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Abstract: Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and
improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1
in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female
mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly
and body composition, fasting blood glucose and insulin levels were determined every six weeks.
Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat
diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not
different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in
body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and
insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in
a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue.
These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting
hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a
greater protective role in females as compared to males.

Keywords: obesity; diabetes; bilirubin; Cre recombinase; insulin resistance; adiponectin

1. Introduction

Obesity continues to be a significant health concern in the United States and globally. Recent
reports indicate that global obesity prevalence will reach 18% in men and surpass 21% in women by
2025 [1]. Obesity is commonly associated with other cardiovascular and metabolic disorders such as
hypertension, diabetes, coronary heart disease and inflammation [2]. In addition, obesity is the leading
cause of non-alcoholic fatty liver disease, which has increased from 46% to 75% of all chronic liver
disease from 2005 to 2008 [3]. NAFLD also leads to hepatic insulin resistance that contributes to the
development of type II diabetes, a major risk factor for cardiovascular disease [4]. Given the severity
of the obesity epidemic and its complications, a greater understanding of the factors that promote and
protect against the harmful effects of obesity is warranted.

Heme oxygenase (HO) is a member of the heat-shock family of proteins where it plays a critical role
in the recycling of heme in the body [5]. HO enzymes consist of two isoforms, heme oxygenase-1 (HO-1)
and heme oxygenase-2 (HO-2) and each breaks down heme to biliverdin, carbon monoxide, and free
iron. Chemical induction of HO-1 has been demonstrated to prevent obesity, improve insulin sensitivity,
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and increase metabolism in numerous rodent models of obesity and diabetes [6–12]. Importantly,
systemic inhibition of HO-1 activity has been demonstrated to block all of the beneficial actions of
these various chemical inducers [8–11]. While chemical induction of HO-1 has been consistently
demonstrated to have beneficial effects in obesity, adipose-specific overexpression of HO-1 has been
reported to have no effect on the development of dietary-induced obesity and subsequent insulin
resistance [13].

Chemical induction of HO-1 has been reported to activate adiponectin release from adipocytes
and increase the circulating levels of adiponectin in the plasma [6,8,12,14]. HO is believed to increase
adiponectin levels by acting as a molecular chaperone as well as directly increasing adiponectin levels
in adipose tissue [15]. Adiponectin has many beneficial effects on metabolism and protects against
the development of obesity-associated cardiovascular disease [16–18]. Another mechanism by which
HO-1 may be protective against diabetes and obesity is through its antioxidant actions. HO increases
cellular antioxidant capabilities through breakdown of heme and generation of CO and bilirubin and
induction of ferritin [5]. Several studies have documented that elevated glucose levels observed in
human and rodents with obesity decrease HO-1 expression [19,20].

The goal of this study was to determine the role of adipocyte HO-1 in the regulation of body
weight and glucose metabolism under basal conditions and in response to dietary-induced obesity
in male and female mice. In order to determine the role of HO-1 in adipose tissue, we created an
adipose-specific knockout model of HO-1 using floxed HO-1 containing mice which were crossed with
mice expressing the Cre recombinase expressed under the control of the adiponectin promoter [21,22].

2. Results

2.1. Adipocyte-Specific Knockout of HO-1 Has No Effect on Body Weight, but Alters Body Composition in
Female Knockout Mice Fed a High-Fat Diet

Adipocyte-specific knockout of HO-1 had no significant effect on high-fat diet induced obesity
over the 30-week period in both male and female mice (Figure 1). Female adipocyte-specific knockout
females did display a significantly higher body weight when maintained under a normal-fat diet as
compared to Flox female mice (Table 1). Body composition in male mice fed a high-fat diet was not
different between knockout and Flox mice (Figure 2A,B); however, female knockout mice did display
increased fat mass and decreased lean mass over the last 12 weeks of the high-fat diet (Figure 2C,D).
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Table 1. Body weight and fasting blood glucose in Flox and KO mice fed a normal fat diet for 30 weeks.
N.S. = not statistically significant.

Parameter Sex Flox KO p

Body Weight
(grams) Males 31 ± 1

(n = 9)
31 ± 0.5
(n = 11) N.S.

