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Abstract 22 

Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial 23 

region and an offshore region. The fluvial region is defined by two geomorphic moving 24 

boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the 25 

non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The 26 

trajectories of these boundaries in time and space define the evolution of the shape of the 27 

sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, 28 

of changes in relative sea level and the identification of stratigraphic sequences. In order to better 29 

understand the relative role of sea-level variations, sediment supply, and basin geometry on the 30 

evolution of the ABT and SH, we develop a forward stratigraphic model that accounts for 31 

curvature changes of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., 32 

internal boundaries that are not known a priori and their location must be calculated as part of the 33 

solution to the overall problem). This forward model extends a numerical technique from heat 34 

transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to 35 

account for sea-level variations, including eustatic sea-level cycles.  In general, model results 36 

demonstrate the importance of the dynamics of the fluvial surface on the system response under 37 

a large range of input parameter values. Specifically, model results suggest that time lags in the 38 

ABT response during sea-level cycles can result in geologically long-lived river incision in the 39 

upper and mid portions of the fluvial surface during sea-level rise. These results suggest that the 40 

relationship between the coastal onlap configuration of strata and relative changes in sea level is 41 

complex, and therefore not necessarily a good indicator of contemporaneous sea-level changes.  42 

 43 



Keywords: Enthalpy method, Fluvial deltas, sea-level cycles, Alluvial-basement transition, 44 

Shoreline, river incision 45 

1. Introduction 46 

Fluvial deltas are composites of several basic environments, including a depositional fluvial 47 

region and a subaqueous offshore region, that generally resemble a triangular prism 48 

superimposed upon a relatively planar basement profile (Figure 1a; Chavarrías et al., 2018; 49 

Lorenzo-Trueba et al., 2009; Paola, 2000; Posamentier et al., 1992; Swenson et al., 2005). This 50 

triangular sedimentary prism presents three geomorphic boundaries or vertices: the alluvial-51 

bedrock transition (ABT), which separates the bedrock (or basement) from the depositional 52 

fluvial region, the shoreline (SH), which separates the fluvial region from the subaqueous 53 

depositional region, and the delta toe where the subaqueous sediment wedge intersects with the 54 

basement. Changes in the length of the depositional fluvial domain occur via transgression (i.e., 55 

SH landwards migration), regression (i.e., SH seawards migration), coastal onlap (i.e., ABT 56 

landwards migration), and coastal offlap (i.e., ABT seawards migration) (see Figure 1). These 57 

changes are in general a function of the sediment supply to the sedimentary prism, the efficacy of 58 

the sediment transport and deposition along the fluvial surface, and relative sea-level variations 59 

(i.e., the combination of eustatic sea level changes and subsidence). For instance, if sediment 60 

supply is high relative to both the length of the fluvial surface and the accommodation created by 61 

sea-level rise, the results is SH regression and coastal onlap, which causes an overall lengthening 62 

of the sedimentary prism, as well as an increase in elevation (i.e., river aggradation) of the fluvial 63 

surface (Figure 1b). A combination of relative sea-level fall with low sediment supply, however, 64 

typically results in regression, coastal offlap, and a decrease in elevation (i.e., river degradation) 65 

of the fluvial surface (Figure 1c). Additionally, Muto and Steel (2002) found that a low sediment 66 



supply relative to the length of the fluvial surface and the rate of relative sea-level rise can lead 67 

to a break in the triangular geometry of the sedimentary prism as the system transgresses (Figure 68 

1d).  69 

 70 

Cycles of SH transgression/regression and coastal onlap/offlap in the sedimentary record (Figure 71 

1) can potentially allow for reconstruction of a basin's history of sediment supply and paleo–sea 72 

level (Henriksen et al., 2009; Törnqvist et al., 2006). To tackle this inverse problem, the 73 

migration of the internal boundaries that describe the evolution of the system (e.g., ABT, SH) 74 

have to be computed as a part of the solution to the overall geological problem (Lorenzo-Trueba 75 

et al., 2013, 2009; Lorenzo-Trueba and Voller, 2010; Marr et al., 2000; Swenson et al., 2000). 76 

Analogous to the migration of the ice/water front in a one phase Stefan melting problem (Crank, 77 

1984), Swenson et al. (2000) applied this framework to the migration of the SH in sedimentary 78 

basins. In particular, these authors used an analogy between heat and sediment diffusive 79 

transport to describe the movement of the SH under varying conditions of sediment supply and 80 

relative sea level. Follow-up work by Voller et al. (2004) found that in the particular case of 81 

constant sediment supply and a fixed sea level, the problem presented by Swenson et al. (2000) 82 

allows for a closed-form analytical solution. Based on Voller et al. (2004), Capart et al. (2007), 83 

and Lai and Capart (2007) developed analytical solutions in which the ABT and the SH were 84 

treated as independent moving boundaries. Lorenzo-Trueba et al. (2009) expanded on this work 85 

by developing an analytical solution able to track both the ABT and the SH under conditions of 86 

constant sediment supply and fixed sea-level. Lorenzo-Trueba et al. (2009) also validated this 87 

solution against flume experiments under a range of system parameters.  In addition to studying 88 

the kinematics of ocean shoreline deltas, similar models and solution methodologies along the 89 



lines of those noted above, have also been applied in studies of lake deltas and morphology, e.g., 90 

(Capart et al., 2010).    91 

 92 

Although simplified solutions can increase the clarity and insights the model facilitates, moving 93 

boundary problems only have analytical solutions in a limited range of scenarios. In order to 94 

study more general cases, different numerical methods have been developed for the dual ABT 95 

and SH moving boundary problem (Lorenzo-Trueba and Voller, 2010; Parker et al., 2008; Voller 96 

et al., 2006). Parker et al. (2008) developed a deforming grid method, based on a Landau front-97 

fixing approach, able to track both the ABT and the SH under constant sea-level rise in a one-98 

dimensional setting. A drawback of the deforming grid method, however, is that the extension to 99 

two-dimensions is far from straightforward. Voller et al. (2006) developed a solution based on 100 

the enthalpy method, able to operate on a fixed grid under constant sea level, and focused on the 101 

dynamics of the SH. Lorenzo-Trueba and Voller (2010) extended this numerical solution to 102 

account for the migration of both the ABT and SH. Despite these recent developments, however, 103 

to date all numerical solutions had been restricted to either a fixed sea level or constant sea-level 104 

rise scenarios. The only attempt to solve the problem under sea-level cycles was by Lorenzo-105 

Trueba et al. (2013), who developed an integral approximation of the Exner equation assuming a 106 

quadratic fluvial surface profile. This solution, however, is not able to account for full cycles of 107 

transgression and regression (only cases where transgression follows regression). Thus, our first 108 

goal is to extend the enthalpy-like numerical solution from Lorenzo-Trueba and Voller (2010) to 109 

account for sea-level cycles, as well as cycles of SH transgression/regression. Second, we 110 

investigate potential modes of coastal behavior under sea-level cycles and a wide range of 111 

system parameters.  112 



 113 

2. The Dual Moving Boundary Problem 114 

2.1 Equations 115 

 116 
We model fluvio-deltaic evolution in cross-section as described in Figure 2a. As opposed to 117 

previous modeling efforts that account for different shoreface morphologies (Lai and Capart, 118 

