Montclair State University

=)} MONTCLAIR STATE Montclair State University Digital
7 UNIVERSITY Commons

Department of Information Management and
Business Analytics Faculty Scholarship and
Creative Works

Department of Information Management and
Business Analytics

1-1-1975

Optimum Production Lot Size Model for a System With
Deteriorating Inventory

Ram Misra
Montclair State University, misrar@mail.montclair.edu

Follow this and additional works at: https://digitalcommons.montclair.edu/infomgmt-busanalytics-
facpubs

b‘ Part of the Business Analytics Commons, and the Management Information Systems Commons

MSU Digital Commons Citation

Misra, Ram, "Optimum Production Lot Size Model for a System With Deteriorating Inventory" (1975).
Department of Information Management and Business Analytics Faculty Scholarship and Creative Works.
97.

https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs/97

This Article is brought to you for free and open access by the Department of Information Management and
Business Analytics at Montclair State University Digital Commons. It has been accepted for inclusion in
Department of Information Management and Business Analytics Faculty Scholarship and Creative Works by an
authorized administrator of Montclair State University Digital Commons. For more information, please contact
digitalcommons@montclair.edu.


https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs
https://digitalcommons.montclair.edu/infomgmt-busanalytics
https://digitalcommons.montclair.edu/infomgmt-busanalytics
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs?utm_source=digitalcommons.montclair.edu%2Finfomgmt-busanalytics-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs?utm_source=digitalcommons.montclair.edu%2Finfomgmt-busanalytics-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1398?utm_source=digitalcommons.montclair.edu%2Finfomgmt-busanalytics-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.montclair.edu%2Finfomgmt-busanalytics-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/infomgmt-busanalytics-facpubs/97?utm_source=digitalcommons.montclair.edu%2Finfomgmt-busanalytics-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu

INT. J. PROD. RES., 1975, voL. 13, No. 5, 495-505

Optimum production lot size model for a system with
deteriorating inventory

RAM B. MISRAfY

A production lot size model has been developed for an inventory system with deteriora-
ting items. Both the varying and constant rate of deterioration have been included
in the analysis. For the case of a varying rate, it seems impossible to obtain a simple
expression for the production lot size, so a numerical method has been suggested. For
the constant rate of deterioration case, an approximate expression has been derived
for the production lot size. Finally, a numerical example is solved to show the impact
of deterioration.

Introduction

An inventory system in a somewhat narrow way may be thought of as a
system in which certain items are stocked. The demands are met and the
new orders are placed to get the supply. The basic question here is when to
order and how much to order at a time. The answer to this question is depen-
dent on a large number of factors, for example, the nature of demand, circum-
stances governing replenishment, various costs such as inventory carrying
cost, shortage cost and replenishment cost and characteristics of the item being
stocked. It is the last of these factors, the characteristics of the item, that will
be addressed in this paper. The item may be perishable, hence its price might
go down depending on its age or the item may improve its quality as time
passes and as a result, its price may have an increasing trend. The item may
become obsolete depending upon change in style or technological development.
A number of researchers have attempted to solve these cases in some way or
other. Brown et al. (1967) introduced a Bayesian procedure to solve the prob-
lem of obsolescence. Pierskall (1969) considered a finite-period one item
system having known demand distribution without any backlogging. He
assumed a sequence of probabilities that the item becomes obsolete in a certain
period and applied dynamic programming to obtain a solution. Whitin (1957)
studied the case of deterioration of fashion goods at the end of the storage
period. Ghare and Schrader (1963) developed a simple EOQ model for an
inventory with a constant rate of deterioration. Recently, Covert and Philip
(1973) developed an EOQ model for items with a variable rate of deterioration.
Both of the above models assume an infinite production rate. In this paper
this condition has been relaxed and an attempt is made to present a more
general model where the inventory is deteriorating at an increasing, a decreasing
or a constant rate. Standard terminology for increasing and decreasing rates
is a Weibull rate and an exponential rate is used for a constant deterioration
rate. A two parameter Weibull rate will be used here, denoted by D(t) = aBtF-1.
The implication of the two parameter Weibull rate is that the items in inventory
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496 R. B. Misra

start deteriorating the instant they are received into inventory. A more
general case would be the use of a three parameter Weibull rate which will
permit already deteriorated items to be received by the inventory system and
also those items which may start deteriorating some time in the future. For
mathematical simplicity, the two parameter rate has been used in this paper.
However, the case of a three parameter rate can successfully be handled as
has been shown for a simple EOQ model by Philip (1974).

