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Abstract. The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system,
out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maxi-
mum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed
in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become
analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on
numerical techniques which can be computationally expensive. In our past work, we have shown that the
MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as
cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these
cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our
analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse
and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies
at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of
flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but,
in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced
by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in
sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

1 Introduction

The classical work of Onsager [1, 2] and Prigogine [3] on
dissipative structures has revealed that self-organization
of matter and energy is a fundamental characteristic of
irreversible, physical systems. Irreversibility in nature is
perhaps best captured by the laws of thermodynamics; the
second law of thermodynamics and the extremum prin-
ciple of entropy production proposed by Prigogine and
Ziegler [4] provide great insight into emergent pattern for-
mation in complex systems, out of thermodynamic equi-
librium. The review paper by Martyushev [5] provides an
excellent collection of examples of the use of the MaxEP
in physics, chemistry and biology. Other arguments, such
as the constructal theory, put forth by Bejan and col-
laborators [6] has shown thermodynamics to be a very
powerful and fundamental theory of nature. However, we
believe that some of the problems which have been stud-
ied so far are very complex making it rather difficult to
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gain insight into the workings of the MaxEP in condi-
tions far from thermodynamic equilibrium. In this paper,
we investigate the self-organization of a single rigid body,
with orientational freedom, in a flowing Newtonian fluid.
Some fundamental questions related to the MaxEP princi-
ple remain unanswered. One particularly significant ques-
tion concerns the critical points where a system crosses
over from a near-equilibrium state to far from equilibrium.
Any discussion of the validity of the MaxEP as a mean-
ingful guiding principle is therefore incomplete. To obtain
a more systematic understanding of the validity of the
MaxEP under various conditions, we take up a relatively
simple toy problem of the orientation of a rigid body, im-
mersed in a flow. Our previous work on this subject has
shown MaxEP to be in agreement with other analytical,
numerical and experimental work in the limit of very small
Re1. The current paper extends our investigation to more
complex cases and for higher Re which allows for a more
thorough discussion of the above-mentioned issues.

1 The Reynolds number is defined as Re = Ud
ν

, where U is
the uniform velocity, d is the characteristic length and ν is the
kinematic viscosity.
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Table 1. This table shows the properties of the rigid bodies used in our experiments. Here, δ refers to the maximum thickness
of the body and d to the diameter.

Name Shape (δ, d) Aspect ratio

S Spheroid (3-dimension) (1.27 cm, 2.54 cm) 0.5 ( δ
d
)

P1 Half-ellipse (3-dimension) (0.508 cm, 2.54 cm) 5.0 ( d
δ
)

P2 Half-ellipse (2-dimension) (0.508 cm, 2.54 cm) 5.0 ( d
δ
)

P3 Half-ellipse (3-dimension) (2.54 cm, 0.508 cm) 0.2 ( d
δ
)

P4 Half-ellipse (2-dimension) (2.54 cm, 0.508 cm) 0.2 ( d
δ
)

Fig. 1. The Tinkercad schematics for the different bodies used
in our experiments. (a)–(d) refer to P1, P2, P3 and P4, re-
spectively while (e) refers to S.

Symmetric bodies such as spheroids and cylinders,
when introduced in a Newtonian fluid, orient themselves
in a steady configuration such that their longer axis is
perpendicular to the direction of the flow. This steady
state depends upon the shape, size, density of the rigid
body and the nature of the surrounding fluid [7,8]. In our
earlier work on this subject, we analytically explained ex-
perimental observations concerning the terminal states of
symmetric rigid bodies in Newtonian and non-Newtonian
fluids at very small Reynolds numbers [9]. However, as
the Re is increased, the fluid-solid system becomes highly
nonlinear and the effect of inertia is seen to give rise to sev-
eral bifurcations from the steady orientation to periodic
oscillations [10, 11] and beyond. Relevant experiments on
terminal orientation have come in two forms: i) sedimenta-
tion, where the body falls through a quiescent fluid under
gravitational force and as ii) a horizontal setup with the
body being hinged at the center of a flow tank. In this
latter case, the body is fixed in space, though allowed to
rotate, while the fluid moves past it. Both types of ex-
periments have been performed in our study and seen to
be qualitatively similar. Therefore they will not be distin-
guished in this work.

