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Abstract
A 2-matching of a graph 𝐺 is a spanning subgraph with

maximum degree two. The size of a 2-matching 𝑈 is the

number of edges in 𝑈 and this is at least 𝑛 − 𝜅(𝑈 ) where

𝑛 is the number of vertices of 𝐺 and 𝜅 denotes the num-

ber of components. In this article, we analyze the perfor-

mance of a greedy algorithm 2GREEDY for finding a large

2-matching on a random 3-regular graph. We prove that

with high probability, the algorithm outputs a 2-matching

𝑈 with 𝜅(𝑈 ) = Θ̃(𝑛1∕5).

K E Y W O R D S
greedy algorithm, 2-matching, random cubic graph

1 INTRODUCTION

In this article, we analyze the performance of a generalization of the well-known Karp–Sipser algo-

rithm [1,4,13,14] for finding a large matching in a sparse random graph. A 2-matching 𝑈 of a graph 𝐺

is a spanning subgraph with maximum degree two. Our aim is to show that w.h.p. our algorithm finds

a large 2-matching in a random cubic graph. The algorithm 2GREEDY is described below and has been

partially analyzed on the random graph 𝐺𝛿≥3
𝑛,𝑐𝑛
, 𝑐 ≥ 10 in Frieze [10]. The random graph 𝐺𝛿≥3

𝑛,𝑚
is cho-

sen uniformly at random from the collection of all graphs that have 𝑛 vertices, 𝑚 edges and minimum

degree 𝛿(𝐺) ≥ 3. In [10], the 2-matching output by the algorithm is used to find a Hamilton cycle in

𝑂(𝑛1.5+𝑜(1)) time w.h.p. Previously, the best-known result for this model was that 𝐺𝛿≥3
𝑛,𝑐𝑛

is Hamiltonian

for 𝑐 ≥ 64 due to Bollobás et al. [7]. It is conjectured that 𝐺𝛿≥3
𝑛,𝑐𝑛

is Hamiltonian w.h.p. for all 𝑐 ≥ 3∕2.

J Graph Theory. 2018;88:449–481. wileyonlinelibrary.com/journal/jgt © 2017 Wiley Periodicals, Inc. 449

 10970118, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22224 by M

ontclair State U
niversity, W

iley O
nline L

ibrary on [01/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://orcid.org/0000-0003-1441-1823
http://orcid.org/0000-0002-8481-5615


450 DEEPAK ET AL.

The existence of Hamilton cycles in other random graph models with 𝑂(𝑛) edges has also been the

subject of much research. In such graphs, the requirement 𝛿 ≥ 3 is necessary to avoid three vertices of

degree two sharing a common neighbor. This obvious obstruction occurs w.h.p. in many models with

𝑂(𝑛) edges and 𝛿 = 2.𝐺3-out is a random graph where each vertex chooses three neighbors uniformly

at random. This graph has minimum degree 3 and average degree 6. Bohman and Frieze proved that

𝐺3-out is Hamiltonian w.h.p. also by building a large 2-matching into a Hamilton cycle [3]. Robinson

and Wormald proved that 𝑟-regular graphs with 𝑟 ≥ 3 are Hamiltonian w.h.p. using an intricate second

moment approach [16,17]. Before this result, Frieze proved Hamiltonicity of 𝑟-regular graphs w.h.p. for

𝑟 ≥ 85 using an algorithmic approach [11]. An algorithmic proof of Hamiltonicity for 𝑟 ≥ 3 was given

in [12]. In the binomial random graph𝐺𝑛,𝑝 with 𝑝 = 𝑐∕𝑛, there is no 2-factor and therefore studying the

size of the largest 2-matching is an interesting problem. In the recent article [18], an explicit asymptotic

formula is given for the maximum size of a 2- matching in such graphs. The article [15] generalizes

this result to random hypergraphs.

In addition to the Hamiltonicity of𝐺𝛿≥3
𝑛,𝑐𝑛

for 3∕2 < 𝑐 < 10, the Hamiltonicity of random graphs𝐺𝑛,𝐝
with 𝑂(𝑛) edges and a fixed degree sequence 𝐝 is a wide open question. One of the difficulties being

that at present we do not know how to couple two graphs 𝐺𝑖 = 𝐺𝐝𝑖 , 𝑖 = 1, 2, where 𝐝1 ≥ 𝐝2 so that

𝐺1 ⊇ 𝐺2. One natural example is the Hamiltonicity of a graph chosen uniformly at random from all

the collection of all graphs with 𝑛∕2 vertices of degree 3 and 𝑛∕2 vertices of degree 4 (this particular

question was posed by Wormald). For both 𝐺𝛿≥3
𝑛,𝑐𝑛

and graphs with a fixed degree sequence one might

hope to prove Hamiltonicity by first using 2GREEDY to produce a large 2-matching and then using

an extension rotation argument to convert this 2-matching into a Hamilton cycle. In this article, we

provide evidence that the first half of this broad program is feasible by showing that 2GREEDY finds a

very large 2-matching for the sparsest of the models with minimum degree 3, the random cubic graph

itself (which is the same as 𝐺𝛿≥3
𝑛,𝑐𝑛

for 𝑐 = 3∕2).

The size of a 2-matching 𝑈 is the number of edges in 𝑈 and this is at least 𝑛 − 𝜅(𝑈 ) where 𝜅

denotes the number of components. It was shown in [13] that w.h.p. the Karp–Sipser algorithm only

leaves Θ̃(𝑛1∕5) vertices unmatched. Here, we prove the corresponding result for 2GREEDY on a random

cubic graph.

Theorem 1.1. Algorithm 2GREEDY run on a random 3-regular graph with 𝑛 vertices outputs a 2-
matching 𝑈 with 𝜅(𝑈 ) = Θ̃(𝑛1∕5), w.h.p.

Here the notation 𝑓 (𝑛) = Θ̃(𝑔(𝑛)) denotes 𝑐1𝑔(𝑛) log𝑑1 𝑛 ≤ 𝑓 (𝑛) ≤ 𝑐1𝑔(𝑛) log𝑑2 𝑛 for absolute con-

stants 𝑐1, 𝑐2, 𝑑1, 𝑑2 for 𝑛 sufficiently large.

We prove Theorem 1.1 using the differential equations method for establishing dynamic concentra-

tion. The remainder of the article is organized as follows. The 2GREEDY algorithm is introduced in the

next Section, and the random variables we track are given in Section 3. The trajectories that we expect

these variables to follow are given in Section 4. A heuristic explanation of why 2GREEDY should pro-

duce a 2-matching with Θ(𝑛1∕5) components is also given in Section 4. In Section 5, we state and prove

our dynamic concentration result. The proof of Theorem 1.1 is then completed in Sections 5, 6, and 7.

1.1 Values for the constants
Throughout the proof above, we collect various constraints on the constants in (34), (41), (43), (50),

(53), (54), (58), (59), (60), (61), (63), and (64).

𝐶𝐴 = 400, 𝐶ℎ = 500, 𝐶𝑝𝑦
= 2 ⋅ 103, 𝐶𝓁 = 200, 𝐶𝑥 = 12 ⋅ 106,
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𝐶𝜁 = 65 ⋅ 106, 𝐶𝛼 = 6 ⋅ 108, 𝐶𝑣𝐵
= 2 ⋅ 108, 𝐶𝐵 = 108, 𝐶𝑇 = 5 ⋅ 105.

2 THE ALGORITHM

The Karp–Sipser algorithm for finding a large matching in a sparse random graph is essentially the

greedy algorithm, with one slight modification that makes a big difference. While there are vertices

of degree one in the graph, the algorithm adds to the matching an edge incident with such a vertex.

Otherwise, the algorithm chooses a random edge to add to the matching. The idea is that no mistakes

are made while pendant edges are chosen since such edges are always contained in some maximum

matching. The algorithm presented in [10] is a generalization of Karp–Sipser for 2-matchings. Our

algorithm is essentially the same as that presented in [10] applied to random cubic graphs. A few slight

modifications have been made to ease the analysis and to account for the change in model. We assume

that our input (multi-)graph 𝐺 = 𝐺([𝑛], 𝐸) is generated by the configuration model of Bollobás [6].

Let 𝑊 = [3𝑛] be our set of configuration points and let 𝑊𝑖 = [3(𝑖 − 1) + 1, 3𝑖], 𝑖 ∈ [𝑛], partition 𝑊

into 3-sets. The function 𝜙 ∶ 𝑊 → [𝑛] is defined by 𝑤 ∈ 𝑊𝜙(𝑤). Given a pairing 𝐹 (i.e. a partition

of 𝑊 into 𝑚 = 3𝑛∕2 pairs) we obtain a (multi-)graph 𝐺𝐹 with vertex set [𝑛] and an edge (𝜙(𝑢), 𝜙(𝑣))
for each {𝑢, 𝑣} ∈ 𝐹 . Choosing a pairing 𝐹 uniformly at random from all possible pairings Ω of the

points of 𝑊 produces a random (multi-)graph 𝐺𝐹 . It is known that conditional on 𝐺𝐹 being simple,

i.e. having no loops or multi-edges, that it is equally likely to be any (simple) cubic graph. Further, 𝐺𝐹
is simple with probability (1 − 𝑜(1))𝑒−2. So from now on we work with 𝐺 = 𝐺𝐹 .

As the algorithm progresses, it grows a 2-matching and deletes vertices and edges from the input

graph 𝐺. We let Γ = (𝑉Γ, 𝐸Γ) be the current state of 𝐺, and for each 𝑣 ∈ 𝑉Γ let 𝑑Γ(𝑣) be the degree of

𝑣 in Γ. Throughout the algorithm we keep track of the following:

• 𝑈 is the set of edges of the current 2-matching. The internal vertices and edges of the paths and

cycles in 𝑈 will have been deleted from Γ.

• 𝑏(𝑣) is the 0–1 indicator for vertex 𝑣 ∈ [𝑛] being adjacent to an edge of 𝑈 .

• 𝑌𝑘 =
{
𝑣 ∈ 𝑉Γ ∶ 𝑑Γ(𝑣) = 𝑘, 𝑏(𝑣) = 0

}
, 𝑘 = 0, 1, 2, 3.

• 𝑍𝑘 =
{
𝑣 ∈ 𝑉Γ ∶ 𝑑Γ(𝑣) = 𝑘, 𝑏(𝑣) = 1

}
, 𝑘 = 0, 1, 2.

We refer to the sets 𝑌3 and𝑍2 as 𝑌 and𝑍 throughout. The basic idea of the algorithm is as follows.

We add edges to the 2-matching one by one, which sometimes forces us to delete edges. These deletions

may put vertices in danger of having degree less than 2 in the final 2-matching. Thus, we prioritize the

edges that we add to 𝑈 , so as to match the dangerous vertices first. More precisely, at each iteration

of the algorithm, a vertex 𝑣 is chosen and an adjacent edge is added to 𝑈 . We choose 𝑣 from the first

nonempty set in the following list: 𝑌1, 𝑌2, 𝑍1, 𝑌 , 𝑍. As in the Karp–Sipser algorithm, taking edges

adjacent to the vertices in 𝑌1, 𝑌2, and 𝑍1 is not a mistake. We will prove that by proceeding in this

manner, we do not create too many components.

Note that the algorithm as written below can take any cubic (multi-)graph as input. However, we

intend to analyze its performance on the random cubic (multi-)graph 𝐺𝐹 . An important aspect of our

analysis is that we only reveal adjacencies (pairings) of𝐺𝐹 as the need arises in the algorithm. When a

vertex 𝑣 is chosen and its neighbor in the configuration is exposed it is called a selection move. Call the

revealed neighbor,𝑤 the selection. The edge {𝑣,𝑤} is removed from Γ and added to𝑈 . If the selection

𝑤 is a vertex in𝑍, then once {𝑣,𝑤} is added to 𝑈 , we must delete the other edge adjacent to𝑤. Hence
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we reveal the other edge {𝑤, 𝑥} in the configuration adjacent to 𝑤. Call this exposure a deletion move
and the vertex 𝑥, the affected vertex.

Details of the algorithm are now given.

Algorithm 2GREEDY:

Initially, all vertices are in 𝑌 . Iterate the following steps as long as one of the conditions holds.

Step 1(a) 𝑌1 ≠ ∅.

Choose a random vertex 𝑣 of 𝑌1. Suppose its unique (selected) neighbor in Γ is 𝑤. Remove {𝑣,𝑤}
from Γ and add it to 𝑈 . Set 𝑏(𝑣) = 1 and move 𝑣 to 𝑍0.

Re-assign(𝑤). ( This means place 𝑤 in the set 𝑍𝑘 if it now has degree 𝑘 ≤ 1 in 𝑈 , or else remove 𝑤

from Γ if it has degree 2 in 𝑈 ).

Step 1(b) 𝑌1 = ∅, 𝑌2 ≠ ∅.

Choose a random vertex 𝑣 of 𝑌2. Randomly select one of the two neighbors of 𝑣 in Γ and call it 𝑤.

If 𝑤 = 𝑣 ({𝑣} comprises an isolated component in Γ with a loop), then remove (𝑣, 𝑣) from Γ and

move 𝑣 from 𝑌2 to 𝑌0.

Otherwise, remove {𝑣,𝑤} from Γ and add it to 𝑈 . Set 𝑏(𝑣) = 1 and move it to 𝑍1.

Re-assign(𝑤).
Step 1(c) 𝑌1 = 𝑌2 = ∅, 𝑍1 ≠ ∅.

Choose a random vertex 𝑣 of 𝑍1. 𝑣 is the endpoint of a path in 𝑈 . Suppose the unique (selected)

neighbor of 𝑣 in Γ is 𝑤. Remove {𝑣,𝑤} from Γ and add it to 𝑈 . Remove 𝑣 from Γ.

Re-assign(𝑤).
Step 2 𝑌1 = 𝑌2 = 𝑍1 = ∅, 𝑌 ≠ ∅.

Choose a random vertex 𝑣 of 𝑌 . Randomly select one of the three neighbors of 𝑣 in Γ and call it 𝑤.

If 𝑤 = 𝑣, then we remove loop {𝑣, 𝑣} from Γ and move 𝑣 to 𝑌1.

Otherwise, remove {𝑣,𝑤} from Γ and add it to 𝑈 . Set 𝑏(𝑣) = 1 and move it to 𝑍.

Re-assign(𝑤).
Step 3 𝑌1 = 𝑌2 = 𝑍1 = 𝑌 = ∅, 𝑍 ≠ ∅

The remaining (multi-)graph is 2-regular since 𝑍 is the set of degree 2 vertices. Put a maximum

matching on this remaining (multi-)graph. Add the edges of this matching to 𝑈 .

Step 4 Return 𝑈 (the algorithm terminates here).

Subroutine Re-assign(𝑤):

1. If 𝑏(𝑤) = 0:

Set 𝑏(𝑤) = 1 and move 𝑤 from 𝑌 to 𝑍, 𝑌2 to 𝑍1 or 𝑌1 to 𝑍0 depending on the initial state of 𝑤.

