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a b s t r a c t

Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer dis-

ease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The

process of aggregation is nucleation–dependent in which the formation of a nucleus is the rate–limiting

step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the prop-

erties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge–gap

in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation num-

ber (n∗), the number of monomers associated within the nucleus for a homogenous aggregation model

with single unique nucleation event, by two independent methods: A reduced-order stability analysis

and ordinary differential equation based numerical analysis, supported by experimental biophysics. The

results establish that the most likely range of n∗ is between 7 and 14 and within, this range, n∗ = 12

closely supports the experimental data. These numbers are in agreement with those previously reported,

and importantly, the report establishes a new modeling framework using two independent approaches

towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that

the formation of large protofibrils is dependent on the nature of n∗ , further supporting the idea that

pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has

re-opened an old problem with a new perspective and holds promise towards revealing the molecular

events in amyloid pathologies in the future.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Aggregates formed by misfolded proteins called amyloids have

emerged as the primary neurotoxic agents in neurodegenerative

diseases. In Alzheimer disease (AD), amyloid-β (Aβ) peptide aggre-

gates that eventually deposit as insoluble plaques observed in the

brains of AD patients. Aggregates of Aβ are responsible for synap-

tic dysfunction and neuronal death that consequently leads to cog-

nitive decline [1]. Among the various aggregate forms of Aβ , low-

molecular weight forms ranging between dimers and 100mers are

implicated as the primary toxic agents along the aggregation path-

way [1–3]. Therefore, there is an increased interest in understand-

ing the precise mechanism of aggregation leading to various toxic
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forms. Several aspects of Aβ aggregation are well understood over

two decades of research. For example, Aβ aggregation towards

large fibrillar deposits is a nucleation-dependent phenomenon that

follows a sigmoidal growth pattern involving a lag phase prior to

fibril growth (Fig. 1). The lag-phase is a rate-limiting step during

which an important process of nucleation occurs [4,5]. Analogous

to crystal growth, the formation of nucleus dictates the outcome of

the fibrils in terms of their rate of formation, structure and mor-

phology [4,6]. It is widely known that the pre-nucleation events in-

volve both conformational change and self-assembly of monomers

to a certain critical mass, which may form the ‘gatekeeper’ for the

entire aggregation pathway. However, precise understanding of ag-

gregation especially during the pre-nucleation phase that defines

parameters such as the number of monomers associated in the

nucleus (nucleation number, n∗) and physiochemical nature of nu-

cleus are far from clear.

During the past two decades, kinetics and thermodynamics

of Aβ aggregation have been intensely studied, and a number

of approaches and mathematical models have been developed

http://dx.doi.org/10.1016/j.mbs.2015.12.004

0025-5564/© 2015 Elsevier Inc. All rights reserved.
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Fig. 1. Aβ aggregation pathway. Schematic diagram indicating the salient aspects of Aβ aggregation towards fibril formation. Important rate constants that are considered

in the model are shown. (Inset) The sigmoidal aggregation growth curve indicating three important phases of the reaction.

(reviewed in [7–10]). The molecular complexities involved in

aggregation process especially during the pre-nucleation stage,

and those in detecting and monitoring the process experimen-

tally, necessitate modeling approaches that go beyond brute-force

methodologies. Unlike the widely believed thought, emerging

evidence based on coarse-grained simulations indicate that the

pre-nucleation itself may involve multiple steps and intermediates

to reach the critical nucleus size [11,12]. Previously, n∗ value for

amyloid protein, huntingtin was calculated to be ∼ 0.98 (for

polyglutamine, Q28 peptide) homogenous association [13]. Upon

incorporating conformational heterogeneity among the monomers

assembled within the nucleus, the values of n∗ were observed

to take on negative values [14]. Lee and co-workers adopted an

ordinary differential equation (ODE)-based simulation to model

insulin aggregation and utilized the previously predicted n∗ value

of 6 [15]. More recently, Saric and co-workers determined that

plausible nucleation size may range between 6 and 14 depending

on the initial monomer concentration [11].

The main reason for the paucity in nucleation-related infor-

mation that precludes experimental characterization and conven-

tional modeling is the complexity of the Aβ aggregation mech-

anism that has led to a confounding understanding of the pre-

nucleation events. Accurate biophysical analysis is difficult due

to the dynamic nature of the process that precludes precise ex-

perimental characterization. In particular, the lack of sufficiently

sensitive experimental probes that could detect the presence of

a range of oligomers including those that are less populated

has further hindered experimental validation of the simulated

models. Detection of intermediate oligomers poses great diffi-

culty to detect, let alone to isolate and characterize. Not sur-

prisingly, only a few stable large (> 1500mers) intermediates

along the pathway such as protofibrils (PFs) have been isolable,

which are soluble fibril-like species formed during the post-

nucleation stage (Fig. 1). PFs are biophysically well-characterized

and show propensity to both elongate and laterally associate to

grow into mature fibrils [16]. Only a handful of low-molecular

weight oligomers have been successfully isolated [17–19]. How-

ever, the inability to isolate bonafide on-pathway intermediates

as well as the lack of extrinsic molecular probes to precisely

monitor the dynamics during pre-nucleation have impeded the

progress towards understanding the process of nucleation. Fur-

thermore, stochasticity causes variations in nucleation rates even

among identical microscopic molecules. Therefore, molecular-level

simulations are essential as they cater to the different temporal

scales along the aggregation pathway that can create modeling

stiffness.

