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a b s t r a c t

Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due,
in various parts, to Kahn, Galvin–Tetali, and Zhao) that the independence polynomial of a
d-regular graph is maximized by disjoint copies of Kd,d. Their proof uses linear program-
ming bounds on the distribution of a cleverly chosen random variable. In this paper, we use
this method to give lower bounds on the independence polynomial of regular graphs. We
also give a new bound on the number of independent sets in triangle-free cubic graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Extremal problems involving the number of substructures of a graph of a given type have popped up in quite a few
different contexts of late. One of the best known such results is due to Kahn [6] and Zhao [11]. We let Ind(G) be the set of
independent sets in a graph G. Their theorem bounds ind(G) = |Ind(G)| for regular graphs.

Theorem 1 (Kahn, Zhao). If G is a d-regular graph on n vertices, then

ind(G)1/n ≤ ind(Kd,d)1/2d.

One source for questions of this type is the field of statistical mechanics. For instance, the hard-core model on a graph G is
a probability distribution on the independent sets of G in which a independent set I is chosen with probability proportional
to λ|I|. Here λ > 0 is a parameter called the fugacity. The normalizing factor is

PG(λ) =

∑
I∈Ind(G)

λ|I|,

known to graph theorists as the independence polynomial of G and to statistical physicists as the partition function of this
hard-core model.

Kahn [6] in fact proved the analogue of Theorem 1 for the independence polynomial of bipartite graphs with fugacity
λ ≥ 1, i.e.,

PG(λ)1/n ≤ PKd,d (λ)
1/2d.

Galvin and Tetali [5] extended Kahn’s result to cover the case 0 < λ < 1. Finally, Zhao [11] proved the full theorem using a
clever lifting argument.
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More recently, Davies, Jenssen, Perkins, and Roberts [3] gave an independent proof introducing an audacious new
approach utilizing linear programming. Following Davies et al., we will derive bounds on PG(λ) by considering the occupancy
fraction, denotedαG(λ). This is the expected fraction of vertices ofG belonging to a random independent set chosen according
the hard-core model. More explicitly,

αG(λ) =
1
n

∑
I∈Ind(G)|I|λ

|I|

PG(λ)
=

1
n

λP ′

G(λ)
PG(λ)

.

Davies et al. [3] proved the following.

Theorem 2 (Davies, Jenssen, Perkins, Roberts). For all d-regular graphs G and all λ > 0, it is the case that

αG(λ) ≤ αKd,d (λ).

Because αG(λ) is essentially the logarithmic derivative of PG(λ), this is a strengthening of Theorem 1. The proof of
Theorem 3 below shows how to use the occupancy fraction to bound the independence polynomial.

In this paper, we investigate lower bound analogues of Theorem 2. In Section 2, we give an example of the linear
programming method by proving that for any d-regular graph, the occupancy fraction is bounded below by that of Kd+1.
As pointed out by Davies et al. [4], this result can also be deduced from the proof for the lower bound on ind(G) in graphs
with maximum degree at most d proved by the authors in [2].

In the final section, we discuss a problem raised by Kahn [7], that of giving a lower bound on PG(λ) for d-regular triangle-
free graphs. We use the same occupancy fraction approach to give bounds in this case. In Zhao’s lovely survey article on this
area [12, Problem 9.5], he proposes to study the general problem of finding the infimum and supremum of ind(G)1/n(G) over
d-regular graphs not satisfying a given excluded subgraph condition.

When λ is large, the hard-core model is biased strongly towards large independent sets. Indeed,

lim
λ→∞

αG(λ) =
α(G)
n

, (1)

where α(G) is the independence number of G, and the ratio α(G)/n is the independence ratio of G. In Section 3, we focus on
triangle-free cubic graphs. Here we are able to give a bound that is relatively good when λ = 1. We conjectured that the
Petersen graph is extremal when λ = 1, which was recently proved by Perarnau and Perkins [8]. Indeed, they prove that the
occupancy fraction for cubic triangle-free graphs is minimized by the Petersen graph for 0 < λ ≤ 1. This cannot be extended
to all λ since the independence ratio for triangle-free cubic graphs is minimized by GP(7, 2), a generalized Petersen graph
(see Staton [10]). In fact, we conjecture that for any λ, PG(λ) is minimized by either the Petersen graph or the generalized
Petersen graph.

