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Association of a Genetic Risk Score With Body Mass Index
Across Different Birth Cohorts
Stefan Walter, PhD; Iván Mejía-Guevara, PhD; Karol Estrada, PhD; Sze Y. Liu, PhD; M. Maria Glymour, ScD

IMPORTANCE Many genetic variants are associated with body mass index (BMI).
Associations may have changed with the 20th century obesity epidemic and may differ
for black vs white individuals.

OBJECTIVE Using birth cohort as an indicator for exposure to obesogenic environment,
to evaluate whether genetic predisposition to higher BMI has a larger magnitude of
association among adults from more recent birth cohorts, who were exposed to
the obesity epidemic at younger ages.

DESIGN, SETTING, AND PARTICIPANTS Observational study of 8788 adults in the US national
Health and Retirement Study who were aged 50 years and older, born between 1900
and 1958, with as many as 12 BMI assessments from 1992 to 2014.

EXPOSURES A multilocus genetic risk score for BMI (GRS-BMI), calculated as the weighted
sum of alleles of 29 single nucleotide polymorphisms associated with BMI, with weights equal
to the published per-allele effects. The GRS-BMI represents how much each person’s BMI is
expected to differ, based on genetic background (with respect to these 29 loci), from the BMI
of a sample member with median genetic risk. The median-centered GRS-BMI ranged from
−1.68 to 2.01.

MAIN OUTCOMES AND MEASURES BMI based on self-reported height and weight.

RESULTS GRS-BMI was significantly associated with BMI among white participants
(n = 7482; mean age at first assessment, 59 years; 3373 [45%] were men; P <.001)
and among black participants (n = 1306; mean age at first assessment, 57 years; 505 [39%]
were men; P <.001) but accounted for 0.99% of variation in BMI among white participants
and 1.37% among black participants. In multilevel models accounting for age, the magnitude
of associations of GRS-BMI with BMI were larger for more recent birth cohorts. For example,
among white participants, each unit higher GRS-BMI was associated with a difference in BMI
of 1.37 (95% CI, 0.93 to 1.80) if born after 1943, and 0.17 (95% CI, −0.55 to 0.89) if born
before 1924 (P = .006). For black participants, each unit higher GRS-BMI was associated with
a difference in BMI of 3.70 (95% CI, 2.42 to 4.97) if born after 1943, and 1.44 (95% CI, −1.40
to 4.29) if born before 1924.

CONCLUSIONS AND RELEVANCE For participants born between 1900 and 1958, the magnitude
of association between BMI and a genetic risk score for BMI was larger among persons born
in later cohorts. This suggests that associations of known genetic variants with BMI may
be modified by obesogenic environments.

JAMA. 2016;316(1):63-69. doi:10.1001/jama.2016.8729
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T he US obesity epidemic emerged in the late 1970s and
affected every population group regardless of age, sex,
or race.1-3 Although the causes of the obesity epidemic

remain controversial, such rapid changes must be due to en-
vironmental and behavioral changes such as diet, physical ac-
tivity, or the built environment.4,5 Genetic factors associated
with adiposity may influence behavioral responses to envi-
ronmental context (eg, by shaping appetite).6,7 Thus, the en-
vironmental changes associated with the obesity epidemic may
not have affected all individuals equivalently.

The search for environmental modifiers of genetic effects
is important to understand the origins of the obesity epi-
demic. However, finding gene-by-environment interactions
requires large samples and broad indicators of environmental
context with large average effects. The time trend in obesity
in the United States denotes important changes in the obeso-
genic environment. Individuals born early in the 20th cen-
tury were not exposed to this obesogenic environment until
late life, whereas more recent cohorts encountered the obe-
sogenic environment earlier in life. If genetic variants influ-
ence behavioral responses to obesogenic environments, such
differences in exposure to obesogenic environments should
manifest in larger genetic effects on body mass index (BMI)
for more recent birth cohorts.

