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Abstract

Purpose—Education is an established correlate of cognitive status in older adulthood, but 

whether expanding educational opportunities would improve cognitive functioning remains 

unclear given limitations of prior studies for causal inference. Therefore, we conducted 

instrumental variable (IV) analyses of the association between education and dementia risk, using 

for the first time in this area, genetic variants as instruments as well as state-level school policies.

Methods—IV analyses in the Health and Retirement Study cohort (1998–2010) used two sets of 

instruments: 1) a genetic risk score constructed from three single nucleotide polymorphisms 

(SNPs) (n=8,054); and 2) compulsory schooling laws (CSLs) and state school characteristics (term 

length, student teacher ratios, and expenditures) (n=13,167).

Results—Employing the genetic risk score as an IV, there was a 1.1% reduction in dementia risk 

per year of schooling (95% CI: −2.4, 0.02). Leveraging compulsory schooling laws and state 

school characteristics as IVs, there was a substantially larger protective effect (−9.5%; 95% CI: 

−14.8, −4.2). Analyses evaluating the plausibility of the IV assumptions indicated estimates 

derived from analyses relying on CSLs provide the best estimates of the causal effect of education.
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Conclusion—IV analyses suggest education is protective against risk of dementia in older 

adulthood.

Keywords

causal inference; dementia; education; instrumental variables; unmeasured confounding

The correlation between educational attainment and later life cognitive function and 

dementia is well documented (1–4). Using a large population based cohort studies, Brayne et 

al. found a dose effect of education such that more education was associated with reduced 

dementia risk independently of severity of pathology (5). A recent meta-analysis of 19 

observational studies reported a relative risk of 1.33 (95% CI: 1.15, 1.54) comparing all 

cause dementia among those with low or medium levels of education compared to those 

with a high level of education (6). Despite the numerous replications, all prior studies share 

an essential weakness, in that inferences rest on the strong assumption that there are no 

unmeasured common causes of educational attainment and dementia. Potential confounders 

include childhood health status, cognitive abilities, and socioeconomic circumstances, all of 

which influence educational attainment and are likely risk factors for dementia (1, 7).

The current study attempts to mitigate the confounding biases present in existing 

observational studies of education and dementia using instrumental variables (IV). IVs 

provide an opportunity for causal inference even in the presence of unmeasured 

confounders. Genetic variants have proven to be powerful instruments for addressing the 

causal effects of putative exposures (e.g., in so-called Mendelian randomization studies (8, 

9)). Recent research identified 3 single nucleotide polymorphisms (SNPs) that together 

predict education, thus allowing for the first time the possibility of using genetic variants as 

instruments for the effects of education. In addition, the current study uses a second set of 

instruments based on state-level schooling policies. School policies have previously been 

used as instruments to estimate the effects of education on health, with the most promising 

results related to cognitive outcomes (10–13). Recognizing that IVs depend on strong 

assumptions, we used two different sets of instruments to investigate this research question.

METHODS

The Health and Retirement Study (HRS) is a national, longitudinal study of individuals 50 

years of age or older and their spouses. The first survey wave was collected in 1992, with 

biennial interviews (or proxy interviews for decedent participants) available through 2010. 

New cohorts were added in 1993, 1998, 2004, and 2010. We utilized follow-up data from 

1998 – 2010 and includes individuals from all enrollment cohorts except 2010. Survey 

response rates ranged from 70 to 82%, and retention rates through 2008 ranged from 86% to 

91%. HRS was approved by the University of Michigan Health Sciences Human Subjects 

Committee, and the Harvard School of Public Health Human Subjects Committee 

determined the current analyses were exempt.
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Sample

The two IV analyses based on school policies and genetic information used different 

analytic samples. Three data sources were used for the analyses involving school policies: 

HRS; historical federal reports on compulsory schooling laws (CSLs) and school 

characteristics, and state characteristics; and the 1980 census micrososample (n=2,536,876) 

(14). The census sample was used to estimate effects of CSLs and school characteristics on 

education. We restricted the HRS and census sample to match on race/ethnicity, state of 

birth, nativity, birth year, and education.

Individual health outcome data came from HRS. From an initial total sample of 30,670 

members in HRS, we excluded individuals younger than 50 at the beginning of follow-up 

(defined as 2004 for the 2004 enrollment cohort or 1998 for all others), were foreign-born, 

with unknown place of birth, with more than 12 years of education, or missing data on 

education, covariates, or dementia risk. Dementia outcomes were not available for 

Hispanics, so they were excluded. Participants with greater than 12 years of schooling were 

excluded because CSLs and school characteristics did not influence years of schooling 

beyond primary and secondary school in our analyses. The final analytic sample for the 

school policy IV study included 10,955 participants.