2. If 𝑏(𝑤) = 1:

Remove 𝑤 from Γ. If 𝑤 was in 𝑍 prior to removal, then the removal of 𝑤 from Γ causes an edge

(𝑤,𝑤′), to be deleted from Γ. Move 𝑤′ to the appropriate new set. For example, if 𝑤′ were in 𝑍, it

would be moved to 𝑍1; if 𝑤′ were in 𝑌 , it would be moved to 𝑌2, etc.

To see that this algorithm produces a 2-matching, note first that in Steps 1 and 2, only one edge

(from Γ) at a time is added to 𝑈 and it is never a loop. Every vertex in Γ is adjacent to at most one

edge in 𝑈 . Thus the addition of such an edge can only create vertices of degree at most 2 in 𝑈 . When a

vertex gets degree 2 in 𝑈 , it is removed from Γ, thus deleting all of its other edges. Immediately before

Step 3, the vertices of 𝑍 have degree 1 in 𝑈 , thus adding a matching among these vertices will only

increase their degree to at most 2 in 𝑈 .

Note that the final 2-matching 𝑈 may contain cycles, since in steps 1(c) and 3, we may insert an

edge that closes a cycle. However, this is not a problem because a 2-matching can contain cycles. We
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include here cycles of length two, i.e. multi-edges. Note that the expected number of multi-edges in 𝐺

is 𝑂(1) and so this is not an issue.

3 THE VARIABLES

In this section, we will describe the variables that are tracked as the algorithm proceeds. Throughout

the article, in a slight abuse of notation, we let 𝑌 ,𝑍, etc. refer to both the sets and the size of the set.

Let𝑀 refer to the size of 𝐸Γ. We also define the variable

𝜁 ∶= 𝑌1 + 2𝑌2 +𝑍1.

We sometimes consider 𝜁 to be the set 𝑌1 ∪ 𝑌2 ∪𝑍1. Note that, unlike 𝑌 , 𝑍, etc. the size of this set is

not the same as 𝜁 , however there are 𝑌1 + 2𝑌2 +𝑍1 half-edges (i.e. unpaired configuration points) in

Γ that are adjacent to 𝑌1 ∪ 𝑌2 ∪𝑍1.

If 𝑋 is a variable indexed by 𝑖, we define

Δ𝑋(𝑖) ∶= 𝑋(𝑖 + 1) −𝑋(𝑖).

3.1 The sequences 𝝈, 𝜹
We define two sequences 𝜎, 𝛿 indexed by the step number 𝑖. 𝜎(𝑖) will indicate what type of vertex is

selected during a selection move, and 𝛿(𝑖) will do the same for deletion moves.

Formally, 𝜎 is a sequence of the following symbols: 𝑌 ,𝑍, 𝜁, 𝑙𝑜𝑜𝑝, 𝑚𝑢𝑙𝑡𝑖. We will put 𝜎(𝑖) = 𝑙𝑜𝑜𝑝 only

when step 𝑖 is of type 2 and the selection move reveals a loop. We put 𝜎(𝑖) = 𝑚𝑢𝑙𝑡𝑖 in the following

case: step 𝑖 is of type 1(𝑐), 𝑤 = 𝑢 ∈ 𝑍, where 𝑢 is the other end of the path in 𝑈 that contains 𝑣.

Furthermore, the edge {𝑣, 𝑢} is already in 𝑈 (so we have revealed a multi-edge). The only way this

happens is when 𝑣 ∈ 𝑍1, 𝑢 ∈ 𝑍, {𝑣, 𝑢} ∈ 𝑈 , and the selection made at step 𝑖 happens to select the

vertex 𝑢. Otherwise we just put 𝜎(𝑖) = 𝑌 ,𝑍, 𝜁 according to whether the selected vertex is in 𝑌 ,𝑍, 𝜁 .

Note that the symbols 𝑙𝑜𝑜𝑝, 𝑚𝑢𝑙𝑡𝑖 are for very specific events, and not just any loop or multi-edge.

If step 𝑖 is of type 1(𝑏) and our selection move reveals a loop, then we put 𝜎(𝑖) = 𝜁 . Also, if step 𝑖 is of

type 1(𝑐) and the selection move reveals a multi-edge whose other endpoint is also in 𝑍1 then we put

𝜎(𝑖) = 𝜁 as well. Using loop, multi in this way will allow us to define variables 𝐴,𝐵 whose one step

changes do not depend on whether or not 𝜁 > 0.

𝛿 is a sequence of the following symbols: 𝑌 ,𝑍, 𝜁, ∅. We will put 𝛿(𝑖) = ∅ when there is no deletion

move at step 𝑖 (i.e. when 𝜎(𝑖) ∉ {𝑍,𝑚𝑢𝑙𝑡𝑖}). Otherwise 𝛿(𝑖) just indicates the type of the affected vertex

that the deletion move chooses (here we do not make any distinctions regarding loops or multi-edges).

3.2 The variables 𝑨,𝑩

We will define the following two important variables:

𝐴 ∶= 𝑌 + 𝜁.

𝐵 ∶= 2𝑌 +𝑍 + 𝜁.

𝐴 is a natural quantity to define, since Step 3 of the algorithm begins precisely when 𝐴 = 0. 𝐵 is also

natural because it represents the number of half-edges that will (optimistically) be added to our current

2-matching before termination. We will see that 𝐴 and 𝐵 are also nice variables in that their 1-step
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454 DEEPAK ET AL.

changes Δ𝐴(𝑖),Δ𝐵(𝑖) do not depend on what type of step we take at step 𝑖. Here 𝐴(𝑖), 𝐵(𝑖),… , denote

the values of the corresponding variables 𝐴,𝐵,… , at the end of 𝑖 iterations of 2GREEDY. We have

Δ𝑌 (𝑖) = −𝟙𝜁(𝑖)=0 − 𝟙𝜎(𝑖)=𝑌 −
(
𝟙𝜎(𝑖)=𝑍 + 𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖

)
𝟙𝛿(𝑖)=𝑌 . (1)

To justify the above equation, note that if the selection is a 𝑌 vertex then 𝑌 decreases by 1. We may

also lose a 𝑌 vertex if there is a deletion (i.e. if the selection is a 𝑍 vertex or in the event of a 𝑚𝑢𝑙𝑡𝑖

selection) and the affected vertex is in 𝑌 . Finally, we lose one more 𝑌 vertex whenever 𝜁 = 0. The

following equations are justified similarly, by considering the effect due to selections, deletions, and

whether 𝜁 = 0 and 𝑌 ≠ 0 (we do not consider Step 3 here).

Δ𝑍(𝑖) = 𝟙𝜁(𝑖)=0 + 𝟙𝜎(𝑖)=𝑌 − 𝟙𝜎(𝑖)=𝑍 − 𝟙𝜎(𝑖)=𝑙𝑜𝑜𝑝 − 𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖.

−
(
𝟙𝜎(𝑖)=𝑍 + 𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖

)
𝟙𝛿(𝑖)=𝑍. (2)

Observe that if 𝜎(𝑖) = 𝑙𝑜𝑜𝑝 then we do not increase 𝑍 even though 𝜁 (𝑖) = 0 and so we subtract one to

counter 𝟙𝜁(𝑖)=0. In this case, 𝜁 increases and this feeds into the next equation.

Δ𝜁 (𝑖) = −𝟙𝜁(𝑖)>0 + 𝟙𝜎(𝑖)=𝑙𝑜𝑜𝑝 − 𝟙𝜎(𝑖)=𝜁

+
(
𝟙𝜎(𝑖)=𝑍 + 𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖

) (
−𝟙𝛿(𝑖)=𝜁 + 𝟙𝛿(𝑖)=𝑍 + 2 ⋅ 𝟙𝛿(𝑖)=𝑌

)
. (3)

and note that these all depend on whether 𝜁 = 0 (i.e. whether step 𝑖 is of type 1 or 2). Now consider

the identity

𝟙𝛿(𝑖)=𝑌 + 𝟙𝛿(𝑖)=𝑍 + 𝟙𝛿(𝑖)=𝜁 = 𝟙𝜎(𝑖)=𝑍 + 𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖.

which states that we make a deletion move if and only if our selection move was 𝑍 or 𝑚𝑢𝑙𝑡𝑖. Then we

have that

Δ𝐴(𝑖) = Δ𝑌 (𝑖) + Δ𝜁 (𝑖)

= −1 − 𝟙𝜎(𝑖)=𝑌 − 𝟙𝜎(𝑖)=𝜁 + 𝟙𝜎(𝑖)=𝑙𝑜𝑜𝑝+𝟙𝜎(𝑖)=𝑍+𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖

−
(
𝟙𝜎(𝑖)=𝑍 + 𝟙𝜎(𝑖)=𝑚𝑢𝑙𝑡𝑖

)
2 ⋅ 𝟙𝛿(𝑖)=𝜁 . (4)

Δ𝐵(𝑖) = 2Δ𝑌 (𝑖) + Δ𝑍(𝑖) + Δ𝜁 (𝑖)

= −2 + 𝟙𝜎(𝑖)=𝑙𝑜𝑜𝑝 − 𝟙𝛿(𝑖)=𝜁 . (5)

which do not depend on whether 𝜁 = 0. Note also that if we establish dynamic concentration on𝐴,𝐵, 𝜁

then we implicitly establish concentration on 𝑌 ,𝑍,𝑀 since

𝑌 = 𝐴 − 𝜁. (6)

𝑍 = 𝐵 − 2𝐴 + 𝜁. (7)

2𝑀 = 3𝑌 + 2𝑍 + 𝜁 = 2𝐵 − 𝐴. (8)
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DEEPAK ET AL. 455

4 THE EXPECTED BEHAVIOR OF 𝑨,𝑩, 𝜻

In this section, we will nonrigorously predict the behavior of the variables and some facts about the

process. Throughout the article, unless otherwise specified, 𝑡 refers to the scaled version of 𝑖, so

𝑡∶= 𝑖

𝑛
,

where 𝑡 ≤ 𝑛, since we add an edge to 𝑈 each round and 𝑈 is a 2-matching.

Heuristically, we assume there exist differentiable functions 𝑎, 𝑏 such that𝐴(𝑖) ≈ 𝑛𝑎(𝑡), 𝐵(𝑖) ≈ 𝑛𝑏(𝑡).
Further, we assume that 𝜁 stays “small.” We will prove later that these assumptions are indeed valid.

We also let

𝑝𝑧 ∶=
2𝑍
2𝑀

, 𝑝𝑦 ∶=
3𝑌
2𝑀

, 𝑝𝜁 ∶=
𝜁

2𝑀
.

where we have omitted the dependence on 𝑖 for ease of notation. Note that these represent the probabil-

ities that a selection or deletion move is 𝑍, 𝑌 , or 𝜁 , respectively. So for example 𝐸[𝟙𝜎(𝑖)=𝑍 ] = 𝑝𝑧. We

can claim this because in the configuration model, we can arbitrarily change the pairing of unpaired

configuration points while still being consistent with the history of the process. We are using the method

of “deferred decisions.”

4.1 The trajectory 𝒃(𝒕)
Since 𝐵(0) = 2𝑛, and recalling (5), we see that

𝐵(𝑖) = 2𝑛 − 2𝑖 +
∑
𝑗≤𝑖

(
𝟙𝜎(𝑗)=𝑙𝑜𝑜𝑝 − 𝟙𝛿(𝑗)=𝜁

)
. (9)

The probability that 𝜎(𝑗) = 𝑙𝑜𝑜𝑝 or 𝛿(𝑗) = 𝜁 on any step 𝑗 should be negligible. Thus we expect

𝐵(𝑖) ≈ 2𝑛 − 2𝑖 = 2𝑛(1 − 𝑡),

so we will set

𝑏(𝑡) = 2(1 − 𝑡). (10)

4.2 The trajectory 𝒂(𝒕)
We derive an ODE that 𝑎 should satisfy. Since 𝑝𝑦 =

3(𝐴−𝜁)
2𝐵−𝐴 ≈ 3𝑎(𝑡)

2𝑏(𝑡)−𝑎(𝑡) and 𝑝𝑧 =
2(𝐵−2𝐴+𝜁)

2𝐵−𝐴 ≈ 2𝑏(𝑡)−4𝑎(𝑡)
2𝑏(𝑡)−𝑎(𝑡)

we should have (referring to (4) and ignoring all 𝜁, 𝑙𝑜𝑜𝑝, and 𝑚𝑢𝑙𝑡𝑖 events since they should be negli-

gible)

𝑎′(𝑡) ≈ 𝐸[Δ𝐴(𝑖)] ≈ −1 − 𝑝𝑦 + 𝑝𝑧 ≈ − 6𝑎(𝑡)
2𝑏(𝑡) − 𝑎(𝑡)

.

Thus 𝑎(𝑡) should satisfy

𝑎′ = − 6𝑎
4 − 4𝑡 − 𝑎

. (11)
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456 DEEPAK ET AL.

Lemma 4.1. The unique solution to (11) with boundary condition 𝑎(0) = 1 is

𝑎(𝑡) = 7 + 2𝑡 − 6
√
5 + 4𝑡 cos

(
1
3
arccos

(
11 + 14𝑡 + 2𝑡2

(5 + 4𝑡)3∕2

)
+ 𝜋

3

)
.

Proof. The substitution 𝑎 = (1 − 𝑡)𝑥 yields a separable ODE:

(1 − 𝑡)𝑥′ = 𝑥 − 6𝑥
4 − 𝑥

or

𝑑𝑡

1 − 𝑡
= 𝑑𝑥

( 3
𝑥 + 2

− 2
𝑥

)
.

This can be solved directly and together with 𝑥(0) = 1 this gives

1
1 − 𝑡

= (𝑥 + 2)3

27𝑥2
.

After substituting back we arrive at

0 = (𝑎 + 2 − 2𝑡)3 − 27𝑎2 = 𝑎3 − (6𝑡 + 21)𝑎2 + 12(1 − 𝑡)2𝑎 + 8(1 − 𝑡)3.

We make the substitution 𝑎 = 𝑟 + 7 + 2𝑡 to obtain the equation

𝑟3 − 27(5 + 4𝑡)𝑟 − 54(11 + 14𝑡 + 2𝑡2) = 0.

Putting 𝑝 = 27(5 + 4𝑡) and 𝑞 = −54(11 + 14𝑡 + 2𝑡2) and using the cosine formula for the solution of a

cubic equation we have three roots

𝑟𝑘(𝑡) = 2
√
𝑝

3
cos

(
1
3
arccos

(
−3𝑞
2𝑝

√
3
𝑝

)
+ 𝑘2𝜋

3

)
= 6

√
5 + 4𝑡 cos

(
1
3
arccos

(
11 + 14𝑡 + 2𝑡2

(5 + 4𝑡)3∕2

)
+ 𝑘2𝜋

3

)
, 𝑘 = 0, 1, 2.

We can assume that 0 ≤ arccos(𝑥) ≤ 𝜋.