2. Lower bounds for the hard-core model on regular graphs

In this section, we present a proof of a best possible lower bound on the occupancy fraction for d-regular graphs. The
proof we give serves as an introduction to the linear programming method of Davies et al. [3]. In a subsequent paper, Davies
et al. [4] observe that this result follows relatively straightforwardly from a result of the current authors in [2]. Our proof
appears at the end of this section after a number of lemmas concerning the linear programming approach.

Theorem 3. If G is a d-regular graph on n vertices and λ > 0, then

αG(λ) ≥ αKd+1 (λ).

As a consequence, we have

PG(λ)1/n ≥ PKd+1 (λ)
1/(d+1).

Equality is, in both cases, only achieved for G a disjoint union Kd+1s.

Following Davies et al. [3], we will consider, for each vertex in V , the probability that it belongs to, and the probability
that it is covered by, a randomly chosen independent set. To be explicit, if I is an independent set, we say that v ∈ V (G)
is occupied if v ∈ I and uncovered if I ∩ N(v) = ∅. If I is distributed according to the hard-core model, we write pv for
P(v ∈ I) and qv for P(vis uncovered). Note that both pv and qv are functions of λ. Also, it is the case that pv ≤ qv since
{I ∈ Ind(G) : v is occupied} ⊆ {I ∈ Ind(G) : v is uncovered}.

Lemma 4. In the hard-core model on G with fugacity λ > 0, we have

(1) pv =
λ

1+λ
qv , and

(2) αG(λ) =
1
n

∑
v∈V (G)

pv .
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Proof. For (1), note that the conditional probability that v is occupied given that it is uncovered is λ/(1+ λ). For the second
part, simply write |I| =

∑
v∈V (G)1(v ∈ I) and take expectations. □

We will prove Theorem 3 by computing the occupancy fraction in two different ways, each based on the neighborhood
of a uniformly randomly chosen vertex v in G. In particular, we record the external influence of I on N(v).

Definition. Let I ∈ Ind(G) be chosen according to the hard-coremodel, and v be chosen uniformly from V (G), independently
of I . We define random variables

U = U(v, I) = N(v) \ N(I \ N(v)), and H = H(v, I) = G[U].

Thus, U is the subset of the neighborhood of v which is not covered by any vertex of I outside of N(v).

We define this triple because, conditioning on I \ N(v), we have that I ∩ N(v) ⊆ U and, moreover, I ∩ N(v) is distributed
according to the hard-core model on H with fugacity λ.

Lemma 5 (Davies et al.). In the hard-core model on a d-regular graph G with fugacity λ > 0 we have, with the notation above,

(1) αG(λ) =
λ

1+λ
E

(
1

PH (λ)

)
, and also

(2) αG(λ) =
λ
d E

(
P ′
H (λ)

PH (λ)

)
.

Proof. Since v is uniformly distributed on V (G), Lemma 4 yields

αG(λ) = E(pv) =
λ

1 + λ
E(qv) =

λ

1 + λ
E

(
1

PH (λ)

)
.

The final equality follows since v is uncovered precisely if I∩N(v) = ∅, and I∩N(v) is distributed according to the hard-core
model on H .

For the second part, we pick a random vertex of V (G) by picking a uniformly random neighbor, say u, of v. Since G is
regular, u is also uniformly distributed on V (G). Thus,

αG(λ) = E (pu) =
1
d
E

(
λP ′

H (λ)
PH (λ)

)
,

since E(λP ′

H (λ)/PH (λ)) is the expected number of occupied neighbors of v. □

Wewill now find theminimumvalue ofE(1/PH (λ)), where the distribution ofH is no longer tied to that arising from some
d-regular graph. Instead, the distribution ofH will merely have to satisfy the very limited condition that the two expressions
for α in Lemma 5 agree. We let H be the set of all graphs on at most d vertices, including the graph with empty vertex set.
We say a random variable H with values in H is neighborly if

λ

1 + λ
E

(
1

PH (λ)

)
=

λ

d
E

(
P ′

H (λ)
PH (λ)

)
.