Similarly to the previous sample, for the analyses using genetic data, we excluded 

participants who were younger than 50, were foreign-born, or had an unknown place of birth 

in our analyses using genetic data. Of the respondents who met the above exclusion criteria, 

9,911 were genotyped. The analytic sample included individuals with 12+ years of 

education because the single nucleotide polymorphisms (SNPs) were found to predict 

college completion as well as average years of education. However, racial and ethnic 

minorities were excluded from these analyses because the genome-wide association study 

(GWAS) identifying these SNPs included only Caucasians (15) and the education genetic 

risk score was not related to education among Non-Whites in HRS. The final analytic 

sample for the genetic IV study included 7,981 respondents.

Measures

Exposures—The main exposure of interest was educational attainment operationalized as 

self-reported years of schooling.

Outcomes—Immediate and delayed recall of a 10-item word list, the Telephone Interview 

for Cognitive Status (TICS), and the Informant Questionnaire for Cognitive Decline 

(IQCODE) were used to construct an overall dementia probability score. The dementia 

probability score achieved a c-statistic of 94.3% in predicting DSM-IV diagnosed dementia 

(16) Scores can range from 0 (no chance this individual would meet diagnostic criteria) to 1 

(individual certain to meet diagnostic criteria). Our current knowledge of dementia is that it 

is an insidious disease that can develop over decades (17). The moment of diagnosis is 

somewhat arbitrary and does not necessarily mark the transition from non-disease to disease 

state. For this reason, we consider the continuous score to more closely correspond with the 

underlying disease. To reduce random measurement error in dementia score, we averaged 

available repeated measurements of dementia probability from 1998–2010.

Nguyen et al. Page 3

Ann Epidemiol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Compulsory schooling laws and school characteristics—HRS respondents were 

linked to school policy characteristic that would have affected their schooling, based on the 

year and state of the respondent’s birth. Compulsory schooling laws (CSLs) from 1906 to 

1978 were compiled by Lleras-Muney (18), Angrist and Acemoglu (19), and Glymour (12) 

using federal education reports usually available biennially. Data were collected on 

mandatory age at school enrollment, youngest age when it was legal to drop out of school, 

and youngest age when individuals could receive a work permit. For years without data, we 

carried forward the most recently reported value of the state policy variable. For each 

respondent, years of compulsory schooling were calculated by taking the difference between 

enrollment age when respondents were 6 and minimum drop-out age (CSL) or minimum 

work permit age (CSL-w) when the respondents were 14. Ranges of CSL and CSL-w were 

6–12 and 0–10 years, respectively with 0 indicating the state did not have a law specifying 

work permit age.

State average school term length (1905–1957), student-teacher ratios (1907–1955), and per-

pupil expenditures (1907–1943) were compiled by Glymour and Manly (personal 

communication, November 2, 2012) from biennial state reports. For each respondent, we 

calculated the average term length, student-teacher ratio, and per pupil expenditure when 

that respondent was 6–14 years of age in the state where he/she was born.

State characteristics—Percentage black, urban, and foreign born when the respondents 

were 6 and manufacturing jobs per capita and manufacturing wages per manufacturing job 

when the respondents were 14 were included as covariates in IV models using compulsory 

schooling laws and school characteristics as instruments. The state characteristics were 

compiled by Glymour (12) and Lleras-Muney (20) using Statistical Abstracts of the United 

States and federal manufacturing employment data. School and state characteristics were 

linearly interpolated for the years between reports.

Genotyping—DNA samples were collected in 2006 and 2008 from HRS respondents. 

Details regarding the quality control procedures are available elsewhere (21).

Genetic risk score—Three independent single nucleotide polymorphisms (SNPs) 

(rs11584700, risk allele: A, rs4851266, T, rs9320913, A) have been previously identified as 

genome-wide significant (p<5 X 10−8) predictors of educational attainment in a large 

genome-wide association study (GWAS) meta-analysis (15). A genetic risk score for years 

of schooling was calculated for each individual by summing the product of the number of 

risk alleles at each locus (0–2) with its meta-analyzed beta estimate (bolded) from Rietveld 

et al. (15) (Eq 1).

(Equation 

1)

Statistical Analysis

To yield valid results, all instruments must meet three main assumptions. First, the 

instruments must predict the exposure. Second, the instruments must affect the outcome only 
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through the exposure. Lastly, the instruments must not share unmeasured common causes 

with the outcome.