The immense mathematical complexity of fluid-
structure interaction (FSI) problems often demands a
computational approach since analytical resolutions are
not possible. While these methods effectively capture the
dynamical process, they are computationally expensive
and could be difficult to implement. The work of Onsager
and Prigogine [1, 3] in the early twentieth century shed
some new light on taking a top-down, energy-based ap-
proach to problems in physics. It was realized that flu-

ids are inherently dissipative systems and moving liquids
are out of thermodynamic equilibrium allowing us to ap-
ply thermodynamic tools towards these problems. Con-
strained energy flows in non-equilibrium thermodynamic
systems give rise to patterns in nature and can provide
a valuable alternative to the Newtonian force balance ap-
proach. In this paper we apply the MaxEP principle to
the problem of flow past a half-ellipse with two main ob-
jectives: O1) To test if the MaxEP is capable of explain-
ing stable steady configurations for more complex shapes
such as a half-ellipse, which possesses fewer symmetries
than previously examined bodies. O2) To understand the
nature of MaxEP states when the system is pushed far
from thermodynamic equilibrium.

2 Experiments

Two types of experiments were performed. In the first,
rigid half-ellipses of various dimensions were allowed to
freely fall in a tank containing a viscous liquid. In the
second experiment, the rigid bodies were hinged at the
center of a water tunnel, allowing it to freely rotate about
an axis, perpendicular to the flow. Several ellipsoids and
half-ellipses made of PLA plastic, with aspect ratio2 5
and 0.2 were designed (using the software Tinkercad) and
printed (see fig. 1) using a MakerBot Mini 3D printer.
Refer to table 1 for a list of bodies used. Two- and three-
dimensional half-ellipses were studied to compare with our
two-dimensional numerical studies and to contrast with
the three-dimensional case.

Sedimentation experiments

Spheroidal bodies and half-ellipses were released from rest
in a glass tank with dimensions 60.96 × 12.19 × 12.19 cu-
bic cm containing about 6308mL of a Newtonian liquid
which was a mixture of water and corn syrup, in the ra-
tio 3:2. The high viscosity of corn syrup was used to slow
down the falling bodies and prevent them from moving too
far into the oscillatory regime. Experiments were repeated
several times, for different initial orientations of the body.

2 The aspect ratio is defined by the ratio of the major axis to
the semi-minor axis corresponding to disk-shaped objects and
the ratio of the semi-major axis to the minor axis for elongated
needle shaped bodies.
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We observed that the spheroidal body, S, always oriented
itself with its longer axis perpendicular to the direction
of fall, as observed in previous work. The bodies P1 and
P2 fell with their curved side pointing towards the di-
rection of fall, which corresponds to an angle of 90◦. P3
and P4 proved to be a little problematic to work with
since they consistently moved towards the wall and slid
down vertically giving us no information about their nat-
ural configuration under free fall. However, previous ex-
periments on long, slender cylinders which are somewhat
similar to P3 are insightful. It is observed [12] that slen-
der needle-shaped bodies sedimenting in a viscous fluid,
at low inertial regimes, tend to fall with their long axis
perpendicular to the direction of gravity. In the case of
body P3, the asymmetry of the ends would cause some
minor deviation from this horizontal position due to the
shift in the center of mass. However, as the aspect ratio in-
creases to very large values, we would expect the body to
fall precisely like the slender needle. The fall times of the
bodies used were typically around 10 s to cover a height of
60.96 cm. Due to the slow speed of fall and relatively high
viscosity, the particle Re in these experiments, assuming
a characteristic length of 2.54 cm, was in the neighborhood
of 0.012. In order to achieve higher Re, a modification of
this experiment was performed which also avoided gravi-
tational effects.