In this study, data from the Health and Retirement Study
(HRS) were used to investigate how associations between BMI
and a polygenic risk score for BMI (GRS-BMI) differed across
successive birth cohorts in a national sample of US adults. The
analysis tested the hypothesis that the association of the GRS-
BMI with BMI would be larger among individuals in more re-
cent birth cohorts. Because genetic risk for adverse health
outcomes may play a larger role for socially disadvantaged
groups,8-10 it was also hypothesized that associations would
be larger among black than white participants.

Methods
Sample
HRS is a nationally representative cohort initiated in 1992 with
additional enrollments in 1993, 1998, and 2004, staggered based
on year of birth (eFigure 1 in the Supplement).11-13 Individuals
who provided genetic samples were classified as either white
(n = 7482) or black (n = 1306) based on principal component
analysis of genome-wide data.14 HRS was approved by the Uni-
versity of Michigan Health Sciences Human Subjects Commit-
tee and all participants provided written informed consent.

Measures
The primary outcome for these analyses was BMI calculated
as weight in kilograms per meter squared from participantś
self-reported height and weight. For many HRS respondents,
height and weight were measured during biennial home
visits between 2006 and 2014. In a validation study of 10 455
participants, measured BMI correlated with self-reports
(r = 0.93), averaged 1.55 units higher than self-reported BMI
(95% CI, 1.51-1.59), but the association was not differential
by age.15 The correlation was 0.94 for white respondents and

0.90 for those who were black. Self-reports were used in-
stead of measured values because more waves of self-reports
(median = 9) were available.

Age at time of BMI assessment was median centered
(whites, 67 years; blacks, 65 years) and included as linear and
quadratic terms.

Originally, birth cohorts were designed to be in 10-year
bands based on self-reported year of birth. Because of sparse
data, the extremes of the birth year distribution were pooled,
providing sufficient sample size for interaction models: co-
hort 1 (1900-1923), cohort 2 (1924-1933), cohort 3 (1934-1943),
and cohort 4 (1944-1958).

DNA Extraction and Genotyping
Saliva for genotyping was collected via a mouthwash tech-
nique (in 2006) or an Oragene DNA self-collection kit (in 2008).
Mean age at DNA collection in HRS (across all birth cohorts)
was 68 years. Genotyping was completed using the Illumina
Omni-2.5 chip platform, imputed using the 1000G phase 1 ref-
erence panel by the University of Michigan and filed with the
Database for Genotypes and Phenotypes (dbGaP study acces-
sion number, phs000428.v1.p1) in April 2012.

Exposure
A multilocus GRS-BMI was constructed as a weighted allele
count, based on 29 single-nucleotide polymorphisms (SNPs)
confirmed to be significantly associated with higher BMI
in an external study sample of more than 250 000 in-
dividuals.16 The allele count for each SNP was weighted by its
published per-allele association with BMI. All SNPs were
coded to be associated with a higher magnitude of BMI.
Because the weights were equal to the expected association
of each variant with BMI, the GRS-BMI was on the same scale
as BMI. To simplify interpretation, the GRS-BMI was centered
at its median value. The GRS-BMI potentially ranged from
−3.81 (for a person with 0 risk alleles) to 4.51 (a person with
58 risk alleles). The GRS-BMI represents how much each per-
sońs BMI is expected to differ based on genetic background
(with respect to these 29 loci) from the BMI of a sample
member with median genetic risk. A 1-unit difference in GRS-
BMI corresponds with a unit difference in genetically pre-
dicted BMI. Results using only rs1558902 in the fat mass and
obesity-associated (FTO) gene are presented in eMethods (in
the Supplement).

Key Points
Question Does the association between genetic variants and
body mass index (BMI) differ for birth cohorts that were older
compared with younger when the obesity epidemic began?

Findings In a US national cohort, the magnitude of association
between BMI and a polygenic risk score for BMI was stronger
in more recent birth cohorts than in earlier birth cohorts.