2007; Swenson et al., 2005), temporal changes in sediment supply (An et al., 2017), or breaks in 119 

the basement slope (Lai et al., 2017), we assume a linear basement slope 𝛽𝛽, a linear foreset slope 120 

𝜓𝜓, and a steady sediment supply 𝑞𝑞0. We adopt this idealized cross-shore geometry to simplify the 121 

calculations and focus on the role of the fluvial surface dynamics on the response of the system. 122 

Given such cross-shore geometry (Figure 2), the evolution of the fluvio-deltaic system can be 123 

described in terms of the locations of the ABT (𝑥𝑥 = 𝑟𝑟(𝑡𝑡)), the SH (𝑥𝑥 = 𝑠𝑠(𝑡𝑡)), and the delta toe 124 

(𝑥𝑥 = 𝑤𝑤(𝑡𝑡)). In the absence of differential subsidence, we can describe changes in the elevation ℎ 125 

at any location of the fluvial surface with respect to current sea level (Figure 2a) as the 126 

divergence of the sediment flux q (Paola and Voller, 2005),  127 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,    𝑟𝑟(𝑡𝑡) ≤ 𝑥𝑥 ≤ 𝑠𝑠(𝑡𝑡)         (1) 128 

where x is positive in the seaward direction, and x=0 is located at the intersection between the 129 

initial sea level and the basement.  130 

Following numerous efforts, which include both numerical modeling and laboratory experiments 131 

(Paola et al., 1992; Ribberink and van der Sande, 1985; Fagherazzi and Overeem, 2007; Parker 132 

and Muto, 2003; Postma et al., 2008; Swenson et al., 2000; Swenson and Muto, 2007), we 133 

assume that q is primarily controlled by the fluvial slope. In particular, for simplicity we assume 134 



that 𝑞𝑞 is linearly related to the fluvial slope as follows (Paola et al., 1992; Lorenzo-Trueba et al., 135 

2013; Lorenzo-Trueba and Voller, 2010; Marr et al., 2000; Swenson et al., 2000; Swenson and 136 

Muto, 2007) 137 

𝑞𝑞(𝑥𝑥) = −𝑣𝑣 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

            (2) 138 

where ν is the ‘fluvial diffusivity’, which can be calculated as a function of water discharge and 139 

grain size characteristics (Paola, 2000).  140 

 141 

The combination of equations (1) and (2) leads to the so-called linear diffusion equation, which 142 

generally requires two boundary conditions and an initial condition to be solved. In this case, 143 

however, the locations of the ABT and the SH (i.e., r and s) are unknown a priori and need to be 144 

solved as part of the solution. Consequently, the problem requires four boundary conditions 145 

instead of just two. The first condition matches the fluvial surface elevation at the ABT to the 146 

basement elevation:  147 

ℎ|𝜕𝜕=𝑟𝑟 = −𝛽𝛽𝑟𝑟           (3a) 148 

The second condition implies that the elevation of the fluvial surface at the SH is equal to sea 149 

level: 150 

ℎ|𝜕𝜕=𝑠𝑠 = 𝑍𝑍           (3b)  151 

where 𝑍𝑍 is the sea level. The third condition imposes a given sediment input  𝑞𝑞0 at the ABT: 152 

−𝑣𝑣 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑟𝑟

= 𝑞𝑞0          (3c) 153 



The fourth condition in general relates the sediment flux that reaches the SH with the rate of 154 

migration of the foreset toe, which is defined as 𝑑𝑑𝑤𝑤/𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡 + 1/𝜓𝜓 · 𝑑𝑑𝑍𝑍/𝑑𝑑𝑡𝑡 (Swenson et 155 

al., 2000). In the particular case in which the shoreface toe only migrates seawards (i.e., 156 

𝑑𝑑𝑤𝑤/𝑑𝑑𝑡𝑡 > 0), the system maintains the wedge geometry depicted in Figure 1, and we can define 157 

the basin depth as 𝐷𝐷(𝑥𝑥, 𝑡𝑡)  =  𝜓𝜓/(𝜓𝜓 − 𝛽𝛽) · (𝑠𝑠𝛽𝛽 + 𝑍𝑍) (Lorenzo-Trueba et al., 2013). For 158 

simplicity, however, given that the foreset slope 𝜓𝜓 is generally orders of magnitude larger than 159 

any other slope in the system, including the basement slope β, we assume 𝜓𝜓/(𝜓𝜓 − 𝛽𝛽) ~ 1 160 

(Edmonds et al., 2011; Lorenzo-Trueba et al., 2013, 2009; Lorenzo-Trueba and Voller, 2010; 161 

Swenson and Muto, 2007). This assumption implies that a shift from regression to transgression 162 

coincides with the abandonment of the subaqueous foreset, which means that the SH and the 163 

delta toe always migrate in the same direction (i.e., 𝑑𝑑𝑤𝑤/𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡). In this scenario, the fourth 164 

boundary relates the sediment flux that reaches the SH with the rate of migration of the SH and 165 

the ocean depth as follows: 166 

−𝑣𝑣 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑠𝑠

= �
𝐷𝐷(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑠𝑠

𝑑𝑑𝜕𝜕
,          𝑑𝑑𝑠𝑠

𝑑𝑑𝜕𝜕
> 0

  
0,                            𝑑𝑑𝑠𝑠

𝑑𝑑𝜕𝜕
≤ 0 

       (3d) 167 

When the SH migrates seawards (i.e., 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡 > 0) beyond past SH locations, the system 168 

maintains the wedge geometry and the basin depth reduces to 𝐷𝐷(𝑥𝑥, 𝑡𝑡)  = 𝑠𝑠𝛽𝛽 + 𝑍𝑍. In contrast, 169 

when all sediments deposit on the fluvial surface before reaching the SH, the SH sediment flux is 170 

equal to zero and the SH migrates landwards (i.e., 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡 ≤ 0). Under this condition, the SH 171 

detaches from the subaqueous foreset (Figure 2b), a condition previously defined as ‘autobreak’ 172 

(Muto and Steel, 2002). Additionally, in some instances the SH migrates seaward (i.e., 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡 >173 



0) over subaqueous deposits left during autobreak, in which case 𝐷𝐷(𝑥𝑥, 𝑡𝑡)  corresponds to the 174 

ocean depth of these offshore deposits (Figure 2c). 175 

Under these conditions, with equations (1-3) and a given initial geometry: 𝑠𝑠(0) = 𝑟𝑟(0) = 0,  we 176 

can fully describe the dynamics of the fluvial surface under sea-level changes, including cycles 177 

of regression and transgression (Figure 2). 178 

 179 

2.2 A dimensionless form  180 

In this section, we reduce the number of controlling parameters to a minimum by rewriting the 181 

governing equations (1-3) in dimensionless form. The scaling used towards this end is as follows 182 