We now have three possibilities for 𝑎, viz. 𝑎𝑘(𝑡) = 7 + 2𝑡+𝑟𝑘(𝑡), 𝑘 = 0, 1, 2. We use the boundary

condition 𝑎(0) = 1 to see which choice is correct.

Putting 𝑡 = 0 gives

𝑟𝑘(0) = 6
√
5 cos

(
1
3
arccos

(
11
53∕2

)
+ 𝑘2𝜋

3

)
, 𝑘 = 0, 1, 2.

Also, using the identity cos(3𝜃) = 4 cos3(𝜃) − 3 cos(𝜃) with 𝜃 = arccos( 1√
5
) we see that

cos

(
3 arccos

(
1√
5

))
= − 11

53∕2
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DEEPAK ET AL. 457

from which we deduce that

1
3

(
arccos

(
11
53∕2

)
+ 𝜋

)
= 1

3
arccos

(
− 11
53∕2

)
= arccos

(
1√
5

)
and then similarly

cos
(
1
3
arccos

(
11
53∕2

)
+ 4𝜋

3

)
= − 1√

5
.

It follows that 𝑟2(0) = −6 and 𝑎2(0) = 1. Furthermore, 𝑟0(0), 𝑟1(0) = 3 ± 6
√
3 will be different from

𝑟2(0) and so 𝑎(𝑡) = 𝑎2(𝑡) or

𝑎(𝑡) = 7 + 2𝑡 + 6
√
5 + 4𝑡 cos

(
1
3
arccos

(
11 + 14𝑡 + 2𝑡2

(5 + 4𝑡)3∕2

)
+ 4𝜋

3

)
= 7 + 2𝑡 − 6

√
5 + 4𝑡 cos

(
1
3
arccos

(
11 + 14𝑡 + 2𝑡2

(5 + 4𝑡)3∕2

)
+ 𝜋

3

)
. (12)

■

From here we can see that 𝑎(𝑡) → 0 as 𝑡→ 1−. (𝑡 = 𝑖∕𝑛 and 𝑖 ≤ 𝑛 and a 2-matching has at most 𝑛

edges.) More precisely,

lim
𝑡→1−

𝑎(𝑡)

(1 − 𝑡)
3
2

=
(2
3

) 3
2
. (13)

To confirm this, we use the facts that for 𝛿 → 0

arccos (1 − 𝛿) =
√
2𝛿 + 𝑂(𝛿3∕2),√

1 − 𝛿 = 1 − 1
2
𝛿 + 𝑂(𝛿2),

cos
(
𝜋

3
+ 𝛿

)
= 1

2
−

√
3
2
𝛿 + 𝑂(𝛿2),

and the fact that

11 + 14(1 − 𝜀) + 2(1 − 𝜀)2

(5 + 4(1 − 𝜀))3∕2
= 1 − 4𝜀3

729
+ 𝑂(𝜀4).

Rewriting, we see

𝑎(1 − 𝜀) = 9−2𝜀 − 18
(
1−2

9
𝜀 + 𝑂(𝜀2)

)
× cos

(
1
3

((
8𝜀3
729

)1∕2
+ 𝑂(𝜀5∕2)

)
+ 𝜋

3

)

= 9−2𝜀 − 18
(
1−2

9
𝜀 + 𝑂(𝜀2)

)
× 1
2

(
1 − 2

27

(2
3

)1∕2
𝜀3∕2 + 𝑂(𝜀5∕2)

)
=

(2
3

)3∕2
𝜀3∕2 + 𝑂(𝜀2),
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458 DEEPAK ET AL.

which implies (13).

Additionally,

𝑑

𝑑𝑡

(
𝑎(𝑡)

(1 − 𝑡)3∕2

)
= − 6𝑎

4(1 − 𝑡) − 𝑎
(1 − 𝑡)−3∕2 + 3

2
𝑎 ⋅ (1 − 𝑡)−5∕2

= 𝑎 ⋅ (1 − 𝑡)−5∕2
(
3
2
− 6(1 − 𝑡)

4(1 − 𝑡) − 𝑎

)
< 0. (14)

Since 𝑎(0) = 1, for all 0 ≤ 𝑡 ≤ 1 we have

(2
3

) 3
2 (1 − 𝑡)3∕2 ≤ 𝑎(𝑡) ≤ (1 − 𝑡)3∕2 ≤ 1 − 𝑡. (15)

This inequality is used extensively in Section 5.

4.3 Downward drift of 𝜻
We expect 𝜁 to be “small,” and to heuristically justify that claim we will show that whenever 𝜁 is

positive, it is likely to decrease. In this section, therefore, we are implicitly assuming that 𝑝𝑦, 𝑝𝑧 ≫ 𝑝𝜁 .

Let us first note that this is nontrivial, i.e. it is possible for 𝜁 to grow. Suppose the algorithm executes

Step 1(b). So 𝑣 ∈ 𝑌2 and𝑤 is one of its two neighbors. One possible scenario is that𝑤 ∈ 𝑍 that means

there will be a deletion move this step (case 2 of reassign(𝑤)). This deletion move may affect a vertex

𝑢 ∈ 𝑌 . So 𝑣moved from 𝑌2 to𝑍1 and 𝑢moved from 𝑌 to 𝑌2. Thus the net change in 𝜁 is −1 + 2 = +1.

Assume that 𝜁 (𝑖) > 0. In the following table, we once again make use of the fact that 𝛿(𝑖) ≠ ∅ if and

only if 𝜎(𝑖) ∈ {𝑍,𝑚𝑢𝑙𝑡𝑖}. So for example,

𝟙𝛿=𝑌 = (𝟙𝜎=𝑍 + 𝟙𝜎=𝑚𝑢𝑙𝑡𝑖)𝟙𝛿=𝑌 .

Then from (3) we see that if 𝜁 (𝑖) > 0,

Δ𝜁 =

⎧⎪⎪⎨⎪⎪⎩

1 with prob. 𝑝𝑧𝑝𝑦 + 𝑂
(

1
𝑀

)
.

0 with prob. 𝑝2
𝑧
+ 𝑂

(
1
𝑀

)
.

−1 with prob. 𝑝𝑦 + 𝑂
(

1
𝑀

)
.

−2 with prob. 𝑂
(
𝑝𝜁

)
.

(16)

Each entry in the above table can be understood by considering the most likely way for Δ𝜁 to take the

appropriate value. For example, the most likely way for Δ𝜁 = 1 is for 𝜎 = 𝑍 and 𝛿 = 𝑌 (even though

this is not the only way for Δ𝜁 = 1). Specifically,

ℙ [Δ𝜁 (𝑖) = 1] = ℙ [𝜎(𝑖) = 𝑍, 𝛿(𝑖) = 𝑌 ] +ℙ [𝜎(𝑖) = 𝑚𝑢𝑙𝑡𝑖, 𝛿(𝑖) = 𝑌 ]

= 2𝑍
2𝑀 − 1

3𝑌
2𝑀 − 3

+ 𝑂
( 1
𝑀

)
= 𝑝𝑧𝑝𝑦 + 𝑂

( 1
𝑀

)
.

Similarly, the most likely way for Δ𝜁 = 0 is for 𝜎 = 𝑍 and 𝛿 = 𝑍. The only way to get Δ𝜁 = −1 is

to have 𝜎 = 𝑌 (in which case 𝛿 = ∅), and the only ways to get Δ𝜁 = −2 involve 𝜎 = 𝜁 or 𝛿 = 𝜁 .
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DEEPAK ET AL. 459

Therefore, roughly speaking we have

𝐸[Δ𝜁 (𝑖)] = 𝑝𝑧𝑝𝑦 − 𝑝𝑦 + 𝑂
(
𝑝𝜁

)
≈ 2𝑏 − 4𝑎

2𝑏 − 𝑎
⋅

3𝑎
2𝑏 − 𝑎

− 3𝑎
2𝑏 − 𝑎

= − 9𝑎2

(2𝑏 − 𝑎)2
(17)

and are motivated to define

Φ(𝑡) ∶= 9𝑎2

(2𝑏 − 𝑎)2
= Θ(1 − 𝑡) (18)

to represent the downward drift of 𝜁 (𝑖) (if it is positive) at step 𝑖.

4.4 Expected behavior of 𝜻
In the last subsection, we estimated 𝐸[Δ𝜁 (𝑖)] when 𝜁 > 0, using (16). We can also use (16) to estimate

the variance when 𝜁 > 0. We see that

𝑉 𝑎𝑟[Δ𝜁 (𝑖)|𝜁 > 0] = Θ(𝑝𝑦) = Θ
(
(1 − 𝑡)

1
2
)
.

Thus, to model the behavior of 𝜁 (𝑖) we consider a simpler variable: a lazy random walk 𝑋𝜏 (𝑘) with

𝑋𝜏 (0) = 0, expected 1-step change 𝔼[Δ𝑋𝜏 ] = −(1 − 𝜏) and 𝑉 𝑎𝑟[Δ𝑋𝜏 ] = (1 − 𝜏)
1
2 . After 𝑠 steps, we

have 𝔼[𝑋𝜏 (𝑠)] = −(1 − 𝜏)𝑠 and 𝑉 𝑎𝑟[𝑋𝜏 (𝑠)] = (1 − 𝜏)
1
2 𝑠. There is at least constant (bounded away

from 0) probability that 𝑋𝜏 (𝑠) is, say, 1 standard deviation above its mean. However, the probability

that 𝑋𝜏 (𝑠) is too many standard deviations larger than that is negligible. In other words, it is reason-

able to have a displacement as large as 𝑋𝜏 (𝑠) = −(1 − 𝜏)𝑠 + (1 − 𝜏)
1
4 𝑠

1
2 , but not much larger. The

quantity 𝜓(𝑠) ∶= −(1 − 𝜏)𝑠 + (1 − 𝜏)
1
4 𝑠

1
2 is negative for 𝑠 > (1 − 𝜏)−

3
2 . Also 𝜓(𝑠) is maximized when

𝑠 = 1
4 (1 − 𝜏)

− 3
2 , where we have 𝜓(𝑠) = 1

4 (1 − 𝜏)
− 1

2 .

Now we reconsider the variable 𝜁 . Roughly speaking, 𝜁 (𝑖) behaves like the lazy random walk consid-

ered above, so long as we restrict the variable 𝑖 to a short range (so that 𝑡 does not change significantly),

and we have 𝜁 (𝑖) > 0 for this range of 𝑖. We have 𝜁 (0) = 0, and 𝜁 has a negative drift so it's likely that

𝜁 (𝑗) = 0 for many 𝑗 > 0. Specifically, if 𝑗 is an index such that 𝜁 (𝑗) = 0, then we expect 𝜁 (𝑖) to behave

like𝑋𝜏 (𝑖 − 𝑗) with 𝜏 = 𝑗

𝑛
, so long as 𝑖 is not significantly larger than 𝑗. Thus we expect to have 𝜁 (𝑖) = 0

for some 𝑗 ≤ 𝑖 ≤ 𝑗 + (1 − 𝜏)−
3
2 . Also, for all 𝑗 ≤ 𝑖 ≤ 𝑗 + (1 − 𝜏)−

3
2 we should have 𝜁 (𝑖) ≤ 1

4 (1 − 𝜏)
− 1

2 .

But this rough analysis does not make sense toward the end of the process: indeed, for 𝑗 > 𝑛 − 𝑛
3
5 (i.e.

for 1 − 𝜏 < 𝑛−
2
5 ), we have 𝑗 + (1 − 𝜏)−

3
2 > 𝑛. However, we can still say something about what happens

when 𝑗 is large, since the variable 𝑠 cannot be any bigger than 𝑛 − 𝑗. Now for 𝑗 ≥ 𝑛 − 𝑛 3
5 and 𝑠 ≤ 𝑛 − 𝑗

we have 𝜓(𝑠) ≤ (1 − 𝜏)
1
4 𝑠

1
2 ≤ 𝑛−1∕10 ⋅ 𝑛3∕10 = 𝑛1∕5. Thus, we never expect 𝜁 to be larger than 𝑛

1
5 , even

toward the end of the process.

4.5 Why do we have 𝚯̃(𝒏
𝟏
𝟓 ) many components?

At any step of the algorithm, we expect the components of the 2-matching to be mostly paths (and a few

cycles). We would like the algorithm to keep making the paths longer, but sometimes it is not possible

to make a path any longer because of deletion moves. Specifically, for example, if one endpoint of a

path is in𝑍1, and then there is a deletion move that affects that endpoint, then that end of the path will
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460 DEEPAK ET AL.

never grow. If the same thing happens to the other endpoint of the path, then the path will never get

longer, and will never be connected to any of the other paths. Similarly, the number of components in

the final 2-matching can be increased by a deletion move that affects a vertex in 𝑌1 or 𝑌2. Thus we can

bound the number of components in the final 2-matching by bounding the number of steps 𝑖 such that

𝛿(𝑖) = 𝜁 .

Roughly,ℙ[𝛿(𝑖) = 𝜁 ] = 2𝑍
2𝑀−1 ⋅

𝜁

2𝑀−3 = 𝑂( 1
𝑛
min{(1 − 𝑡)−

3
2 ,
𝑛
1
5

1−𝑡 log
𝑂(1) 𝑛}). So integrating, we esti-

mate the total number of components as

𝑂

(
∫

1− 1
𝑛

0
min

{
1
𝑛
(1 − 𝑡)−

3
2 ,
𝑛

1
5

1 − 𝑡
log𝑂(1) 𝑛

}
𝑑𝑡

)
= 𝑂

(
𝑛

1
5 log𝑂(1) 𝑛

)
.

Indeed, we will see in Section 7 that a matching (up to log factors) lower bound also holds. Very

roughly speaking, this is because we expect there to be a positive proportion of steps 𝑖 where 𝜁 (𝑖) is

more than its expectation by a standard deviation.

We will now rigorously justify the above claims about the performance of the algorithm 2GREEDY.

5 THE STOPPING TIME 𝑻 AND DYNAMIC
CONCENTRATION

In this section, we introduce a stopping time 𝑇 , before which 𝐴 and 𝐵 stay close to their trajectories,

and 𝜁 does roughly what we expect it to do. We will also introduce “error” terms for both 𝐴,𝐵 and

a “correction” term 𝛼 for the variable 𝐴. For most of the process, 𝛼 will stay smaller than the error

term for 𝐴. However, toward the end of the process 𝛼 will be significant. Using 𝛼 in our calculations

thus allows us to track the process farther. As it turns out, the variable 𝐵 does not need an analogous

“correction” term.

We define the following random variables that represent “actual error” in 𝐴,𝐵:

𝑒𝑎(𝑖) ∶= 𝐴(𝑖) − 𝑛𝑎(𝑡) − 𝛼(𝑖).

𝑒𝑏(𝑖) ∶= 𝐵(𝑖) − 𝑛𝑏(𝑡).

The definition of 𝛼(𝑖) is through a recurrence – see (31).