Body Weight
(grams) Females 22 ± 0.6

(n = 6)
25 ± 0.6
(n = 6) 0.03

Fasting blood glucose
(mg/dL) Males 114 ± 5

(n = 9)
118 ± 5
(n = 11) N.S.

Fasting blood insulin
(ng/mL) Males 0.7 ± 0.12

(n = 6)
0.91 ± 0.29

(n = 6) N.S.

Fasting blood glucose
(mg/dL) Females 99 ± 5

(n = 6)
119 ± 5
(n = 6) 0.01

Fasting blood insulin
(ng/mL) Females 0.59 ± 0.03

(n = 6)
0.82 ± 0.05

(n = 6) 0.007

Int. J. Mol. Sci. 2017, 18, 611 3 of 12 

 

Table 1. Body weight and fasting blood glucose in Flox and KO mice fed a normal fat diet for 30 
weeks. N.S. = not statistically significant. 

Parameter Sex Flox KO p 
Body Weight  

(grams) 
Males 

31 ± 1  
(n = 9) 

31 ± 0.5  
(n = 11) 

N.S. 

Body Weight  
(grams) 

Females 
22 ± 0.6  
(n = 6) 

25 ± 0.6  
(n = 6) 

0.03 

Fasting blood glucose  
(mg/dL) 

Males 
114 ± 5  
(n = 9) 

118 ± 5  
(n = 11) 

N.S. 

Fasting blood insulin  
(ng/mL) 

Males 
0.7 ± 0.12  

(n = 6) 
0.91 ± 0.29  

(n = 6) 
N.S. 

Fasting blood glucose  
(mg/dL) 

Females 
99 ± 5  
(n = 6) 

119 ± 5  
(n = 6) 

0.01 

Fasting blood insulin  
(ng/mL) 

Females 
0.59 ± 0.03  

(n = 6) 
0.82 ± 0.05  

(n = 6) 
0.007 

 

Figure 2. Fat and lean body mass in Flox and KO mice placed on a high-fat diet: (A) fat mass in males; 
(B) lean mass in males; (C) fat mass in females; and (D) lean mass in females. * p < 0.05 compared to 
corresponding value in Flox females. Flox males, n = 8, KO males, n = 7, WT and KO females, n = 6. 

2.2. Adipocyte-Specific HO-1 Knockout Results in Sustained Increases in Fasting Blood Glucose Levels and 
Hyperinsulinemia in Female but Not Male Mice 

Fasting blood glucose levels were measured every six weeks in male and female mice on a high 
fat diet. In male mice, adipose-specific HO-1 knockout increased fasting blood glucose levels early in 
the study from Weeks 6 to 18; however, blood glucose levels were not different over the last 12 weeks 
of the study between the two genotypes (Figure 3A). Likewise, no differences in fasting blood insulin 
levels were observed between male Flox and knockout (KO) mice fed a high fat diet (Figure 4A). 
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Figure 2. Fat and lean body mass in Flox and KO mice placed on a high-fat diet: (A) fat mass in males;
(B) lean mass in males; (C) fat mass in females; and (D) lean mass in females. * p < 0.05 compared to
corresponding value in Flox females. Flox males, n = 8, KO males, n = 7, WT and KO females, n = 6.

2.2. Adipocyte-Specific HO-1 Knockout Results in Sustained Increases in Fasting Blood Glucose Levels and
Hyperinsulinemia in Female but Not Male Mice

Fasting blood glucose levels were measured every six weeks in male and female mice on a high
fat diet. In male mice, adipose-specific HO-1 knockout increased fasting blood glucose levels early in
the study from Weeks 6 to 18; however, blood glucose levels were not different over the last 12 weeks
of the study between the two genotypes (Figure 3A). Likewise, no differences in fasting blood insulin
levels were observed between male Flox and knockout (KO) mice fed a high fat diet (Figure 4A).
Fasting blood glucose and insulin levels were also not different between Flox and KO male mice fed
a normal fat diet (Table 1). In contrast, significant differences in fasting blood glucose levels were
observed between female Flox and KO mice fed a high fat diet from Week 12 to the end of the study
(Figure 3B). Fasting blood insluin levels were also increased in female KO as compared to Flox mice
fed a high fat diet (Figure 4B). Both fasting glucose and insulin levels were increased in the blood of
KO versus Flox mice fed a normal fat diet as well (Table 1).
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2.3. Adipocyte-Specific HO-1 Knockout Mice Exhibit Alterations in Adipose HO-1 Activity without Any
Changes in Kidney or Liver HO-1 Activity and Express dsRed Protein Following Cre-Mediated Deletion of the
HO-1 Allele

