Elemental hyper-accumulation in mushrooms with a focus on arsenic

Walter Goessler
Institute of Chemistry, University of Graz, Austria, walter.goessler@uni-graz.at

Follow this and additional works at: https://digitalcommons.montclair.edu/sustainability-seminar

Part of the Sustainability Commons

Goessler, Walter, "Elemental hyper-accumulation in mushrooms with a focus on arsenic" (2021).
https://digitalcommons.montclair.edu/sustainability-seminar/2021/spring2021/6
Mushrooms play an important role in the biogeochemical cycling of trace elements. They do neither belong to plants nor to animals but form their own kingdom. Some mushrooms live in symbiosis with plants or as parasites on other living organisms. Mushrooms are abundant worldwide. Although omnipresent, they only become noticeable when fruiting bodies are produced. Mushrooms are becoming a more important part of our diet and are used in various aspects of our life. They are used for antibiotics production, in the food industry (wine, cheese...) but also as biological pesticides. New applications cover plastics degradation and use as a leather replacement.

Some mushrooms can grow very fast and are able to (hyper)accumulate elements from the surrounding soil. This presentation will cover elemental accumulation by mushrooms with a focus on the unique arsenic speciation in mushrooms.

For more information contact Meiyin Wu at wum@mail.montclair.edu