Now we define

α∗ =
λ

1 + λ
inf

{
E

(
1

PH (λ)

)
: H is a neighborly probability distribution on H

}
.

This minimum is the optimal value of a linear program where the variables are the probabilities that the distribution of H
assigns to graphs in H. We write pH for these probabilities, and also set

aH =
1

PH (λ)
and bH =

(1 + λ)P ′

H (λ)
dPH (λ)

.

In standard form, the linear program is the following, which we refer to as LP(d, λ).

α∗ = min
λ

2(1 + λ)

∑
H∈H

pH (aH + bH ) subject to∑
H∈H

pH = 1,∑
H∈H

pH (aH − bH ) = 0,

pH ≥ 0 for all H ∈ H.
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Anumber of times in this paperweuse somebasic facts about the solutions to linear programs and their duals. Firstly, ifwe
can find feasible solutions to a program and its dual with matching objective values, both solutions are optimal. Secondly,
there is a more subtle equivalent criterion for simultaneous optimality called complementary slackness. A pair of feasible
solutions (one for the primal and one for the dual) satisfy complementary slackness if, for every matching pair of variable
and constraint, either the constraint is tight or the variable is zero (or both). See the text of Chvátal [1] for more details.

We will compute the solution to LP(d, λ) by exhibiting a solution to the primal and a solution to the dual which have
matching objective values. We will also verify uniqueness by using complementary slackness. We start by writing down the
dual problem. It has two unbounded variables, A and B, corresponding to the equality constraints in the original program
and an inequality corresponding to each variable.

α∗ = max
λ

2(1 + λ)
A subject to

A + B(aH − bH ) ≤ aH + bH for all H ∈ H.

We will exhibit a dual feasible (A, B) whose dual objective value agrees with the primal objective value for the distribution
(pH ) arising from taking G = Kd+1. To that end, we prove a lemma that describes the (A, B) that satisfy certain of the dual
constraints with equality.

Lemma 6. Suppose that A = AK , B = BK ∈ R are such that the dual constraints A + B(aH − bH ) ≥ aH + bH are satisfied with
equality for H being the graph with no vertices (denoted ∅) and also for H = K ̸= ∅. Then

AK =
2bK

1 − aK + bK
=

2

1 +
λd

2(1+λ)
p′(K )
µ(K )

and BK = 1 − AK ,

where p′(K ) = P(I ̸= ∅) and µ(K ) = E|I| for I distributed according to HCK (λ).

Proof. Since a∅ = 1 and b∅ = 0, one of the equations that A and B satisfy is that A + B = 1. Substituting into the constraint
corresponding to H = K gives

AK =
2bK

1 − aK + bK
=

2bK
p′(K ) + bK

=
2

1 +
p′(K )
bK

=
2

1 +
λd

2(1+λ)
p′(K )
µ(K )

. □

Lemma 7. With the notation of the previous lemma, if H and K are graphs on at most d vertices, then the following are equivalent.

(1) AK + BK (aH − bH ) ≤ aH + bH .

(2) AK ≤ AH .

(3) p′(K )
µ(K ) ≥

p′(H)
µ(H) .

Proof. For the first equivalence, note that the following are equivalent.

AK + BK (aH − bH ) ≤ aH + bH
AK + (1 − AK )(aH − bH ) ≤ aH + bH

AK (1 − aH + bH ) ≤ 2bH
AK ≤ AH .