In this report, we provide insights into Aβ aggregation by mod-

eling key elements of the process involved based on a simple ho-

mogenous aggregation of Aβ molecules with a single unique nu-

cleation event using two independent approaches with converging

solutions: (i) a reduced order stability argument and (ii) a mass

action kinetics based numerical simulation, supported by exper-

imental biophysical data. Using such an approach, we have pre-

viously modeled reactions involving PFs, and established that the

parameter sweep for rate constants could be dramatically reduced

based on the stability argument [20]. Though employed on a sim-

pler model system, the stability argument relies on a key physi-

cal requirement that the correct choice of nucleus, and hence n∗,

renders the equilibria stable. The ODE-based numerical simulations

were employed using a divide-and-conquer strategy by segmenting

the sigmoidal fibril-growth curve into three stages (Fig. 1; inset) as

previously reported [21]. The data indicate a narrow range of crit-

ical nucleation number for Aβ aggregation that is in close agree-

ment to other reports. More importantly, this report sheds insights

into understanding the critical nucleation event during Aβ aggre-

gation from a new approach and methodology.

2. Experimental methods

Aβ42 peptide was synthesized at the peptide synthesis facility

core at Mayo Clinic, Rochester, MN. Thioflavin-T (ThT) and other

chemicals were purchased from VWR Inc.

Aβ monomer preparation and aggregation. Lyophilized Aβ pep-

tide was stored at −20 °C until use. Aβ monomers, free of any

preformed aggregates were prepared as previously described [22].

Briefly, the peptide stocks were dissolved in 50 mM NaOH that was

left to stand at room temperature for 15 min before fractionat-

ing using Superdex-75 size exclusion chromatography column. The

samples were collected as 0.5 mL fractions upon isocratic elution

in 20 mM Tris, pH 8.0 buffer with a flow-rate of 0.5 mL/min. The

fractions corresponding to monomers were collected individually

and were used as such. The concentrations were determined us-

ing UV–Vis absorbance at 280 nm and with an extinction coeffi-

cient of 1450 cm−1 M−1 (www.expasy.org) corresponding to a ty-

rosine residue. All the experiments were performed either with

freshly purified monomers or monomers not more than two day

http://www.expasy.org
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old stored at 4 °C. Aggregation of Aβ at different concentrations

were initiated using freshly purified Aβ42 (20 mM Tris, 50 mM

NaCl, pH 8.0) was incubated quiescently at 37 °C, and the aggre-

gation kinetics was monitored by ThT fluorescence and MALDI-ToF

mass spectrometry at different time points as described below.

Thioflavin-T fluorescence. Fluorescence experiments were per-

formed on a Cary Eclipse spectrometer (Varian Inc). Samples were

excited at 452 nm and the emission at 482 nm was monitored

in kinetic mode for one minute with a band width of 10/10 nm.

The averaged data point was considered for the overall kinetic plot.

Aggregation parameters were obtained by monitoring the reaction

with ThT fluorescence and fitting the data points to the sigmoidal

curve in Eq. (1) using Origin 8.5 software.

F = a

1 + e
−
[

t−t0.5
b

] (1)

In this equation t is time, a and b are fixed parameters, and t0.5

is the time to reach half-maximal ThT fluorescence. Lag times are

equal to t0.5 − 2b for each fitted curve.

Mass spectrometry. Monomer depletion during aggregation was

monitored using MALDI-ToF mass spectrometry (Bruker Inc). In-

sulin sample were used as internal standards to calculate the ab-

solute concentrations of Aβ42 in the sample as previously shown

[23]. Typically, 2 μL aliquot of sample from each incubations at

different time points (20–100 pmol of samples for 10–50 μM Aβ
incubations) and mixed with 16 pmol of insulin (1 μL sample) for

each sample in the matrix. The solution was mixed with a satu-

rated solution of α-Cyano-4-hydroxycinnamic acid (CHCA) matrix

in acetonitrile and water before spotting on a MSP AnchorChip

600/96 plate (Bruker Daltonics Inc, Germany). Prior to the start of

each experiment, parameters in MALDI-ToF instrument were op-

timized and calibrated using molecular weight standards (Protein

Calibration Standard-1; Bruker Daltonics). The detection limit in

the spectrometer was set at 2X with a laser power of 51% in re-

flectron mode. For each spot/time points, 700 shots were collected

and averaged to obtain the final plot. The plots were normalized

based on insulin intensity shown in Eq. 2 as previously reported

[23].

Normalized Intensity = IntAβ

IntAβ + Intinsulin

(2)

3. Preliminary observations: stability analysis

As a first step towards validating our hypothesis that the crit-

ical nucleation number, n∗, falls within a narrow range of molec-

ular mass in a homologous single nucleation model, the stability

analysis was performed on a simplified, reduced order mass ac-

tion based model. The rate constants derived from this study was

used as a preliminary lead for a more detailed numerical model

presented in the second part of this section to determine n∗. The

equilibria obtained from the numerical model were also employed

in the perturbation analysis resulting in an optimal feedback be-

tween perturbation and numerical arguments.

In order to see whether the molecular weight of nucleus is con-

served or confined within a narrow range of masses, a linear sta-

bility analysis was employed on a simple three-species model con-

taining monomers (A1), nucleus (An∗ ) and fibrils (F). Since the rate

constants for the system of equations are not known at the out-

set, the system remains unsolvable. We argue that after perturbing

the system, the rate constants involved in the dissapearance of the

perturbed species must reflect those involved in the formation of

the species. In terms of the energetics involved in aggregation, it

can be said that at any point in time, any stable perturbation that

drives the system off course will eventually die and bring the sys-

tem back to its course. This is mathematically tractable only in the

equilibrium state and could yield valuable information about the

system. Our earlier analysis using such an algorithm has yielded

important information on PFs [20], and this has been used to re-

duce the parameter search space in our numerical simulations as

discussed later.