Experiments in flow tank

Alternatively, the experiment was also conducted in a flow
tank containing water where the body was held at the cen-
ter of a recirculating flow tank while the flow speed was
varied to set the experiment at a specific Re. The flow
speeds ranged from 1 cm/s to 10 cm/s allowing the Re
to vary in the range 280 < Re < 2800. In such experi-
ments, the behavior of the solid body can be observed for
long periods of time and exposed to higher values of Re
compared to sedimentation studies. Previous studies have
shown that experiments done in a flow tank reveal simi-
lar qualitative results to the sedimentation case with the
only difference lying in the transition time to steady state
which is accelerated by gravity. Studies on spheroids and
cylinders of aspect ratios between 0.5 and 2.0 [11,13] have
indicated that all bodies align, in their steady states, with
their long axis perpendicular to the direction of the flow.

We performed similar experiments on half-ellipses P1
and P3 by suspending them at the center of a water tun-
nel (Engineering Laboratory Design Inc., Model 502) ca-
pable of flow rates between 0.1 and 1.0 fps at 0.37 kW.
The dimensions of the test section of the water tunnel
are 15.4 × 15.4 × 45.72 cubic cm. The ellipse was hinged
by means of a copper wire of thickness 0.023 cm passing
through the center of mass of the body which was placed
at the center of the tank in such a way as to prevent
any translational motion. The orientation angle for all
half-ellipses was defined such that the configuration where
i) the curved side was up and flat side down, corresponded
to θ = 0◦; ii) the curved side faced the flow, corresponded
to θ = 90◦; iii) the flat side was up and curved side down,

corresponded to θ = 180◦ and iv) the flat side faced the
flow, corresponded to θ = 270◦ (see fig. 3(b)). P1 consis-
tently showed θ = 0◦ and θ = 180◦ to be stable equilibria.
The body turned to both of these configurations from rest
and maintained these positions consistently for fairly high
Re. P3 showed two stable states corresponding to θ = 90◦
and θ = 270◦ (see fig. 4(c)), with the former being more
stable to perturbations than the latter. At θ = 270◦, the
body starts to oscillate slightly at higher flow speeds and
on occasion flips to θ = 90◦ when slightly disturbed.

3 Theoretical framework

The expression for entropy production for the case of a
sedimenting body in a viscous fluid, has been shown to be
of the functional form [13]

P =
1
T0

(∫
Ω

T : DdΩ

)
− me

T0
g · U

=
2μ

T0

(∫
Ω

D : DdΩ

)
− me

T0
g · U, (1)

where T0 is the constant ambient temperature, T is the
Cauchy stress tensor, D is the symmetric part of the ve-
locity gradient D = 1

2 (∇u + ∇T u), u is the fluid velocity
field and U is the far-field velocity of the fluid as x → ∞.
In the above equation, we decompose the stress tensor into
T = −pI + 2μD, p being the isotropic pressure and μ is
the viscous coefficient. Also, me = (ρb − ρf )|B| is the ef-
fective mass, where |B| represents the volume of the body,
ρb is the density of the body and ρf is the density of the
fluid. The flow domain Ω = Ω0/B, where B is the region
occupied by the rigid body and Ω0 depends on the partic-
ular geometry of the problem. In the case of a freefalling
body in an unbounded domain, Ω0 = R

3. For the case of
hinged body in a horizontal flow, the gravitational term
can be neglected so the entropy production is identical to
dissipation in the system [14,15].

The term P in eq. (1) contains the dissipation term
as well the gravity term. The exchange of energy between
kinetic and potential energies of the resulting fluid flow,
introduced in our earlier paper [14] is shown to be an
apt definition of the rate of entropy production, since it
satisfies certain key conditions including: i) P must remain
positive over the entire domain, ii) P must vanish when
the Re tends to zero in the reversible, Stokes case and
iii) P must satisfy Onsager’s reciprocity relations.