We define the stopping time 𝑇 as the minimum of 𝑛 − 𝐶𝑇 𝑛
7
15 log

6
5 𝑛 and the first step 𝑖 such that any

of the four following conditions fail:

|𝑒𝑎(𝑖)| ≤ 𝑓𝑎 (𝑡) , (19)

|𝑒𝑏(𝑖)| ≤ 𝑓𝑏 (𝑡) , (20)

𝜁 (𝑖) ≤ 𝑓𝜁 (𝑡) , (21)
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DEEPAK ET AL. 461

and for every step 𝑗 < 𝑖 such that 𝜁 is positive on steps 𝑗,… , 𝑖,

𝜁 (𝑖) ≤ 𝜁 (𝑗) − ∑
𝑗≤𝑘<𝑖

Φ
(
𝑘

𝑛

)
+ 𝓁𝑗 (𝑡) (22)

for some as-yet unspecified error functions 𝑓𝑎, 𝑓𝑏, 𝑓𝜁 ,𝓁𝑗 and absolute constant 𝐶𝑇 . See Section 1.1 for

this and subsequently introduced constants.

Our goal for now is to prove that for some suitable error functions, w.h.p. 𝑇 is not triggered by any

of the conditions (19), (20), (21), (22).

Theorem 5.1. With high probability,

𝑇 = 𝑛 − 𝐶𝑇 𝑛
7
15 log

6
5 𝑛. (23)

The remainder of this section contains the proof of Theorem 5.1. Here we define the error functions

𝑓𝑎, 𝑓𝑏, 𝑓𝜁 (up to the choice of constants). While these definitions are not very enlightening at this

point, they will aid the reader in confirming many of the calculations that appear below. Those same

calculations will motivate the choice of these functions.

𝑓𝑎(𝑡) ∶ = 𝐶𝐴(1 − 𝑡)
3
4 𝑛

1
2 log

1
2 𝑛. (24)

𝑓𝑏(𝑡) ∶ = 𝐶𝐵 ⋅

⎧⎪⎨⎪⎩
(1 − 𝑡)−

1
2 log 𝑛 ∶ 1 − 𝑡 > 𝑛−

2
5 log

2
5 𝑛.

−𝑛
1
5 log

4
5 𝑛 log(1 − 𝑡) ∶ otherwise.

(25)

𝑓𝜁 (𝑡) ∶= 𝐶𝜁 ⋅
⎧⎪⎨⎪⎩
(1 − 𝑡)−

1
2 log 𝑛, ∶ 1 − 𝑡 > 𝑛−

2
5 log

2
5 𝑛.

𝑛
1
5 log

4
5 𝑛 ∶ otherwise.

(26)

5.1 A useful lemma
We will use the following simple lemma several times to estimate fractions.

Lemma 5.2. For any real numbers 𝑥, 𝑦, 𝜀𝑥, 𝜀𝑦, if we have 𝑥, 𝑦 ≠ 0 and | 𝜀𝑥
𝑥
|, | 𝜀𝑦

𝑦
| ≤ 1

2 , then

𝑥 + 𝜀𝑥
𝑦 + 𝜀𝑦

− 𝑥
𝑦
=
𝑦𝜀𝑥 − 𝑥𝜀𝑦

𝑦2
+ 𝑂

(
𝑦𝜀𝑥𝜀𝑦 + 𝑥𝜀2𝑦

𝑦3

)
.

Proof.

𝑥 + 𝜀𝑥
𝑦 + 𝜀𝑦

− 𝑥
𝑦
= 𝑥
𝑦

{(
1 +

𝜀𝑥

𝑥

)
⋅

1
1 + 𝜀𝑦

𝑦

− 1

}

= 𝑥
𝑦

{(
1 +

𝜀𝑥

𝑥

)
⋅

[
1 −

𝜀𝑦

𝑦
+ 𝑂

(
𝜀2
𝑦

𝑦2

)]
− 1

}

= 𝑥
𝑦

{
𝜀𝑥

𝑥
−
𝜀𝑦

𝑦
+ 𝑂

(
𝜀𝑥𝜀𝑦

𝑥𝑦
+
𝜀2
𝑦

𝑦2

)}
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462 DEEPAK ET AL.

=
𝑦𝜀𝑥 − 𝑥𝜀𝑦

𝑦2
+ 𝑂

(
𝑦𝜀𝑥𝜀𝑦 + 𝑥𝜀2𝑦

𝑦3

)
.

■5.2 𝑻 is not triggered by 𝑨

We define

𝐴+(𝑖) ∶= 𝐴(𝑖) − 𝑛𝑎(𝑡) − 𝛼(𝑖) − 𝑓𝑎(𝑡) = 𝑒𝑎(𝑖) − 𝑓𝑎(𝑡) (27)

and let the stopping time 𝑇𝑗 ∶= min{𝑖(𝑗),max(𝑗, 𝑇 )} where 𝑖(𝑗) represents the least index 𝑖 ≥ 𝑗 such

that 𝑒𝑎(𝑖) is not in the critical interval

[𝑔𝑎(𝑡), 𝑓𝑎(𝑡)] (28)

where 0 < 𝑔𝑎 < 𝑓𝑎 is an as-yet unspecified function of 𝑛, 𝑡. Our strategy is to show that w.h.p. 𝐴 never

goes above 𝑛𝑎 + 𝛼 + 𝑓𝑎 because every time 𝑒𝑎 enters the critical interval, w.h.p. it does not exit the

interval at the top. The use of critical intervals in a similar context was first introduced in [5].

Let 𝑖 be the natural filtration of the process (so conditioning on 𝑖 tells us the values of all the

variables, among other things).

For 𝑖 < 𝑇 , we have from (4) and (6), (7), (8) that

𝐸[Δ𝐴(𝑖)|𝑖] = −1 − 3𝑌
2𝑀

− 𝜁

2𝑀
+ 2𝑍

2𝑀
− 2 ⋅ 2𝑍

2𝑀
⋅
𝜁

2𝑀
+ 𝑂

( 1
𝑀

)
= −(2𝐵 − 𝐴) − 3(𝐴 − 𝜁 ) − 𝜁 + 2(𝐵 − 2𝐴 + 𝜁 )

2𝐵 − 𝐴
− 4𝜁 (𝐵 − 2𝐴 + 𝜁 )

(2𝐵 − 𝐴)2

+ 𝑂
( 1
2𝐵 − 𝐴

)
= − 6𝐴

2𝐵 − 𝐴
+ 4𝜁 (𝐴 + 𝐵)

(2𝐵 − 𝐴)2
+ 𝑂

(
1

2𝐵 − 𝐴
+ 𝜁2

(2𝐵 − 𝐴)2

)

= −
6
(
𝑛𝑎 + 𝛼 + 𝑒𝑎

)
2(𝑛𝑏 + 𝑒𝑏) − (𝑛𝑎 + 𝛼 + 𝑒𝑎)

+
4𝜁

[(
𝑛𝑎 + 𝛼 + 𝑒𝑎

)
+ (𝑛𝑏 + 𝑒𝑏)

][
2(𝑛𝑏 + 𝑒𝑏) −

(
𝑛𝑎 + 𝛼 + 𝑒𝑎

)]2
+ 𝑂

(
1

2𝐵 − 𝐴
+ 𝜁2

(2𝐵 − 𝐴)2

)
= − 6𝑎

2𝑏 − 𝑎
+

12𝑎𝑒𝑏 − 12𝑏
(
𝛼 + 𝑒𝑎

)
𝑛(2𝑏 − 𝑎)2

+ 4(𝑎 + 𝑏)𝜁
𝑛(2𝑏 − 𝑎)2

+ 𝑂

(
1

𝑛(2𝑏 − 𝑎)
+
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏
+ 𝑓 2

𝜁

𝑛2(2𝑏 − 𝑎)2

)
. (29)

The second line above follows from substituting the values of 𝑌 ,𝑍,𝑀 in terms of𝐴,𝐵, 𝜁 . The last line

above also follows from Lemma 5.2 (the fourth line has two fractions with error terms in the numerators

and denominators. We apply Lemma 5.2 to these fractions, regarding 𝑒𝑎, 𝑒𝑏, 𝛼 as error terms, to arrive

at the last line, making use of (19)–(21), that 𝑒𝑎 + 𝑒𝑏 + 𝛼 = 𝑜(2𝑏 − 𝑎)𝑛 and that 𝑎 + 𝑏 = 𝑂(2𝑏 − 𝑎)).
Also note that we only apply a crude form of Lemma 5.2 to the second fraction of the fourth line,

as the lemma would allow us to put fewer of the resulting terms into the big-𝑂. Note that the lemma

actually implies that the big-𝑂 term includes mixed products of terms like 𝛼 ⋅ 𝑓𝜁 for example. We have

simplified by using the fact that for all real numbers 𝑥 and 𝑦, |𝑥𝑦| ≤ 1
2 (𝑥

2 + 𝑦2). Note that we have not

put all the occurrences of 𝜁 into the big-𝑂 term. While we will see that the 𝜁 term inside the big-𝑂 is

negligible, the 𝜁 term outside the big-𝑂 may become significant toward the end of the process.
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DEEPAK ET AL. 463

We are now motivated to cancel out the 𝜁 term in the last line by recursively defining

𝛼(0) ∶= 0. (30)

𝛼(𝑖 + 1) ∶= 𝛼(𝑖) + 4(𝑎 + 𝑏)𝜁 − 12𝑏𝛼(𝑖)
𝑛(2𝑏 − 𝑎)2

(31)

≥ 𝛼(𝑖)
(
1 − 12𝑏

𝑛(2𝑏 − 𝑎)2

)
.

We see from (10) and (15) that

𝑎 + 𝑏 ≤ 3(1 − 𝑡) ≤ 2𝑏 − 𝑎 ≤ 4(1 − 𝑡). (32)

So using 𝑇 ≤ 𝑛 − 𝐶𝑇 𝑛 7
15 log

6
5 𝑛 we have that (1 − 12𝑏

𝑛(2𝑏−𝑎)2 ) ≥ 0 and hence that 𝛼(𝑖) ≥ 0 throughout.

From (31) and the definition of 𝑓𝜁 and 𝜁 ≤ 𝑓𝜁 , it follows that for 𝑖 ≤ 𝑇 ,

0 ≤ 𝛼(𝑖) ≤
𝑖∑
𝑗=0

4(𝑎 + 𝑏)𝑓𝜁
𝑛(2𝑏 − 𝑎)2

≤
𝑖∑
𝑗=0

4 ⋅ 3
(
1 − 𝑗

𝑛

)
𝑓𝜁

(
𝑗

𝑛

)
𝑛

(
3
(
1 − 𝑗

𝑛

))2

=
4𝐶𝜁
3𝑛

𝑖∑
𝑗=0

1
1 − 𝑗

𝑛

⋅

⎧⎪⎨⎪⎩
(
1 − 𝑗

𝑛

)−1
2 log 𝑛, ∶ 1 − 𝑗

𝑛
> 𝑛

−2
5 log

2
5 𝑛

𝑛
1
5 log

4
5 𝑛 ∶ otherwise

≤ 4𝐶𝜁
3 ∫

𝑖+1
𝑛

𝜏=0

1
1 − 𝜏

⋅

⎧⎪⎨⎪⎩
(1 − 𝜏)−

1
2 log 𝑛, ∶ 1 − 𝜏 > 𝑛−

2
5 log

2
5 𝑛

𝑛
1
5 log

4
5 𝑛 ∶ otherwise

𝑑𝜏

≤ 𝐶𝛼 ⋅
{
log 𝑛(1 − 𝑡)−1∕2 for 𝑖 ≤ 𝑛 − 𝑛3∕5 log2∕5 𝑛,
𝑛1∕5 log9∕5 𝑛 for 𝑛 − 𝑛3∕5 log2∕5 𝑛 < 𝑖 ≤ 𝑇 , (33)

since 𝐶𝛼 and 𝐶𝜁 satisfy

𝐶𝛼 > 8𝐶𝜁 . (34)

Note that we can pass from the sum on the second line to the integral on the third line since the integrand

is an increasing function. Also note that in evaluating the integral, the value of the antiderivative at

𝜏 = 𝑖+1
𝑛

is asymptotically the same as the value at 𝜏 = 𝑡 = 𝑖

𝑛
, so the last inequality holds since we

chose 𝐶𝛼 large enough with room to spare.

Now let 𝑗 ≤ 𝑖 < 𝑇𝑗 . Note that if this holds, then by the definition of 𝑇𝑗 , 𝑖 satisfies 𝑒𝑎(𝑖) ∈
[𝑔𝑎(𝑡), 𝑓𝑎(𝑡)]. We have the supermartingale condition

𝐸[Δ𝐴+(𝑖)|𝑖]
= 𝐸[Δ𝐴(𝑖)|𝑖] − 𝑎′(𝑡) − 4(𝑎 + 𝑏)𝜁 − 12𝑏𝛼(𝑖)

𝑛(2𝑏 − 𝑎)2
− 1
𝑛
𝑓 ′
𝑎
(𝑡) + 𝑂

(
1
𝑛
𝑎′′(𝑡) + 1

𝑛2
𝑓 ′′
𝑎
(𝑡)

)
(35)
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464 DEEPAK ET AL.

≤−
12𝑏𝑔𝑎

𝑛(2𝑏 − 𝑎)2
− 1
𝑛
𝑓 ′
𝑎
(𝑡) + 𝑂

(
𝑎𝑓𝑏

𝑛(2𝑏 − 𝑎)2
+ 1
𝑛(2𝑏 − 𝑎)

+
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏
+ 𝑓 2

𝜁

𝑛2(2𝑏 − 𝑎)2
+ 1
𝑛
𝑎′′(𝑡) + 1

𝑛2
𝑓 ′′
𝑎
(𝑡)

)
.

(36)

Note that in the first line we have used (27) and (31), and in the last line we have used (29), (31) the

fact that 𝑒𝑎 ≥ 𝑔𝑎, and also that 𝑎 satisfies the differential equation (11). By taking 𝑔𝑎 = 𝐶𝑔𝑓𝑎 where

𝐶𝑔 < 1 we guarantee that the corresponding critical interval is nonempty. We will subsequently choose

𝐶𝑔 = 3∕4, see (42). By (10), (24), and (32) we have

−
12𝑏𝑔𝑎

𝑛(2𝑏 − 𝑎)2
− 1
𝑛
𝑓 ′
𝑎
= −Θ

(
𝑛−1∕2 log1∕2 𝑛(1 − 𝑡)−1∕4

)
. (37)

We then see that 𝐴+(𝑗),… , 𝐴+(𝑇𝑗) is a supermartingale once we prove the following claim.

Claim 5.3. − 12𝑏𝑔𝑎
𝑛(2𝑏−𝑎)2 −

1
𝑛
𝑓 ′
𝑎

dominates the big-𝑂 term in (36).

Proof. Throughout this proof we will assume that (1 − 𝑡) = Ω(𝑛−8∕15 log6∕5 𝑛), see (23). Now (32)

and (37) take care of the second big-𝑂 term in (36). Also it is not hard to see by (24) that 𝑓 ′′
𝑎
(𝑡) =

𝑂(𝑛1∕2 log1∕2 𝑛(1 − 𝑡)−5∕4) = 𝑜(𝑓 2
𝑎
∕(2𝑏 − 𝑎)2) and so the fifth big-𝑂 term is taken care of.