Mathematically, we represent the three-species system by:

[A1 + A1 + · · · · · · + A1]n∗ = An∗

[An∗ + An∗ + · · · · · · + An∗ ]s∗ = F

In accordance with this simplistic scheme, a critical number (n∗)

monomers aggregate to form the nucleus and a certain number

of nuclei (denoted s∗), in turn aggregate to form the fibrils. For

sake of simplicity, any combination of monomers and nuclei which

could result in the formation of the fibrils is disregarded here. As

in our previous reports, PFs, which are smaller than fibrils are as-

sumed to be composed of 1600mers [24], and for simplicity, in this

analysis we have assumed fibrils (F) to be of the same size too.

This allows us to estimate the critical number of nuclei required to

form the fibril, namely s∗ = | 1600
n∗ | . The terms kij (i,j = m,n,p) refer

to the forward and backward reaction rates. It must be noted that

the nucleation number, n∗ is unknown at this stage and is the key

parameter to be determined. In order to find n∗, we test the differ-

ential equation resulting from the above scheme (Eq. (3)–(5) be-

low) for all integers, n, in a large range dictated by the biophysics.

The set of n∗ values is then a special subset of n and chosen based

on which n yields physically meaningful results as discussed in de-

tail below.

The corresponding nonlinear differential equations for our

model system, based upon mass action kinetics, are then given by

dA1

dt
= n(−kmnAn

1 + knmAn) (3)

dAn

dt
= s

(
−knpAs

n + kpnF
)

+ kmnAn
1 − knmAn (4)

dF

dt
= knpAs

n − kpnF (5)

Here An results from the aggregation of n monomers and F from

the aggregation of ‘s’ An ‘s’. The objective of this study was to find

the optimal set of n∗, by varying 1 ≤ n ≤ |F| (where |F| refers to the

magnitude of the fibrils or the number of monomeric units that

compose fibrils) that keeps the equilibrium concentration of the

various species stable for sufficiently small perturbations applied

to the system. Let Me, Fe, Ne be the equilibrium concentrations of

the monomers, fibrils and nucleus, respectively, corresponding to

the steady state version of the Eqs. (3)–(5). For the Eqs. (3)–(5)

to be physically meaningful, the equilibrium state for this system

must be mathematically stable, and any perturbation to the sys-

tem, if sufficiently small, must eventually disappear. Therefore, sta-

ble equilibria conditions were derived upon linear perturbation of

the stable solutions Me, Fe, Ne. Based on the above mentioned

mathematical treatment, the concentrations of the different species

can be written in the form

A1 = Me + εM1, An = Ne + εN1, F = Fe + εF1 (6)

where M1, F1, N1 represent perturbed concentrations and ε is

the magnitude or order of the perturbation. The above expression

Eq. (6) for A1, An, F were placed into Eq. (3)–(5) and the O(ε) were

collected, giving the perturbed system

dM1

dt
= n

(
knmN1 − nkmnMn−1

e M1

)
(7)

dN1

dt
= s

(
kpnF1 − sknpNs−1

e N1

)
+ nkmnMn−1

e M1 − knmN1 (8)



P. Ghosh et al. / Mathematical Biosciences 273 (2016) 70–79 73

dF1

dt
= sknpNs−1

e N1 − kpnF1 (9)

To see whether the perturbations disappear, these equations were

written in the operator form

d[X]

dt
= [Y ][X] (10)

Where the matrices [X], [Y] are respectively represented by

[X] = {M1, F1, N1},

[Y ] =

⎛
⎜⎝

−n2kmnMn−1
e nknm 0

nkmnMn−1
e −knm − s2knpNs−1

e skpn

0 sknpNs−1
e −kpn

⎞
⎟⎠ (11)

Our objective was to seek the range of the rate constants in which

the real part of all the eigenvalues of the matrix [Y] remain simul-

taneously negative (i.e. the perturbations eventually vanish). Due

to the presence of several parameters, some restrictions were im-

posed for computation based on experimental data. This included

the assumption that at thermodynamic equilibrium after infinite

time, 99.9% of the monomers are depleted and 98.9% of the initial

monomers are converted into fibrils leaving 1% to remain as the

nuclei. In other words, Me = 0.001Fe and Ne = 0.001Fe. The value

of knp was assumed to be knp = 0.9 s−1 based on our previous re-

port [20]. The parameters, n, kmn, Fe along with the fibril size were

then varied. The reverse rates,

kpn = 0.9Ns
e

Fe
= 0.9(0.1s)F s−1

e and knm = kmnMn
e

Fe
= kmn10−3n+2F n−1

e

were obtained from equilibrium conditions. By sweeping over n

and fixing all the other parameters, the eigenvalues of the per-

turbed system were analyzed for those values that were simulta-

neously negative, which would render the equilibrium state, sta-

ble. The n’s corresponding to the stable states are denoted n∗.

Fig. 2 shows a plot of the logarithm of the absolute values of

the three eigenvalues of the system versus n∗. The interesting as-

pect of the plot is that this select group of ‘stable’ n∗ values is

small and finite and confined to a narrow range 10 < n∗ < 60

for the most part. For all other cases of n, at least one of the

eigen values becomes positive making the perturbation unstable.