We have previously shown [13] that for the problem
of sedimentation of a rigid body of any shape in a New-
tonian fluid at Re = 0, P = 0. This is consistent with
the balance of linear momentum and angular momentum
equations [15] in the creeping motion regime and indi-
cates that sedimentation, if slow enough, is a reversible
process. In this case, the sedimenting body can fall with
any orientation which is consistent with the experimental
observations of Leal [7] on falling long bodies in a viscous
fluid. If we restrict the geometry of the body to one pos-
sessing 3 planes of reflection symmetry and one axis of



Page 4 of 9 Eur. Phys. J. E (2017) 40: 105

Fig. 2. A schematic of the computational domain with the
elliptical body placed along the centerline of the channel.

rotational symmetry, such as in a prolate spheroid, then
for 0 < Re � 1 when inertial effects appear, P > 0 and,
in the reference frame of the body, we can write

T0 P = U2(K11 cos φ2 + K22 sin φ2) − meg · U, (2)

where φ is the angle of orientation of the spheroid and
K11, K22 are positive coefficients pertaining to the drag
coefficients of the spheroid in two different orientations.
The derivative of P with respect to φ gives us

T0
∂P
∂φ

= U2(K22 − K11) sin 2φ (3)

yielding two possible extrema for P, namely, φ = 0 and
φ = π/2. Numerical computations for prolate spheroids
indicate that K22 > K11 [13], indicating that P has a max-
imum at φ = π/2. This angle is known to coincide with
the experimentally observed stable terminal state of the
spheroid. This result is true for a variety of other bodies
which belong to the same symmetry class, such as oblate
spheroids, cylinders and torus [15]. The MaxEP principle
therefore appears to serve as a selection principle to find
the stable terminal configuration. Note that the gravity
term does not really play a role in predicting the stable
configuration but appears in the initial definition of the P
to ensure the vanishing of entropy production in the limit-
ing case of Stokes flow. Therefore, we could also attribute
these results to the optimization of the dissipation func-
tion. The results obtained thus far can be summarized by
the following proposition.

Proposition 1 (Re � 1). Bodies possessing isotropic sym-
metry or containing three planes of reflection symmetry
with one axis of rotational symmetry, align themselves
such that their long axis is perpendicular to the uniform
flow direction, in their terminal stable states. This con-
figuration coincides with the state of maximum entropy
production.

4 Numerical simulations

Theoretical calculations restrict us to very small Re; in
order to understand the effect of inertia on the system we
resorted to two-dimensional numerical simulations using
the software COMSOL Multi-physics [16]. We used the

FSI module to simulate flow past an ellipse held in differ-
ent orientations and for Re ranging from 1 to 14. Specif-
ically, the entropy production in the entire domain and
drag forces on the body were computed for a numerically
generated flow, satisfying the Navier-Stokes, incompress-
ibility and far-field equations

0 = ρf

(
∂u
∂t

+ u · ∇u
)
− μ∇ · (∇u + ∇T u) + ∇p, (4)

0 = ∇ · u, (5)
U = Ue1 = lim

x→∞
u. (6)

As in eq. (1), in this case Ω = Ω0/B, where Ω0 is the
rectangular domain (18 cm×50 cm) (see fig. 2). The body
B, which is an ellipse or half-ellipse in this problem, is
placed along the centerline, at a distance of 15 cm from the
entrance. The flow was subject to perfect slip conditions
on the boundary to avoid the effect of boundary on the
results. The net drag computed is given by