𝑥𝑥𝑑𝑑 = 𝜕𝜕
𝑙𝑙
,   𝑡𝑡𝑑𝑑 = 𝜕𝜕

𝜏𝜏
,   𝑠𝑠𝑑𝑑 = 𝑠𝑠

𝑙𝑙
,   𝑟𝑟𝑑𝑑 = 𝑟𝑟

𝑙𝑙
,   𝑍𝑍𝑑𝑑 = 𝑍𝑍

𝑙𝑙𝑙𝑙
,   ℎ𝑑𝑑 = ℎ

𝑙𝑙𝑙𝑙
, 𝐷𝐷𝑑𝑑 = 𝐷𝐷

𝑙𝑙𝑙𝑙
,   𝑞𝑞𝑑𝑑 = 𝜕𝜕𝜏𝜏

𝑙𝑙2𝑙𝑙
   

(4) 183 

where l is the horizontal scale (e.g., a characteristic delta length), 𝑙𝑙𝛽𝛽 is the vertical scale, and 𝜏𝜏 =184 

𝑙𝑙2/𝑣𝑣  is an ‘equilibrium timescale’ defined by Paola et al. (1992). From the scaling in (4), we 185 

obtain one dimensionless group: the ratio of the fluvial to the bedrock slope at the ABT    186 

𝑅𝑅𝑎𝑎𝑎𝑎 = − 1
𝑙𝑙
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑟𝑟

= 𝜕𝜕0
𝑙𝑙𝑣𝑣

         (5) 187 

which is physically constrained within the range 0 < 𝑅𝑅𝑎𝑎𝑎𝑎 < 1. 188 

Dropping the d superscript for convenience of notation, the  189 

dimensionless versions of equations (1) to (3) become:   190 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 𝜕𝜕2ℎ
𝜕𝜕𝜕𝜕2

,    𝑟𝑟(𝑡𝑡) ≤ 𝑥𝑥 ≤ 𝑠𝑠(𝑡𝑡)                      (6)  191 

with conditions  192 



ℎ|𝜕𝜕=𝑟𝑟 = −𝑟𝑟           (7a)  193 

ℎ|𝜕𝜕=𝑠𝑠 = 𝑍𝑍           (7b) 194 

−𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑟𝑟

= 𝑅𝑅𝑎𝑎𝑎𝑎           (7c) 195 

−𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
�
𝜕𝜕=𝑠𝑠

= �
𝐷𝐷(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑠𝑠

𝑑𝑑𝜕𝜕
,            𝑑𝑑𝑠𝑠

𝑑𝑑𝜕𝜕
> 0

  
0,                            𝑑𝑑𝑠𝑠

𝑑𝑑𝜕𝜕
≤ 0 

 .       (7d)  196 

The initial conditions are: 197 

𝑠𝑠(𝑡𝑡 = 0) = 𝑟𝑟(𝑡𝑡 = 0) = 0.                    (8)  198 

In the particular case in which the SH only migrates seawards (i.e., 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡 > 0), the system 199 

maintains the wedge geometry depicted in Figures 1a and 2a, and we can define the basin depth 200 

as 𝐷𝐷(𝑥𝑥, 𝑡𝑡) = 𝑠𝑠 + 𝑍𝑍 (Lorenzo-Trueba et al., 2013). Under this special case, equations (6) – (8) 201 

admit close form analytical solutions, which are described in section 4. In general, however, 202 

these equations require a numerical solution.  203 

 204 

3. The Geomorphic Enthalpy Method 205 

In this section, we develop a numerical solution able to operate in cases where the closed form 206 

solutions do not hold. Moreover, the objective of this section is to present a fixed grid enthalpy-207 

like method that solves the problem numerically without the need of tracking the ABT and the 208 

SH as part of the solution (Voller et al. 2006; Lorenzo-Trueba and Voller 2010). With this 209 

objective in mind, we define the enthalpy function 𝐻𝐻(𝑥𝑥, 𝑡𝑡), which in our case represents the 210 

sediment prism thickness (Figure 3), as follows: 211 



𝐻𝐻(𝑥𝑥, 𝑡𝑡) = ℎ(𝑥𝑥, 𝑡𝑡) + 𝑍𝑍(𝑡𝑡) − 𝐸𝐸(𝑥𝑥)        (9)  212 

where 𝐸𝐸(𝑥𝑥) denotes the basement elevation, i.e., 𝐸𝐸(𝑥𝑥) = −𝑥𝑥. Inverting (9), we can describe the 213 

elevation respect to current sea level (Figure 2a) anywhere in the domain as follows 214 

ℎ = max (𝐻𝐻 + 𝐸𝐸 − 𝑍𝑍, 0) .         (10) 215 

As defined by equation (10), ℎ is always greater than zero landward of the SH, and zero 216 

seawards of the SH (Figure 3). Consequently, sediment fluxes as described in equation (2) are 217 

zero beyond the SH, which implies that the subaqueous portion of the fluvial-delta maintains its 218 

sediment thickness and hence its shape. Although we believe this is a reasonable assumption to 219 

first order, future versions of the model will investigate the effect of waves and tides on the 220 

transport of sediments in the subaqueous portion. 221 

Equations (9) and (10) are fully consistent with the original enthalpy formulation introduced by 222 

Crank (1984). However, as previously noted by Voller et al. (2006) and Lorenzo-Trueba and 223 

Voller (2010), in this case the term representing the latent heat 𝐿𝐿(𝑥𝑥, 𝑡𝑡) = 𝑍𝑍(𝑡𝑡) − 𝐸𝐸(𝑥𝑥) can be a 224 

function of space and time. Using equations (9) and (10), we can then describe the problem using 225 

the same sediment balance equation for the full solution space, i.e.,  226 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,   −∞ ≤ 𝑥𝑥 ≤ ∞         (11) 227 

where 𝑞𝑞 is the sediment flux described in equation (2). At the upstream limit of the domain, the 228 

sediment flux is always equal to the sediment input, which in dimensionless numbers is equal to 229 

𝑅𝑅𝑎𝑎𝑎𝑎, i.e.,  lim
𝜕𝜕→−∞

𝑞𝑞 = 𝑅𝑅𝑎𝑎𝑎𝑎. At the downstream limit of the domain, the elevation above sea level is 230 

always equal to zero, i.e., lim
𝜕𝜕→∞

ℎ = 0 . Equation (11) also requires initial conditions to be solved, 231 

which we define as follows 232 



𝐻𝐻(𝑥𝑥, 0) = 0           (12a)  233 

ℎ(𝑥𝑥, 0) = �−𝑥𝑥,  𝑥𝑥 < 0
0,     𝑥𝑥 ≥ 0 .         (12b)  234 

We develop a numerical solution for equations (9) to (12) based on a uniform grid size ∆𝑥𝑥 and 235 

time step size ∆𝑡𝑡. We set the origin point 𝑥𝑥 = 0, where the ABT and SH are located initially, at 236 

the interface between two nodes in the center of the domain (Figure 4). We set the index i for the 237 

first node landward of the origin to be equal to zero. The value of i increases as we move 238 

seaward, and decreases and becomes negative as we move landwards. In general, we can express 239 

the location of node i as 𝑥𝑥𝑖𝑖 = (𝑖𝑖 − 0.5) ∙ ∆𝑥𝑥. 240 

We discretize equation (11) at node 𝑖𝑖 using the following finite differences form 241 