In order to determine the specificity of HO-1 deletion, HO-1 activity was measured in adipose,
kidney, and liver of Flox and KO mice after normal and high-fat feeding. Adipose HO-1 activity
decreased in KO mice as compared to Flox mice (Figure 5A). Interestingly, a significant decrease
in HO-1 activity was observed between Flox mice fed a high-fat as compared to normal fat diet
(Figure 5A). No differences in HO-1 activity between genotype and diet were observed in the kidney or
liver demonstrating the specificity of the HO-1 knockout to adipose tissue (Figure 5B,C). Specificity of
adipose-specific deletion of HO-1 was also confirmed by Western blot from adipose, kidney, and liver
using antibodies to both HO-1 as well as sdRed. The HO-1 antibody detected a band ~35 kDa in size
slightly larger than HO-1 (32 kDa) in adipose (Figure 6A,B) but not liver or kidney of adipose-specific
HO-1 KO mice (Figure 6B). This band was also detected by the anti-dsRed antibody in adipose and
not other tissues (Figure 6). A duel image clearly demonstrates that these antibodies detect the same
protein in the adipose but not in the kidney or liver of adipose-specific HO-1 KO mice. We were not
able to detect endogenous levels of HO-1 with the anti-HO-1 antibody in Flox mice which may be due
to the fact that HO-1 has been previously reported to be down-regulated by HFD in the adipose tissue
of mice [9].
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Adipose 

The levels of adiponectin, PGC1α, and SIRT1 were determined by Western blot of adipose tissue 
from Flox and KO mice. Levels of all of these proteins were significantly reduced in the adipose of 
KO compared to Flox mice (Figure 7). Next, we utilized real-time PCR to confirm the decrease in HO-
1 in adipose of KO as compared to flox mice (Figure 8A). The decrease in SIRT1 protein was further 
confirmed by a similar decrease in SIRT1 mRNA in KO as compared to Flox mice (Figure 8B). An 
increase in two markers of inflammation, TNF-α and IL1β was also observed in the adipose of KO as 
compared to Flox mice (Figure 8C,D). 
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antibody (Red) or anti-RFP (dsRed) antibody (Green) as well as merged image showing each antibody
detects the same band in the adipose but not kidney and liver of KO mice. Levels of β-actin demonstrate
equal loading of samples.

2.4. Loss of HO-1 Decreases Adiponectin, PGC1α, and SIRT1 and Increases Markers of Inflammation
in Adipose

The levels of adiponectin, PGC1α, and SIRT1 were determined by Western blot of adipose tissue
from Flox and KO mice. Levels of all of these proteins were significantly reduced in the adipose of
KO compared to Flox mice (Figure 7). Next, we utilized real-time PCR to confirm the decrease in
HO-1 in adipose of KO as compared to flox mice (Figure 8A). The decrease in SIRT1 protein was
further confirmed by a similar decrease in SIRT1 mRNA in KO as compared to Flox mice (Figure 8B).
An increase in two markers of inflammation, TNF-α and IL1β was also observed in the adipose of KO
as compared to Flox mice (Figure 8C,D).
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Figure 8. Gene expression levels of: (A) heme oxygenase-1 (HO-1); (B) Sirtuin-1 (SIRT1); (C) Tumor
necrosis factor-α (TNF-α); and (D) Interleukin-1β (IL1β) in adipose of male mice after 30 weeks high
fat diet. * p < 0.05 compared to the corresponding value in Flox mice. n = 4/group.