FD = û·
∮

S

T·n̂ dS = û·
∮

S

−p n̂ dS

︸ ︷︷ ︸
Pressure Drag

+ û·
∮

S

2μD·n̂ dS

︸ ︷︷ ︸
Viscous Drag

, (7)

where û is a unit vector in the direction of flow and n̂ is the
outward unit normal to the surface S. The simulations for
our study were performed on a two-dimensional domain
with length 50 cm and height 18 cm. The channel inlet was
set to be the front wall of the domain, at which a uniform
inflow velocity was prescribed and the channel outlet was
identified as the end wall of the domain, at which zero
pressure, no viscous stresses were prescribed. The far-field
condition as x → ∞ is given by eq. (6). The top and
bottom walls of the domain were set to have slip boundary
conditions in order to suppress the influence of wall on the
entropy production. The bodies were each fixed about a
third of the channel length from the inlet and two thirds
of the channel length from the outlet along the centerline
(9 cm from the bottom) to avoid possible numerical inlet
and outlet effects at the low Re explored here.

We used COMSOL (finite-element method) to gener-
ate about 8600 triangular mesh elements for all the simula-
tions by using a “fine mesh”. The flow speeds were chosen
in the range 2 cm/s–50 cm/s and the kinematic viscosity,
ν, was set to be 10 cm2/s to achieve the desired Re. Con-
vergence tests for this code have been reported in previous
works [17, 18]. The time-dependent Navier-Stokes equa-
tions for the flow past the body were solved by the FSI
module in COMSOL, which uses the PARADISO solver,
which was run for 5 seconds in increments of 0.01 seconds.
The end time was chosen to go well beyond the transient
phase, well into the steady state. Flow past an ellipse and
half-ellipse with different aspect ratios between 0.1 and 5
(namely 0.1, 0.25, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) were stud-
ied. The ellipse was used as a benchmark to ensure that
the numerical results coincided with previous theoretical
predictions. Also, numerics allowed us to extend the scope
of the work to higher Re, past the development of wake
effects. As explained in the introduction, the half-ellipses
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Fig. 3. Entropy production, drag force, pressure drag and viscous drag as a function of different orientation angles for (a) ellipse
at Re = 8, (c) half-ellipse of aspect ratio 5 at Re = 8 and (d) half-ellipse of aspect ratio 0.1 at Re = 6. Panel (b) schematically
depicts the various equilibrium orientation angles for the sample case of aspect ratio 5.

introduce added complexity to the problem by reducing
the symmetry and allowing us to test the validity of the
MaxEP in this new scenario. In addition to the aspect ra-
tio, we also conducted a parametric sweep in Re and the
orientation angle, θ, of the ellipse/half-ellipse, where the
orientation of the body was changed around the center of
mass of the half-ellipse. Figure 3(d) shows some sample
cases of how θ was defined here. In our study, the Re took
the values 0.02, 0.06, 0.1, 0.16, 0.2, 0.4, 0.8, 1, 1.2, 1.6, 2,
4, 6, 8, 10 and 14, while θ ranged from 20◦, 45◦, 65◦, 90◦,

115◦, 135◦, 160◦, 180◦, 200◦, 225◦, 245◦, 270◦, 295◦, 315◦,
340◦, to 360◦.

Case 1: Flow past ellipse for 0 < Re < 10

We began testing the validity of the MaxEP as a pattern
selection principle in a Newtonian fluid by running our
simulation with the very well-known case of an ellipse. It
is theoretically proven for Re � 1 that bodies with fore-
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aft symmetry assume a stable orientation such that the
longer axis becomes perpendicular to the direction of the
flow. The ellipse was chosen, without loss of generality, to
have dimensions 0.02m (major axis) and 0.0078m (minor
axis). Figure 3(a) shows two angles corresponding to the
MaxEP states, namely θ = 90◦ and θ = 270◦, which are
indistinguishable positions with respect to the incoming
flow. The results of our numerical study show that the
terminal steady angle coincides with the configuration of
maximum entropy production and is in agreement with
previous experimental observations. Overall, we can sum-
marize our results by means of the following proposition.