Meaning Known genetic factors associated with BMI may have
a greater effect in more obesogenic environments.
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Statistical Analyses
A multilevel linear growth curve model was estimated to evalu-
ate patterns of within-cohort heterogeneity of age trajecto-
ries of BMI and to compare association of genetic predictors
of BMI between cohorts.17,18 Conceptually, the model was built
hierarchically, first estimating an intercept and age-slope for
BMI for each individual and then estimating the determi-
nants of the person-specific intercepts and age coefficients.
Model 1 estimated the association between GRS-BMI and BMI
adjusted for age and birth cohort. Model 2 included age-by-
cohort interactions, and model 3 included age squared-by-
cohort interactions. Model 4 added cohort-by-GRS-BMI inter-
actions, allowing the estimated associations of GRS-BMI to
differ for each birth cohort and tested the primary hypothesis
that the association of GRS-BMI with BMI differed across birth
cohorts. Model 5 tested whether age variation in genetic as-
sociations with BMI changed across birth cohorts adding a
3-way interaction between cohort, GRS-BMI, and age.

The multilevel models were estimated separately for white
and black participants. We obtained iterated generalized least-
squares estimates using MLwiN version 2.28 and compared
model fit using likelihood ratio tests and the Akaike informa-
tion criterion.19 All analyses used 2-sided tests, and P < .05 was
considered statistically significant.

In 3 separate sensitivity analyses, models were reesti-
mated as follows: excluding the earliest birth cohorts; using
birth cohort as a continuous variable with 5-year bins from
1900-1949 and 1950-1958 as the reference category; and pool-
ing white and black individuals to test whether race differ-
ences were statistically significant.

Due to the complexity of the models, only selected re-
sults directly testing the hypotheses are presented and illus-
trated graphically. Sensitivity analyses and complete tables,
including all coefficients, are shown in the eMethods (in the
Supplement).

Results
Average BMI increased with each year of age until the age of ap-
proximately 65 to 69 years for both white and black individu-

als and declined thereafter (Table 1). In white individuals, BMI
was consistently higher in more recent birth cohorts at the same
age. The trend was similar but imprecisely estimated among
black individuals.

In this sample, the minimum number of risk alleles was
15 (max = 39) and the observed range was −1.68 to 2.08 for
white participants and −1.49 to 1.18 for black participants.
There was no statistically significant difference in allele fre-
quencies (eTable 1 in the Supplement), mean GRS-BMI (white
participants, P = .37; black participants, P = .14), or number of
FTO risk alleles (white participants, P = .43; black partici-
pants, P = .75) between the birth cohorts (Table 2 and eTable
2 in the Supplement). The GRS-BMI was significantly associ-
ated with mean BMI in both white (P < .001) and black
(P < .001) participants. In linear models, the GRS-BMI
accounted for 0.99% of variation in BMI in white participants
and 1.37% in black participants. For comparison, age
accounted for 4.3% of variation in BMI among white partici-
pants vs 4.5% among black participants, and sex accounted
for 0.7% of variation in BMI among white participants and
3.2% among black participants.

Comparative fit of the multilevel models (eTable 3 in the
Supplement) was assessed using likelihood ratio tests. Qua-
dratic age-effects models (model 3) fit substantially better than
linear age-effects models (model 2). Adding cohort by ge-
netic (GRS-BMI or FTO), age, and sex interactions (model 4)
decreased the Akaike information criteria, which improved the
model fit.

A unit increase in the GRS-BMI was associated with a 0.99
(95% CI, 0.78-1.21) units higher BMI among white individu-
als. Among black participants, a unit increase in GRS-BMI was
associated with a 1.77 (95% CI, 1.04-2.50) units higher BMI
(eTable 3 [model 1] in the Supplement). An additional copy of
the FTO risk allele was associated with a 0.37 (95% CI, 0.21-
0.54) units higher BMI among white participants and a 1.03
(95% CI, 0.27-1.79) units higher BMI among black partici-
pants (eTable4 [model 1] in the Supplement).