It is shown here that an expression for the lot size ¢ can be derived in
terms of the lot size for items without any deterioration. This is possible after
making some simplifying assumptions. Finally, the numerical results showing
the impact of deterioration are included.

Notation
The notation used in this paper is as follows :

= production rate given in number of units/year ;
A=demand rate given in number of units/year ;
c3 = cost of placing an order ;
I =the inventory level at time ¢ ;
Iy=maximum inventory level within a cycle ;
c=cost of a deteriorated unit ;
¢; =inventory carrying cost/unit/unit time ;
@ =production lot size ;
T =cycle time ;
T, =time required to produce @ units ;
T, =time during which there is no production in a cycle, i.e. Ty=7 1T, ;
D(t)=the deterioration rate, given by «Bt#-! where «, 8,¢>0. When
B=1, D(t) becomes a constant which is the case of an exponential
decay. When B <1, the rate of deterioration is decreasing with ¢ and
when B> 1, it is increasing with ¢ ;
K =total cost/unit time ;
T,*=optimum value of 7', ;
T,* =optimum value of 7', ;
T, *=optimum value of 7' for conventional production rate model ;
T, * = optimum value of 7', for conventional production rate model ;
Q.* =optimum value of @ for conventional production rate model.

Development of the model
Assumptions
The model will be developed using the following assumptions :

(1) Demand is known and has a constant rate.

2) Shortages are not allowed.

3) Production rate governing supply is finite.

4) Units are available for satisfying demand immediately after their
production.

(5) A deteriorated unit is not repaired or replaced by a good unit.

(6) The cost of a deteriorated unit is constant and equal to ¢. This will
account for the salvage value, if any.

(
(
(
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Optimum production lot size model 497

(7) The units start deteriorating only when they are received into inven-
tory. This assumption allows us to use a two parameter rate as
discussed earlier.

(8) The production rate is independent of the size of the production lot.

(9) The system is in steady state, i.e. the production rate is greater than
the demand rate.

(10) The number of units will be treated as a continuous variable.

(11) There are no constraints on space, production lot size, number of
production set-ups, etc.

(12) The production lot size, though unknown, is fixed ; i.e. it will not vary
from one cycle to another.

Mathematical development

An inventory cycle for a finite production rate model is shown in the figure.
The inventory level at the beginning and end of the cycle is zero. The cycle
length is equal to @’/A where @’ is the number of good units out of a batch of @
units. The production will take place for a duration of 7', time units and at
the end of this period enough units should be left that will take care of the
demand in the period 7'— 7', and the deteriorated units. Let D(f) represent
the instantaneous deterioration rate function for the items stocked.
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A finite production rate model with deterioration of inventory.

The change in the inventory level, dI during a small interval of time d¢ is a
function of the deterioration, the demand rate A, production rate ¢y and the

remaining inventory. Thus

—dI,=ID@)dt+ Xdt—pdt for 0<t,<T,, (1)

and
—dI,=ID@E)dt+xdt for T,<t,<T. ()

Equations (1) and (2) can be rewritten as

T IDO=(-Y, 0<i<T, (3)
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498 R. B. Misra

and dl
—d~t—2+ID(t)=—/\, T,<t<T. (4)
The solutions of these differential equations are given in Spiegel (1960).

These are
¢

§ (= X)exp (f D(t)dt) dt+ B,
Il= 2 y (5)

exp < :’: D(t) dt)

and
ty

{ (= X)exp (f D(t)dt)dt,+ B,
=2 : (6)

exp( _'f’ D(t) dt)
T,

The values of the constants of integration B;, B, can be found by using the
boundary conditions. That is, at t,=0, I, =0, the initial inventory, and at
ty=T,, I,=1, Applying these boundary conditions yields B,=0, B,=1,,.
This gives

t
{ (4= X)exp (f D(t) dt) dt
Ilz ° ] (7)

exp < 3" D) dt)
0

and
t

{ (=XNexp (f D@)dt)ydt+1,
I,=2= : (8)

exp( 33 D) dt)
T

In order to simplify the expressions of I,, I, further, it is imperative that
the deterioration rate function D(t) is known.