The range of n∗ is sensitive to the choice of fibril size and the or-

der of magnitude of Fe, namely k (such that Fe = 10−k ), which

is one of the primary variables in our study. The magnitude of n∗

increases with increasing magnitude of the fibrils and decreases

with increasing values of k (Fig. 2B). However, the key obser-

vation here is that no matter the size of the fibrils, which can

range between 3000 and 5000mers, n∗ is restricted to a fairly

tight range (10–60). This mathematical analysis support our hy-

pothesis that the n∗ could be narrow in range that could poten-

tially play a significant role in the fate of the overall aggregation

process.

Based on perturbation analysis described above, having ob-

served that the nucleation event is not random but could be

tightly-controlled with a narrow range of molecular mass in a ho-

mologous mechanism, we sought to determine more rigorously,

how many monomers are associated within the nucleus (n∗) by

experimental and computational methods. First, the concentration

dependence of Aβ42 aggregation was experimentally established.

Four different concentrations, 20, 30, 40 and 50 μM of freshly pu-

rified, buffered Aβ42 monomers were subjected to aggregation in

quiescent conditions at 37 °C. The reactions were monitored using

the ThT fluorescence assay. All the samples exhibited a sigmoidal

growth curve with a lag time, growth phase and saturation, indica-

tive of a nucleation-dependent process (Fig. 3A). As expected, in-

crease in monomer concentration resulted in increased rate of ag-

gregation and consequently reduced the lag-times. The data were

fit with Eq. (1) revealed the lag times of 28.3, 22.1, 18.3 and 16.9 h

Fig. 2. Prediction of n∗ by stability analysis. (A) Logarithm of the absolute values of

real parts of the three eigenvalues of the perturbed system Eq. (7)–(9). The graph

shows the eigenvalues only when all three values are simultaneously negative, sug-

gesting linear stability. The n∗ values corresponding to the open circles are the al-

lowable values for the nucleation size. (B) The variations in the n∗ as a function of

fibril concentration index k, where the concentration is taken to be Pe= 10−k . Note

that for any given value of k, fibril size, several n∗ ’s are mathematically permissible,

indicated by the error bars in the plot.

for 20, 30, 40 and 50 μM reactions, respectively. The semi-log plot

of Aβ concentration and the calculated lag-time showed an ex-

pected linear dependency (Fig. 3B). In addition, a linear relation-

ship was also observed between Aβ concentration and saturating

values of ThT fluorescence (Fig. 3C).

4. ODE-based simulations

Modeling approach. A ‘divide and conquer’ strategy was adopted

by simplifying the overall aggregation into three experimentally

and computationally-viable parts such as pre-nucleation (Stage

I), post-nucleation (Stage II) and protofibril reactions (Stage III)

(Fig. 1), without compromising the reactions involved in aggrega-

tion. Needless to say, it is imperative to compute the kinetic rate

constants involved in all the different stages to simulate the over-

all aggregation process. Pre-nucleation events, which are subjected

to intense scrutiny lately and are the focus of this report, occur

at Stage I. The forward and backward rate constants in this Stage

are designated as knu,i and knu-, respectively. The rate-limiting step
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Fig. 3. Aβ aggregation reactions. (A) Aliquots of Aβ aggregation reactions with 20

(�), 30 (●), 40 (�), and 50 μM ( �) monomer concentrations in 20 mM Tris, 50 mM

NaCl at pH 8.0 were periodically removed and analyzed by ThT fluorescence assay.

The data were fit to sigmoidal equation (Eq. (1)). (B) and (C) The lag time and peak

intensity were plotted against Aβ concentration to obtain the expected linear fits.

of nucleation is followed by a growth phase, which is dominated

by aggregation reactions (Stage II) [4,25]; the forward and back-

ward rate constants in this stage are designated by kfb,i and kfb- re-

spectively. Stage III involves the formation of PFs that are known

to follow elongation (forward and backward rate constants des-

ignated as kel, and kel- respectively) and association mechanisms

(forward and backward rate constants designated by kla and kla-

respectively) towards fibrils [16,26–30] (Fig. 1). Using ODE-based

approach, we have previously modeled Stage III of aggregation in-

volving PF elongation and lateral association, and obtained key rate

constants for the reactions [24]. It is noteworthy that for the re-

actions involved in Stage III fixed rate constants were used pri-

marily to reduce the number of parameters. However, this strat-

egy did not affect our simulation because within this stage, as

the size of aggregates involved in these reactions are large, only

negligible differences in reaction rates occur due to their respec-

tive diffusivities. Our divide and conquer approach will help re-

duce the number of parameters that need to be computed si-

multaneously (forward and backward rate constant pairs for every

reaction, as well as the n∗). However, to facilitate the computa-

tion further, the following specific rational assumptions were made

based on established experimental and theoretical evidence. Ener-

getically, during the pre-nucleation phase (Stage I), the concentra-

tion of monomers and low-molecular weight oligomers (dimers,

trimers etc.) are in a dynamic flux with each other until the for-

mation of the nucleus [7,9,31–33]. The pre-nucleation reactions

constitute the rate-limiting events during aggregation and hence,

generate the observed lag times during sigmoidal fibril growth.