Proposition 2 (0 < Re < 10). Bodies possessing isotropic
symmetry or containing three planes of reflection symme-
try with one axis of rotational symmetry align themselves
such as their long axis is perpendicular to the uniform flow
direction, in their terminal stable states. This configura-
tion coincides with i) the maximum entropy production,
ii) the maximum total drag, iii) the maximum pressure
drag and iv) the minimum viscous drag.

Case 2: Half-ellipse of aspect ratio � 1

Numerical computation of entropy production for the flow
past a half-ellipse was performed for Reynolds numbers
0 < Re ≤ 10. In the estimation of the Re, d was chosen
to be twice the major axis. Let us define a set S which
contains the maxima of P. In the case of the half-ellipse, S
contains two local maxima, at 90◦ and 270◦ (see fig. 3(c)),
the former of which is the experimentally observed stable
configuration for reasonably large Re at which the flow
remains steady; there is no study yet in the very small Re
regime for such a body. Drawing from the observations of
spheroidal bodies which maintain the same stable steady
state, we will assume that the half-ellipse preserves its
steady stable configuration of 90◦ for 0 < Re < 10. Our
calculations reveal that the total drag force and pressure
drag, also reveal multiple extrema at these angles.

How, then, do we choose the stable state from set S?
Propositions 1, 2 do not help since the ellipse possesses
only one extremum. To formulate the appropriate, more
general selection principle, we examined the entropy pro-
duction for the two extremum angles as a function of Re.
Figure 4(a) shows the entropy production versus Re for
a half-ellipse of aspect ratio 5 which reveals two distinct
phases: in Phase 1, corresponding to Re < 1.6 (approxi-
mately), the stable state (90◦) appears to correspond to
max S (where the difference between the two entropy pro-
duction extrema is extremely small), while in Phase 2,
the stable state switches to min S (see the right panel of
fig. 3(c)). As the flow speed increases and pushes the sys-
tem farther away from thermodynamic equilibrium, the
selection principle appears to reveal more complexity. In
summary:

Proposition 3 (0 < Re ≤ 10). In the near equilibrium
state, corresponding to 0 < Re ≤ 1.6, half-ellipse possess-
ing one axis of reflection symmetry, such as half-ellipses,

with sufficiently large aspect ratio, reveal equilibria when
their flat or curved sides become perpendicular to the uni-
form flow direction, corresponding to orientation angles
90◦ and 270◦. Both configurations are quantitatively sim-
ilar. Assuming that the stable configuration corresponds
to the angle of 90◦, this case coincides with i) the max-
imum entropy production; ii) the maximum total drag;
iii) the min-max of pressure drag and iv) the max-min
of viscous drag, over all angles. When the system is suf-
ficiently far from thermodynamic equilibrium, correspond-
ing to 1.6 < Re ≤ 10, the stable configuration of 90◦ co-
incides with i) the min-max of entropy production; ii) the
min-max total drag; iii) the min-max of pressure drag and
iv) the max-min of viscous drag.

Note that the upper limit of Re shown in Phase 2
and reported in this paper is limited by the range of flow
speeds explored studied here and is not an indication of
the limits imposed by thermodynamic effects.

Case 3: Half-ellipse of aspect ratio � 1

For the half-ellipse of aspect ratio � 1, we considered di-
mensions of 0.028m (semi-major axis) and 0.0028m (mi-
nor axis) resulting in AR = 0.1. Our simulations reveal
that, in this case, the MaxEP states occur at the angles
θ = 0◦ and 180◦ (see fig. 3(d)). These are indistinguish-
able positions with respect to the direction of the flow and
persist for Re ≤ 14 where our computation concluded as
seen in fig. 4(b). The more symmetric nature of this body
around its longer axis changes the equilibrium position
and the results observed here are similar to what might
be observed for a long ellipse. In summary:

Proposition 4 (0 < Re ≤ 14). A half-ellipse, with its mi-
nor axis much shorter that its semi-major axis, will ori-
ent itself such that the longer axis is perpendicular to the
direction of the flow, i.e. θ = 0◦ or 180◦. This position
coincides with i) the maximum entropy production, ii) the
maximum total drag, iii) the maximum pressure drag and
iv) the minimum viscous drag.