𝐻𝐻𝑖𝑖,𝑗𝑗+1 = 𝐻𝐻𝑖𝑖,𝑗𝑗 +  Δ𝜕𝜕
Δ𝜕𝜕
∙ �𝑞𝑞𝑖𝑖+12,𝑗𝑗 − 𝑞𝑞𝑖𝑖−12,𝑗𝑗�        (13) 242 

where the superscript j refers to the time step, and the subscript i+1/2 refers to the interface 243 

between nodes i and i+1. This equation guarantees that sediment is conserved in every node of 244 

the entire domain. Additionally, we compute the flux from node i  to node i+1 at time step j as   245 

𝑞𝑞𝑖𝑖+12,𝑗𝑗 =  min �𝐻𝐻𝑖𝑖,𝑗𝑗
Δ𝜕𝜕
Δ𝜕𝜕

+  𝑞𝑞𝑖𝑖−12,𝑗𝑗, ℎ𝑖𝑖,𝑗𝑗−ℎ𝑖𝑖+1,𝑗𝑗

∆𝜕𝜕
� .       (14) 246 

We note that the formulation introduced by equation (14) departs from the formulation 247 

introduced by Lorenzo-Trueba and Voller (2010) (i.e., 𝑞𝑞𝑖𝑖+12,𝑗𝑗 =  min(𝑅𝑅𝑎𝑎𝑎𝑎 , (ℎ𝑖𝑖,𝑗𝑗 − ℎ𝑖𝑖+1,𝑗𝑗)/∆𝑥𝑥)). 248 

Lorenzo-Trueba and Voller’s formulation only works when the ABT solely migrates landwards 249 

and sediment deposition takes place along the fluvial surface on every cell and time step. 250 

Consequently, in this particular scenario sediment flux 𝑞𝑞 is bounded above by the upstream 251 



sediment supply in dimensionless form (i.e., 𝑞𝑞 ≤ 𝑅𝑅𝑎𝑎𝑎𝑎). In the more general case presented here, 252 

however, we can simulate sediment erosion on the fluvial surface, as well as seaward migration 253 

of the ABT. In this case, under the assumption of a non-erodible basement, sediment flux 254 

𝑞𝑞𝑖𝑖+12,𝑗𝑗 is bounded above by the sum of the sediment input to the upstream cell 𝑞𝑞𝑖𝑖−12,𝑗𝑗 and the total 255 

sediment volume in the upstream cell 𝐻𝐻𝑖𝑖,𝑗𝑗Δ𝑥𝑥/Δ𝑡𝑡.  256 

In order to guarantee stability, the time and space steps need to satisfy ∆𝑡𝑡/∆𝑥𝑥2 < 0.5. To meet 257 

this stability criterion, we generally use a space step ∆𝑥𝑥 = 0.01 and a time step in the 258 

range 10−5 ≤ ∆𝑡𝑡 ≤ 5 ∙ 10−5. Higher resolution may be needed to ensure accuracy for high 259 

values of 𝑅𝑅𝑎𝑎𝑎𝑎. 260 

At each time step, the solution of (13) explicitly provides new values for the sediment 261 

thickness 𝐻𝐻𝑖𝑖,𝑗𝑗+1 at each node. We then calculate the values at the new time step for the sediment 262 

heights ℎ𝑖𝑖,𝑗𝑗+1 from the discrete form of equation (12). With this information, we can calculate 263 

the sediment fluxes using equation (14), and move to the next time step to solve again equation 264 

(13). 265 

Additionally, although not required, we can determine the position of the ABT at each time step 266 

by searching left to right through the domain and finding the first cell 𝑖𝑖 where 𝑞𝑞𝑖𝑖−12,𝑗𝑗 ≠ 𝑞𝑞𝑖𝑖+12,𝑗𝑗. 267 

This cell represents the most landward location where sediment deposition occurs, i.e., the cell 268 

immediately seaward of the ABT. We then estimate the ABT position by interpolating between 269 

nodes 𝑖𝑖 and 𝑖𝑖 − 1 as follows: 270 

𝑟𝑟𝑗𝑗 =  ℎ𝑖𝑖,𝑗𝑗+𝑍𝑍𝑗𝑗+𝑅𝑅𝑎𝑎𝑎𝑎𝜕𝜕𝑖𝑖
1−𝑅𝑅𝑎𝑎𝑎𝑎

 .            (15) 271 



We can also estimate the location of the SH at each time step. Under SH progradation, the 272 

current total sediment field 𝐻𝐻𝑖𝑖,𝑗𝑗 is searched, and the first node 𝑖𝑖 where 0 < 𝐻𝐻𝑖𝑖,𝑗𝑗 + 𝐸𝐸𝑖𝑖 < 𝑍𝑍𝑗𝑗 is 273 

located. The SH position is then determined by interpolation through the control volume around 274 

node 𝑖𝑖, i.e.   275 

𝑠𝑠𝑗𝑗 = (𝑖𝑖 − 1)∆𝑥𝑥 − 𝜕𝜕𝑖𝑖,𝑗𝑗
𝐸𝐸𝑖𝑖−𝑍𝑍𝑗𝑗

∆𝑥𝑥 .         (16) 276 

 277 

4. Verification of the enthalpy method 278 

We verify the proposed model under two sea-level change scenarios that admit closed form 279 

analytical solutions: square-root sea-level rise and fall, and constant sea-level rise.  Under the 280 

condition of sea-level change proportional to the square root of time i.e., Z= 2𝜆𝜆𝑧𝑧√𝑡𝑡, Lorenzo-281 

Trueba et al. (2013) developed an analytical similarity solution in which the movements of the 282 

ABT and SH are given by equations of the form: 𝑟𝑟 = −2𝜆𝜆𝑎𝑎𝑎𝑎√𝑡𝑡  and  𝑠𝑠 = 2𝜆𝜆𝑠𝑠ℎ√𝑡𝑡, where 𝜆𝜆𝑎𝑎𝑎𝑎 and 283 