Based on the observed experimental bulk rates of reaction, we as-

sume that for pre-nucleation reactions, the forward rate constants

of formation become progressively larger for larger aggregates to-

wards the nucleus (knu,1 < knu,2 <���< knu,n∗ ). Furthermore, for

simplicity sake, a single backward rate constant, knu- was consid-

ered during this Stage based on the assumption that the back-

ward rate constant is independent of the aggregate size. The ba-

sis for such an assumption comes from the previous report by

Fig. 4. (A) Reactions considered during the pre- and post-nucleation stages in the

modified model. (B) Reactions considered for Stages I, II and III in the detailed model.

In these equations, Ai represents the aggregate of ith order, for example, A1 is

monomer, A2 is dimer etc. and n∗ the nucleation number.

Serio and colleagues, who showed that increasing the number of

seeding fibril ends by sonication could increase the reaction rates

significantly [34]. This suggests that the detachment of monomers

mostly occur at the terminal rather than in the internal segment of

the aggregate. Hence, we assumed that the number of monomers

within an oligomer does not affect the backward rates significantly.

Described below are the two closely-related modeling paradigms

called modified and detailed models that will be utilized in this

work.

The modified model. Our proposed model is based on the one

that was developed for insulin aggregation by Lee and co-workers

[15], and has been modified specifically for the Aβ . Aggregation

pathway has been characterized by a set of biochemical reac-

tions (Fig. 4A) for which the corresponding reaction fluxes were

computed and differential equations were formulated for each

oligomer concentration as a function of time (Eq. 12). Solving the

set of homogeneous ODEs allows us to study the temporal dy-

namics (in terms of concentration change) of each oligomer in the

system.

Jnu, j = knu, jA1Ai − knu−Ai+1; ∀i = 1, . . . , n∗ − 1

J f b,i = k f b, iA1F − k f b−F ; ∀i = 1, . . . , n∗ − 1

dA1

dt
= −2Jnu,1 −

n∗−1∑
i=2

Jnu,i − J f b,1 (12)

dA1

dt
= Jnu, j−1 − Jnu,i − J f b,i; ∀i = 2, . . . , n∗ − 1

dF

dt
= knu, n∗−1 A1An∗−1 − knu−F ;

Here, Ai’s denote i-mers, n∗ is the nucleation number, Jnu,i

and Jfb,i refer to the fluxes for nucleus and fibrils respectively,

and F is a fibril. The following assumptions were made for ag-

gregation involving homogenous, single nucleation mechanism:

(a) monomer adds to i-mers until fibril formation, (b) nucleation
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involves monomer addition as well as a structural change in the

aggregate, An∗ (this conformational change is implicit), (c) post-

nucleation events are relatively faster, as the forward rate con-

stants for post-nucleation are much higher than those in pre-

nucleation (i.e., knu,n∗+i>>knu,i) ( ∼108 fold difference was reported

in [15] for insulin aggregation), (d) the reverse reaction rate con-

stants are assumed to be independent of size i, and abbreviated

as knu- and kfb- and, (e) aggregation under agitation conditions are

known to drastically decrease the lag-times. Therefore, knu,i and

kfb,i are assumed to be diffusion-limited; using the Stokes–Einstein

equation, the diffusivity is proportional to the inverted cubic root

of i, resulting in:

knu, j = 1

2
knu,1

(
1 + 1

3
√

i

)
; k f b,i

1
3
√

i
(13)

Based on these assumptions, the reaction fluxes and differential

equations are derived as shown in Eq. 12. Note that assumption

(e) mentioned above helps in drastically reducing the number of

parameters to be estimated in the pathway by relating all the for-

ward rate constants in Stages I and II to the first rate constant for

each respective stage (i.e., knu,1 and kfb,1). Importantly, it greatly re-

duces the complexity involved in incorporating PF as a parameter.

This model, however, does not include the dynamics of Stage III,

protofibril-to-fibril transitions.

The detailed model. A complete simulation of the Aβ aggrega-

tion requires an estimate of the following six parameters: knu,1,

kfb,1, knu-, kfb- , n∗ and b (see Fig. 1), where b is the mapping con-

stant that helps correlate the experimental ThT fluorescence data

to concentration estimates as we have shown previously [24]. It

is a daunting task to make parameter sweep for individual reac-

tions with different values for each of these variables to accurately

simulate the experimental plots due to the large solution space.

Hence, as mentioned earlier, the sigmoidal fibril-growth curve was

dissected in three simplified stages as mentioned before to bring

down the number of parameters to be estimated together [24].

The pre- and post-nucleation stages are well-approximated by the

set of equations shown in Eq. 12. However, the stage involving PF

dynamics (Stage III) requires reactions from both post-nucleation

(Stage II) and PF elongation/lateral associations to be combined. As-

suming that fibrils can potentially reach up to about at least 3200-

mers (they can range much more than this but this conservative

lower limit is appropriate for our models), 3200 different species

have to be considered within the simulation and hence, a similar

number of differential equations have to be included to study their

change with concentration. Furthermore, many aggregates along

the pathway could potentially interact with one another, one needs

to consider 3200C2 combinations of possible reactions between

them, which renders the problem mathematically intractable. A vi-

able approach would be to consider monomer addition reactions

until the formation of 1600-mers in the system (which is approxi-

mated to be the average PF size (19)), and then to include our pre-

viously established PF elongation and lateral association reactions.