The second equivalence comes from the fact that AK = 1/
(
1+

λd
2(1+λ)

p′(K )
µ(K )

)
is a strictly decreasing function of p′(K )/µ(K ). □

Now we claim that A = AKd = 2(1 + λ)/(1 + (d + 1)λ), B = BKd = ((d − 1)λ − 1)/(1 + (d + 1)λ) are dual feasible and
give the same dual objective value as arises in the primal problem from taking (pC ) =

(
pKd+1
C

)
, the probability distribution

arising from the graph Kd+1. Clearly this choice of A, B gives

α =
λ

2(1 + λ)
AKd =

λ

1 + (d + 1)λ
= α(Kd+1).

On the other hand all other dual constraints are satisfied. By Lemma 7, for all H with between 1 and d vertices, AK + BK (aH −

bH ) ≤ aH + bH , since

p′(Kd)
µ(Kd)

= 1 ≥
p′(H)
µ(H)

.

Thus the minimum value of α is achieved for G = Kd+1. To prove uniqueness here we need only observe that the last
inequality is only tight when H is also complete. Thus, by complementary slackness, no distribution (pH ) can be extremal
unless it is supported on complete graphs H (and the zero vertex graph). In particular no graph G can be extremal unless pG
is supported on these. The following lemma characterizes such graphs.
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Lemma 8. If G is d-regular, and for all independent I ⊆ V (G) and all v ∈ V , we have H = H(v, I) complete (or ∅), then G is a
disjoint union of Kd+1s.

Proof. Suppose G is not a disjoint union of Kd+1s. Then there exists a vertex v with non-adjacent neighbors u, w. Set
I = {u, w}. Then H[{u, w}] = E2 and in particular H is neither ∅ nor complete. □

Proof of Theorem3. Given a d-regular graphG, consider the randomvariablesU andH defined just before Lemma 5. Clearly,
the distribution of H is neighborly and thus

αG(λ) ≥ α∗ = αKd+1 (λ).

For the bound on the independence polynomial, note that

log PG(λ) =

∫ λ

0

P ′

G(t)
PG(t)

dt

= n
∫ λ

0

αG(t)
t

dt

≥ n
∫ λ

0

αKd+1 (t)
t

dt

=
n

d + 1
log PKd+1 (λ). □

3. Minimizing the hard-core model for triangle-free cubic graphs

Beforewe focus on cubic triangle-free graphs, we beginwith a brief discussion of d-regular triangle-free graphs. As Davies
et al. [3] noted, the linear programming approach is simpler when G is triangle-free since the graph induced on N(v), for any
v, is empty. Where before we had to define both U and H = G[U], now U , the set of uncovered neighbors of v, always
induces an empty graph. Thus, we need only keep track of howmany neighbors of v are uncovered. Our approach will be to
add further constraints to the linear program, thereby getting a better approximation to the actual minimum.

Pick an independent set I according to the hard-core model and a vertex v uniformly at random, independently of I . Let
Y be the number of uncovered neighbors of v, so range(Y ) = {0, 1, 2, . . ., d}. The distribution of Y is specified by the d + 1
values y0, y1, y2, . . . , yd, where yi = P(Y = i).

The first constraint we add is the simple one that y0 ≥ α. This follows from the fact that any vertex in I must necessarily
have all of its neighbors uncovered. Since, by Lemma 5,

αG(λ) =
λ

d
E

(
P ′

H (λ)
PH (λ)

)
and

P ′

Ei
(λ)

PEi (λ)
=

i(1 + λ)i−1

(1 + λ)i
=

i
1 + λ

,

the constraint can be written

y0 −

d∑
i=1

iλ
d(1 + λ)

yi ≥ 0.

With only this constraint, we can prove the following theorem.We omit its proof because the result turns out to be rather
weak, as will be discussed below.

Theorem 9. If G is a d-regular triangle-free graph, then

α(G) ≥ y∗

0 =
λ(1 + (i + 1)λ)

(1 + λ)i+1 + λ(d + 1 + (d + i + 1)λ)
,

where mi ≤ λ < mi−1 and

mi =

(
d

i + 1

)1/i

− 1.

The bound that Theorem 9 gives is substantially weaker than the following bound of Shearer [9] on the independence
ratio of triangle-free d-regular graphs.