Two types of deterioration rate can be encountered in reality. The rate
can vary with time or remain constant. Both of these cases will be taken in
this paper.

Case 1. Varying rate of deterioration
The function D(t) can be written for this case as D(t)=«fSt#~! where a, 8
are some constants determined by the deterioration process. Substituting
this value of D(t) in eqns. (7) and (8) yields
t
§ (=) exp («t?) dt

o0
1 exp (at,f) ’ (%)

and
t,

| (=) exp (atf) dt + 1,

0
To= exp (at,f) ’ (10)
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Optimum production lot size model 499
Now at t,=T—-T,=T,, I,=0 hence
T,
= | Aexp («tf) dt
0

Substituting this in eqn. (10) yields

-

t,
f (—A)exp (atf) dt+ | Xexp («tf)dt
0 0

)

I,= (11)

exp (at,?

There is another condition that must be satisfied by this system. This
condition gives a relationship between 7', and 7,. That is at ¢;,=7T, and
t,=0, I, is equal to [,. This gives

T,
2‘; (—A) exp («th) dt

= p— ﬂ
1, p— 6'. A exp («t?) dt. (12)

This equation is not easy to simplify because of the difficulty in integration.
The average carrying cost/unit time can be written as follows :

1

T, T[j]dt+j1dt]

where I, I, are as given in eqns. (9) and (11), and ordering cost/unit time

_ cyT,y + Cs
ST +T, T+T,
Thus the total cost equation is
Cq l/’T1 Cs
K— 1, I, dt 13
Tz[% dt+5 ] T4 T, T+ T, (13)

There are two variables 7', and 7T, in eqn. (13). However, they are not
independent and are related by eqn. (12). If we can solve 7', in terms of T,
or vice versa, eqn. (13) can be written as a function of only one variable, 7', or
T,. Then the cost can be minimized by differentiating it with respect to that
variable (7', or T',), equating it to zero and solving for that variable (7', or T',).
Unfortunately, this is satisfactory theoretically, but practically it is almost
impossible since the integrals in eqn. (13) are not integrable and eqn. (12)
cannot be solved explicitly for 7', and T',. Thus, other ways to solve the prob-
lem have to be found. It is proposed that eqn. (12) be solved by a trial and
error method. Say, as a result of this we find T'; =kT, where k is a constant
obtained by trial and error. Then eqn. (13) can be written only in terms of one
variable (say T';). However, this still is not easy to differentiate because of the
integrals. The simplest way to tackle this problem is the tedious and long
method of expanding the exponential terms in a series form and integrating
term by term. Since any such series contains an infinite number of terms, an
assumption may have to be made so that the higher order terms could be
ignored. This will result in a simple expression which can be differentiated
with respect to 7', and equated to zero in order to find the optimum value of
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500 R. B. Misra

Ty, T\*. Again, it may not be easy to solve for 7',* so some numerical
techniques may have to be used in order to find T,*. Covert and Philip (1973)
have applied the Correction Method of Newton (Stiefl 1963) for a simple lot
size model with a changing rate of deterioration. This technique can also be
successfully used for the finite production rate model.

From the above discussion, at least one thing is clear, that is obtaining a
solution for this model is not easy. The problem as a whole can be considerably
simplified if we make the following approximation.

Approximation

We treat the inventory depletion curve as a straight line, even though it is
not linear. This is the same as in simple models without deterioration. Thus,
the total cost equation can be written as

LU =AT = 1y) eIy~ AT,) A\ G
K_ T + T +CIIO(1—$)+T‘

(14)

The first two terms in eqn. (14) represent the cost due to spoiled units, the third
term represents the average inventory cost and finally the fourth term is the
ordering cost. The eqn. (14) can be simplified to yield

T

A\ ¢
K~ 7 -,\c+0110<1—¥)+?3. (15)

It can be seen that eqn. (15) is a lot simpler than eqn. (13). Substituting from
eqn. (12) the expression for 1, in terms of 7', yields

ey A\ T
— 1—— /4
TIT, /\c+cl< ‘p)j[; A exp (ath) dt +

C3

T+ 7Ty

~

(16)