Now consider the fourth big-𝑂 term. It follows from (11) and (15) that

6
(
2
3

)3∕2
(1 − 𝑡)3∕2

4(1 − 𝑡)
≤ −𝑎′(𝑡) = 6𝑎

4 − 4𝑡 − 𝑎
≤ 6(1 − 𝑡)3∕2

4(1 − 𝑡) − (1 − 𝑡)

and so

−2 (1 − 𝑡)
1
2 ≤ 𝑎′(𝑡) ≤ −

√
2
3
(1 − 𝑡)

1
2 . (38)

Also we have

𝑎′′(𝑡) = −6[𝑎′(4 − 4𝑡 − 𝑎) + 𝑎(4 + 𝑎′)]
(4 − 4𝑡 − 𝑎)2

and then from (15) and (38) we deduce that

|𝑎′′(𝑡)| = 𝑂 (
(1 − 𝑡)−1∕2

)
. (39)

Thus

𝑏𝑔𝑎

(2𝑏 − 𝑎)2𝑎′′
= Ω

((
𝑛−8∕15 log6∕5 𝑛

)1∕4
𝑛1∕2 log1∕2 𝑛

)
≫ 1

and this takes care of the fourth big-𝑂 term.

For the first and third big-𝑂 terms we must consider cases according to the value of 𝑡. First consider

the case 1 − 𝑡 > 𝑛−2∕5 log2∕5 𝑛. By (10), (15), (25), and our choice of 𝑔𝑎 (again see (42)) we have

𝑎𝑓𝑏 = 𝑂((1 − 𝑡) log 𝑛) = 𝑜(𝑏𝑔𝑎) since

𝑏𝑔𝑎

(1 − 𝑡) log 𝑛
= Ω

((
𝑛−2∕5 log2∕5 𝑛

)3∕4
𝑛1∕2 log−1∕2 𝑛

)
≫ 1
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DEEPAK ET AL. 465

and this deals with the first term. For the third term we see by (24)–(26) and (33) that 𝛼2 + 𝑓 2
𝑎
+ 𝑓 2

𝑏
+

𝑓 2
𝜁
= 𝑂((1 − 𝑡)−1 log2 𝑛 + (1 − 𝑡)3∕2𝑛 log 𝑛). Now using the bounds on 𝑡 we have

𝑛𝑏𝑔𝑎

(1 − 𝑡)3∕2𝑛 log 𝑛
= Ω

((
𝑛−2∕5 log2∕5 𝑛

)1∕4
𝑛1∕2 log−1∕2 𝑛

)
≫ 1

and

𝑛𝑏𝑔𝑎

(1 − 𝑡)−1 log2 𝑛
= Ω

((
𝑛−2∕5 log2∕5 𝑛

)11∕4
𝑛3∕2 log−3∕2 𝑛

)
≫ 1

and so 𝛼2 + 𝑓 2
𝑎
+ 𝑓 2

𝑏
+ 𝑓 2

𝜁
= 𝑜(𝑛𝑏𝑔𝑎) so this deals with the third term, and finishes the case 1 − 𝑡 >

𝑛−2∕5 log2∕5 𝑛.
The other case is Ω(𝑛−8∕15 log6∕5 𝑛) ≤ 1 − 𝑡 ≤ 𝑛−2∕5 log2∕5 𝑛. The only terms that change are 𝑓𝑏 =

−𝑛1∕5 log4∕5 𝑛 log(1 − 𝑡) = 𝑂(𝑛1∕5 log9∕5 𝑛) by (25) and 𝑓𝜁 , 𝛼 = 𝑂(𝑛1∕5 log9∕5 𝑛) by (26) and (33). So

𝑎𝑓𝑏 = 𝑂(𝑛1∕5 log9∕5 𝑛(1 − 𝑡)3∕2) = 𝑜(𝑏𝑔𝑎) and 𝑓 2
𝜁
= 𝑂(𝑛2∕5 log8∕5 𝑛) = 𝑜(𝑛𝑏𝑔𝑎) using our bounds on

𝑡. ■

We use the following asymmetric version of the Azuma–Hoeffding inequality (for a proof see [2]):

Lemma 5.4. Let 𝑋𝑗 be a supermartingale, such that −𝐶 ≤ Δ𝑋(𝑗) ≤ 𝑐 for all 𝑗, for 𝑐 < 𝐶

10 . Then for

any 𝑢 < 𝑐𝑚 we have 𝑃 𝑟(𝑋𝑚 −𝑋0 > 𝑢) ≤ exp(− 𝑢2

3𝑐𝐶𝑚 )

We have by (4) that

−2 ≤ Δ𝐴 ≤ 0. (40)

For an absolute bound on 𝑎′(𝑡) we have by (38) and the bounds on 𝑡 that

−2 ≤ 𝑎′(𝑡) ≤ −
(
2𝐶𝑇
3

) 1
2
𝑛
− 4

15 log
3
5 𝑛.

Now by (27) we see

Δ𝐴+ = Δ𝐴 − 𝑎′ − Δ𝛼 + 𝑂
( 1
𝑛
𝑓 ′
𝑎
+ 1
𝑛
𝑎′′

)
and before the stopping time 𝑇 we have by (26) and (33) that

𝜁 ≤ 𝐶𝜁𝑛 1
5 log

4
5 𝑛 and 𝛼 ≤ 𝐶𝛼𝑛 1

5 log
9
5 𝑛

and so we have

|Δ𝛼| (31)
=

||||4(𝑎 + 𝑏)𝜁 − 12𝑏𝛼(𝑖)
𝑛(2𝑏 − 𝑎)2

|||| (15)≤ 12(1 − 𝑡)𝜁 + 24(1 − 𝑡)𝛼(𝑖)
9𝑛(1 − 𝑡)2

≤ 12𝐶𝜁𝑛
1
5 log

4
5 𝑛 + 24𝐶𝛼𝑛

1
5 log

9
5 𝑛

9𝑛(1 − 𝑡)
≤ 3𝐶𝛼𝑛

−4
5 log

9
5 𝑛(1 − 𝑡)−1

≤ 3𝐶𝛼
𝐶𝑇

𝑛
− 4

15 log
3
5 𝑛
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466 DEEPAK ET AL.

so |||| Δ𝛼𝑎′(𝑡) |||| ≤ 3𝐶𝛼

𝐶
3
2
𝑇

.

Since

𝐶𝛼 > 2𝐶3∕2
𝑇

(41)

we get the bounds (using (40) and (38))

Δ𝐴+ ≤ −
(
𝑎′

(
𝑗

𝑛

)
+ Δ𝛼

)
(1 + 𝑜(1)) ≤

⎛⎜⎜⎜⎝
3𝐶𝛼

𝐶
3
2
𝑇

+1 + 𝑜(1)
⎞⎟⎟⎟⎠
|||||𝑎′

(
𝑗

𝑛

)||||| ≤ 7𝐶𝛼

𝐶
3
2
𝑇

(
1 − 𝑗

𝑛

) 1
2

and

Δ𝐴+ ≥ Δ𝐴 − 𝑜(1) ≥ −2 + 𝑜(1) ≥ −3

for the supermartingale 𝐴+(𝑗)⋯𝐴+(𝑇𝑗). Thus, if 𝐴 crosses its upper boundary 𝑛𝑎(𝑡) + 𝛼(𝑖) + 𝑓𝑎(𝑡) at

the stopping time 𝑇 , since Δ𝐴+ ≤ 7𝐶𝛼

𝐶

3
2
𝑇

and this will be the first crossing there is some step 𝑗 (with

𝑇 = 𝑇𝑗) such that

𝐴+(𝑗) ≤ 𝑔𝑎
(
𝑗 − 1
𝑛

)
− 𝑓𝑎

(
𝑗 − 1
𝑛

)
+

7𝐶𝛼

𝐶
3
2
𝑇

and 𝐴+(𝑇𝑗) > 0. In this case, 𝑗 is intended to represent the step when 𝑒𝑎 enters the critical interval,

(28). Our choice of constants in Section 1.1 allows us to apply Lemma 5.4 and see that the probability

of the supermartingale 𝐴+ having such a large upward deviation has probability at most

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

⎛⎜⎜⎝𝑓𝑎
(
𝑗−1
𝑛

)
− 𝑔𝑎

(
𝑗−1
𝑛

)
− 7𝐶𝛼

𝐶

3
2
𝑇

⎞⎟⎟⎠
2

3 ⋅ 3 ⋅ 7𝐶𝛼

𝐶

3
2
𝑇

𝑛

(
1 − 𝑗

𝑛

) 3
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

As there are𝑂(𝑛) supermartingales 𝐴+(𝑗),… , 𝐴+(𝑇𝑗), we must choose 𝑓𝑎, 𝑔𝑎 to make the above prob-

ability 𝑜( 1
𝑛
). The following choice suffices:

𝑓𝑎(𝑡) = 𝐶𝐴(1 − 𝑡)
3
4 𝑛

1
2 log

1
2 𝑛.

𝑔𝑎(𝑡) =
3
4
𝑓𝑎(𝑡). (42)
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DEEPAK ET AL. 467

since the constant 𝐶𝐴 is chosen so that

(
1
4𝐶𝐴

)2

63𝐶𝛼

𝐶

3
2
𝑇

> 1. (43)

If we define

𝐴− ∶= 𝐴 − 𝑛𝑎 − 𝛼 + 𝑓𝑎 = 𝑒𝑎 + 𝑓𝑎

then we may prove that 𝐴− stays positive w.h.p. in a completely analogous fashion.

5.3 𝑻 is not triggered by condition (22)
Referring to (16) and (6)–(8), we may say that if 𝜁 (𝑖) > 0,

𝐸[Δ𝜁 (𝑖)|𝑖] = 𝑝𝑧𝑝𝑦 − 𝑝𝑦 + 𝑂 (
𝑝𝜁

)
= − 9𝐴2

(2𝐵 − 𝐴)2
+ 𝑂

(
𝜁

2𝐵 − 𝐴

)
. (44)

Now, before 𝑇 we have

9𝑎2

(2𝑏 − 𝑎)2
− 9𝐴2

(2𝐵 − 𝐴)2
= −9

(
𝐴

2𝐵 − 𝐴
− 𝑎

2𝑏 − 𝑎

)(
𝐴

2𝐵 − 𝐴
+ 𝑎

2𝑏 − 𝑎

)
= −9

[
2𝑏(𝛼 + 𝑒𝑎) − 2𝑎𝑒𝑏
𝑛(2𝑏 − 𝑎)2

+ 𝑂

(
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2

)]

×

[
2
(

𝑎

2𝑏 − 𝑎

)
+

2𝑏(𝛼 + 𝑒𝑎) − 2𝑎𝑒𝑏
𝑛(2𝑏 − 𝑎)2

+ 𝑂

(
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2

)]
=

36𝑎(𝑎𝑒𝑏 − 𝑏𝛼 − 𝑏𝑒𝑎)
𝑛(2𝑏 − 𝑎)3

+

𝑂

[
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2
⋅

(
𝑎

2𝑏 − 𝑎
+
𝑏(𝛼 + 𝑒𝑎) + 𝑎𝑒𝑏
𝑛(2𝑏 − 𝑎)2

+
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2

)

+
(
𝑎𝑒𝑏 − 𝑏𝛼 − 𝑏𝑒𝑎
𝑛(2𝑏 − 𝑎)2

)2
]
=

36𝑎(𝑎𝑒𝑏 − 𝑏𝛼 − 𝑏𝑒𝑎)
𝑛(2𝑏 − 𝑎)3

+ 𝑂

(
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2

)
. (45)

On the second line we have used Lemma 5.2 and the inequalities (19), (20) and in the last step we have

cleaned up the big-𝑂 using the facts

𝛼 + 𝑓𝑎 + 𝑓𝑏
𝑛(2𝑏 − 𝑎)

= 𝑜(1) and
𝑎

2𝑏 − 𝑎
= 𝑂(1)

which follow from (33), (24), (25), (15), and (32). For every step 𝑗, we redefine 𝑇𝑗 to be the stopping

time

𝑇𝑗 ∶= min {𝑖(𝑗),max(𝑗, 𝑇 )}
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468 DEEPAK ET AL.

where 𝑖(𝑗) is the least index 𝑖 ≥ 𝑗 such that 𝜁 (𝑖) = 0. Also, define a sequence 𝜁+
𝑗
(𝑗)⋯ 𝜁+

𝑗
(𝑇𝑗), where

𝜁+
𝑗
(𝑖) ∶= 𝜁 (𝑖) +

∑
𝑗≤𝑘<𝑖

Φ
(
𝑘

𝑛

)
− ℎ𝑗

(
𝑖

𝑛

)
where ℎ𝑗 is some function we will choose that will make 𝜁+

𝑗
(𝑖) a supermartingale. Now for 𝑗 ≤ 𝑖 < 𝑇𝑗 ,

using (44) and (45), we have

𝐸[Δ𝜁+
𝑗
(𝑖)|𝑖] = − 9𝐴2

(2𝐵 − 𝐴)2
+ 9𝑎2

(2𝑏 − 𝑎)2
− 1
𝑛
ℎ′
𝑗
(𝑡) + 𝑂

(
𝜁

2𝐵 − 𝐴
+ 1
𝑛2
ℎ′′
𝑗
(𝑡)

)
(46)

=
36𝑎(𝑎𝑒𝑏 − 𝑏𝛼 − 𝑏𝑒𝑎)

𝑛(2𝑏 − 𝑎)3
− 1
𝑛
ℎ′
𝑗
(𝑡) + 𝑂

(
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2
+ 𝜁

2𝐵 − 𝐴
+ 1
𝑛2
ℎ′′
𝑗
(𝑡)

)
(47)

≤ 36𝑎(𝑎𝑓𝑏 + 𝑏𝑓𝑎)
𝑛(2𝑏 − 𝑎)3

− 1
𝑛
ℎ′
𝑗
(𝑡) + 𝑂

(
𝛼2 + 𝑓 2

𝑎
+ 𝑓 2

𝑏

𝑛2(2𝑏 − 𝑎)2
+

𝑓𝜁

𝑛(2𝑏 − 𝑎)
+ 1
𝑛2
ℎ′′
𝑗
(𝑡)

)
. (48)

In the last line we have used (19), (20), (21), and the fact that 𝛼 ≥ 0. Note that by (24), (25) we have

𝑎𝑓𝑏 = 𝑜(𝑏𝑓𝑎) so

36𝑎(𝑎𝑓𝑏 + 𝑏𝑓𝑎)
(2𝑏 − 𝑎)3

≤ 36(1 − 𝑡)
3
2 ⋅ 2(1 − 𝑡) ⋅ 𝐶𝐴(1 − 𝑡)

3
4 𝑛

1
2 log

1
2 𝑛 ⋅ (1 + 𝑜(1))

64(1 − 𝑡)3

≤ (9
8
𝐶𝐴 + 𝑜(1)

)
𝑛

1
2 log

1
2 𝑛 (1 − 𝑡)

1
4 (49)

so the choice

ℎ𝑗(𝑡) ∶= 𝐶ℎ
(
1 − 𝑗

𝑛

) 1
4
𝑛

1
2 log

1
2 𝑛

(
𝑡 − 𝑗

𝑛

)
makes the sequence a supermartingale as long as the constant 𝐶ℎ is chosen so that

𝐶ℎ >
9
8
𝐶𝐴. (50)

One can verify, as in Claim 5.3, that the big-𝑂 term is dominated by the main terms. Since ℎ𝑗(
𝑗

𝑛
) = 0,

we will always have 𝜁+
𝑗
(𝑗) = 𝜁 (𝑗).

