The Ultimate Course Search
Learning Tool

Edina Renfro-Michel, Ph.D., LPC, ACS
renfromichee@mail.montclair.edu
Sailume Walo-Roberts, MA, ABD, LPC
waloroberts1@mail.montclair.edu
Montclair State University
Agenda

• Millennials!
• Our NSF Grant
• UCS and Learning Preferences
• Demonstration of UCS
• Implementation
• Preliminary Data
• Implications for Higher Education
We are Teaching Millennials!

• Multitask
• Have Short Attention Spans
• Tend to be Visual Learners
• Bore Easily
• Want Instant Gratification

• Want Control Over Their Learning
• Have an Expectation to Achieve
• Lack Self-Reflection Skills
• Need Individualized Educational Opportunities
Our NSF Grant - iSECURE

• To Reduce Attrition in Computer Science Security Courses
 • Increase availability to materials
 • Focus Studying Time
 • Access to Multiple Learning Materials
• Ultimate Course Search (UCS)
Our Objectives for UCS

- Create a program that will accurately search all electronic course materials
- Integrate UCS into Courses
- Help students understand learning preferences as connected to UCS
- Create a user friendly, clean interface
- Determine the effectiveness of the tool
Learning Preferences

• Index of Learning Preferences (Felder & Soloman, 1993)

 Four Types of Learners

• Active – Reflective
• Sensing – Intuitive
• Visual – Verbal
• Sequential - Global
Your Results

- **ACT**
 - REF
 - 11a 9a 7a 5a 3a 1a 1b 3b 5b 7b 9b 11b

- **SEN**
 - INT
 - 11a 9a 7a 5a 3a 1a 1b 3b 5b 7b 9b 11b

- **VIS**
 - VRB
 - 11a 9a 7a 5a 3a 1a 1b 3b 5b 7b 9b 11b

- **SEQ**
 - GLO
 - 11a 9a 7a 5a 3a 1a 1b 3b 5b 7b 9b 11b
What UCS Does

• Indexes PowerPoint Slides - The set of slides belonging to a presentation file are mapped relationally to that presentation along with the values of presentation title and presentation filename.

• Segments Videos - In order to find where the slide exists in a video, the lecture video transitions are determined, and segmented. Then we determine the transition of videos.

• Indexes Textbook – The Textbook’s Index was used to determine the ontology to form our index (Apache Lucene).

• Creates Search Terms - The materials are searched for matches in keywords, and a presentation’s relevancy is calculated.
The Tool!
The Research

Collected Data in a Security Course

• Control and Experimental
• Face-to-Face and Hybrid
• Same teacher, same book, same lectures
Research Questions

• Is there a statistically significant difference in post-test and final exam outcomes between the control and experimental groups?
• Is there a difference in attrition between the control and experimental classes?
• How did the students utilize the tool?
• How did the students utilize the learning preferences information?
Student Learning Preferences

Face-to-Face

<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active = 6</td>
<td>Active = 10</td>
</tr>
<tr>
<td>Reflective = 21</td>
<td>Reflective = 9</td>
</tr>
<tr>
<td>Sensing = 20</td>
<td>Sensing = 15</td>
</tr>
<tr>
<td>Intuitive = 7</td>
<td>Intuitive = 4</td>
</tr>
<tr>
<td>Visual = 21</td>
<td>Visual = 17</td>
</tr>
<tr>
<td>Verbal = 6</td>
<td>Verbal = 2</td>
</tr>
<tr>
<td>Sequential = 14</td>
<td>Sequential = 12</td>
</tr>
<tr>
<td>Global = 13</td>
<td>Global = 7</td>
</tr>
</tbody>
</table>
Student Learning Preferences

Hybrid

<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active = 10</td>
<td>Active = 18</td>
</tr>
<tr>
<td>Reflective = 7</td>
<td>Reflective = 12</td>
</tr>
<tr>
<td>Sensing 13</td>
<td>Sensing = 22</td>
</tr>
<tr>
<td>Intuitive = 4</td>
<td>Intuitive = 8</td>
</tr>
<tr>
<td>Visual = 13</td>
<td>Visual = 28</td>
</tr>
<tr>
<td>Verbal = 4</td>
<td>Verbal = 2</td>
</tr>
<tr>
<td>Sequential = 13</td>
<td>Sequential = 19</td>
</tr>
<tr>
<td>Global = 4</td>
<td>Global = 11</td>
</tr>
</tbody>
</table>
Student Demographics F2F

Control
- N = 28 (66 enrolled in course)
- Mean Age = 23.8
- Year in School = 3.54
- Gender
 - Female = 4
 - Male = 24
- Racial/Ethnic Identifiers
 - African American/Black = 5
 - American Indian or Alaska = 0
 - Asian = 3
 - Caucasian/White = 12
 - Hispanic/Latino = 9
 - Pacific Isl/Native Hawaiian = 1
 - Other = 4
 - No Answer = 3