We have already discussed how to find a relationship between 7', and T,
by trial and error from eqn. (12). As proposed earlier, let 7', =kT', where k is a
constant determined by trial and error. Substituting the value of 7', in eqn.
(16), differentiating it with respect to T, and equating to zero yields

C3

A
o <1_J) exp (aTzﬂ)—(TJm=0. (17)

Equation (17) can be solved by the numerical method proposed by Covert
and Philip (1973). Once 7',* is known, T\* can be found from 7*=kT,*.
This is the time duration for which the production should take place. Thus,
the production lot size Q will be

Q*:‘—")Z'Tl*' (18)

In absence of any specific relationship for 7',* in terms of the system’s
variables ¢, ¢;, ¢, A and 3, it is not possible here to see their relative impact on
Ty* and thus on the production lot size @*. However, such a study can be
performed with the help of a computer.
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Optumum production lot size model 501

Case 2. Constant rate of deterioration

Most of the difficulties encountered in the previous case of changing rate of
deterioration occur because the rate is not constant. But if the deterioration
rate is constant, the function D(t) can be written as D(t)=a. For this case, the
expression for I, I, I, can be written by simply substituting =1 in eqns.
(9), (10) and (11). This gives

b

§ (- A) exp () dt

A =N
I= oxp (aty) = [1—exp (—aty)], (19)
7, A
Io= § Xexp («) dt=— [exp («T3)—1], (20)
0 o
3" (— A) exp («t) dt + ’:F‘ Aexp («t) dt
.0 0
: exp (at,)
_Z‘ <exp («T'y) —exp (“tz))' (21)
o exp (afy)

The carrying cost/unit time is

1 Ti(p—A
cl[TﬁLng L exp (et
(e,

0 « exp (od,)
or, after simplification ¢, /(T + T,) [(¢ — A/2)T 2+ AT,%/2].
The cost of deterioration/unit time is (cs7",)/(T,+ T',) — Ac (this was obtained
in the earlier case). The order cost/unit time is ¢;/(T,+ T,). Summing
all these three costs gives the total cost

cypTy ¢y (g — AT 2+ AT,2) C3
~—T Aot — .
T.+7, Y2 7471, T.+T,

(22)

The next step before optimizing K is to reduce K to a function of either 7T';
or T,. This is done by rewriting the condition given by eqn. (12) for this case,
and simplifying it. This yields

(b= A1 —exp (—aTy)]=A[exp (aT,) - 1].

This equation can be further simplified to give a simple relationship by
making an assumption that «T is a relatively small quantity so that the higher
power terms can be neglected. Keeping this in view and expanding the
exponential terms in a series form yields

T,? T2 —-A
e +T,—m Tl—a L )~0 where m:L. (23)
2 2 A
This is a quadratic equation. Solving it for 7', gives approximately
.2
Tzzm<T1—°‘21>. (24)
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502 R. B. Misra

Equation (23) can also be solved for 7';. This gives
T,
le-;’; (1+of2T,). (25)

From eqns. (24) and (25) a useful relationship can be established.

— A\ a7',2
T+ T2=% Tl—(ﬁ)\—) 21 : (26)

To optimize one has to differentiate eqn. (22) with respect to 7'; using eqns.
(24) and (26) and equate the result to zero. The number of terms obtained as a
result of differentiation are too many to write all at once. However, after
simplification and neglecting the terms involving higher order « terms (o2 and
more), this reduces to

Cl/ld 2 Cl l/IZ 2 ¢ _
7 IR T goy T =0

If «7, <1, the above equation can be solved for the optimum 7', *. This
gives

2¢4

)

Recalling that 7',* for items without deterioration is

. 2¢5A
T =\/ (clw—w)’

eqn. (27) can be rewritten as

7%=

(27)

(28)

The expression for T,* can be found in a similar manner by using eqns. (22),
(25) and (26). This gives

T,* = (29)

.7 *,
1+[“1M] *

where T, * = +/[(2¢,)/(c, Ah)(h — A)] for items without deterioration.
Thus the scheduling period T* is the sum 7',*+ T,*, and the optimum
production lot size is