Figure 1 illustrates the between-cohort variations in age
trajectories. The age-by-cohort interactions were significant
for white and black individuals (P < .001 for all; eTable 3 in the
Supplement [model 2 and model 3]). Modeled age-specific BMI

Table 1. Mean BMI (95% CI) Adjusted for Sex and Stratified by Race, Age, and Birth Cohort: Health and Retirement Study 1992-2014a

Age, y

White Participants by Cohort Black Participants by Cohort
<1924
(n = 765)

1924-1933
(n = 2119)

1934-1943
(n = 2845)

1944-1958
(n = 1753)

<1924
(n = 100)

1924-1933
(n = 262)

1934-1943
(n = 534)

1944-1958
(n = 410)

50-54 27.0 (26.3-27.6) 28.3 (27.8-28.9) 29.6 (27.0-32.3) 30.7 (28.7-32.7)

55-59 26.4 (25.4-27.3) 27.1 (26.3-27.9) 28.5 (28.1-29.0) 29.9 (26.6-33.2) 29.4 (27.0-31.7) 31.3 (29.8-32.9)

60-64 26.8 (26.0-27.6) 27.5 (26.8-28.2) 29.0 (28.6-29.4) 29.2 (27.1-31.3) 29.6 (27.0-32.3) 30.8 (28.7-33.0)

65-69 27.0 (26.2-27.9) 27.9 (27.4-28.5) 29.1 (28.9-29.2) 28.9 (26.5-31.3) 29.8 (27.1-32.5) 29.6 (29.0-30.2)

70-74 25.7 (24.5-26.8) 27.1 (26.1-28.0) 28.0 (27.4-28.6) 29.0 (27.8-30.1) 28.3 (26.4-30.3) 28.9 (26.9-31.0) 29.4 (26.3-32.4)

75-79 25.5 (24.5-26.5) 26.9 (26.2-27.7) 27.4 (26.8-28.1) 28.1 (25.8-30.3) 28.4 (27.3-29.4) 28.5 (26.3-30.7)

80-84 25.1 (24.0-26.3) 26.5 (25.6-27.4) 27.3 (25.4-29.2) 27.7 (27.6-27.9)

85-89 24.7 (23.8-25.7) 25.5 (24.2-26.7) 26.3 (24.0-28.6) 26.6 (25.0-28.1)

≥90 24.0 (23.3-24.7) 25.7 (24.4-27.0)

Abbreviation: BMI, body mass index.
a Confidence intervals indicate the predicted BMI values from sex-adjusted

linear regressions for each age and birth cohort cluster. BMI was calculated as
weight in kilograms divided by height in meters squared.
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was higher for more recent birth cohorts than earlier cohorts.
Patterns were similar for black individuals but less distinct in
older age.

The association between BMI and GRS-BMI was signifi-
cantly modified by birth cohort (eTable 3 in the Supplement
[model 4: P = .04 for white participants; P = .002 for black
participants]). Specifically, GRS-BMI had a larger magnitude
of association with BMI in more recent birth cohorts than ear-
lier birth cohorts (P = .006; eTable 6 in the Supplement).

Plotting the estimated BMI values across cohorts
(Figure 2) showed that among white participants, GRS-BMI
had no statistically significant association with BMI in the
earliest birth cohort (<1924). For each successively more

recent birth cohort, the slope associated with GRS-BMI was
progressively steeper. For example, a 1-unit difference in
GRS-BMI was associated with a unit BMI difference of 1.37
(95% CI, 0.93-1.80; P<.001) for white participants born after
1943 but unit BMI difference of only 0.17 (95% CI, −0.55 to
0.89; P=.66) for those born before 1924 (eTable 3 in the
Supplement [model 4]).