5 Discussion

In summary, our numerical computations of entropy
production indicate that, as in the case of symmetric
spheroidal bodies, half-ellipses also adopt the MaxEP
state in a flow for their equilibrium angle. In the case
when there is only one equilibrium this is the stable angle
as well. Bodies with aspect ratios much greater than unity
display more a complex behavior since they possess two
equilibria. In this particular case, it is the min-max of EP
which is the more stable configuration when the system
is far from equilibrium (i.e., Re > 1.6). These predictions
are also confirmed by previous and current experimental
work. The current work treats only the cases of aspect ra-
tios which are much greater or less than unity. Our study
shows that half-ellipses of aspect ratio 3 and above behave
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Fig. 4. Panel (a) shows the entropy production versus Re for the case of θ = 90◦ and θ = 270◦. The boundary between phase
1 and 2 (at Re = 1.6) is determined based on the observation switching of maxima in our data. Panel (b) shows a similar
graph for the angles 0◦ and 180◦, corresponding to half-ellipse of aspect ratio 0.1. Panel (c) shows the experimentally observed
equilibria for the two half-ellipses.

in a similar manner, while bodies with aspect ratio below
0.25 yield identical results. Our numerical calculations for
aspect ratio 0.5, 1 and 2 seems to suggest these to be
far more complicated systems with intermediate extremal
states, i.e. between 0◦ and 90◦. These results need to be
confirmed with very careful experimentation. Our initial
hypothesis is that there must be a continuous transition in
the stable configuration as the aspect ratio is changed. We
hope to report the results on these systems in our future
work.

While there is not much in the literature dealing with
half-ellipses [19–21], the work on orientation of symmetric
and asymmetric dumbbells by Candelier and Mehlig [19]
deserves some comments. This theoretical treatment uses
the method of reflections to investigate the torques that in-
duce terminal orientation of a long, slender dumbbell. The
authors find that the symmetric dumbbell falls horizon-
tally, i.e. with the central axis (massless in their case) per-
pendicular to the direction of fall. However, even a small
asymmetry between the two spheres gives rise to an addi-

tional torque imposed by the inhomogeneous mass distri-
bution causing the body to fall with its heavier (bigger)
side down. Our current and previous work [15] shows that
symmetric bodies with fore-aft symmetry and three planes
of reflection, such as the symmetric dumbbell, should fall
with their long axis perpendicular to gravity, as also is the
case with symmetric cylinders or spheroids. This case is in
agreement with the results of Candelier and Mehlig. How-
ever, the asymmetric cases of the dumbbell and half-ellipse
do not match as well and are not that easy to compare,
perhaps due to more nuanced reasons which might be re-
lated to the specific differences in geometry, inertial effects
and mass distribution. The take-away message from these
studies is that the effect of symmetry breaking results in
interesting and significant deviations from the symmetric
cases and need to be examined in greater detail.

One other significant outcome of this approach in gen-
eral is the agreement between the entropy-based optimiza-
tion and the mechanical arguments. This connection is in
fact what has drawn attention to the MaxEP approach in
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climate modeling, ecology and so many other areas where
it has been successful [5,22]. Perhaps we should not be so
surprised about this connection since it is highly plausi-
ble that the patterns revealed by forces and torques could
have their origins somewhere in the energetics (or “entrop-
ics”) of the problem. In an earlier work [23], we have shown
that the derivative of P with respect to translational and
angular velocity yields the Stokesian forces and torques
on a body. Also, we have consistently shown in all our
work in dealing with dissipative systems like fluid-solid
interaction that the optimization of P with respect to the
right order parameter [14] reveals the correct experimen-
tally observed pattern. As of now, there is no rigorous,
first-principle–based proof of why this works so well but
this remains a significant problem for future investigation.