We completed two sets of IV analyses, one using CSL and school characteristics and the 

other using education genetic risk score as the instrument. For both sets of instruments, we 

used a separate-sample approach to implement IV analyses. In a separate sample approach, 

external data are used for beta estimates for the effect of the IVs on years of schooling, 

eliminating “weak instruments bias,” which can bias IV estimates toward conventional 

estimates (22, 23). To understand why, we can imagine using set of instruments that has no 

causal effect on our exposure of interest. However, when combining a large number of 

putative instruments, they will slightly predict the exposure of interest. The predicted value 

of the exposure will be correlated with unmeasured causes of the exposure within that 

sample, including confounders that influence both the exposure and outcome. When the 

predicted value is used in the second stage, it will be related to the outcome because it is 

correlated with the confounders. This results in an estimate that is biased towards the 

conventional covariate estimate. This phenomenon does not occur when using separate 

samples for the two stages because the instruments that by chance best predicts the exposure 

in one sample is unrelated to the confounders of the exposure-outcome association in the 

second sample (23).

Statistical analysis using CSLs and school characteristics—The first stage was 

implemented using the 1980 census 5% sample (14), which is nearly 200 times larger than 

HRS. In the first stage, we fit linear regression models using compulsory schooling laws, 

school characteristics, and covariates to predict educational attainment (Models 1). Beta 

coefficients from the first stage were used to obtain predicted years of schooling, which was 

then employed as an independent predictor of dementia in HRS (Model 2a–b).

(1)

(2a)

In these equations, C is a vector of covariates included in both equations: sex, self-assessed 

race/ethnicity (White, Black, Other), birth year indicators, state of birth indicators, and the 

state characteristics mentioned above.

Statistical analysis using education genetic risk score—We implemented the 

separate sample IV analyses using the education genetic risk score by applying the meta-

analyzed beta estimates for the association between the SNPs and years of schooling 

reported from Rietveld et al. (15) as described above (23). We then regressed dementia 

probability and logit transformed dementia scores on the education genetic risk score, 

adjusting for sex, age at first outcome assessment, age2, early life socioeconomic status 

(SES), and eigenvectors to control for population substructure. Early life SES combined into 

a single scale father’s occupational status, birth in southern US, rural residence during 

childhood, and mother’s and father’s educational attainment, following previous research in 
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HRS (24). We formally tested whether IV estimates were significantly different from the 

conventional estimate where covariates are added to the model to control for confounding 

with the Wu-Hausman endogeneity test (25). In this paper, we refer to conventional 

estimates as covariate adjusted (CA) estimates.

As a sensitivity analysis, we logit transformed the dementia scores because the 

untransformed dementia probability scores clustered at the low end and were not normally 

distributed. However, the results were qualitatively similar to the untransformed scores. The 

results are presented in supplemental materials (eTable 1). Analyses were performed using 

Stata 12.

RESULTS

Table 1 shows the demographics of the analytic sample used for the two IV analyses. Using 

the 1980 census 5% sample in the first stage, compulsory schooling laws (CSLs), school to 

work laws (CSL-w), and school characteristics were significantly associated with years of 

schooling. F statistics, an indication of the strength of the instruments for the excluded 

instrument, were well above 10 (Table 2). The linear regression coefficients for the effects 

of CSLs and school characteristics on years of schooling between the census and HRS 

samples were similar, demonstrating that comparable associations existed in both samples 

but using the census afforded much greater precision in the first-stage estimation (Table 3).

Results Using CSLs and school characteristics—IV estimates indicated each 

additional year of schooling predicted lower dementia probability (β = 9.5 percentage points; 

95% CI: −14.8, −4.2; P < 0.001). Similarly, results from CA estimates indicated a protective 

effect of years of schooling on dementia. The probability of dementia decreased by 2.1 

percentage points (95% CI: −2.3, −1.9; P < 0.001) for each year increase in schooling (first 

row of Table 4). Wu-Hausman endogeneity tests showed the IV estimate was significantly 

different than the CA estimates for the effect of years of schooling on dementia probability 

(Table 4).

Results Using Education Genetic Risk Score—Covariate adjustment estimates 

revealed years of schooling was inversely related to dementia. In the IV analysis, dementia 

probability decreased by −1.1 percentage points for each year of schooling (95% CI: −2.4, 

0.02; P = 0.11). Wu-Hausman endogeneity tests showed the IV estimate was not different 

than the CA estimate (Table 4).

Sensitivity Analyses

For both sets of instruments, sensitivity analyses were conducted using 2010 dementia 

scores rather than average 1998–2010 scores and yielded qualitatively similar (results not 

shown). In addition, we performed additional analyses to examine the IV assumption that 

the instruments only influence dementia via education, also known as the exclusion 

restriction (See eFigure 1, eTable 2–3) (26).
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DISCUSSION

The IV estimates indicate education reduces dementia probability. These results are 

consistent with previous IV literature reporting a protective effect of education on cognitive 

function (10–12). Education may be an indicator of cognitive reserve, with higher 

educational attainment indicating larger reserve to delay the onset of dementia (27, 28).