3. Discussion

Several studies have highlighted the beneficial action of chemical induction of HO-1 to lower
body weight, normalize insulin resistance and improve the adipokine profile in rodent models of
obesity [6,8–10]. However, the role of selective adipocyte HO-1 deficiency on the regulation of body
weight and composition under basal conditions and in response to dietary-induced obesity was not
previously known. The results of our study demonstrate the loss of adipocyte HO-1 has a greater effect
on body weight and composition in female versus male mice. The lack of effect of adipocyte-specific
deletion of HO-1 on metabolic phenotypes in male mice is similar to that observed in male mice
in which HO-1 was specifically overexpressed in the adipose tissue [13]. However, the effect of
adipose-specific overexpression on female mice with regard to body weight, composition, and insulin
sensitivity was not reported in this study [13]. The role of sex differences in metabolic response to
feast and famine has long been known [23]; however, only recently have we begun to think about sex
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differences in the development of obesity and responses to different intervention treatments [24,25].
Previous studies have demonstrated that although female mice were resistant to the weight lower
actions of chemical induction of HO-1 with cobalt protoporphyrin (CoPP), they still exhibited beneficial
actions on insulin resistance, blood pressure, and inflammation [9]. While this study did report the lack
of effect of HO-1 induction on body weight, the effect on body composition was not determined [9].
The results of the present study demonstrate that loss of adipocyte HO-1 has significant effects on body
composition to increase fat mass and lower lean mass independent of any changes in total body weight.
These alterations in body composition in female adipocyte-specific HO-1 KO mice are associated with
increased insulin resistance exhibited by increased fasting blood glucose and insulin levels in mice fed
both normal and high-fat diets. These results suggest that adipose HO-1 may play a greater protective
role to preserve insulin sensitivity in females versus males. Several studies have highlighted the
important role that alterations in sex hormones play in the regulation of blood pressure in males and
females [26,27]. It is possible that alterations in the levels of sex hormones following adipose-specific
deletion of HO-1 contribute to the metabolic disturbances observed in female mice. This possibility
needs to be further examined in future studies.

The role of sex hormones in the regulation of HO-1 has not been extensively studied. One study
examining the sex influences of hepatic expression of HO1 following trauma and hemorrhage found
HO-1 expression and activity were enhanced in females as compared to males [28]. Another study
demonstrated that female streptozotocin-induced diabetic rats exhibited greater HO-1 induction as
compared to male rats [29]. Likewise, female Wistar rats were found to exhibit elevated cardiac levels
of HO activity and expression, which may play a role in the sexual dimorphism of cardiovascular
ischemia-induced injury [30]. Lastly, HO-1 was found to be significantly elevated in the adipose tissue
of women with polycystic ovary syndrome (PCOS) suggesting that the HO-1 system may be playing a
beneficial compensatory role in the adipose tissue of these PCOS women [31].

The “HO-1/adiponectin axis” has been uncovered as a novel regulatory element for the beneficial
actions of HO-1 induction in several models of obesity and cardiovascular disease [6,8,14,32,33]. HO-1
increases adiponectin levels in both adipose tissue as well as circulating levels in the plasma [6,11,12].
The mechanism by which HO-1 increases adiponectin levels is adipose tissue is unclear, and it could
be species specific as HO-1 induction was reported to have no effect on adiponectin levels in cultured
human adipocytes [34]. It is also possible that induction of HO-1 increases circulating adiponectin
levels through release from non-adipose derived sources. The data from the current study support a
role for HO-1 in the regulation of adiponectin levels in the fat as adipose-specific deletion of HO-1
resulted in decreased adiponectin protein levels in the fat. Another recently identified pathway by
which HO-1 may be protective is through the Sirtuin1 (SIRT1) pathway. The SIRT1 pathway is a key
regulator of metabolism and is an emerging target for the treatment of obesity [35,36]. The intersection
of these two pathways has recently emerged in studies demonstrating the importance of SIRT1 in the
protective actions of HO-1 induction in the liver in two different models of dietary-induced obesity
with fatty liver disease [37,38]. The down-regulation of these pathways in the adipose tissue had no
significant effect on the degree of obesity or insulin resistance in male mice; however, it is possible that
alterations in these pathways contributed to the alterations in body weight, composition and insulin
sensitivity in female mice. Future studies that alter these pathways either individually or together in
female mice are needed to determine their roles definitively.