Therefore, in answer to question O1 stated in the in-
troduction, the MaxEP principle appears to continue to
describe the steady states for a large class of bodies im-
mersed in a flow. For the stable state, it appears that the
Min-MaxEP is the correct selection principle for bodies
possessing orthotropic symmetry and 2 planes of symme-
try. Whether this is the most general principle or a pro-
jection of something more complex remains to be seen.
One of the most pressing issues related to the MaxEP is
its validity in far-from-equilibrium situations, which is our
second objective O2. In fact, while the very definition of
“far from equilibrium” is unclear in general, the advan-
tage of this particular problem in fluid mechanics is that
it is capable of shedding some light on this important issue
since much is known about critical flow bifurcations [24].
Computations presented here show that in the regime of
slow flows defined by Re ≤ 1.6, MaxEP holds for all the
bodies studied. However, for 1.6 < Re < 10, inertial effects
become prominent and the MaxEP is replaced by the Min-
MaxEP. The studies conducted so far appear to indicate
that as the flow becomes sufficiently fast to produce promi-
nent inertial effects, multiple equilibria are produced with
the Min-Max corresponding to the most stable pattern.
Based on experiments we can expect these results to hold
for much higher Re as long as the steady wake persists.
The MaxEP can be bolstered by additional constraints to
serve as a valid selection principle. Propositions 2–4 reveal
that the pressure or viscous drag are also uniform predic-
tors of the steady state and the min-max of pressure drag
or max-min of viscous drag can also work as a selection
principle for bodies with one axis of symmetry. The shift
in the entropy production beyond Re ≈ 1.6 coincides with
the critical regime where flow separation is thought to oc-
cur and wake vortices become more prominent [24] in the
flow past a cylinder. Interestingly, the same critical Re
also shows up in our thermodynamic analysis of flow past
a half-ellipse. This change is also similar to the results by
Hubler et al. [25] on the entropy production during the
self-assembly of nanotubes where the authors observe a
switching from a maximum to a minimum entropy pro-
duction with increasing dissipative effects.

Other than shedding light on the two issues addressed
above, the importance of this work lies in its potential
to address some very deep philosophical and biological
problems. Recent work in the area of ecological psychol-

ogy [26,27] argues that dissipative structures are inherent
properties of living and certain non-living systems. There-
fore, the end-directedness of the physical systems treated
in this paper could potentially shed light on the goal-
oriented behavior of living systems. The problem treated
here provides another example of an end-directed sys-
tem whereby the flow of energy in out-of-thermodynamic-
equilibrium states forces the rigid body to organize itself
in a specific configuration determined by the extremum or
increase of entropy production. We have argued at length
in a previous work [14] that reliance on the MaxEP is not
immediately indicative of teleology; the same outcome can
also be predicted by a torque balance argument [9]. Also,
the fact that the stable states in our example are charac-
terized by the extremum of drag and entropy production
points to a very fundamental, underlying connection be-
tween the two ways of talking about natural laws. This
makes the effectiveness of the entropy production argu-
ment an even more fundamental mystery that deserves
continued attention.

The flow tank experiments in the current study are
incapable of achieving the low Re limit explored in the
computations due to technical difficulty of having flow
control at low pressures. As a result the low Re experi-
ments were performed in a modified sedimentation tank.
However, despite the relatively high flow speeds and Re
in our experiments, the stable configuration of the rigid
body is still aligned with theoretical predictions. Elabo-
rate experiments across the same range of Re as in the
numerical study need to be performed in the future; these
and other shortcomings of our current work will be dealt
with in our future studies. We also plan on examining the
validity of the MaxEP and variations thereof for various
other classes of bodies, including half-ellipses with aspect
ratios close to 1 and those with fewer symmetry planes
than the ones explored here
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