Experimental
- N = 21 (30 enrolled in course)
- Mean Age = 23.19
- Year in School = 3.52
- Gender
 - Female = 1
 - Male = 20
- Racial/Ethnic Identifiers
 - African American/Black = 2
 - American Indian or Alaska = 1
 - Asian = 6
 - Caucasian/White = 6
 - Hispanic/Latino = 8
 - Pacific Isl/Native Hawaiian = 1
 - Other = 5
 - No Answer = 0
Student Demographics Hybrid

Control
- N = 19 (27 enrolled in course)
- Mean Age = 22.89
- Year in School = 3.16
- Gender
 - Female = 1
 - Male = 18
- Racial/Ethnic Identifiers
 - African American/Black = 2
 - American Indian or Alaska = 0
 - Asian = 9
 - Caucasian/White = 4
 - Hispanic/Latino = 5
 - Pacific Isl/Native Hawaiian = 0
 - Other = 2
 - No Answer = 2

Experimental
- N = 30 (36 enrolled in course)
- Mean Age = 21.97
- Year in School = 3.40
- Gender
 - Female = 6
 - Male = 24
- Racial/Ethnic Identifiers
 - African American/Black = 2
 - American Indian or Alaska = 0
 - Asian = 11
 - Caucasian/White = 11
 - Hispanic/Latino = 9
 - Pacific Isl/Native Hawaiian = 1
 - Other = 5
 - No Answer = 0
Pre and Post Test Results F2F

Control
- Pre Test Mean = 9.39
- Standard Dev = 2.25
- Post Test Mean = 12.18
- Standard Dev = 2.29
- Change in Scores = 2.79

Experimental
- Pre Test Mean = 9.10
- Standard Dev = 2.16
- Post Test Mean = 11.70
- Standard Dev = 3.09
- Change in Scores = 2.60
Pre and Post Test Results

Hybrid

<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Test Mean = 8.89</td>
<td>Pre Test Mean = 10.13</td>
</tr>
<tr>
<td>Standard Dev = 2.424</td>
<td>Standard Dev = 2.569</td>
</tr>
<tr>
<td>Post Test Mean = 12.59</td>
<td>Post Test Mean = 11.69</td>
</tr>
<tr>
<td>Standard Dev = 2.647</td>
<td>Standard Dev = 3.253</td>
</tr>
<tr>
<td>Change in Scores = 3.7</td>
<td>Change in Scores = 1.56</td>
</tr>
</tbody>
</table>
Final Exam Results - F2F

Control
• Mean Score = 144.57 (out of 200)
• Standard Dev = 47.60

Experimental
• Mean Score = 150.86 (out of 200)
• Standard Dev = 17.59

An independent T-test showed no between statistical significance in the final exam scores: $t(47) = 6.286$, $p=.568$.
Final Exam Results Hybrid

Control
• Mean Score = 116.68 (out of 200)
• Standard Dev = 24.347

Experimental
• Mean Score = 123.97 (out of 200)
• Standard Dev = 23.576
Attrition Findings - F2F

Control
- 66 students enrolled
- 39 students completed the semester
- 41% attrition rate

Experimental
- 30 students enrolled
- 26 students completed the semester
- 13% attrition rate
Attrition Findings Hybrid

Control
• 27 students enrolled
• 26 students completed the semester
• 4% attrition rate

Experimental
• 36 students enrolled
• 36 students completed the semester
• 0% attrition rate
Survey Feedback: How did the students use UCS?

• Study for the exam
• Review lecture videos – past and present
• Search for Information/specific words & terms
• Review video podcast lectures
• As a reference and to take notes
• To help complete homework assignment/class projects
• To ‘test the tool’
Survey Feedback: What did the students like about UCS?

- User friendly
- Freeware
- Search engine
 - Fast and accurate
 - Search exact words
 - Tabs and specific information
 - Search Videos
 - Searches lead to a lot of information
- Helped Students Understand Concepts
 - Made studying easier
 - Able to better understand material covered in class
Survey Feedback: Comments About UCS

• “I didn’t feel overwhelmed cause I had all the information in tools.”
• “…it was like having the professor actually explaining & answering the questions I had.”
• effectiveness of the search when looking for a topic to study about”
• “All needed information in one place.”
• “it was excellent reference on slides where the prof. talked about how to do something like spinning tree”
• “fast search engine.”
• “taught me tricks I didn’t know.”
• “it saves me the work of actually taking notes.”
• “maybe have most viewed notes, or what topic most students have problems maybe put as the 1st thing.”
Implications for Higher Education

- Reduce attrition
- Increase clarity of course organization
- Increase accessibility of materials – One stop shop
- Increase student interaction with materials
- Individualize learning
- Create connections within and between courses
Questions?

• Our YouTube Channel: http://bit.ly/1imcF8o

• This Presentation on Slideshare: http://www.slideshare.net/renfromichel/final-ucs-eld-2015