Early Eocene (56 to 33.9 million years ago) is punctuated by a series of rapid and extreme global warming events, known as the ‘hyperthermals’, triggered by massive release of carbon dioxide. Despite the carbon emission rate might have been ten times smaller than the current emission from burning fossil fuels and cement production, the early Eocene hyperthermals are considered one of the best analogues for CO₂ concentration projected into the future. The temperature records are well established from deep sea sediments during these hyperthermals, but the CO₂ levels in the atmosphere remain poorly known, partly due to the lack of a reliable CO₂ proxy.

Thanks to a newly developed C₃ land plant CO₂ proxy, we were able to calculate the upper limit of the CO₂ levels just before and during five early Eocene hyperthermals (PETM, H1, H2, I1 and I2). This proxy is based on the empirical relationship between carbon isotope fractionation and the ambient CO₂ levels: i.e. as CO₂ level rises, carbon isotope fractionation also increases. By comparing the carbon isotope excursion recorded in the ocean and on land, we were able to find that CO₂ levels just before each of the hyperthermals may have been less than 1000 parts per million, or ppm. CO₂ level as high as 2600 ppm might have occurred only briefly during the hyperthermals. This suggests that to maintain the early Eocene ice-free condition and global average surface temperature of ~25 °C, other greenhouse gases, such as methane, water vapor and nitrous oxide must have played more important role.