Obesity and inflammation have been extensively linked, but it is not clear if obesity drives the
inflammatory state or increased inflammation drives obesity [2,16]. TNF-α and IL1β, two markers of
inflammation, were increased in the adipose tissue of HO-1 KO mice. HO and its metabolites, bilirubin
and carbon monoxide, possess potent anti-inflammatory actions [39–42]. Thus, loss of HO activity in
adipocytes could set the stage for increased inflammation in these mice. However, this increase in
the inflammatory state of the adipose tissue had little effect on body weight or composition in male
mice but could contribute to the increase in fat mass and body weight as well as the insulin resistance
observed in female mice. Given this possibility, it would be interesting to determine if sex-specific
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differences in anti-inflammatory treatment exist in adipose-specific HO-1 KO mice. However, these
experiments are beyond the scope of the current study and would require additional studies in
this model.

4. Materials and Methods

4.1. Animals

The experimental procedures and protocols of this study conform to the National Institutes of
Health Guide for the Care and Use of Laboratory Animals and were approved by the Institutional
Animal Care and Use Committee of the University of Mississippi Medical Center (protocol 1283, initial
approval 2/2014, reapproved 1/2017).

Studies were performed on male and female Flox HO-1 and adipose-specific HO-1 knockout mice.
Flox HO-1 mice are designed to delete exons 3–5 and activate red fluorescent protein (dsRed) upon
cre-mediated deletion and maintained on a C57BL/6J genetic background as originally described [22].
Adiponectin-Cre mice were mice purchased from Jackson Labs (Bar Harbor, ME, USA) and were
derived from the originally described colony and bred onto a C57BL/6J background [21]. Mice which
contain both the Adiponectin-Cre and the flox HO-1 alleles are considered knockouts while mice which
lack the Adiponectin-Cre and only contain the flox HO-1 allele are considered Flox mice. Mice were
housed under standard conditions until 6 weeks of age after which time some mice were switched to
a 60% high-fat diet (diet # D12492, Research Diets, Inc., New Brunswick, NJ, USA) other mice were
allowed full access to standard laboratory chow. The groups of mice consumed each diet for 30 weeks.

4.2. Body Composition (EchoMRI)

Body composition changes were assessed at 6-week intervals throughout the study using magnetic
resonance imaging (EchoMRI-900TM, Echo Medical System, Houston, TX, USA). MRI measurements
were performed in conscious mice placed in a thin-walled plastic cylinder with a cylindrical plastic
insert added to limit movement of the mice. Fat mass, lean mass, free water and total water were
measured after brief exposure to a low-intensity electromagnetic field.

4.3. Fasting Glucose and Insulin

Following an eight hour fast a blood sample was obtained via orbital sinus under isoflurane
anesthesia. Blood glucose was measured using an Accu-Chek Advantage glucometer (Roche,
Mannheim, Germany). Fasting plasma insulin concentrations were determined by ELISAs (Rat/Mouse
Insulin ELISA, Millipore, Temecula, CA, USA) as previously described [43].

4.4. Heme Oxygenase Assay

Heme oxygenase assays on lysates prepared from adipose, liver and kidney of male Flox and
knockout mice were conducted at the end of the study as previously described [44–46]. Tissue was
homogenized in 250 mM sucrose, 10 mM KPO4, 1 mM EDTA and 0.1 mM PMSF (pH 7.7) in the
presence of protease inhibitors (2 µg/mL aprotinin, leupeptin and pepstatin). The homogenate was
then centrifuged at 3000× g for 15 min at 4 ◦C and the supernatant collected. Protein concentration
was measured using a Bio-rad protein assay with BSA standards. Reactions were carried out in a
1.2 mL containing: 2 mM glucose-6-phosphate, 0.2 unites glucose-6-phosphate dehydrogenase, 0.8 mM
NADPH, 20 µM hemin, and 0.5 mg of lysates as previously described (2). The reactions were incubated
for 1 h at 37 ◦C in the dark. The formed bilirubin was extracted with chloroform, and the change
in optical density (∆OD) at 464–530 nm was measured using an extinction coefficient of 40 mM/cm
for bilirubin. HO activity was expressed as picomoles of bilirubin formed per hour per milligram
of protein.
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4.5. Quantitative Real-Time PCR Analysis