Theorem 10 (Shearer). If G is a triangle-free d-regular graph, then α(G)/n(G) ≥ f (d), where f (d) is given by the recurrence

f (0) = 1, f (d) =
1 + (d2 − d)f (d − 1)

d2 + 1
.
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Davies et al. [4] were able to use a different linear program to find a tight bound on αG(λ) that, in fact, is not monotonic
in λ. A clever choice of λ yields a bound on the independence ratio matching that of Shearer.

We now turn our attention to the cubic case. For this, we add a constraint that is a lower bound on p3. Let T3 be the first
three levels of the infinite 3-regular tree (so that T3 has ten vertices). Also, recall that N2(v) = {x ∈ V (G) : d(x, v) = 2} and
N2

[v] = {x ∈ V (G) : d(x, v) ≤ 2}.

Lemma 11. If G is a triangle-free cubic graph and Y is the number of uncovered neighbors of a uniformly chosen vertex with
respect to an independent I chosen according to the hard-core model, then

P(Y = 3) ≥
(1 + λ)3

P(T3)
.

Proof. We first note that

P(Y = 3) = P(N2
[v] ∩ I ⊆ N(v)).

This follows from the fact that all of v’s neighbors are uncovered if and only if v ̸∈ I and N2(v)∩ I = ∅. Let A = N2
[v] ∩ I and

W = V (G) \ N2
[v]. We will bound P(A ⊆ N(v)|I ∩ W ). Since we have conditioned on I ∩ W , we know that A is distributed

as the hard-core model on G′
= G[N2

[v] \ N(I ∩ W )], i.e., the graph on N2
[v] after deleting vertices with neighbors in W .

Hence,

P(A ⊆ N(v)|I ∩ W ) =
(1 + λ)3

P(G′)
,

since there are precisely eight possible values for A and the generating function for their weights is (1+ λ)3. It only remains
to show that, for all λ, we have P(G′) ≤ P(T3). Note that there is a size-preserving injection from Ind(G′) to Ind(T3) and the
result follows. □

As observed by Davies et al., we can pick a uniformly random vertex of G by first picking a uniformly vertex v and then
picking a uniformly random neighbor of v since G is regular. Thus,

E Y =
1
n

∑
v∈V (G)

∑
u∈N(v)

qu = 3 ·
1 + λ

λ
α.

So, we have the constraint E Y = 3E[(1 + λ)−Y
]. Of course,

∑3
i=0yi = 1.

With our added constraints, the linear program becomes the following. We write Λ for (1+λ)3
P(T3)

.

Minimize y1 + 2y2 + 3y3

subject to
3∑

i=0

yi = 1,

3∑
i=0

(
i − 3(1 + λ)−i)yi = 0,

y0 −

3∑
i=1

iλ
3(1 + λ)

yi ≥ 0,

y3 ≥ Λ,

y0, y1, y2, y3 ≥ 0.

Once again, our strategy will be to exhibit values for the yis together with values for the dual program which satisfy
complementary slackness.

The dual program is

Maximize S − ΛB
subject to S − 3M − A ≤ 0,

S +

(
1 −

3
1 + λ

)
M +

λ

3(1 + λ)
A ≤ 1,

S +

(
2 −

3
(1 + λ)2

)
M +

2λ
3(1 + λ)

A ≤ 2,

S +

(
3 −

3
(1 + λ)3

)
M +

3λ
3(1 + λ)

A − B ≤ 3,

A, B ≥ 0.
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The solution to the primal linear program is as follows.

y∗

0 =
λ(1 + 2λ)

1 + 6λ + 6λ2 +
λ3(1 + λ)2

(1 + 6λ + 6λ2)P(T3)
,

y∗

1 =
−1 + λ + 2λ2

1 + 6λ + 6λ2 +
(1 + 7λ + 9λ2

+ λ3)(1 + λ)2

(1 + 6λ + 6λ2)P(T3)
,

y∗

2 =
2(1 + λ)2

1 + 6λ + 6λ2 −
(2 + 14λ + 21λ2

+ 8λ3)(1 + λ)2

(1 + 6λ + 6λ2)P(T3)
,

y∗

3 =
(1 + λ)3

P(T3)
.