In the IV analyses, we used state of birth and year of birth to classify the compulsory 

schooling required for each participant. There may be misclassification of the CSLs and 

school characteristics for participants in which the state they were born is different from the 

state where they received their schooling. Ninety-one percent of children 5–12 years of age 

in the 1940 Census IPUMS data lived in the stated they were born in (29), suggesting moves 

out of state during school years may be limited.

This study attempts to address a major threat to validity in observational studies of education 

and dementia. Compared to the 19 observational studies reported in the Caamano-Isorna et 

al.’s meta-analysis (6), this analysis is the only study that is valid even if there are 

unmeasured confounders of education and dementia. This strength comes at the expense of a 

different set of assumptions. We assume the IV effects are fully mediated by education, i.e. 

no pathway between instruments and dementia that does not involve education. A pathway 

that we worry about is through intelligence or cognitive function. This is not plausible for 

CSLs or state school characteristics, which are identified from state and year of birth, thus 

avoiding correlations with any individual level variables. However, it may be that the 

education genetic risk score influences cognitive function (not through education) and goes 

on to influence dementia risk. We found that the GRS predicted dementia (Table 4) as 

strongly as it predicted education (Table 3) (see Online Supplemental Materials for analyses 

examining IV assumptions). To our knowledge, this paper represents for the first time a 

genetic risk score has been used as an instrument to investigate the relationship between 

education and health. One contribution of this paper is to clearly present the challenges of 

using genetic data for social science research. However, looking at the results and the 

analyses, we consider CSLs more plausible IVs and therefore prefer the estimates given by 

CSLs and school characteristics.

IV estimates using state policies are larger than estimates based on the education genetic risk 

score. There are a few potential reasons for this difference. It may that the IV estimates 

apply to different populations since we used different subsamples. IV estimates utilizing 

compulsory schooling laws and state characteristics are generalizable to the subgroup of 

individuals who receive more years of schooling because of their state’s CSL. IV estimates 

utilizing the SNPs apply to people whose behavior is influenced by the SNPs. Of note, 

alternative interpretations of IV estimates with different assumptions are possible (30, 31). 

Also while a 1% and 9% point estimates may seem dissimilar, both estimates have 95% 

confidence intervals that are just 2% apart. Another explanation may be that education 

genetic risk score is not a valid IV, specifically violating assumption 2.

For the IV analyses using CSLs, we restricted the sample to those with 12 or fewer years of 

education because these laws did not refer to college attendance and did not influence years 
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of schooling beyond primary and secondary school. Education beyond 12 years may further 

protect against dementia. For the IV analyses using the education genetic risk score, we did 

not need to make this exclusion since the instrument predicted education beyond 12 years.

IV analyses are a promising approach to identify determinants of dementia when 

hypothesized risk factors are potentially confounded. However, the validity of IV models 

rests on strong assumptions, so presentation of results alongside sensitivity analyses and 

clarifying assumptions of the assessments is critical. For many substantive important 

research questions, RCTs are not feasible. In such situations, triangulation of evidence from 

multiple sources and study designs, each relying on different assumptions, is most 

compelling. This paper represents such an effort in triangulation.

In summary, our findings support the hypothesis that education reduces the risk of dementia 

in older adults, and increases in educational attainment may lead to lower risk of dementia in 

later life. This would support potential preventive interventions based on educational 

activities and also predicts that global increases in average educational attainment will lead 

to global reductions in dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Demographic Characteristics of Eligible HRS Sample Members

CSLs & school characteristics Genetic risk score sample

n (%) n (%)

n 13,167 100.0 8,054 100.0

Male 5,654 42.9 3,556 44.2

Birth year

 <1914 248 1.9 53 0.7

 1914–1921 2,524 19.2 509 6.3

 1922–1930 3,137 23.8 1,692 21.0

 1931–1941 5,545 42.1 3,360 41.7

 1942–1947 1,505 11.4 1,365 17.0

 1948–1953 208 1.6 1,075 13.4

Years of schooling

 <6 536 4.1 42 0.5

 6–8 1,860 14.1 319 4.0

 9–11 3,315 25.2 865 10.7

 12 7,456 56.6 2,924 36.3

 >12 3,904 48.5

Non-Hispanic White 10,460 79.4 8,054 100.0

Non-Hispanic Black 2,508 19.1

Other 198 1.5
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