𝜆𝜆𝑠𝑠ℎ are constants determined through the solution of two algebraic equations (Lorenzo-Trueba et 284 

al., 2013). We use this analytical solution to assess accuracy of the enthalpy method under a 285 

wide range of 𝜆𝜆𝑧𝑧 and 𝑅𝑅𝑎𝑎𝑎𝑎 scenarios (see Appendix). In this section, we present two examples that 286 

demonstrate model performance under both ABT seaward and landward migration, including 287 

their profile evolution (Figure 5).  288 

 289 

Under a constant sea-level rise rate �̇�𝑧 (i.e., sea level is described as 𝑍𝑍 = �̇�𝑧 ⋅ 𝑡𝑡), the system 290 

eventually reaches a point at which all incoming sediment deposit on the fluvial surface in order 291 

to keep pace with sea-level rise (Muto, 2001; Parker and Muto, 2003)  , which results in the 292 

fluvial plain abandoning the foreset or submarine portion (Figure 2b). When this happens, the 293 



system first enters a transition period in which the length of the fluvial plain increases and both 294 

the ABT and the SH migrate landwards. This transition period ends when the fluvial surface 295 

attains a fixed geometry, and both the ABT and the SH attain a constant landward migration rate. 296 

At this point, the geometry of the fluvial surface, as well as the ABT and SH trajectories, can be 297 

described analytically (a full derivation of this solution is included in the Appendix). We use this 298 

analytical solution to test the fixed grid numerical scheme for a wide range of 𝑅𝑅𝑎𝑎𝑎𝑎 and �̇�𝑧  values. 299 

In all scenarios, there is agreement between the analytical and numerical solutions (see 300 

Appendix). 301 

 302 

5. System response to sea-level cycles: The importance of fluvial surface dynamics 303 

Numerous studies over the past few decades present sea-level change as the most important 304 

allogenic (i.e., external) forcing affecting coastal areas such as fluvial deltas and coastal margins 305 

(Blum et al., 2013; Catuneanu et al., 2009; Van Wagoner et al., 1990; Van Wagoner and 306 

Bertram, 1995), and consequently as the primary control on stratigraphic architecture. While 307 

evidence for incised (paleo) valley systems formed during oscillations in sea level during the 308 

Quaternary is extensive (Blum et al., 2013; Blum and Törnqvist, 2000), the range of sea-level 309 

cycle amplitudes and frequencies stored in the stratigraphic record remains unclear (Li et al., 310 

2016). In this section, we demonstrate how the proposed enthalpy method can be used to bring 311 

some light to this question by exploring the dynamics and stratigraphy of the system under sea-312 

level variations. In particular, we go beyond the scenarios investigated in the model verification 313 

and explore the system response under sinusoidal sea-level cycles, i.e., 314 

𝑍𝑍 = 𝐴𝐴 sin(𝐵𝐵 ⋅ 𝑡𝑡)          (17) 315 



where A and B are the dimensionless amplitude and frequency (i.e., 1/period) of the sea-level 316 

cycles. We select a representative length scale 𝑙𝑙 = 100km, a basement slope 𝛽𝛽 = 10−3 , and a 317 

diffusivity 𝑣𝑣 = 105m2y-1 associated with a catchment length of ~100 km (Swenson et al., 2000). 318 

In this way, we can use the dimensional scaling described in equation (4) to calculate the 319 

amplitude and period of sea-level cycles using the A and B values. For instance, A=1 and B=1 320 

correspond to sea-level cycles of 100m in amplitude and a period of 100,000 years, which are 321 

comparable to quaternary-scale eccentricity-driven eustatic sea level cycles (Hajek and Straub, 322 

2017). Lower A and B values (e.g., A=0.3 and B=0.4) better match with late Miocene conditions, 323 

when obliquity cycles (~ 40 ky) resulted in sea changes with ranges of 10–35 m. 324 

 325 

An interesting feature under sea-level cycles is that the SH can reverse its direction of migration. 326 

During these reversals, the geometric configuration of the system shifts between the one shown 327 

in Figure 2a, in which wedge geometry is maintained, and Figure 2b, in which the foreset and the 328 

fluvial plain abandons the submarine portion (i.e., autobreak). This is well illustrated in Figures 6 329 

and 7, which demonstrate that the geomorphic enthalpy method introduced here can account for 330 

transgression followed by regression and vice versa. Figure 6 includes three stratigraphic profiles 331 

produced by the model that demonstrate the effect of 𝑅𝑅𝑎𝑎𝑎𝑎 on the system response. As we 332 

increase 𝑅𝑅𝑎𝑎𝑎𝑎, which is proportional to the sediment supply (see equation (5)), the magnitude and 333 

occurrence of river incision (i.e., ABT seaward migration) and SH transgression are reduced, and 334 

there is larger preservation of sedimentary deposits. The formation and evolution of each of these 335 

stratigraphic profiles is included in the supplementary material, and Figure 7a includes the ABT 336 

and SH trajectories for the scenario depicted in Figure 6c (medium 𝑅𝑅𝑎𝑎𝑎𝑎 value).  337 

 338 



Figures 6 and 7 (and videos in the supplementary material) also illustrate the importance of the 339 

dynamics of the fluvial surface on the ABT and SH responses. During the sea-level rise phase, 340 

the relief of the fluvial surface decreases and its convexity increases as a large fraction of the 341 

sediment input deposits on the subaerial portion of the sedimentary prism. In contrast, under sea-342 

level fall the relief and concavity of the fluvial surface increase as a larger fraction of sediments 343 

bypass the subaerial portion of the delta to build the foreset. These shifts in the curvature and 344 

relief of the fluvial surface can delay the response of the system to sea-level variations. In 345 

particular, the transition from a concave and seaward migrating fluvial surface profile during sea-346 

level fall to a convex and lower relief fluvial surface during the sea-level rise can result in river 347 

incision during the sea-level rise (Figures 6-7a); Lorenzo-Trueba et al. (2013) first reported this 348 

interesting phenomenon. Additionally, the transition from a convex fluvial surface profile during 349 

the sea-level rise stage to a concave profile during the sea-level fall stage can result in the 350 

truncation of sediment layers in the nearshore region, leaving ‘lenses’ of older sediment 351 

surrounded by newer sediments (Figure 6). It is important to note that neither of these two 352 

behaviors can be captured by models that impose a linear fluvial slope (Kim and Muto, 2007; 353 

Lorenzo-Trueba et al., 2012), or the general sequence stratigraphic model, which assumes a fixed 354 

fluvial surface profile that translates seaward and landward, tracking the regressing and 355 

transgressing SH (Posamentier and Vail, 1988).  356 

 357 

To further explore the time lags in system response, we define the ABT and SH residuals (i.e., 358 

𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠) as the difference between the ABT and SH trajectories under sea-level cycles and 359 

the corresponding trajectories under constant sea level (Figure 7a). By plotting the residual 360 

trajectories with the sea-level curve (Figure 7b and 7c), we find that SH response is typically in 361 



phase with sea level such that maxima and minima in the SH trajectory correspond 362 

approximately to minima and maxima in sea level, respectively. In contrast, delays in the ABT 363 

response to sea-level variations can be geologically long-lived, and can result in river incision 364 

that prolongs into the sea-level rise stage (Figure 8 and 9). Such time delays increase as 𝑅𝑅𝑎𝑎𝑎𝑎 365 

increases, and can reach values of hundreds of thousands of years, but barely change as a 366 

function of the amplitude of the sea-level oscillations A (Figure 8a). River incision during sea-367 

level rise, however, can only occur when A is at least large enough to cause river incision during 368 

the fall stage, which can then extend into the sea-level rise stage. Thus, the total sediment 369 

volume eroded (i.e., river incision) under sea-level rise increases as A increases (Figure 8b), and 370 

represents a significant fraction of the total sedimentary wedge volume under high amplitude 371 

sea-level oscillations (Figure 9).  372 

 373 

The relationship between the sediment volume eroded during sea-level rise and 𝑅𝑅𝑎𝑎𝑎𝑎 is more 374 

complex (Figure 8b). Under low to medium values of 𝑅𝑅𝑎𝑎𝑎𝑎, the seaward migration of the ABT 375 

drives river incision (Figure 9b and 9c). In this case, as 𝑅𝑅𝑎𝑎𝑎𝑎 increases, the longer the seaward 376 

migration of the ABT prolongs beyond the sea-level fall stage into the sea-level rise stage, which 377 

in turn results in a higher sediment volume eroded. Under medium to high values of 𝑅𝑅𝑎𝑎𝑎𝑎, 378 

however, the ABT can maintain its landward migration even under extended periods of sea-level 379 

fall, and river incision occurs instead due to curvature changes of the fluvial surface (Figure 9d). 380 

In this scenario, an increase in 𝑅𝑅𝑎𝑎𝑎𝑎, which is proportional to the sediment supply (see equation 381 

(5)), tends to reduce the sediment volume eroded under sea-level cycles. 382 

 383 

6. Discussion and future work 384 



Numerous field, experimental, and theoretical studies have been conducted to date to understand 385 

how allogenic controls such as sea-level change influence stratigraphy (Allen, 1978; Armitage et 386 

al., 2011; Heller et al., 2001; Heller and Paola, 1996; Hickson et al., 2005; Martin et al., 2011, 387 

2009; van Heijst and Postmal, 2001; Van Wagoner et al., 1990). Despite all these efforts, which 388 

provide a sound conceptual framework for interpreting ancient deposits, there exist fundamental 389 

gaps regarding the relationship between processes, stratigraphy, and fluvial-deltaic evolution. In 390 

this manuscript, we address this knowledge gap by developing and verifying a fixed grid 391 

enthalpy-like numerical solution aimed to explore the evolution of fluvial deltas under a wide 392 

range of scenarios. The novelty of this modeling framework, which can be viewed as a 393 

generalized one-dimensional Stefan problem with two geomorphic moving boundaries (i.e., the 394 

ABT and the SH), is that the “latent heat” (which resembles ocean depth in our case) can change 395 

both in time and space. As a result, this model can for the first time incorporate sea-level cycles, 396 

as well as cycles of SH transgression/regression.  397 

 398 

Model results in this manuscript do not aim at specifically reproducing the evolution of any 399 

particular fluvial delta, and therefore do not capture the complexities associated with multiple 400 

grain sizes, sediment compaction, or deep crustal processes. The model also assumes that the 401 

evolution of the system can be described in a one-dimensional longitudinal section, leaving out 402 

processes such as river avulsions, which can play a role on the large-scale evolution of the 403 

system. These model simplifications, however, allow us to focus our analysis on the interplay 404 

between sediment supply, sea-level changes, and the dynamics of the fluvial surface. 405 

Additionally, given the simplicity of the model we can explore the effect of this interplay under a 406 

wide range of system parameters.  407 



 408 

Overall, model results demonstrate the potential of numerical heat transfer methods, specifically 409 

those developed to solve moving boundary problems, to advance our understanding of the 410 

formation and evolution of sedimentary basins. Model results also demonstrate that the dynamics 411 

of the fluvial surface can play an essential role on the system response to sea-level variations. 412 

Previous studies have highlighted the importance of autogenic storage and release processes 413 

during a full sea-level cycle, such that periods of sea-level rise are not purely depositional while 414 

periods of sea-level fall are also not purely erosional (Blum and Price, 1998; Holbrook, 2001; 415 

Strong and Paola, 2008). To the best of our knowledge, however, this is the first study that 416 

relates changes in the relief and concavity of the fluvial surface profile during sea-level cycles 417 

with the occurrence of geologically long-lived (i.e., thousands of years) river incision during sea-418 

level rise. Moreover, the model predicts that the volume of sediment eroded during river incision 419 

under sea-level rise significantly increases as the amplitude of the sea-level oscillations increase. 420 

Future work will aim at narrowing down the conditions and past sea-level changes that could 421 

make such behavior likely. Additionally, we are planning to carry out laboratory-scale flume 422 

experiments to validate the model results. The next step in terms of numerical modeling will be 423 

to extend the geomorphic enthalpy model into two dimensions. 424 
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 431 

Computer Code Availability 432 

The code “1D enthalpy method”, developed by William Anderson and Jorge Lorenzo-Trueba 433 

can be accessed since October 2018 at https://github.com/JorgeMSU/1D-enthalpy-method.  For 434 

details about this code, contact Jorge Lorenzo-Trueba via email (lorenzotruej@montclair.edu) or 435 

by phone (973-655-5320). Jorge Lorenzo-Trueba’s office is at 1 Normal ave., Motntclair State 436 

University, NJ 07043. The code is less than 200 lines, it can run in a standard laptop, and is 437 

written in matlab. 438 

 439 

 440 

Appendix A: Additional verification of the enthalpy method. 441 

In this section, we include further testing of the fixed grid numerical scheme under two sea-level 442 

change scenarios that admit closed form analytical solutions: square-root sea-level rise and fall, 443 

and constant sea-level rise. 444 

  445 

A.1 Square-root sea-level rise and fall  446 

 447 

Under the condition of sea-level change proportional to the square root of time i.e., Z= 2𝜆𝜆𝑧𝑧√𝑡𝑡, 448 

Lorenzo-Trueba et al. (2013) developed an analytical similarity solution in which the movements 449 

of the ABT and SH are given by equations of the form:    450 

𝑟𝑟 = −2𝜆𝜆𝑎𝑎𝑎𝑎√𝑡𝑡           (A1a) 451 

𝑠𝑠 = 2𝜆𝜆𝑠𝑠ℎ√𝑡𝑡           (A1b)
 

452 

https://github.com/JorgeMSU/1D-enthalpy-method
mailto:lorenzotruej@montclair.edu


where 𝜆𝜆𝑎𝑎𝑎𝑎 and 𝜆𝜆𝑠𝑠ℎ are constants determined through the solution of two algebraic equations 453 