(2)

Each of the y∗

i s is non-negative for all λ ≥ 0. This is obvious for y∗

0 and y∗

3; for y
∗

1 and y∗

2 we verify that for each, written as a
rational function with denominator (1 + 6λ + 6λ2)P(T3), the numerator has all nonnegative coefficients. The optimal dual
solution is

S∗
=

3(1 + λ)(1 + 2λ)
1 + 6λ + 6λ2 ,

M∗
=

(1 + λ)3

1 + 6λ + 6λ2 ,

A∗
=

3λ2(1 + λ)
1 + 6λ + 6λ2 ,

B∗
=

3λ2

1 + 6λ + 6λ2 .

We observe that we have equality in all constraints in both linear programs. Hence, complementary slackness yields that
these are each optimal solutions to the corresponding programs. This is summarized in the following theorem.

Theorem 12. If G is a triangle-free cubic graph on n vertices, then the hard-core model on G with fugacity λ satisfies

α ≥ y∗

0 =
λ(1 + 2λ)

1 + 6λ + 6λ2 +
λ3(1 + λ)2

(1 + 6λ + 6λ2)P(T3)
.

Proof. The solution α∗ of the minimization problem above is attained for the solution (2). Moreover, since one of our
constraints is of the form y0 ≥ α, and this constraint is satisfied with equality, we have α∗ = y∗

0. □

Corollary 13. If G is a triangle-free cubic graph on n vertices, then for any λ0 ≥ 0,

1
n
log PG(λ0) ≥

∫ λ0

0

y∗

0

λ
dλ.

In particular,

ind(G)1/n ≥ 1.538339. (3)

Proof. We have, as in the proof of Theorem 3,

log PG(λ) ≥ n
∫ λ

0

α∗(t)
t

dt = n
∫ λ

0

y∗

0

t
dt.

Numerical integration up to λ = 1 gives the second inequality. □

Unfortunately, in contrast to the result of Davies et al. and our result from Section 2, we do not determine the extremal
graph for the occupancy fraction. It should be noted that, in a recent paper, Davies et al. [4] give a lower bound on the
independence number of triangle-free graphs of given maximum degree d that is asymptotically correct as d → ∞. For
d = 3 and λ = 1, their bound is

PG(1)1/n ≥ exp
{
W (3 log 2)2 + 2W (3 log 2)

6

}
= 1.516712 . . .,

whereW is the LambertW function.
Two graphs provide some support that our bound is not far from being optimal. For the Petersen graph, the left hand side

of (3) is at most 1.54199, whereas our bound gave 1.538339. One might even be tempted to think that the Petersen graph
is the extremal graph for the occupancy fraction for all λ. However, this cannot be true as a result of Staton [10] yields that
a related graph, the generalized Petersen graph GP(7, 2) (see Fig. 1), has a smaller independence ratio and hence, by (1), has
smaller occupancy fraction for large λ.



800 J. Cutler, A.J. Radcliffe / Discrete Mathematics 341 (2018) 793–800

Fig. 1. The generalized Petersen graph GP(7, 2).

Theorem 14 (Staton). If G is a triangle-free cubic graph on n vertices, then
α(G)
n

≥
5
14

=
α(GP(7, 2))
n(GP(7, 2))

.

We therefore make the following conjecture.

Conjecture. If G is a triangle-free cubic graph on n vertices and λ > 0, then

αG(λ) ≥ min
{
αGP(5,2)(λ), αGP(7,2)(λ)

}
,

where GP(5, 2) is the Petersen graph. Moreover,

PG(λ)1/n ≥ min
{
PGP(5,2)(λ)1/10, PGP(7,2)(λ)1/14

}
.

This conjecture has been proved for λ ≤ 1 by Perarnau and Perkins [8] with GP(5, 2) the unique minimizer. Note that
neither half of the conjecture implies the other.
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