We call this as the detailed model for which the complete set of

reactions is shown in Fig. 4B. Such an endeavor then necessitates

the estimation of four more bulk rate constants: the forward and

backward rate constants for the PF elongation and lateral associ-

ation stage denoted by kel,1, kel-, kla and kla- , respectively. In our

previous report [24], we estimated the rate constants (kel,1, kel-, kla

and kla-) separately and verified them with in vitro experiments

as follows: kel,1 = 9.0 × 103 (h−1 μM−1), kel- = 4.5 × 102 (h−1),

kla = 9.0 × 10−1 (h−1 μM−1), kla- = 6.0 × 10−3 (h−1). Note that the

estimation of kfb,1 (in Stage II) automatically allows the calculation

of kfb, 1600-n∗ using Eq. (13); also, the PF elongation is considered to

be merely a continuation of the post-nucleation phase with kel,1=
kfb, 1600-n∗ and kel-= kfb. Hence, the detailed model as shown in

Fig. 4B can now be simulated to obtain the lag-times.

Rationale for simulation with modified and detailed models. In

order to achieve both simulation accuracy and ease, both the

modified model and the detailed model were used in tandem for

Aβ aggregation. Since the primary objective of this report is

estimating n∗, the modified model is adequate, which computes

Stages I and II. Our rationale to incorporate the detailed model

are (a) to investigate the dependence of n∗ on PF size observed

from stability analysis described above, and (b) to validate our

simulation by accounting monomer depletion, which will require

simulation of the entire aggregation pathway. Therefore, modified

model was used to study the lag times of aggregation exclusively,

generated for different values of n∗ as presented in Fig. 5, while

the detailed model was used for validation.

5. Results

5.1. Lag time correlations derived from modified model

Based on the stability analysis shown in Fig. 2, the parameter

sweep for rate constants were greatly reduced to the plausible

range, 10 < n∗ < 60 as mentioned above, which was computed

using the modified model. Table 1 shows the simulated lag times

for different n∗ and initial Aβ concentration. In order to find the

pre-nucleation rate constants along with n∗, the rate constants that

give the maximum lag times for each value of n∗ were estimated.

Note that, changing the rate constants further to achieve higher lag

times render the system of differential equations unstable. Hence,

they were considered unrealistic and hence, discarded. Interest-

ingly, the modified model shows four distinctly different regimes of

lag times corresponding to four different pairs of rate constants in

pre-nucleation (highlighted in Table 2). In parallel, this also char-

acterizes four different regimes of n∗ values associated with Aβ
aggregation that are summarized as follows: Regime 1: n∗ = 7–11;

Regime 2: n∗ = 12–14; Regime 3: n∗ = 15–17; Regime 4: n∗ = 18–21.

The rate constants for each of these regimes are shown in Table 2.

Note that the forward rate constant, (knu,1) was fixed for

each n∗, while the others and backward rate constant were var-

ied to achieve the highest lag times as reported in Table 1. It

is noteworthy that all the other n∗ values, i.e. n∗ < 7 and n∗

> 21 resulted in either (i) negative/ discontinuous simulations

or (ii) oscillatory nature of the fibril growth curve (instead of

the expected sigmoidal behavior). Both of these are indicative

of poor convergence or in other words, physiochemically invalid

possibilities (data not shown). Fig. 5A shows the simulations (solid

lines) of Aβ aggregation for n∗ = 12 for 20, 30, 40 and 50 μM

monomer concentrations that showed canonical sigmoidal growth

curves. Overlay of the normalized experimental data obtained from

Fig. 3A shows a very good correspondence between the simulation

and experimental data (Fig. 5A). The bulk lag times for each

initial monomer concentration and for each n∗ value were then

calculated using t0.5 − 2b term upon fitting the curves with Eq. (1)

(Table 1). One of the important properties of Aβ aggregation is

Table 1

Lag times from simulation for various estimates of n∗ .

n∗ 20 μM (h) 30 μM (h) 40 μM (h) 50 μM (h)

7 32.60 24.24 19.76 16.88

8 33.85 26.05 21.59 18.67

9 36.85 28.14 23.84 20.86

10 38.35 30.12 26.19 23.04

11 42.26 30.87 27.54 24.44

12 22.93 20.45 16.70 15.29

13 29.27 19.65 17.68 17.59

14 49.62 18.88 21.89 16.06

Expt 28.32 23.13 20.70 18.00
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Fig. 5. Overall simulation of aggregation. (A) Normalized ThT fluorescence data shown in Fig. 3 with 20 ( ), 30 (�), 40 ( ) and 50 ( ) μM Aβ . Corresponding lines are

obtained from the modified model (with a scaling factor, b of 6) for respective concentrations for n∗ = 12; 20 (red), 30 (black), 40 (navy) and 50 (green) μM Aβ . (B) Lag time

data obtained from the modified simulations for n∗ = 7–14 (Regimes 1 and 2) for these Aβ concentrations are compared to that obtained from the experiment (●). (C) Slope

derived from panel (B) (°) are plotted against the corresponding n∗ values (●). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

the linear correlation between Aβ concentrations and lag times

(Fig. 3B). By plotting the lag times values obtained for various

n∗ simulations, largely linear correlations were obtained for

n∗ = 7–13, and among them n∗ = 12 and 13 showed the best

correlation with the experimental data (Fig. 5B and C). None of

the simulations above n∗ = 13 yielded meaningful data suggesting

those values could be improbable (data not shown).