(Lorenzo-Trueba et al., 2013). We use this analytical solution to assess accuracy of the enthalpy 454 

method under a wide range of 𝑅𝑅𝑎𝑎𝑎𝑎  and 𝜆𝜆𝑍𝑍 values. Figure 5 shows plots of the SH and ABT 455 

trajectories over time for two values of 𝑅𝑅𝑎𝑎𝑎𝑎 during sea-level fall. In both scenarios, there is 456 

agreement between the analytical and numerical solutions. Depending on both 𝑅𝑅𝑎𝑎𝑎𝑎  and the value 457 

of 𝜆𝜆𝑍𝑍 the delta can undergo coastal offlap or coastal onlap during sea-level fall. The profile 458 

evolutions in figure 5 illustrate differences in concavity of the fluvial surface that are a result of 459 

the direction of ABT migration. In scenarios of sea-level fall proportional to the square root of 460 

time larger values of 𝑅𝑅𝑎𝑎𝑎𝑎 or smaller values of 𝜆𝜆𝑍𝑍 result in coastal onlap and a concave up fluvial 461 

surface. However, significantly decreasing 𝑅𝑅𝑎𝑎𝑎𝑎 or increasing the magnitude of 𝜆𝜆𝑍𝑍 causes the 462 

delta to undergo coastal offlap and produces a concave down fluvial surface. During costal offlap 463 

sediments are reworked in the upstream portion of the delta and provided to the rest of the 464 

system causing sediment flux values in the fluvial surface to exceed 𝑅𝑅𝑎𝑎𝑎𝑎 and resulting in the 465 

concave downward profile. Model runs for several values of 𝑅𝑅𝑎𝑎𝑎𝑎 and 𝜆𝜆𝑍𝑍 are included in figures 466 

A1 and A2.  467 

A further test of the robustness of the enthalpy solution is revealed by investigating its 468 

performance across the entire feasible range of the ABT slope ratio 0 < 𝑅𝑅𝑎𝑎𝑎𝑎 < 1; in each case 469 

the value of 𝜆𝜆𝑍𝑍 is set proportional to 𝜆𝜆𝑠𝑠ℎ. First, the analytical solution in Lorenzo-Trueba et al. 470 

2012 is used to predict values of 𝜆𝜆𝑎𝑎𝑎𝑎 and 𝜆𝜆𝑠𝑠ℎ. Then, we extract the values of 𝜆𝜆𝑎𝑎𝑎𝑎 and 𝜆𝜆𝑠𝑠ℎ at 471 

specific values of 𝑅𝑅𝑎𝑎𝑎𝑎[0.05: 0.05: 0.95] through fitting the forms in (9) to the predicted 472 

trajectories r  and s  given by the enthalpy solution. Benchmarks are made for both a sea-level 473 

rise (e.g., 𝜆𝜆𝑍𝑍 = 0.5𝜆𝜆𝑠𝑠ℎ) and a sea-level fall (e.g., 𝜆𝜆𝑍𝑍 = −0.5𝜆𝜆𝑠𝑠ℎ). In Figure A3 we present a 474 

comparison of the analytical values of the moving boundary parameters (solid-line) with those 475 



predicted by the enthalpy method (shapes). We find that across a wide range of conditions the 476 

time stepping solution matches the analytical solution.  477 

 478 

A.2 Constant sea-level rise  479 

 480 

Under a constant sea-level rise rate �̇�𝑧 (i.e., sea level is described as 𝑍𝑍 = �̇�𝑧 ⋅ 𝑡𝑡), the system can 481 

reach a point in which the incoming sediment flux is insufficient to supply the foreset (Muto, 482 

2001; Parker and Muto, 2003), which results in the fluvial plain abandoning the submarine 483 

portion (Figure 2b). When this happens, the system first enters a transition period in which the 484 

length of the fluvial plain increases and both the ABT and the SH migrate landwards. This 485 

transition period ends when the fluvial surface attains a fixed geometry, and both the ABT and 486 

the SH attain a constant landward migration rate. At this point, the problem admits an analytical 487 

solution as the fluvial-surface attains a fixed geometry that migrates landwards at a given speed. 488 

We can then describe such analytical solution by setting the following similarity variable: 489 

𝜉𝜉 = 𝑥𝑥 + �̇�𝑧𝑡𝑡,           (A2a) 490 

scale the sediment height by
 

491 

𝜂𝜂 = ℎ − �̇�𝑧𝑡𝑡,             (A2b) 492 

and define the following location for the boundaries of the fluvial surface 493 

𝑠𝑠∗ = 𝑠𝑠𝑖𝑖 − �̇�𝑧𝑡𝑡           (A3a)
 

494 

𝑟𝑟∗ = 𝑟𝑟𝑖𝑖 − �̇�𝑧𝑡𝑡 .           (A3b) 495 

In this way, the similarity solution becomes 496 



𝑑𝑑2𝜂𝜂
𝑑𝑑𝜉𝜉2

− �̇�𝑧 𝑑𝑑𝜂𝜂
𝑑𝑑𝜉𝜉
− �̇�𝑧 = 0 ,         𝑟𝑟∗ ≤ 𝜉𝜉 ≤ 𝑠𝑠∗        (A4) 497 

with boundary conditions       498 

𝜂𝜂|𝜉𝜉=𝑠𝑠∗ = 0           (A5a)  499 

𝜂𝜂|𝜉𝜉=𝑟𝑟∗ = −𝑟𝑟∗           (A5b) 500 

𝜕𝜕𝜂𝜂
𝜕𝜕𝜉𝜉
�
𝜉𝜉=𝑟𝑟∗

= −𝑅𝑅𝑎𝑎𝑎𝑎          (A5c)
 

501 

𝜕𝜕𝜂𝜂
𝜕𝜕𝜉𝜉
�
𝜉𝜉=𝑠𝑠∗

= 0 .           (A5d) 502 

On satisfying (A3), (A4a), and (A4d) we obtain the following solution 503 

𝜂𝜂 = 1
�̇�𝑧

exp(�̇�𝑧𝜉𝜉 − �̇�𝑧𝑠𝑠∗) − 𝜉𝜉 + 𝑅𝑅𝑎𝑎𝑎𝑎−1
�̇�𝑧

         (A6a) 504 

ℎ =  1
�̇�𝑧

exp(�̇�𝑧𝑥𝑥 − �̇�𝑧𝑠𝑠) − 𝑥𝑥 +  𝑅𝑅𝑎𝑎𝑎𝑎−1
�̇�𝑧

 .        (A6b) 505 

From (2) and (3) we obtain the values of s*, and r* 506 

𝑠𝑠∗ = 𝑅𝑅𝑎𝑎𝑎𝑎
�̇�𝑧

           (A7a)  507 

𝑟𝑟∗ = 1
�̇�𝑧

[𝑅𝑅𝑎𝑎𝑎𝑎 + ln(1 − 𝑅𝑅𝑎𝑎𝑎𝑎)] .         (A7b) 508 

Thus, the length of the fluvial surface can be calculated as 509 

𝑠𝑠∗ − 𝑟𝑟∗ = 𝑠𝑠𝑖𝑖 − 𝑟𝑟𝑖𝑖 =  ln(1−𝑅𝑅𝑎𝑎𝑎𝑎)
�̇�𝑧

 .        (A8) 510 

We use this analytical solution to test the fixed grid numerical scheme for a wide range of 511 