Among black participants, the GRS-BMI showed a graded
pattern of larger associations with BMI in more recent birth co-
horts with the exception of the earliest birth cohort. For ex-
ample, in the most recent birth cohort (born 1944 or later) a
unit difference in GRS-BMI was associated with 3.70 (95% CI,
2.42-4.97) units higher BMI, whereas among individuals born

Table 2. Descriptive Statistics Stratified by Race and Birth Cohort

White Participants by Cohort Black Participants by Cohort

<1924 1924-1933 1934-1943 1944-1958 <1924 1924-1933 1934-1943 1944-1958
No. at
baseline

765 2119 2845 1753 100 262 534 410

Age at first
BMI report,
mean
(range), y

73.93
(70-92)

65.67
(58-82)

54.50
(50-73)

52.71
(50-63)

74.10
(70-88)

64.44
(58-78)

54.36
(50-72)

52.65
(50-59)

No. of BMI
reports,
mean
(range)

9.04
(1-12)

9.42
(2-12)

10.66
(1-12)

6.51
(1-10)

8.95
(2-12)

9.48
(2-12)

10.41
(2-12)

6.22
(1-9)

No. of observations in each age category

50-54 y 0 0 2432 2559 0 0 460 589

55-59 y 0 305 6305 4108 0 55 1153 938

60-64 y 0 2138 6751 3367 0 321 1238 734

65-69 y 0 3174 6662 1314 0 454 1228 290

70-74 y 924 4790 5729 48 124 592 1038 0

75-79 y 1531 4833 2447 0 190 577 444 0

80-84 y 1793 3616 0 0 231 385 0 0

85-89 y 1602 1095 0 0 208 101 0 0

≥90 y 1065 0 0 0 142 0 0 0

Age across
all BMI
reports,
mean
(range), y

82.39
(70-107)

73.79
(58-90)

64.39
(50-80)

58.54
(50-70)

82.59
(70-102)

72.81
(58-90)

64.35
(50-81)

58.42
(50-70)

Men,
No. (%)

279 (36.5) 943 (44.5) 1291 (45.4) 860 (49.1) 32 (32.0) 105 (40.1) 214 (40.1) 154 (37.6)

Median-
centered
mean
GRS-BMI,
(95% CI)a,b

0.03
(0-0.07)

0.07
(0.04-0.09)

0.06
(0.04-0.08))

0.07
(0.04-0.09)

−0.25
(−0.33 to 0.16)

−0.30
(−0.35 to 0.24)

−0.22
(−0.26 to 0.19)

−0.26
(−0.31 to 0.22)

FTO,
proportion
of risk
alleles
(95% CI)b,c

0.39
(0.35-0.42)

0.405
(0.38-0.43)

0.411
(0.39-0.43)

0.401
(0.38-0.42)

0.090
(0.03-0.15)

0.092
(0.06-0.13)

0.106
(0.08-0.13)

0.095
(0.07-0.12)

Mean BMI
(95% CI)
across
all BMI
reportsb

25.02
(24.73-25.31)

26.79
(26.59-26.99)

27.55
(27.36-27.74)

28.68
(28.40-28.96)

27.10
(28.40-28.96)

28.56
(27.86-28.26)

29.50
(29.01-29.99)

30.85
(30.14-31.56)

Abbreviations: BMI, body mass index; FTO, fat mass and obesity-associated
gene; GRS, genetic risk score.
a BMI was calculated as weight in kilograms divided by height

in meters squared.
b Test for linear trend across cohorts: GRS (white participants, P = .37;

black participants, P = .14); FTO (white participants, P = .43; black participants,
P = .75); and BMI (white participants P<.001; black participants, P<.001).

GRS-BMI was calculated as a weighted sum of the 29 risk alleles with weights
equal to the β estimate from the previously published meta-analysis:
a unit increase is equivalent to a unit increase in genetically induced BMI
(among white participants [GRS-BMI range, 2.13 kg/m2-5.82 kg/m2]; among
black participants [GRS-BMI range, 2.32 kg/m2-4.99 kg/m2]).

c The risk variant for FTO is rs1558902 allele A.
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between 1934 and 1943, the GRS-BMI effect estimate was 0.68
(95% CI, −0.46 to 1.81) and for individuals born between 1924
and1933, a 1-unit difference in GRS-BMI was associated with
only 0.34 (95% CI, −1.24 to 1.91) extra BMI points. This pat-
tern of smaller magnitude of association for earlier birth co-
horts was not consistent for the earliest birth cohort (born be-
fore 1924), which included only 100 individuals, for whom a
1-unit difference in GRS-BMI was associated with 1.44 (95% CI,
−1.40 to 4.29 [P=.33]) extra BMI points (eTable 3 in the
Supplement [model 4]).