5.2. Comparison of the simulated and experimental lag times

The experimental ThT fluorescence plots provide an ensemble-

averaged, cumulative effect of all aggregated forms. Hence, from

the simulation, one has to plot the cumulative effects from all

the nucleated oligomers that can be mapped directly to the ex-

perimental results. For the modified model, we assume that all nu-

cleated species are ThT positive; hence the concentration of fib-

rils, [F], at each time point was simply multiplied by a mapping

constant b to see if they were in agreement with the experimen-

tal data. The model however, needs to account for the oligomer

sizes as each of the oligomers at the post-nucleation stage such as,

An∗ , An∗+1,…,A3200 would contribute to the bulk ThT fluorescence

differently. In order to do this, the individual oligomer contribu-

tions to ThT at each value of the simulation time were computed

to a weighted average as shown below:

3200−n∗∑
i=0

b ∗ i ∗ [An∗+1]. (14)

where [An∗+i] denotes the concentration of each nucleated species,

i denotes the number of Aβ molecules by which the oligomer

has elongated beyond n∗ and hence, the contribution of the cor-

responding oligomer towards the fluorescence, and b is a constant

scaling factor to map to the fluorescence sensitivity estimates. The

simulation curves shown in Fig. 5 plot the concentration of F based

on the assumption that all nucleated oligomers display ThT fluo-

rescence. The lag times estimated from the modified model were

still higher than that observed experimentally for Regimes 1, 3 and

4 as the rate constants were selected based on those that could

achieve maximum lag time for each n∗. Hence, it can be argued

that Regime 2 (showing lower lag times than the experimental

data) might allow for more rate constant combinations to serve

as valid solutions and simulate the experimental growth curves

better. Also, it is difficult to know what the minimum size of
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Table 2

Forward and backward rate constant values used in simulation. knu,1

is the forward rate constant value for the first reaction during the

Stage I, and rest of the forward rate constants are computed based on

Stokes–Einstein equation (Eq. (13)). For each simulation these combi-

nations of knu,1, and the backward rate constant, knu- were fixed.

Nucleation

number (n∗) Knu,1 (h−1 m M−1) Knu- (h−1)

7 1.38 × 100 9.5 × 10−1

8 1.38 × 100 5.6 × 10−1

Regime 1 9 1.38 × 100 3.7 × 10−1

10 1.38 × 100 2.3 × 10−1

11 1.38 × 100 1.9 × 10−1

Regime 2 12 4.6 × 100 2.9 × 10−1

13 4.6 × 100 2.8 × 10−1

14 4.6 × 100 9.0 × 10−2

Regime 3 15 1.38 × 101 1.4 × 10−2

16 1.38 × 101 1.0 × 10−2

17 2.1 × 101 1.1 × 10−2

Regime 4 18 2.1 × 101 1.1 × 10−2

19 2.4 × 101 1.1 × 10−2

20 2.6 × 101 1.5 × 10−2

21 2.8 × 101 1.2 × 10−2

oligomers that show ThT fluorescence from the experimental data

and hence, the experimental estimates are at best the maximum

limits of the lag times for each initial Aβ concentration reported

here. The data obtained from the modified model however, pro-

vides a plausible range of n∗ and generate important rate constants

that could be utilized in the detailed model.

5.3. Monomer depletion as model validation using the detailed model

The detailed model was used to simulate the monomer de-

pletion, which requires the knowledge of dynamics along the

entire pathway. While simple monomer additions were assumed

for Stages I and II, the following conditions were considered for

the reactions within the Stage III: The last forward rate constant

at Stage II was used as the starting point for each of the PF

elongation reactions (kfb,1600-n∗ = kel,1). As mentioned before, due

to their large size, rate constants involving individual PF reactions

were assumed not to vary much owing to small differences in

their respective diffusivities. In addition, the lateral association

reactions used in the abstraction scheme (Fig. 4A) consider A3200

as the fibril size (for simplicity). We treat all the reactions alike

or in other words, lateral association of A1600 + i, (i = 0,…,1599)

and A1600 will still produce an A3200. A similar strategy was used

in our previous report (19). Rate constant values derived from the

mathematical stability argument were also utilized to narrow the

parameter space. The rate constants thus obtained were directly

incorporated within the detailed model to generate the monomer

depletion curves for validation.

Although ThT fluorescence has served as a benchmark for an-

alyzing amyloid aggregation, binding of ThT to amyloid fibrils is

poorly characterized. Precise stoichiometry of ThT-to-Aβ is unclear

and hence, quantitative assessments could not be made accurately.

Since the aggregation data shown in Fig. 3 will be used for our

computational analyses described below, we wanted to ensure a

precise quantitative evaluation of the aggregation process. Gen-

eration and quantitative analysis of any homogeneous aggregate

along the aggregation pathway is nearly impossible to achieve, as

the dynamic nature of aggregation precludes experimental isola-

tion of specific aggregates for quantitative measurements. How-

ever, quantitative assessment can be made on monomers by mon-

itoring their disappearance during aggregation. To do so, we em-

ployed matrix-assisted laser desorption ionization-time of flight

Fig. 6. Monomer depletion data along with simulation overlap. (A) Analysis of Aβ

aggregation (50 μM) shown in Fig. 3A by MALDI-ToF mass spectrometry containing

an internal standard, insulin at the indicated times of incubation. (B–E) Normalized