1

14+ —o -
¢ P

where @ * = 1/[(2¢5A)/(c,)(¥)/ (¥ — A)] is the lot size for items without deteriora-
tion.
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Optimum production lot size model 503

It can be observed from eqn. (30) that the effect of deterioration is one of
decreasing the production lot size. That is, it will be more desirable to produce
less at a time but more frequently. Also, it can be observed from eqn. (30)
that if «=0, i.e. there is no deterioration, the lot size is equal to the conven-
tional lot size. On the other hand, this general case should give the standard
results if the production rate is infinite. This is the case solved by Ghare and
Schrader (1963). They obtained the following condition for optimal cycle
time 7' :

A ¢ A chaT ¢4

5ttt =0 (31)

It should be recalled that in the derivation of eqn. (30), «7" was assumed to
be quite small. Applying this to eqn. (31) gives

cha A ¢y
— = =0.
5 T2 T

This equation when solved for T gives

T — 2¢4/c, A

C
14—
%1

which is the expression for T',*, given by eqn. (29) after substituting ¢ = co.
Thus, the relationships established in this paper are consistent.

A numerical example

A numerical problem is solved here. The values of various variables are
as follows :
A= 2500 unit/year,

iy ="7500 unit/year,
¢, = $0-60/unit/year,
¢ = $3:00/unit,
= $50-00/order,
D(t) = a=4% (exponential decay).

Solution :
2 x 50 x 2500 7500 — 791
0-60 (7500 —2500)
- 791 =685,
1 2500
14— x—
0 6 50 7500
685 years
T¥=—>——=333d
Ti¥ =500 =333 days,
7500 — 2500 33 -32
* g . f 24
2 3500 ( 5 50) years (from eqn. (24))
=44-4 days.
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504 R. B. Misra

Cycle length, T =33-3 + 44-4="77-7 days.

77-7 x 2500
Actual demand during 7' = ——3:—5-5-——— = 681 units.

Total deteriorated units in a cycle time = 685 — 525 = 160 units.
For example, if the conventional lot size Q* =791 was used then
T,*=38-5 days,
T,*=47-2 days,
T*=85"7 days,
Actual demand = 587 units.

Total deteriorated units in a cycle time =791 — 587 = 204 units.
Thus, by ordering the optimum amount, the number of deteriorated units
is reduced.

Conclusion

A production lot size model has been developed for an inventory system
with deteriorating items. Both the varying and constant rate of deterioration
have been included in the analysis. For the case of varying deterioration
rate, it seems impossible to obtain a moderately simple expression for the
production lot size so some numerical method has to be used. Covert and
Philip (1973) have illustrated one such method which also can be used for
finding the production lot size. If the rate is constant (exponential case), it is
possible to obtain a relatively simple expression as has been shown in this
paper. A numerical example has been solved to see the impact of a constant
deterioration rate. It reduces the optimum production lot size. The new
production lot size effectively balances these three costs—the cost of carrying
inventory, the cost of deteriorated units and the ordering cost.

Un modsle de production en lots a été développé & usage d’un systéme & articles de
détérioration. Aussi bien le régime constant que le régime variable de détérioration
ont été incorporés & I’étude. Pour le cas du régime variable, il semble impossible
d’obtenir une expression simple pour la production en lots, de sorte qu’une méthode
numérique a été proposée. En ce qui concerne le régime de détérioration constant,
une expression approximative de la production en lots a été réalisée par dérivation.
Finalement un example numérique est résolu pour illustrer 'impact de la détérioration.

Fir ein Lagerbestandssystem mit Artikeln, die eine Wertminderung erfahren,
wurde ein Modell mit Produktionslosen/GréBe entwickelt. In der Analyse sind
verénderliche und konstante Wertminderungen enthalten. Bei der veriinderlichen
Wertminderung scheint es unméglich zu sein, die Produktionslose/GroBe einfach
auszudriicken, daher wurde ein numerisches Verfahren vorgeschlagen. Bei der
konstanten Wertminderung wurde fiirr die Produktionslose/GroBe ein ungefihrer
Ausdruck abgeleitet. AbschlieSend wird ein numerisches Beispiel gelost, um die
Bedeutung der Wertminderung zu verdeutlichen.
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