Results using FTO risk alleles (rs1558902, allele A) were
similar but less pronounced (eTable 4 [model 4] and eFigure
2 in the Supplement).

The 3-way interaction test of equivalence of cohort spe-
cific associations between BMI and GRS-BMI among white and
black individuals in a pooled analysis was statistically signifi-
cant (P < .001; eTable 5 in the Supplement). A model coding
birth cohort as a continuous variable with 5-year bins from 1900
to 1949 and from 1950 to 1958 as the reference category showed
that a unit difference in GRS-BMI was associated with a 1.76

(95% CI, 0.64-2.89) unit higher BMI for blacks than whites
(P = .002) in the most recent birth cohort, with smaller racial
differences in the GRS-BMI associations in earlier birth co-
horts (eTable 6 in the Supplement).

The 3-way interaction of GRS-BMI, age, and cohort was
not statistically significant (P = .71 for white participants vs
P = .21 for black participants) in any of the race-stratified
models (eTable 3 in the Supplement [model 5]), suggesting
that the age patterning of GRS-BMI associations were similar
across birth cohort.

Sensitivity analyses (eTable 7 in the Supplement) con-
firmed that the cohort associations did not depend on the
inclusion of the earliest birth cohort. To rule out the possibil-
ity that results were due to differences in sex composition of
the birth cohorts, a GRS-BMI-by-sex interaction was evalu-
ated and found to be nonsignificant for white participants
(P = .75) and also for black participants (P = .47). To address
the possibility that age heterogeneity of the weights associ-
ated with each SNP in the weighted polygenic score, rather
than true cohort differences, account for the results, the final

Figure 2. Association of Genetic Risk Score and Body Mass Index at Age 65 Years for White Participants and at Age 67 for Black Participants
in 4 Birth Cohorts
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For additional information, see eTable 3 (model 4) in the Supplement.

Figure 1. Model-Predicted Age Trajectories of Average Body Mass Index for White and Black Participants in 4 Birth Cohorts
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model (model 4) was repeated using a risk allele count model
with qualitatively similar findings albeit on the scale of num-
ber of risk alleles rather than units of BMI (eFigure 3 in the
Supplement). In addition, the GRS-BMI × birth cohort inter-
action in a model using year of birth binned in groups of
5 years (1900-1904, …, 1945-1949, 1950-1958) as a continu-
ous variable was statistically significant (P = .01 for white
participants vs P = .01 for black participants) and confirmed
the findings (eTable 8 in the Supplement).

Discussion
In a large US national sample, a genetic risk score was associ-
ated with BMI for both black and white participants, and the
magnitude of the association between the genetic score and
BMI was larger with more recent birth cohorts and larger among
black than white participants.

These findings do not demonstrate that total genetic in-
fluences in early cohorts were smaller—only that the cur-
rently known polymorphisms had smaller magnitudes of as-
sociation. Other loci might be important in less obesogenic
environments but have not yet been identified because most
genome-wide association studies have been conducted in pos-
tobesity epidemic populations. The key implication is that ge-
netic associations, even for physiologic measures such as BMI,
are contingent on environmental context.

Recent results from genome-wide interaction analysis re-
ported larger associations of genetic variants with BMI in adults
younger than 50 years of age.20 The possibility of cohort ef-
fects was acknowledged but impossible to investigate with-
out longitudinal data. The present results suggest differences
in genetic associations between age groups partly reflect co-
hort effects.