We will use the following supermartingale inequality due to Freedman [9]:

Lemma 5.5. Let 𝑋𝑖 be a supermartingale, with Δ𝑋𝑖 ≤ 𝐶 for all 𝑖, and 𝑉 (𝑖) ∶=
∑
𝑘≤𝑖
𝑉 𝑎𝑟[Δ𝑋𝑘|𝑘]

Then

𝑃
[
∃𝑖 ∶ 𝑉 (𝑖) ≤ 𝑣,𝑋𝑖 −𝑋0 ≥ 𝑑] ≤ exp

(
− 𝑑2

2(𝑣 + 𝐶𝑑)

)
.

Referring to (16), before 𝑇 we can put

𝑉 𝑎𝑟[Δ𝜁+
𝑗
(𝑖)|𝑖] = 𝑉 𝑎𝑟[Δ𝜁 (𝑖)|𝑖]
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DEEPAK ET AL. 469

≤ 𝐸 [
(Δ𝜁 (𝑖))2 ∣ 𝑖]

= 1 ⋅ 𝑝𝑧𝑝𝑦 + 1 ⋅ 𝑝𝑦 + 𝑂(𝑝𝜁 ) + 𝑂
( 1
𝑀

)
≤ 3𝑝𝑦 (51)

since 𝑝𝑧 ≤ 1 and 𝑝𝜁 = 𝑜(𝑝𝑦) before 𝑇 . Note that before 𝑇 , we have

𝑝𝑦 =
3𝑌
2𝑀

≤ 3𝐴
2𝐵 − 𝐴

≤ 3[𝑛(1 − 𝑡)
3
2 + 𝛼 + 𝑓𝑎]

4𝑛(1 − 𝑡) − 2𝑓𝑏 − 𝑛(1 − 𝑡)
3
2 − 𝛼 − 𝑓𝑎

≤
(
𝐶

3∕2
𝑇

+ 𝐶𝛼
𝐶𝑇

+ 𝑜(1)

)
(1 − 𝑡)

1
2 . (52)

Indeed, if 𝑡 ≤ 1 − 𝑛−2∕5 log2∕5 𝑛 then by (33), (24), and (25) we have

3[𝑛(1 − 𝑡)
3
2 + 𝛼 + 𝑓𝑎]

4𝑛(1 − 𝑡) − 2𝑓𝑏 − 𝑛(1 − 𝑡)
3
2 − 𝛼 − 𝑓𝑎

≤ 3[𝑛(1 − 𝑡)
3
2 + 𝐶𝛼(1 − 𝑡)−1∕2 log 𝑛 + 𝐶𝐴(1 − 𝑡)

3
4 𝑛

1
2 log

1
2 𝑛]

4𝑛(1 − 𝑡) − 2𝐶𝐵(1 − 𝑡)
− 1

2 log 𝑛 − 𝑛(1 − 𝑡)
3
2 − 𝐶𝛼(1 − 𝑡)−1∕2 log 𝑛 − 𝐶𝐴(1 − 𝑡)

3
4 𝑛

1
2 log

1
2 𝑛

= 3𝑛(1 − 𝑡)3∕2 + 𝑜(𝑛(1 − 𝑡))
(4 + 𝑜(1))𝑛(1 − 𝑡)

.

Whereas if 𝑡 ≥ 1 − 𝑛−2∕5 log2∕5 𝑛 then

3[𝑛(1 − 𝑡)
3
2 + 𝛼 + 𝑓𝑎]

4𝑛(1 − 𝑡) − 2𝑓𝑏 − 𝑛(1 − 𝑡)
3
2 − 𝛼 − 𝑓𝑎

≤ 3[𝑛(1 − 𝑡)
3
2 + 𝐶𝛼𝑛1∕5 log9∕5 𝑛 + 𝐶𝐴(1 − 𝑡)

3
4 𝑛

1
2 log

1
2 𝑛]

4𝑛(1 − 𝑡) + 2𝐶𝐵𝑛
1
5 log

4
5 𝑛 log(1 − 𝑡) − 𝑛(1 − 𝑡)

3
2 − 𝐶𝛼𝑛1∕5 log9∕5 𝑛 − 𝐶𝐴(1 − 𝑡)

3
4 𝑛

1
2 log

1
2 𝑛

≤ (3 + 𝑜(1))[𝑛(1 − 𝑡)
3
2 + 𝐶𝛼𝑛1∕5 log9∕5 𝑛]

(4 + 𝑜(1))𝑛(1 − 𝑡)
.

Here our choice of constants 𝐶𝛼, 𝐶𝑇 , 𝐶𝑝𝑦 are such that

𝐶𝑝𝑦
>
𝐶

3∕2
𝑇

+ 𝐶𝛼
𝐶𝑇

. (53)

and so 𝑝𝑦 ≤ 𝐶𝑝𝑦(1 − 𝑡)
1
2 . Also, note that

Δ𝜁+ ≤ 3

since Δ𝜁 ≤ 2 and Φ(𝑡) ≤ 9(1−𝑡)3
9(1−𝑡)2 ≤ 1 (by (18), (15), and (32)).

Suppose condition (22) triggers the stopping time 𝑇 . Then there are steps 𝑗 < 𝑖 = 𝑇 such that 𝜁 > 0
all the way from step 𝑗 to step 𝑖, and 𝜁+

𝑗
(𝑖) > 𝓁𝑗(𝑡) − ℎ𝑗(𝑡). We will need to apply Lemma 5.5 to the

 10970118, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22224 by M

ontclair State U
niversity, W

iley O
nline L

ibrary on [01/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



470 DEEPAK ET AL.

supermartingale 𝜁+
𝑗

to show this event has low probability (guiding our choice for 𝓁𝑗). Note that by

(51), in Lemma 5.5 we can plug in the following for 𝑣:

𝑉 (𝑖) =
∑
𝑗≤𝑘≤𝑖

𝑉 𝑎𝑟[Δ𝜁+
𝑗
(𝑘)|𝑘] ≤ 3𝐶𝑝𝑦

(
1 − 𝑗

𝑛

) 1
2
(𝑖 − 𝑗).

So the unlikely event that condition (22) triggers 𝑇 has probability at most

exp

⎧⎪⎪⎨⎪⎪⎩
−

(𝓁𝑗 − ℎ𝑗)2

2
[
3𝐶𝑝𝑦

(
1 − 𝑗

𝑛

) 1
2 (𝑖 − 𝑗) + 3(𝓁𝑗 − ℎ𝑗)

]
⎫⎪⎪⎬⎪⎪⎭

by Lemma 5.5. The above bound holds for each of the 𝑂(𝑛2) pairs 𝑗, 𝑖, but note that it is with different

parameters 𝓁𝑗(𝑡) for each 𝑖 (𝓁𝑗(𝑡) depends on 𝑡 and therefore on 𝑖). For the union bound to work, we

had like to make the above probability 𝑜( 1
𝑛2
) for each pair 𝑗, 𝑖. Toward this end we consider 2 cases.

If (1 − 𝑗

𝑛
)
1
2 (𝑖 − 𝑗) ≤ log 𝑛, then it suffices to put 𝓁𝑗 − ℎ𝑗 = 𝐶𝓁 log 𝑛 since

𝐶2
𝓁

6𝐶𝑝𝑦 + 6𝐶𝓁
> 2. (54)

If (1 − 𝑗

𝑛
)
1
2 (𝑖 − 𝑗) > log 𝑛, then again by (54), it suffices to put 𝓁𝑗 − ℎ𝑗 = 𝐶𝓁(1 −

𝑗

𝑛
)
1
4 (𝑖 − 𝑗)

1
2 log

1
2 𝑛.

Thus we choose

𝓁𝑗(𝑡) ∶= ℎ𝑗(𝑡) + 𝐶𝓁 max
{

log 𝑛,
(
1 − 𝑗

𝑛

) 1
4
(𝑖 − 𝑗)

1
2 log

1
2 𝑛

}
. (55)

With this choice, w.h.p. 𝑇 is not triggered by condition (22).

5.4 An upper bound on 𝜻

In this section, we will show that 𝑇 is not triggered by condition (21). We will see that (21) actually

holds deterministically, assuming 𝑇 is not triggered by the other conditions

Lemma 5.6. W.h.p. for all 𝑗 < 𝑛 − 2𝐶
2
5
𝑥 𝑛

3
5 log

2
5 𝑛 such that 𝜁 (𝑗 − 1) = 0, we have

1. 𝜁 (𝑗′) = 0 for some 𝑗 ≤ 𝑗′ ≤ 𝑗 + 𝐶𝑥(1 − 𝑗

𝑛
)−

3
2 log 𝑛, and

2. 𝜁 (𝑖) ≤ 40𝐶2
𝓁(1 −

𝑗

𝑛
)−

1
2 log 𝑛 for all 𝑗 ≤ 𝑖 ≤ 𝑗′ − 1.

Proof. Suppose 𝜁 (𝑗 − 1) = 0. Note that we then have 𝜁 (𝑗) ≤ 2. Recall the definition (18) of Φ and

equations (11) and (10). Now Φ(𝑡)∕(1 − 𝑡) is decreasing since

𝑑

𝑑𝑡

(
Φ(𝑡)
1 − 𝑡

)
= Φ′(𝑡)

1 − 𝑡
+ Φ(𝑡)

(1 − 𝑡)2

= 18𝑎𝑎′

(2𝑏 − 𝑎)2(1 − 𝑡)
− 18𝑎2(2𝑏′ − 𝑎′)

(2𝑏 − 𝑎)3(1 − 𝑡)
+ 9𝑎2

(2𝑏 − 𝑎)2(1 − 𝑡)2
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DEEPAK ET AL. 471

= 18𝑎
(2𝑏 − 𝑎)2(1 − 𝑡)

⎛⎜⎜⎜⎝−
6𝑎

2𝑏 − 𝑎
+
𝑎

(
4 − 6𝑎

2𝑏−𝑎

)
2𝑏 − 𝑎

⎞⎟⎟⎟⎠ +
9𝑎2

(2𝑏 − 𝑎)2(1 − 𝑡)2

= 18𝑎
(2𝑏 − 𝑎)2(1 − 𝑡)

× −4𝑎(𝑎 + 𝑏)
(2𝑏 − 𝑎)2

+ 9𝑎2

(2𝑏 − 𝑎)2(1 − 𝑡)2

= 9𝑎2

(2𝑏 − 𝑎)2(1 − 𝑡)

(
− 8𝑎 + 8𝑏
(2𝑏 − 𝑎)2

+ 1
1 − 𝑡

)
= − 9𝑎3(8𝑏 − 𝑎)

(1 − 𝑡)2(2𝑏 − 𝑎)4
≤ 0,

where we have used 𝑏 = 2(1 − 𝑡) to get the last equation and (15) to justify the inequality.

Also, using (13) and the definition of 𝑏,

lim
𝑡→1−

Φ(𝑡)
1 − 𝑡

= 1
6
.

Hence Φ(𝑡) ≥ 1
6 (1 − 𝑡) for all 0 ≤ 𝑡 ≤ 1. If we substitute 𝑥 = 𝑖−𝑗

𝑛
then

∑
𝑗≤𝑘<𝑖

Φ
(
𝑘

𝑛

) ≥ 1
6

(
1 − 𝑖 + 𝑗 − 1

2𝑛

)
(𝑖 − 𝑗) ≥ − 1

12
𝑛𝑥2 + 1

6
𝑛

(
1 − 𝑗

𝑛

)
𝑥.

Plugging in the value of 𝓁𝑗(𝑡) from (55), we have that for any 𝑖 ≥ 𝑗 such that 𝜁 (𝑗)… 𝜁 (𝑖) are all positive,

𝜁 (𝑖) ≤ 𝜁 (𝑗) − ∑
𝑗≤𝑘<𝑖

Φ
(
𝑘

𝑛

)
+ 𝓁𝑗(𝑡) (56)

≤ 2+ 1
12
𝑛𝑥2 −

⎡⎢⎢⎣16𝑛
(
1 − 𝑗

𝑛

)
− 𝐶ℎ𝑛

1
2 log

1
2 𝑛

(
1 − 𝑗

𝑛

) 1
4 ⎤⎥⎥⎦ 𝑥 (57)

+ 𝐶𝓁 max
{

log 𝑛,
(
1 − 𝑗

𝑛

) 1
4
𝑛

1
2 𝑥

1
2 log

1
2 𝑛

}
.

Define

𝑥𝑗 ∶= 𝐶𝑥𝑛−1
(
1 − 𝑗

𝑛

)−3
2
log 𝑛

and consider (57) for 𝑖 such that 𝑥 = 𝑥𝑗 . Since 𝐶𝑥 > 1, we have

(
1 − 𝑗

𝑛

) 1
4
𝑛

1
2 𝑥

1
2
𝑗
log

1
2 𝑛 = 𝐶

1
2
𝑥

(
1 − 𝑗

𝑛

)−1
2
log 𝑛 > log 𝑛
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472 DEEPAK ET AL.

so we can evaluate the “max” in 𝓁𝑗 . Also note that the coefficient of 𝑥 is dominated by −1
6𝑛(1 −

𝑗

𝑛
), so

the coefficient of 𝑥 is at most, say −1
7𝑛(1 −

𝑗

𝑛
). Thus (57) gives

𝜁 (𝑗 + 𝑛𝑥𝑗) ≤ 2+
𝐶2
𝑥

12
𝑛−1 log2 𝑛

(
1 − 𝑗

𝑛

)−3
−

(
𝐶𝑥

7
− 𝐶𝓁

√
𝐶𝑥

)
log 𝑛

(
1 − 𝑗

𝑛

)−1
2
.

Recall that we have assumed that 𝑗 < 𝑛 − 2𝐶
2
5
𝑥 𝑛

3
5 log

2
5 𝑛 and so

1 − 𝑗
𝑛
> 2𝐶

2
5
𝑥 𝑛

−2
5 log

2
5 𝑛.

