffmann et al. 2000). Furthermore, these 276 

variables have been weakly correlated, suggesting complexity within this relationship (Hoffmann 277 

et al. 2000).  The lack of statistical differences in RR-interval between groups may also explain 278 

why indices of HRV were not different. Given that HR tended to be higher in the +FH women, 279 



Matthews et al R1   Baroreflex Function in Women 14 

 

one would anticipate a lower RR interval. However, HR and RR-interval are not linearly related 280 

(Draghici and Taylor 2016), and given that RR-interval generally has a much larger standard 281 

deviation within resting ranges (Stauss 2014), it may not be surprising that the statistical results 282 

of the two do not mirror one another (Draghici and Taylor 2016). 283 

 We recognize there are several limitations with the current investigation. We relied on 284 

self-reported parental history of hypertension, and this may have caused some misclassification 285 

of subjects. Regardless, the robust between-group differences were still evident. We also did not 286 

collect blood samples to measure norepinephrine. In addition, the current study utilized 287 

spontaneous BP fluctuations to assess vascular sympathetic BRS. This technique does not allow 288 

for the full baroreflex blood pressure range to be investigated. Despite this, it does allow for BRS 289 

analysis around the operating point, and has been found to be well correlated to the modified 290 

Oxford technique (Hart et al. 2010). Furthermore, we examined baroreflex function during the 291 

Valsalva maneuver. Although there may be limitations with analyzing shorter nerve recording 292 

segments (Notay et al. 2016), it is interesting to note that vascular sympathetic baroreflex 293 

function was not different between groups both at rest or during the Valsalva, whereas 294 

cardiovagal BRS was lower both at rest and during the Valsalva in +FH women. Nevertheless, 295 

the results of the current investigation provide valuable new insight into BP control in young 296 

+FH women. 297 

 In conclusion, young normotensive women with a +FH of hypertension display reduced 298 

cardiovagal BRS. However, vascular sympathetic BRS was not different between groups. Given 299 

the prognostic value of cardiovagal BRS (Kiviniemi et al. 2014), these data are important in 300 

understanding the mechanisms contributing to the greater prevalence of hypertension in those 301 

with a familial predisposition.  302 

303 
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FIGURE LEGENDS 467 
 468 
Figure 1: Cardiovagal BRS during Phase IV of the Valsalva maneuver in women without (-FH, 469 

n=13) and with (+FH, n=12) a family history of hypertension. Group data are shown as 470 

mean±SE (top). Individual regression analyses are shown from a representative -FH (middle) 471 

and +FH (bottom) woman. *P < 0.05  472 

 473 

Figure 2: Cardiovagal BRS during Phase II of the Valsalva maneuver in women without (-FH, 474 

n=13) and with (+FH, n=12) a family history of hypertension. Group data are shown as 475 

mean±SE (top). Individual regression analyses are shown from a representative -FH (middle) 476 

and +FH (bottom) woman.  *P < 0.05 477 

 478 

Figure 3: Vascular sympathetic BRS during the Valsalva maneuver in women without (-FH, 479 

n=8) and with (+FH, n=8) a family history of hypertension.    480 

 481 

 482 

 483 



 
 

Table 1: Subject Characteristics 

 -FH (n=13) +FH (n=12) 

Age (years) 22 ± 1 22 ± 1 

Height (cm) 167 ± 2 164 ± 1 

Mass (kg) 59 ± 3 58 ± 2 

BMI (kg/m2) 21 ± 1 21 ± 1 

SBP (mmHg) 105 ± 2 107 ± 2 

DBP (mmHg) 63 ± 2 65 ± 1 

MAP (mmHg) 77 ± 2 79 ± 1 

HR (bpm) 62 ± 1 69 ± 3 

Negative family history of hypertension (-FH), positive family history of hypertension (+FH), 

body mass index (BMI), diastolic blood pressure (DBP), heart rate (HR), mean arterial pressure 

(MAP), and systolic blood pressure (SBP). Data are presented as means ± SE.  
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