ThT intensities (°) along with quantitative monomer depletion data obtained from

MALDI-ToF (�). Black line is the sigmoidal fit from the detailed simulation to the

data points shown in Fig. 3A. The red line is monomer depletion data obtained

from detailed simulation. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

(MALDI-ToF) mass spectrometric technique. MALDI-ToF is uniquely

suited for this experiment as this soft ionization technique ensures

no dissociation of preformed aggregates and hence enables quan-

tification of unreacted monomers exclusively. As described in Ex-

perimental Methods, aliquots of the samples from Aβ reactions

shown in Fig. 3 were plated on a MALDI plate along with a con-

stant amount of insulin as an internal standard. A similar method

for quantifying monomeric Aβ using insulin as internal standard

was adopted by Zovo and co-workers [23]. As shown in Fig. 6A, a

50 μM Aβ reaction analyzed by MALDI-ToF at various time points

of incubation showed two major peaks corresponding to the unre-

acted Aβ42 monomer (4513 a.m.u) along with the insulin standard

(5808 a.m.u). Over time, the intensity of Aβ42 monomers dimin-

ished correlating with aggregation. A plot of monomer intensities

normalized based on intensities of insulin standards (see Exper-

imental Methods) against incubation times resulted in monomer

depletion curve (�; Fig. 6B). It is interesting to note that the

monomer depletion curve did not display a sigmoidal pattern of

decay with a lag phase observed for the corresponding aggregation

reaction (◦; Fig. 6B). Instead, an exponential pattern was observed

without any observable lag times. This pattern was consistent for

the rest of the aggregation reactions (20–40 μM Aβ42; Figs. 4C–

E). Using the same parameters for the detailed model, plots for

monomer disappearance were obtained for n∗ =12. The red lines

in Figs. 6B–E indicate these simulate curves obtained from the de-

tailed model, which correlate well with the experimental monomer

depletion data obtained. Higher rates of monomer depletion ob-

served for the simulated curves is expected as the simulation using
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detailed model is able to account for every individual reaction than

the experimentally observed ones, which the ThT is incapable of

capturing. This is the likely reason for the absence of a complete

overlap between the experimental and the simulation data. Nev-

ertheless, the exponential decay of monomer depletion observed

from the mass spectrometric analysis is captured within the simu-

lation by the detailed model.

6. Discussion

In this report, we have investigated the range of monomers

that can associate to form a nucleus during Aβ aggregation–

in other words, the nucleation number, n∗, for a homogenous,

single nucleation model. As mentioned earlier, many groups have

attempted to identify the critical mass of the nucleus for amyloid

proteins by a variety of different approaches. More importantly,

the pre-nucleation dynamics has been under intense debate and

the presence of secondary nucleation, heterogeneity in both con-

formation and molecular mass and even conformationally-changed

monomer as a nucleus have been proposed [11,35–37]. Here, we

have adopted a simplistic model of homogenous Aβ aggregation

involving single unique nucleation event, and delineated the pro-

cess by modeling key elements by two independent approaches

with converging solutions: a reduced order stability argument

and ODE-based numerical simulations, supported by experimental

data. First, the reduced-order model stability analysis yielded a

range between 10 and 60 mers to be the possible range of n∗.

The subsequent numerical simulation provided a range between

7 and 21 mers for n∗. The larger range of n∗ from the stability

argument could be attributed to its simplistic form in comparison

to the numerical simulations. However, the overlap of 7–21 range

is noteworthy. Furthermore, keeping in mind the sizes of PFs

and fibrils, which are in the order of 1600 and 5000mers, the

estimates of n∗ from the two evaluations seem to be in good

agreement. Furthermore, the reduced-order stability analysis

enables us to reduce the parameter sweep for the subsequent

analysis as we reported earlier [20]. Secondly, within the narrow

n∗ range determined by numerical analyses, the value of 12 shows

good correlation with the experimental values. Shoghi-Jadid and

co-workers approximately determined the n∗ value for Aβ to be

6 [38]. It is also noteworthy that Saric and co-workers elegantly

demonstrated the significance of non-specific interactions during

the pre-nucleation phase [11]. More importantly, via atomistic

and coarse-grained models, the authors established a plausible

size nucleus to range between 6 and 14 depending on the initial

monomer concentration. The results derived from these reports are

in good agreement with our conclusions despite the differences

in the approaches. It has to be borne in mind that simulation

curves that we generated are not ‘model fits’ to the experimental

data but simply an overlay of the two independent data. In other

words, the experimental data were not subject to curve fitting

methods, and n∗ was obtained and verified by two independent

approaches.

It is also interesting to observe the variations in n∗ as a function

of PF concentration as modeled by our reduced order approach

(Fig. 2B). Similar results were obtained from numerical analysis

also (data not shown). Since only nucleus could have manifesta-

tions on the fate of PFs and not the other way around, the change

in PF concentrations as a function of n∗ suggest that the physio-

chemical or molecular nature of the nucleus could be responsible

for dictating the fate on the downstream events such as PF for-

mation. This also brings up the possibility of the nucleus being

heterogeneous, as has been proposed for poly-Q aggregates [39].

Heterogeneity could arise from conformation, overall structure of

the oligomeric assembly or critical nucleation number, n∗. It may

not be necessary to have n∗ to be conserved for Aβ aggregation

and could vary depending on the aggregation condition and en-

vironmental factors. A more likely scenario could be that n∗ may

never be a single value but rather, a range between specific values

similar to the one we have presented in this report (n∗ = 7 and

14). Within the numerical heterogeneity, the nucleus could also be

conformationally heterogeneous. Nevertheless, our simplified ho-

mogenous, single nucleation model has provided key insights in

the dynamics of the system. It is clear that the nucleation number

could only be within a tight range of values as determined in this

report. The effects of physiochemical and structural nature of nu-

cleus on aggregation are currently being investigated and will be

reported at a later date. Nevertheless, the current report presents

the dynamics of Aβ aggregation from a different approach and

opens the door in investigating the other possibilities of multiple

nuclei and heterogeneous nucleation during Aβ aggregation in the

future.
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