The current results are consistent with prior research
from Sweden and twin registries, reporting significant inter-
actions between unspecified genetic components and obeso-
genic environment.21 Using the same SNPs as the current
study, Demerath et al22 showed an increase in the genetic
contribution to BMI with later birth cohorts in the nonrepre-
sentative family-based Fels Longitudinal Study. Recent find-
ings from the Framingham Heart Study suggested that FTO
variants had larger effects in more recently born cohort
members,23 and genome-wide analyses demonstrated an
increase in BMI heritability among Framingham Heart Study
participants after 1985.24

The current results extend prior findings to a broader GRS
and illustrate the pattern in a national sample of black and white
individuals. These findings provide evidence of gene-
environment interactions in shaping obesity but leave open the
critical question of which aspects of the environment inter-
act with genetic risks. This question is important because de-
spite the significant GRS-BMI by cohort interaction, even
among people with particularly low (advantageous) values of
the GRS-BMI, successive cohorts averaged higher BMI. This un-
derlines the limited importance of genetic risk factors in driv-
ing the obesity epidemic. The obesity epidemic in the United
States began approximately in the late 1970s. Birth cohort can

thus be conceptualized as a proxy for increased exposure to
obesogenic environmental factors. More recent birth cohorts
were exposed to these environmental factors at earlier devel-
opmental stages and for a greater fraction of their lives com-
pared with older birth cohorts.

Numerous environmental changes occurred in tandem
during the obesity epidemic.25-27 Energy intake in the United
States increased by on average 7% in men and 22% in women
from 1971 to 2000.28-30 Sugar-sweetened beverage consump-
tion increased rapidly,31,32 and these beverages apparently ex-
acerbate effects of genetic variants on BMI.33 Physical activ-
ity patterns, which may offset the effect of genetic risk factors
on obesity,4,24 have also changed.34

The GRS-BMI was significantly related to BMI among black
participants. Black individuals remain a socially disadvan-
taged group in US society, averaging lower income, less edu-
cation, and worse health than white individuals. Black indi-
viduals are more likely to live in neighborhoods with less access
to green space and fresh food35 and built environment fea-
tures thought to influence obesity.36 The difference in the
GRS-BMI association with BMI for white and black partici-
pants in the study sample may therefore be due to the sub-
stantial racial patterning in lived experiences and differential
exposure to obesogenic environments.

These findings are subject to a number of important
limitations. The current study uses birth cohort as a proxy
indicator of environmental risk: there was no direct measure
of obesogenic environment and analyses did not account for
potentially relevant historical events such as the Great
Depression. HRS samples individuals aged 50 years and
older, so it does not include information on BMI in earlier life.
Inferences are thus limited to BMI in middle-aged and older
adults living in the United States. Although HRS is represen-
tative of the US population, the subsample with genotype
data was on average younger, male, and had lower mortality
over the following 6 years compared with people who
declined genotyping, but did not differ with respect to
BMI. Replication in other cohorts, especially outside the
United States, will be critical. Given the heterogeneous tim-
ing of the obesity epidemic and historical experiences of
non-US populations, such investigations may deepen our
understanding of gene-environment interactions. Further-
more, the low heritability explained by the 29 SNPs in the
GRS-BMI and the sample size limited statistical power to fully
elucidate differences between black and white participants.
The reported patterns of associations may be vulnerable to
relatively small sources of bias such as selective survival or
misspecified age effects.

The study relied on BMI calculated from self-reported
height and weight. A previous validation substudy15 demon-
strated high reliability of self-reports in this sample, and the
effect sizes, averaged over all cohorts, are similar to those
described in the original genome-wide association studies
discovery samples. Nonetheless, the current analysis would
be biased if participants of different birth cohorts and geno-
types differentially underreport their BMI. Recently, age-
heterogeneous effects were reported for some of the SNPs
used in this study.20 Age-specific effects were modeled by
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including GRS-BMI by age interactions, finding that the
cohort by GRS-BMI interactions remained significant. There
were no 3-way interactions for GRS-BMI by age by cohort.
The findings were confirmed using an unweighted risk allele
count and using 5-year groupings of birth year as a continu-
ous variable. These results suggest that cohort heterogeneity
cannot be explained by differential age-associated changes in
BMI across cohorts.

Conclusions

Among participants born between 1900 and 1958, the magni-
tude of association between BMI and a genetic risk score for
BMI was larger among those born in later cohorts. This sug-
gests that associations of known genetic variants with BMI may
be modified by obesogenic environments.
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