Now (
𝐶𝑥

7 − 𝐶𝓁
√
𝐶𝑥

)
log 𝑛

(
1 − 𝑗

𝑛

)−1
2

𝐶2
𝑥

12 𝑛
−1 log2 𝑛

(
1 − 𝑗

𝑛

)−3 =
𝐶𝑥

7 − 𝐶𝓁
√
𝐶𝑥

𝐶2
𝑥

12

𝑛

log 𝑛

(
1 − 𝑗

𝑛

) 5
2
>

𝐶𝑥

7 − 𝐶𝓁
√
𝐶𝑥

𝐶𝑥

12

and so 𝜁 (𝑗 + 𝑛𝑥𝑗) is negative for this range of 𝑗 since

𝐶𝑥

7
− 𝐶𝓁

√
𝐶𝑥 >

𝐶𝑥

12
. (58)

Therefore, 𝜁 must have hit 0 again before step 𝑖 = 𝑗 + 𝑛𝑥𝑗 . This proves the first part of the lemma.

To prove the second part, consider (57) for 𝑗 < 𝑖 < 𝑗 + 𝑛𝑥𝑗 (i.e. for 0 < 𝑥 < 𝑥𝑗). If 𝑥 ≤
𝑛−1 log 𝑛(1 − 𝑗

𝑛
)−

1
2 then we can put

𝜁 (𝑖) ≤ 1
12
𝑛𝑥2 − 1

7
𝑛

(
1 − 𝑗

𝑛

)
𝑥 + 𝐶𝓁 log 𝑛.

This is maximized at 𝑥 = 0 or when 𝑥 = 𝑛−1 log 𝑛(1 − 𝑗

𝑛
)−

1
2 and for the latter we have

𝜁 (𝑖) ≤ 1
12
𝑛−1

(
1 − 𝑗

𝑛

)−1
log2 𝑛 − 1

7

(
1 − 𝑗

𝑛

)1∕2
log 𝑛 + 𝐶𝓁 log 𝑛

≤ 𝐶
−2∕5
𝑥

24
𝑛−3∕5 log8∕5 𝑛 −

√
2𝐶1∕5

𝑥

7
𝑛−1∕5 log6∕5 𝑛 + 𝐶𝓁 log 𝑛

≤ 𝐶𝓁 log 𝑛.

This deals with 𝑥 ≤ 𝑛−1 log 𝑛(1 − 𝑗

𝑛
)−

1
2 .

For 𝑥 larger than that, we will put

𝜁 (𝑖) ≤ 1
12
𝑛𝑥2 − 1

7
𝑛

(
1 − 𝑗

𝑛

)
𝑥 + 𝐶𝓁

(
1 − 𝑗

𝑛

) 1
4
𝑛

1
2 𝑥

1
2 log

1
2 𝑛

≤ 𝐶
2
𝑥

12
𝑛−1 log2 𝑛

(
1 − 𝑗

𝑛

)−3
+

7𝐶2
𝓁

4

(
1 − 𝑗

𝑛

)−1
2
log 𝑛
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DEEPAK ET AL. 473

< 40𝐶2
𝓁

(
1 − 𝑗

𝑛

)−1
2
log 𝑛.

To justify the second line we use the fact that 𝑥 < 𝑥𝑗 as well as the inequality −𝑑𝑥 + 𝑐𝑥1∕2 ≤ 𝑐2

4𝑑 for

real numbers 𝑥, 𝑐, 𝑑 > 0 to handle the last two terms. And for the third inequality, we use

𝐶𝑥 ≤ 400𝐶2
𝓁 . (59)

■

We would also like to say something about 𝜁 (𝑖) for 𝑖 > 𝑛 − 2𝐶
2
5
𝑥 𝑛

3
5 log

2
5 𝑛.

Lemma 5.7. W.h.p. for all 𝑖 ≤ 𝑇 we have 𝜁 (𝑖) ≤ 𝐶𝜁𝑛 1
5 log

4
5 𝑛.

Proof. Suppose that at step 𝑗′ ≥ 𝑛 − 2𝐶
2
5
𝑥 𝑛

3
5 log

2
5 𝑛 we have 𝜁 (𝑗′) = 0. It follows from Lemma

5.6 that w.h.p. such a 𝑗′ exists. Let 𝑖 ≥ 𝑗′ such that 𝜁 (𝑗′ − 1)… 𝜁 (𝑖) are all positive. Note that

we again have the bound (57). But now 0 ≤ 𝑥 ≤ 𝑛−𝑗′
𝑛

≤ 2𝐶
2
5
𝑥 𝑛

−2
5 log

2
5 𝑛, and (57) gives 𝜁 (𝑖) ≤

( 13𝐶
4
5
𝑥 + 2

3
4𝐶𝓁𝐶

3
10
𝑥 + 𝑜(1))𝑛

1
5 log

4
5 𝑛. Note that the term in square brackets in (57) is negative here.

So in particular we can say that for 𝑖 ≤ 𝑇 we have

𝜁 (𝑖) ≤ 𝑓𝜁 (𝑡) = 𝐶𝜁 min
{
(1 − 𝑡)−

1
2 log 𝑛, 𝑛

1
5 log

4
5 𝑛

}
,

since

𝐶𝜁 > max
{
40𝐶2

𝓁 ,
1
3
𝐶

4
5
𝑥 + 2

3
4𝐶𝓁𝐶

3
10
𝑥

}
. (60)

■

5.5 𝑻 is not triggered by 𝑩

Recall from (9) that

𝑒𝑏(𝑖) =
∑
𝑗≤𝑖

(
𝟙𝜎(𝑖)=𝑙𝑜𝑜𝑝 − 𝟙𝛿(𝑗)=𝜁

)
.

First we will bound
∑
𝑗≤𝑖

𝟙𝛿(𝑗)=𝜁 . Define

𝐵−(𝑖) ∶= −
∑
𝑗≤𝑖

𝟙𝛿(𝑗)=𝜁 +
1
2
𝑓𝑏(𝑡).

Then

𝐸[Δ𝐵−(𝑖)|𝑖] = − 2𝑍
2𝑀 − 1

⋅
𝜁

2𝑀 − 3
+ 1

2𝑛
𝑓 ′
𝑏
(𝑡) + 𝑂

(
1
𝑛2
𝑓 ′′
𝑏
(𝑡)

)
≥ −

𝑓𝜁

𝑛(2𝑏 − 𝑎)
+ 1

2𝑛
𝑓 ′
𝑏
(𝑡) + 𝑂

(
1
𝑛2
𝑓 ′′
𝑏
(𝑡)

)
.
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474 DEEPAK ET AL.

We have used 2𝑍 ≤ 2𝑀 − 5 to get the second line. This is valid as 𝑌 > 0 up until time 𝑇 . Here, we see

that if 𝑌 = 1 we must have 𝑍1 ≥ 2, unless 𝐺 contains a copy of 𝐾4, which happens with probability

𝑜(1).
Note that by (15),

3(1 − 𝑡) ≤ 2𝑏 − 𝑎 ≤ 4(1 − 𝑡),

so 𝐵− will be a submartingale since

𝐶𝐵 >
4
3
𝐶𝜁 . (61)

Indeed, it follows from (25) and (26) that if 1 − 𝑡 > 𝑛−2∕5 log2∕5 𝑛 then

𝐸[Δ𝐵−(𝑖)|𝑖] ≥ −
𝐶𝜁 (1 − 𝑡)−1∕2 log 𝑛

𝑛(2𝑏 − 𝑎)
+
𝐶𝐵(1 − 𝑡)−3∕2 log 𝑛

4𝑛
+ 𝑂

(
(1 − 𝑡)−5∕2 log 𝑛

𝑛2

)

≥ −
𝐶𝜁 (1 − 𝑡)−3∕2 log 𝑛

3𝑛
+
𝐶𝐵(1 − 𝑡)−3∕2 log 𝑛

4𝑛
+ 𝑂

(
(1 − 𝑡)−5∕2 log 𝑛

𝑛2

)
≥ 0.

And if 1 − 𝑡 ≤ 𝑛−2∕5 log2∕5 𝑛 then

𝐸[Δ𝐵−(𝑖)|𝑖] ≥ −
𝐶𝜁𝑛

1∕5 log4∕5 𝑛
𝑛(2𝑏 − 𝑎)

+
𝐶𝐵𝑛

1∕5 log4∕5 𝑛
2𝑛(1 − 𝑡)

+ 𝑂

(
(1 − 𝑡)−2 log4∕5 𝑛

𝑛9∕5

)

≥ −
𝐶𝜁𝑛

1∕5 log4∕5 𝑛
3𝑛(1 − 𝑡)

+
𝐶𝐵𝑛

1∕5 log4∕5 𝑛
2𝑛(1 − 𝑡)

+ 𝑂

(
(1 − 𝑡)−2 log4∕5 𝑛

𝑛9∕5

)
.

≥ 0.

We will apply Lemma 5.5 to −𝐵−. Note that before 𝑇 we can put

𝑉 𝑎𝑟[Δ𝐵−(𝑖)|𝑖] = 𝑉 𝑎𝑟[𝟙𝛿(𝑖)=𝜁 |𝑖]≤ 𝐸[𝟙2𝛿(𝑖)=𝜁 ] ≤ 𝑝𝜁
≤ 𝑓𝜁

4𝑛(1 − 𝑡) − 𝑛𝑎 − 𝛼 − 𝑓𝑎 − 𝑓𝑏
≤ 𝑓𝜁

2𝑛(1 − 𝑡)

using (15) and 𝛼, 𝑓𝑎, 𝑓𝑏 = 𝑜(𝑛(1 − 𝑡)) for 𝑡 ≤ 𝑇 .

And therefore, referring to 𝑉 (𝑖) as in Lemma 5.5,

𝑉 (𝑖) ≤ ∑
0≤𝑘≤𝑖

𝑓𝜁

2𝑛(1 − 𝑡)
≤ 𝐶𝜁

⎧⎪⎨⎪⎩
2(1 − 𝑡)−

1
2 log 𝑛 ∶ 1 − 𝑡 > 𝑛−

2
5 log

2
5 𝑛.

𝑛
1
5 log

9
5 𝑛 ∶ otherwise.
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DEEPAK ET AL. 475

So for 𝑣 we will plug in

𝑣 = 𝐶𝑣𝐵 ⋅

⎧⎪⎨⎪⎩
(1 − 𝑡)−

1
2 log 𝑛 ∶ 1 − 𝑡 > 𝑛−

2
5 log

2
5 𝑛.

𝑛
1
5 log

9
5 𝑛 ∶ otherwise.

(62)

which is an upper bound on 𝑉 (𝑖) as long as

𝐶𝑣𝐵
≥ 2𝐶𝜁 . (63)

Note that

|Δ𝐵−| ≤ 1 +
𝑓 ′
𝑏
(𝑡)
2𝑛

+ 𝑂
(

1
𝑛2
𝑓 ′′
𝑏
(𝑡)

)
= 1 + 𝑜(1),

so by Lemma 5.5 the probability that −𝐵−(𝑖) > 1
2𝑓𝑏(𝑡) is at most

exp
⎧⎪⎨⎪⎩−

1
4𝑓

2
𝑏

(2 + 𝑜(1))
[
𝑣 + 1

2𝑓𝑏

]⎫⎪⎬⎪⎭ ≤

⎧⎪⎪⎨⎪⎪⎩
exp

{
−

1
4𝐶

2
𝐵
(1−𝑡)−1 log2 𝑛

(2+𝑜(1))
[
𝐶𝑣𝐵

(1−𝑡)−1∕2 log 𝑛+1
2𝐶𝐵(1−𝑡)

−1∕2 log 𝑛
]
}

1 − 𝑡 > 𝑛−
2
5 log

2
5 𝑛.

exp

{
−

1
4𝐶

2
𝐵
𝑛2∕5 log8∕5 𝑛 log2(1−𝑡)

(2+𝑜(1))
[
𝐶𝑣𝐵

𝑛1∕5 log9∕5 𝑛+1
2𝐶𝐵𝑛

1∕5 log4∕5 𝑛 log(1−𝑡)
]
}

1 − 𝑡 ≤ 𝑛−2
5 log

2
5 𝑛.

which is 𝑜( 1
𝑛
) since

1
4𝐶

2
𝐵

2[𝐶𝑣𝐵 + 1
2𝐶𝐵]

> 1. (64)

So w.h.p. for all 𝑖 ≤ 𝑇 , we have ∑
𝑗<𝑖

𝟙𝛿(𝑗)=𝜁 ≤ 𝑓𝑏(𝑡).

The sum
∑
𝑗<𝑖

𝟙𝜎(𝑗)=𝑙𝑜𝑜𝑝 presents less difficulty, since w.h.p. the configuration has at most log 𝑛 loops

total. So we can trivially say that ∑
𝑗<𝑖

𝟙𝜎(𝑗)=𝑙𝑜𝑜𝑝 ≤ 𝑓𝑏(𝑡)

and hence w.h.p. the stopping time 𝑇 is not triggered by variable 𝐵.

This completes the proof of Theorem 5.1.
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476 DEEPAK ET AL.

6 UPPER BOUND ON THE NUMBER OF COMPONENTS

In this section, we prove the following lemma that provides the upper bound for the proof of Theorem

1.1:

Lemma 6.1. W.h.p. the algorithm outputs a 2-matching with 𝑂(𝑛
1
5 log

9
5 𝑛) components.

Proof. The components of our 2-matching at any step 𝑖 consist of cycles and paths (including paths of

length 0). First we will bound the number of paths in the final 2-matching. Note that these final paths

have both endpoints in𝑍0 (or for paths of length 0 there is only one vertex that is in 𝑌0). These vertices

must either have been in𝑍1 and had a half-edge deleted to land in𝑍0; or been in 𝑌2 and had a half-edge

deleted to land in 𝑌1; or been in 𝑌 and had a loop revealed. In the first two cases, the endpoints were

in 𝜁 and had a half-edge deleted.

So to bound the number of these paths, we bound the sum∑
𝑗

𝟙𝛿(𝑗)=𝜁 + 𝟙𝜎(𝑗)=𝑙𝑜𝑜𝑝 = 𝑂(log 𝑛) +
∑
𝑗

𝟙𝛿(𝑗)=𝜁

w.h.p. Note that in light of Section 5.5, we have the bound∑
𝑗<𝑇

𝟙𝛿(𝑗)=𝜁 = 𝑂
(
𝑛

1
5 log

9
5 𝑛

)
.

Next we will bound the terms corresponding to steps after 𝑇 , but before 𝐴 = 0. By Theorem 5.1 we

have w.h.p.

𝐴(𝑇 ) = 𝑂
(
𝑛

1
5 log

9
5 𝑛

)
since

0 ≤ 𝛼(𝑇 ) = 𝑂 (
𝑛

1
5 log

9
5 𝑛

)
by (33), and

𝑛𝑎

(
𝑇

𝑛

)
, 𝑓𝑎

(
𝑇

𝑛

)
= 𝑂

(
𝑛1∕5 log9∕5 𝑛

)
. (65)

For (65) we use the bound on 𝑇 in Theorem 5.1 and the inequalities (15) and (24).

Now note that by (4), on each step 𝑗 such that 𝜎(𝑗) ∈ {𝑍,𝑚𝑢𝑙𝑡𝑖} and 𝛿(𝑗) = 𝜁 , the variable 𝐴

decreases by 2. (𝐴 can also decrease when a loop is found, but this this only happens with small

probability.) Also, the variable 𝐴 is nonincreasing. Therefore there can be at most 𝑂(𝑛
1
5 log

9
5 𝑛) such

steps 𝑗 until 𝐴 = 0.

