The Use of Green Pond Conglomerate as Building Stone in Morris County, New Jersey

Gregory A. Pope
Montclair State University, popeg@montclair.edu

Follow this and additional works at: https://digitalcommons.montclair.edu/earth-envir-studies-facpubs

Part of the American Art and Architecture Commons, Geology Commons, Geomorphology Commons, Geotechnical Engineering Commons, Historic Preservation and Conservation Commons, Nature and Society Relations Commons, Other Architecture Commons, Physical and Environmental Geography Commons, Sedimentology Commons, and the Spatial Science Commons

MSU Digital Commons Citation
Pope, Gregory A., "The Use of Green Pond Conglomerate as Building Stone in Morris County, New Jersey" (2020). Department of Earth and Environmental Studies Faculty Scholarship and Creative Works. 75. https://digitalcommons.montclair.edu/earth-envir-studies-facpubs/75

This Poster is brought to you for free and open access by the Department of Earth and Environmental Studies at Montclair State University Digital Commons. It has been accepted for inclusion in Department of Earth and Environmental Studies Faculty Scholarship and Creative Works by an authorized administrator of Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.
Green Pond Conglomerate in Morris County

Map Key

Major building
Other structure
"Puddingstone" street name
Green Pond Conglomerate outcrop
Glacial moraines
Wisconsinan
Illinoian
Pre-Illinoian
Glacial striation
direction

Green Pond Conglomerate as a "cultural stone" (Pops et al. 2002)
- Attractive, very hard and resistant (and difficult to work).
- Unique and identifiable, widely referred to as "puddingstone" (here as well as in locations around Boston, MA and England).
- Research so far reveals no quarries for GPC.
- Unlike similar Shawangunk Conglomerate of Kittatinny Ridge (NJ) & Shawangunk Mountain (NY), no evidence that GPC was ever used for millstones.
- Use as a building stone probably limited to source of glacial boulders and cobbles (also noted by Harper, 2013).
- Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

About Green Pond Conglomerate (hereafter GPC)
- ~428±42 million years old, "nucl. quartz-poor quartzite conglomerate (medium to coarse grain) and quartzite, ..."
- Basta (1947) described the Green Pond "puddingstone" as "coarse to medium-grained, green-gray cemented, moderately weathered, ..."
- Approximately 90% of the "puddingstone" consists of quartzite, but sandstones and siltstones are also present.
- "PuDDING STONE INN" hotel in Boonton, formerly the mansion of foundry owner Cooper Lord, was named the "Puddingstone Inn".

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).

Stones were most commonly used as-is (rounded cobbles, Fig. 4), less commonly as faced or irregularly shaped stones (polynomial rubble, Fig. 5), roughly dressed as dimension stone (ashlar, Fig. 14), or veneer (Fig. 6).