Total RNA was harvested from Flox and HO-1 knockout mice by lysing adipose tissue using a
Qiagen Tissue Lyser LT (Qiagen, Germantown, MD, USA) and then extraction by 5-Prime PerfectPure
RNA Tissue Kit (Thermo Fisher Scientific, Wilmington, DE, USA). Total RNA was read on a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA) and cDNA was synthesized
using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Thermo Fisher Scientific,
Wilmington, DE, USA). PCR amplification of the cDNA was performed by quantitative real-time PCR
using SYBR Green qPCR SuperMix (Applied Biosystems, Thermo Fisher Scientific, Wilmington, DE,
USA). The thermocycling protocol consisted of 5 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C, and 30 s
at 60 ◦C and finished with a melting curve ranging from 60 to 95 ◦C to allow distinction of specific
products. Normalization of samples occurred in separate reactions with primers to GAPDH mRNA.

4.6. Western Blot Analysis

Western blots were performed on lysates prepared from tissues collected at the end of the
experiments. Tissue was homogenized in 250 mM sucrose, 10 mM KPO4, 1 mM EDTA and 0.1 mM
PMSF (pH 7.7) in the presence of protease inhibitors (2 µg/mL aprotinin, leupeptin and pepstatin)
as well as phosphatase inhibitors. Samples of 30 µg of protein were boiled in Laemmli sample buffer
(Bio-Rad, Hercules, CA, USA) for 5 min and electrophoresed on 10 or 12.5% SDS-polyacrylamide
gels and blotted onto nitrocellulose membrane. Membranes were blocked with Odyssey blocking
buffer (LI-COR, Lincoln, NE, USA) for 2 h at room temperature and then incubated with primary
antibodies overnight at 4 ◦C. Membranes were incubated with goat secondary antibodies anti-mouse
(IR700) or anti-rabbbit (IR800) (LI-COR, Lincoln, NE, USA, 1:10,000) for 1 h at room temperature.
Membranes were visualized using an Odyssey infrared imager (LI-COR, Lincoln, NE, USA) which
allows for the simultaneous detection of two proteins in the 700 and 800 channels. Densitometry
analysis was performed using Odyssey software (LI-COR, Lincoln, NE, USA). Antibodies for Western
blots were as follows: HO-1 (Enzo, Plymouth Meeting, PA, USA), PGC-1α (Milipore, Temecula, CA,
USA), Adiponectin, SIRT1, RFP (dsRED), and β-actin (Abcam, Cambridge, MA, USA). All antibodies
were used at a ratio of 1:1000 with blocking buffer, the lone exception being β-actin which was used at
a ratio of 1:5000. All blots from tissue samples were run with at least 3 samples from all groups of mice
per gel.

4.7. Statistics

All data are presented as mean ± S.E.M. Differences between treatment groups were determined
using one-way analysis of variance with a post hoc test (Dunnett’s). A p < 0.05 was considered to be
significant. All analyses were performed with SigmaStat (Systat Software, Inc., Richmond, CA, USA).

5. Conclusions

In conclusion, we utilized a novel model of adipose-specific knockout of HO-1 to determine its role
in the regulation of body weight, composition and fasting blood glucose and insulin levels. We crossed
Flox HO-1 mice with mice expressing the Cre recombinase under the control of the adiponectin
promoter to achieve adipocyte-specific deletion of HO-1. Adipocyte-specific loss of HO-1 had no
significant effect on body weight, composition, fasting glucose or insulin levels in male mice fed either
a normal or high-fat diet for 30 weeks. In contrast, adipocyte-specific knockout of HO-1 resulted in
increased fat mass, fasting hyperglycemia, and insulinemia in female mice fed both high and normal
fat diets. These results suggest that adipocyte HO-1 plays a greater protective role in females versus
males and strategies to preserve adipocyte HO-1 may have greater overall metabolic effects in females
than in males.
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