𝑅𝑅𝑎𝑎𝑎𝑎 and �̇�𝑍 values. Figure A4 shows plots of the movement of the SH and ABT over time. We 512 



find that the trajectories predicted by the enthalpy solution (solid-lines) eventually match the 513 

analytical solution (dashed-line).  514 

Additionally, further test of the robustness of the enthalpy solution is revealed by investigating 515 

its performance across the entire feasible range of the ABT slope ratio 0 < 𝑅𝑅𝑎𝑎𝑎𝑎 < 1. In 516 

particular, we calculate the length of the fluvial surface at steady state (i.e., s-r) for specific 517 

values of 𝑅𝑅𝑎𝑎𝑎𝑎[0.05: 0.05: 0.95], using the enthalpy solution and the analytical solution (equation 518 

(A7)). In Figure A5 we present a comparison of the analytical values of the moving boundary 519 

parameters (solid-line) with those predicted by the enthalpy method (shapes). We find that across 520 

a wide range of conditions the time stepping solution matches the analytical solution.  521 

 522 

 523 

 524 

 525 

 526 

 527 
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Tables 686 

Table 1. State Variables and their Dimensions 687 

Symbol Units Description Dimensionless 
symbol  

t T Time t 

x L Horizontal distance x 

h L Height above current sea-level h 

r L Alluvial-bedrock transition horizontal distance from 
origin 

r 

s L Shoreline horizontal distance from origin s 

q L2∙T-1 Sediment flux q 

Z L Sea-level Z  

H - Enthalpy H 

E L Basement elevation E 

 688 

Table 2. Description of the input parameters and their dimensionless groups 689 
 

Symbol Units Description Dimensionless 
symbol  

𝑞𝑞0 L2∙T-1 Sediment flux at ABT 

Rab ν L2∙T-1 Fluvial diffusivity 

𝛽𝛽 - Basement slope 



Ψ - Foreset slope Rsh 

�̇�𝑧 L∙T-1 Rate of sea-level rise  �̇�𝑧 

A L Amplitude of sea-level oscillations A 

B T-1 Frequency of sea-level oscillations B 

 690 

 691 

Figures 692 



 693 

Figure 1. Conceptual sketches of the fluvio-deltaic system illustrating (a) geomorphic moving 694 
boundaries and key components, and (b)-(d) shoreline regression/transgression, coastal 695 
onlap/offlap at the ABT, and river aggradation/incision. Note the strong exaggeration of the 696 
vertical scale.  697 



 698 

 699 

 700 



 701 

Figure 2. (a) Model setup, including state variables. (b) Sketch for autobreak. (c) Sketch for 702 
shoreline regression after autobreak 703 



 704 



 705 



Figure 3. Model variables, including the enthalpy function H, the basement elevation E, and the 706 
fluvial surface elevation respect to the current sea level h, under (a) sea-level fall and SH 707 
regression, (b) sea-level rise and SH transgression, and (c) SH regression after autobreak.  708 

 709 

 710 

 711 

Figure 4. Sketch of discrete domain. In general the locations of the SH and the ABT, s and r 712 
respectively, are in between two nodes of our discrete domain. 713 
 714 

 715 

 716 

Figure 5. Model runs under square root sea-level fall with (a) 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.8, 𝜆𝜆𝑍𝑍 = −0.3, and (b) 717 
𝑅𝑅𝑎𝑎𝑎𝑎 = 0.2 , 𝜆𝜆𝑍𝑍 = −0.3. At the bottom, we include a comparison of boundary trajectories of the 718 
analytical (solid-lines) and numerical (circles) solutions. At the top, we depict the evolution of 719 
the longitudinal profile over time. 720 

 721 



 722 

 723 

Figure 6. Stratigraphies produced under sea-level cycling for three different values of the 724 
dimensionless group 𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑞𝑞0/(𝛽𝛽𝑣𝑣). Videos showing the evolution over time are available in 725 
the supplementary material. 726 

 727 



 728 

Figure 7. (a) ABT and SH trajectories under sea-level cycles (i.e., 𝑍𝑍 = sin(𝑡𝑡)) and 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.5. 729 
Shaded intervals correspond to intervals of river incision during sea-level rise. (b) Plot of ABT 730 
residuals, 𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠 , and defining the time lag τ, as a function of the ABT residual. (c) Plot of SH 731 
residuals, 𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠. 732 

 733 



 734 

Figure 8. (a) Values for the delay in ABT response to sea-level rise as a function of the 735 
dimensionless group 𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑞𝑞0/(𝛽𝛽𝑣𝑣), and the amplitude of the sea-level cycles A. (b) Sediment 736 
volume eroded during sea-level rise, also as a function of 𝑅𝑅𝑎𝑎𝑎𝑎 and A. 737 

 738 

 739 

 740 

 741 



 742 

Figure 9. a) Sea-level curves showing the times for the onset of sea-level rise ts, and at the 743 
conclusion of river incision under sea-level rise for different 𝑅𝑅𝑎𝑎𝑎𝑎 values (i.e., tE1 for 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.2, 744 
tE2 for 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.5, and tE3 for  𝑅𝑅𝑎𝑎𝑎𝑎 = 0.8). Below, longitudinal profiles depicting the sections at 745 
the onset of sea-level rise (dashed line), and at the conclusion of river incision under sea-level 746 
rise (solid line) under (b) 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.2, (c) 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.5, and (d) 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.8. Note that under 𝑅𝑅𝑎𝑎𝑎𝑎 =747 
0.8, although the ABT does not migrate seawards, sediment erodes from the mid portion of the 748 
fluvial surface during sea-level rise. The stratigraphic profiles for the three model runs are 749 
included in Figure 6, and the ABT and SH trajectories for the 𝑅𝑅𝑎𝑎𝑎𝑎 = 0.5 scenario are included in 750 
Figure 7a. 751 

 752 



Appendix: 753 

 754 

Figure A1. Comparison of analytical (solid lines) and numerical (circles) ABT and SH 755 
trajectories under square-root sea-level rise.  756 



 757 

Figure A2. Comparison of analytical (solid lines) and numerical (circles) ABT and SH 758 
trajectories under square-root sea-level fall. 759 

 760 

 761 

Figure A3. Comparison between analytical and numerical predictions of the moving boundary 762 
parameters 𝜆𝜆𝑠𝑠ℎ and 𝜆𝜆𝑎𝑎𝑎𝑎 for the sea-level fall (circles) and sea-level rise (triangles) scenarios. The 763 
solid-line is the analytical solution and the symbols represent the enthalpy numerical solution 764 
described in section 4. We use ∆𝑥𝑥 = 0.01 and ∆𝑡𝑡 = 5 ⋅ 10−5.  765 

 766 



 767 

 768 

Figure A4. Comparison of analytical (dashed) and numerical (solid) ABT and SH trajectories 769 
under constant sea-level rise with ∆𝑥𝑥 = 0.01 and ∆𝑡𝑡 = 5 ⋅ 10−5. 770 

 771 

 772 

 773 



Figure A5. Comparison of analytical (solid lines) and numerical (symbols) delta length values 774 
(i.e., 𝑠𝑠 − 𝑟𝑟) at steady state.  775 

 776 

 777 
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