High functional diversity of contaminated soils from Liberty State Park

Nina M. Goodey
Montclair State University, goodeyn@montclair.edu

Follow this and additional works at: https://digitalcommons.montclair.edu/sustainability-seminar

Part of the Environmental Chemistry Commons, and the Sustainability Commons

https://digitalcommons.montclair.edu/sustainability-seminar/2019/fall2019/7

This Open Access is brought to you for free and open access by the Conferences, Symposia and Events at Montclair State University Digital Commons. It has been accepted for inclusion in Sustainability Seminar Series by an authorized administrator of Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.
High functional diversity of contaminated soils from Liberty State Park

WHEN: October 22, 4:00 pm WHERE: CELS 120 lecture hall

Nina Goodey
Montclair State University

Dr. Nina Goodey is a Professor of Chemistry and Biochemistry and the Associate Director for the PSEG Institute of Sustainability Sciences at Montclair State University. She is involved in teaching undergraduate and graduate students about biochemistry, enzyme kinetics, protein structure and soil enzymology. Dr. Goodey’s research utilizes mutagenesis, protein purification, and enzyme kinetics. Her work focuses on enzymes, both in the soil and in pathogenic organisms. She is interested in the impact of contamination on soil enzymatic function and also investigates the interactions between drugs and enzyme targets.

Urban brownfields present an opportunity to study the functioning of degraded ecosystems. We investigated the soils of Liberty State Park in Jersey City, New Jersey, which once supported a major rail yard and port facility with docks for shipping cargo to New York City. ICP-MS and pyrolysis-GC-MS studies were used to show that our study site is contaminated with heavy metals and organic contaminants, including polycyclic aromatic hydrocarbons. We used fluorescence spectroscopy to measure soil enzymatic function at multiple locations within the brownfield and found the following types of sites: 1.) hotspots with high heavy metal concentrations and high extracellular soil enzymatic activity; 2.) an industrial barren with barely detectable enzymatic function, dormant microbial life, and a “metal cap” on the soil surface; and 3.) planted sites with moderate metal concentrations and enzymatic function. We conducted cross-inoculation experiments, analyzed the microbial community composition using high-throughput sequencing, and added plants and root exudates to our soils. Our data together support the following conclusions: 1.) Soil microbial community functioning can be high and diverse in spite of high heavy metal loads; 2.) Abiotic rather than microbial factors limit microbial community functioning at Liberty State Park; and 3.) Dormant and abiotically limited microbes at barren sites can be revitalized by redistribution of metals to allow plant growth or by addition of artificial root exudates. In conclusion, contaminated, urban and post-industrial sites can have high functional diversity. Moreover, soil function at Liberty State Park can be modulated through perturbing soil abiotic conditions. These findings may be relevant to other contaminated soils located in or near urban or post-industrial centers globally and offer insights into potential strategies for soil revitalization and contamination management.

For more information contact Dr. Goodey at goodeyn@mail.montclair.edu