Once we have 𝐴 = 0, the algorithm finds a maximum matching on the remaining random 2-regular

graph Γ. We point out that Γ is indeed distributed as a random 2-regular graph with the standard

configuration model since each remaining vertex lies in 𝑍 and thus has two remaining configuration

points whose edges have not yet been revealed. Let 𝜈𝑇 ≤ ∑
𝑗 𝟙𝛿(𝑗)=𝜁 be the number of paths in the 2-

matching at time 𝑇 . Then to bound the number of paths in the final 2-matching, we only have to add to

𝜈𝑇 a bound on the number of vertices in Γ that are unsaturated by the matching (i.e. the number of odd

cycles) in the remaining 2-regular graph Γ. Now, it is well-known that w.h.p. a random 2-regular graph

has at most 𝑂(log 𝑛) cycles total. (The calculations at the end of this section show how the argument
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DEEPAK ET AL. 477

for this goes.) But the sum
∑
𝑗 𝟙𝛿(𝑗)=𝜁 , and therefore the number of paths in the final 2-matching, is

w.h.p. 𝑂(𝑛
1
5 log

9
5 𝑛).

Now we bound the number of cycles in the final 2-matching. Note that at any time a single edge is

added to 𝑈 , the probability of closing a cycle is at most
1

2𝑀−1 . Therefore, the number of cycles created

for the whole process is stochastically dominated by the random variable

𝐶 ∶=
3𝑛∑
𝑗=1
𝑐𝑗

where the 𝑐𝑗 are independent Bernouilli random variables with

𝑐𝑗 =
⎧⎪⎨⎪⎩
1 ∶ with prob.

1
𝑗
.

0 ∶ with prob.
𝑗−1
𝑗
.

(66)

So if we define the martingale

𝐶(𝑖) ∶=
𝑖∑
𝑗=1

(
𝑐𝑗 −

1
𝑗

)

then we have 𝑉 𝑎𝑟[Δ𝐶(𝑖)] = 𝑖

(𝑖+1)2 , and note
∑3𝑛
𝑖=1

𝑖

(𝑖+1)2 = 𝑂(log(3𝑛)). Now, applying Lemma 5.5 to

𝐶(𝑖) shows that w.h.p. it is always at most 𝑂(log
3
4 𝑛), and since 𝐸[𝐶] = 𝑂(log 𝑛), we have that 𝐶 =

𝑂(log 𝑛) w.h.p. (While Lemma 5.5 may not be the simplest tool, it is to hand and we can use it). ■

7 LOWER BOUND ON THE NUMBER OF COMPONENTS

In this section, we will prove that near the end of the process, there is a nonzero probability that 𝜁

becomes large and stays large for a significant amount of time. In this case, the algorithm will likely

delete an edge adjacent to a 𝜁 vertex. Recall that the deletion of an edge adjacent to a 𝜁 vertex results

in an additional component (see Section 4.5). (A loop from 𝑌 has this effect, but the probability of

this is small.) In particular, we will prove the following lemma that provides the lower bound and thus

completes the proof of Theorem 1.1:

Lemma 7.1. W.h.p. the algorithm outputs a 2-matching with Ω(𝑛
1
5 log−16∕5 𝑛) components.

Proof. We show that 𝜁 stochastically dominates a suitably defined random walk and then apply the

central limit theorem for i.i.d. sequences (see for example [8]).

Lemma 7.2. Let𝑋1, 𝑋2,… be independent and identically distributed random variables with𝐸[𝑋𝑖] =
𝜇 and 𝑉 𝑎𝑟[𝑋𝑖] = 𝜎2 ∈ (0,∞). If 𝑆𝑛 = 𝑋1 +⋯ +𝑋𝑛, then

𝑆𝑛 − 𝑛𝜇
𝜎
√
𝑛

𝑑
→  (0, 1),

the standard normal distribution.
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478 DEEPAK ET AL.

Let

𝑤(𝑖) =
3𝑎(𝑖∕𝑛)

2𝑏(𝑖∕𝑛) − 𝑎(𝑖∕𝑛)
.

In this section, we will consider steps from

𝑖0 = 𝑛 − 𝑛3∕5 to 𝑖𝑒𝑛𝑑 = 𝑛 − 𝑛3∕5 + 𝑛3∕5 log−1 𝑛 ≤ 𝑛 − 1
2
𝑛3∕5.

From Theorem 5.1, w.h.p., 𝑇 occurs after this time frame. Hence we have dynamic concentration on

our variables. In this range, 1 − 𝑡 = Θ(𝑛−2∕5), so 𝑓𝑎, 𝑓𝜁 = 𝑂(𝑛1∕5 log4∕5 𝑛) and 𝑓𝑏, 𝛼 = 𝑂(𝑛1∕5 log9∕5 𝑛)
and by (15) and (10), 𝑎(𝑡) = Θ(𝑛−3∕5), 𝑏(𝑡) = Θ(𝑛−2∕5). So using Lemma 5.2 we can say that in this

range,

𝑝𝑦(𝑖) =
3(𝐴(𝑖) − 𝜁 (𝑖))
2𝐵(𝑖) − 𝐴(𝑖)

=
3𝑎(𝑖∕𝑛) + 𝑂(𝑛−4∕5 log9∕5 𝑛)

2𝑏(𝑖∕𝑛) − 𝑎(𝑖∕𝑛) + 𝑂(𝑛−4∕5 log9∕5 𝑛)

= 𝑤(𝑖) − 𝑂(𝑛−2∕5 log9∕5 𝑛).

𝑝𝜁 (𝑖) =
𝜁 (𝑖)

2𝐵(𝑖) − 𝐴(𝑖)
= 𝑂(𝑛−2∕5 log9∕5 𝑛).

𝑝𝑧(𝑖) = 1 − 𝑝𝑦(𝑖) − 𝑝𝜁 (𝑖).

Note that in this range we also have𝑤(𝑖) = Θ(𝑛−1∕5). Our random walk will have independent incre-

ments given by

𝑋(𝑖) =

⎧⎪⎪⎨⎪⎪⎩

1 with prob. 𝑤(𝑖) − 𝐿𝑛−2∕5 log9∕5 𝑛.
0 with prob. 1 − 2𝑤(𝑖) − 𝐿𝑛−2∕5 log9∕5 𝑛.
−1 with prob. 𝑤(𝑖) − 𝐿𝑛−2∕5 log9∕5 𝑛.
−2 with prob. 3𝐿𝑛−2∕5 log9∕5 𝑛.

(67)

where 𝐿 is a positive constant large enough that for all 𝑖0 ≤ 𝑖 ≤ 𝑖𝑒𝑛𝑑
𝑝𝑧(𝑖)𝑝𝑦(𝑖) ≥ 𝑤(𝑖) − 𝐿𝑛−2∕5 log9∕5 𝑛, 𝑝𝑧(𝑖)𝑝𝑦(𝑖) + 𝑝𝑧(𝑖)2 ≥ 1 −𝑤(𝑖) − 2𝐿𝑛−2∕5 log9∕5 𝑛

and

𝑝𝑧(𝑖)𝑝𝑦(𝑖) + 𝑝𝑧(𝑖)2 + 𝑝𝑦(𝑖) ≥ 1 − 3𝐿𝑛−2∕5 log9∕5 𝑛.

Note that this is achievable since in this range 𝑝𝑧(𝑖) = 1 − 𝑂(𝑛−1∕5), 𝑝𝑦(𝑖) = Ω(𝑛−1∕5) and 𝑝𝜁 (𝑖) =
𝑂(𝑛−2∕5 log9∕5 𝑛).

In this case, Δ𝜁 (𝑖) stochastically dominates𝑋(𝑖). This follows from (16) in the case when 𝜁 > 0 and

trivially when 𝜁 = 0 in the sense that when 𝜁 = 0, Δ𝜁 ≥ 1 with probability ≈ 𝑝𝑧 =1 − 𝑜(1). Here we

need to use the fact that𝑀 = Θ(𝑛3∕5) in our range.

For any 𝑖0 < 𝑖 ≤ 𝑖𝑒𝑛𝑑 we have

𝜇 = 𝐸[𝑋(𝑖)] = −6𝐿𝑛−2∕5 log9∕5 𝑛
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DEEPAK ET AL. 479

and

𝜎2 = 𝑉 𝑎𝑟[𝑋(𝑖)] = 2𝑤(𝑖) − 10𝐿𝑛−2∕5 log9∕5 𝑛 − 36𝐿2𝑛−4∕5 log18∕5 𝑛.

We will split the time range 𝑖0 to 𝑖𝑒𝑛𝑑 into 𝑑 = log 𝑛many intervals of length ≈𝑛3∕5 log−2 𝑛. Recall that

𝑖0 = 𝑛 − 𝑛3∕5 and for all 1 ≤ 𝓁 ≤ 𝑑 define

𝑖𝓁 = 𝑖𝓁−1 + 𝑛3∕5 log−2 𝑛.

For 0 ≤ 𝓁 < 𝑑, we define a random walk starting at 𝑖𝓁 + 1 and ending at 𝑖𝓁+1 and let

𝑆𝓁 =
𝑘∑

𝑖=𝑖𝓁+1
𝑋(𝑖).

We note here that these 𝑑 random walks are independent, identically distributed copies of the same

random walk. So for 0 ≤ 𝓁 < 𝑑 we have

𝐸
[
𝑆𝓁

]
= 𝐸

[
𝑖𝓁+1∑
𝑖=𝑖𝓁+1

𝑋(𝑖)

]
= −6𝐿𝑛1∕5 log−1∕5 𝑛.

and that

𝜎 ⋅
√
𝑖𝓁+1 − 𝑖𝓁 = Θ

(
𝑛1∕5 log−1 𝑛

)
because 𝜎2 = Θ(𝑤(𝑖)) = Θ(𝑛−1∕5) and 𝑖𝓁+1 − 𝑖𝓁 = 𝑛3∕5 log−2 𝑛. Note that there exists an absolute con-

stant 𝑐 such that 𝜎 ⋅
√
𝑖𝓁+1 − 𝑖𝓁 ≤ 𝑐𝑛1∕5 log−1 𝑛 for all 0 ≤ 𝓁 < 𝑑.

Hence applying Lemma 7.2 to
∑𝑖𝓁+1
𝑖=𝑖𝓁+1

𝑋(𝑖), we see that

(∑𝑖𝓁+1
𝑖=𝑖𝓁+1

𝑋(𝑖)
)
+ 6𝐿𝑛1∕5 log−1∕5 𝑛

𝜎 ⋅
√
𝑖𝓁+1 − 𝑖𝓁

𝑑
→  (0, 1).

So there exists some constant 𝑝0 > 0 such that for each 0 ≤ 𝓁 < 𝑑 (and 𝑛 sufficiently large),

ℙ
⎡⎢⎢⎢⎣
(∑𝑖𝓁+1

𝑖=𝑖𝓁+1
𝑋(𝑖)

)
+ 6𝐿𝑛1∕5 log−1∕5 𝑛

𝜎 ⋅
√
𝑖𝓁+1 − 𝑖𝓁

≥ 6𝐿 + 1
𝑐

⎤⎥⎥⎥⎦ ≥ 𝑝0.
So we get that

ℙ
[
∀ 0 ≤ 𝓁 <

1
2
𝑑, 𝜁 (𝑖𝓁+1) ≤ 𝑛1∕5 log−1∕5 𝑛

] ≤ ℙ

[
∀ 0 ≤ 𝓁 <

1
2
𝑑,

𝑖𝓁+1∑
𝑖=𝑖𝓁+1

𝑋(𝑖) ≤ 𝑛1∕5 log−1∕5 𝑛
]

≤ (
1 − 𝑝0

) 1
2 log 𝑛

= 𝑜(1).
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So we know that w.h.p. there is a point 𝑖𝑏 where 𝜁 (𝑖𝑏) > 𝑛1∕5 log−1∕5 𝑛 and 𝑏 ≤ 1
2𝑑. We would like to

show that after 𝑛3∕5 log−3 𝑛 steps, 𝜁 has not decreased below
1
2𝑛

1∕5 log−1∕5 𝑛. To prove this, we consider

the sequence

𝑆𝑏(𝑘) = 𝑛1∕5 log−1∕5 𝑛 +
𝑘∑
𝑖=𝑖𝑏

(𝑋(𝑖) − 𝐸[𝑋(𝑖)]) .

which is a martingale since 𝐸[𝑋(𝑖)|𝑖−1] = 𝐸[𝑋(𝑖)]. We use the language of martingales here only

because Lemma 5.5 is already at hand. Let 𝑖𝑐 = 𝑖𝑏 + 𝑛3∕5 log−3 𝑛 < 𝑖𝑒𝑛𝑑 . Then

𝑖𝑐∑
𝑖=𝑖𝑏+1

𝑉 𝑎𝑟[𝑋(𝑖)] = Θ
(
𝑛2∕5 log−3 𝑛

)
.

By applying Lemma 5.5 to the negative of this martingale, we have that after 𝑛3∕5 log−3 𝑛 steps,

ℙ
[
∃𝑖 ∶ 𝑖𝑏 ≤ 𝑖 ≤ 𝑖𝑐 , 𝜁 (𝑖) ≤ 1

2
𝑛1∕5 log−1∕5 𝑛

] ≤ ℙ
[
∃𝑖 ≤ 𝑖𝑐 ∶ 𝑆𝑏(𝑖) ≤ 1

2
𝑛1∕5 log−1∕5 𝑛

]
≤ exp

(
−Ω

(
𝑛2∕5 log−2∕5 𝑛

𝑛2∕5 log−3 𝑛 + 𝑛1∕5 log−1∕5 𝑛

))
≤ 𝑜(1).

So we know that whp, 𝜁 (𝑖) ≥ 1
2𝑛

1∕5 log−1∕5 𝑛 for 𝑖𝑏 ≤ 𝑖 ≤ 𝑖𝑐 . In this time, the algorithm is likely to

delete an edge adjacent to a 𝜁 vertex. Formally, we have that there exists some 𝑞0 such that for all

𝑖𝑏 ≤ 𝑖 ≤ 𝑖𝑐 ,
𝑝𝑧(𝑖)𝑝𝜁 (𝑖) ≥ 𝑞0 = (1 − 𝑜(1)) ⋅ 𝜁

2𝑀
= Ω

(
𝑛−2∕5 log−1∕5 𝑛

)
so that if 𝑊 is a random variable representing the number of 𝑖 between 𝑖𝑏 and 𝑖𝑐 when 𝛿(𝑖) = 𝜁 , then

𝑊 stochastically dominates Bin(𝑛3∕5 log−3 𝑛, 𝑞0).

𝐸[Bin(𝑛3∕5 log−3 𝑛, 𝑞0)] = Ω
(
𝑛1∕5 log−16∕5 𝑛

)
,

so an application of the Chernoff bound tells us that, w.h.p.,𝑊 = Ω(𝑛1∕5 log−16∕5 𝑛). ■
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