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THE DISPERSION PROCESS FOR PARTICLES ON GRAPHS

Abstract

In this thesis, we study a process called Dispersion, in which M particles are dis-

persed among the vertices of a graph G. All particles initially occupy a single vertex

called the origin vertex. At each discrete time step, all particles which share a vertex

with at least one other, move to a randomly (though not necessarily uniformly) cho-

sen neighbor of the currently occupied vertex. The process ends when each vertex is

occupied by at most one particle.

We will explore various aspects of the Dispersion process. One of these is the

expected time to completion, E[TDisp] for 3 particles on an n-cycle. Another point of

analysis will be the differences in the behavior of particles on even-length cycles vs.

odd-length cycles.
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1 Introduction

1.1 Current Results

Imagine you are in a boat with your friends moving down a river. You come around a bend

and you see that someone has laid stepping stones all across the river, and your boat crashes

into one of them. You and all your friends are now stacked up on one stone, and in order

to avoid falling into the river, you need to move. You each decide to flip a coin and move

right or left depending on whether you see heads or tails respectively (please ignore the fact

that you’ve all probably fallen in by now). Everyone moves at the same time, and then you

repeat the following process: everyone who is still sharing a stone flips a coin and moves left

or right according to the outcome. The process ends when everyone has their own stone and

you can wait until help arrives.

This is the fundamental idea behind the process known as Dispersion. Formally, consider

M particles initially placed on a distinguished vertex (called the origin vertex) of a graph G.

The process is synchronous and proceeds in discrete steps. Whenever two or more particles

occupy the same vertex at some step, they move independently to a random neighbor. If

only a single particle occupies a vertex, it stays there until another particle arrives [1]. The

process ends when each vertex is occupied by at most one particle.

In general, a dispersion process is one in which a collection of M ∈ N identical particles

are located at an initial vertex (called the origin vertex) of a graph G. The particles move

about the graph in a distributed fashion until no more than one particle occupies any given

vertex. When this occurs, we say that the particles have dispersed.

Dispersion is symmetric across all particles, in that there is no prioritization, communi-

cation, or any other form of asymmetry [1]. This process can be an interesting way to think

about how a collection of positively charged physical particles would move if placed close

enough together, or how robots could distribute themselves in an area without the knowledge

of how the other robots would move. The river example is actually a specific case where G

1



is the infinite 2-regular tree.

Another example of this process is in terms of non-aggressive swarm behavior. Take for

example a swarm of bees trying to pollinate a rose bush. In this case, the rose bush would

be the graph G with the flowers as the vertices V (G), and M bees would be the particles.

The rule is that if two bees land on the same flower, each one automatically defers to the

others, and leaves to find a new flower.

Dispersion was very recently introduced by Cooper, McDowell, Radzik, Rivera and Shi-

raga in [1]. We are interested in various points of analysis for this process. Foremost among

them, given a graph G and an initial number of particles, M , along with an origin vertex,

we would like to find the number of time steps to achieve dispersion, TDisp. We are also

interested in the farthest distance of a particle from the origin vertexDDisp after the particles

have dispersed, in the case where G is the infinite path. We use V (G) to denote the vertex

set of G.

In [1], Cooper et al. proved the following result for complete graphs and stars.

Theorem 1 (Cooper et al. [1]). For the complete graph Kn, and the star Sn the following

hold for any constant δ > 0

1. If the number of particles M satisfies M/n ≤ (1/2)(1 − δ), then with probability 1 −
O(1/n), the dispersion process terminates in TDisp = O(log n) steps.

2. If the number of particles M satisfies M/n ≥ (1/2)(1 + δ), then there is a constant

c = c(δ) > 0 s.t. the probability that TDisp ≤ ecn is less than e−cn.

This theorem states that if the ratio of the particles M to the number of vertices n =

|V (G)| on either Kn or Sn is less than 1/2, the number of time steps that the process takes

to reach dispersion (TDisp) is logarithmic. But if that ratio is greater than 1/2, TDisp is

exponential. This shows a drastic change in behavior at the ratio of 1/2 particles to vertices.

Cooper et al. define a threshold for a graph G on n vertices as a value of M for which

on G, M(1 + ε) particles will require Ω(en) iterations to reach dispersion, while M(1 − ε)
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particles will disperse in polynomially many iterations.

The next theorem concerns the case where G is the infinite (or at least a sufficiently long)

path, rather than stars or complete graphs. We say a sequence of events An holds with high

probability or w.h.p. if P[An]→ 1 as n→∞.

Theorem 2 (Cooper et al. [1]). For a sufficiently long path, and M particles initially placed

at the origin vertex, the following holds w.h.p. (as M → ∞) for any ε > 0. When the

dispersion process terminates, the maximum distance DDisp any particle is from the origin

is bounded by

�M/2� ≤ DDisp ≤ 4(1 + ε)M logM, (1)

and TDisp = O(M3 logM).

Cooper et al. essentially proved an upper bound on the distance of the farthest particle

from the origin vertex. The lower bound is trivial for the following reason. Any smaller

value would indicate that the process has not finished, since more than one particle would

occupy the same vertex by Pigeonhole Principle. In Section 7, we actually show that this

lower bound can be improved to 	M
2

. Very recently, in [2], Frieze and Pegden improved the

upper bound on DDisp from O(M logM) to O(M). This answered one of the open problems

in [1].

1.2 New Results

In this thesis, we will prove the following results. First, we will draw various conclusions

regarding the dispersion of exactly 3 particles on the n-cycle, and on the infinite path.

Beginning with our first main theorem, we have

Theorem 3. Let k = �n
2
− 1�. For the unbiased dispersion of 3 particles on Cn with n > 3,

An =
1

3

(
10 +

4

3− αk−1

)
, where αk =

1

4− αk−1
, and
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1. if n is even, then α1 =
1

2
, and

2. if n is odd, then α1 =
1

3
.

Theorem 4. For the unbiased dispersion of 3 particles on the infinite path, P, the expected

time to dispersion is
1

3

(
10 +

4

1 +
√
3

)
.

Another topic of study is the difference between odd and even cycles. We proved quite a

few results within this topic, since this is the largest portion of our study. First we prove a

lemma which is interesting on its own, but also is our main tool for analysis of odd vs even

cycle behavior.

Lemma 1. Let M > 3 ∈ N particles be dispersed on the graph Cn. If n ∈ N is even, all

unhappy particles have the same parity.

Next, we will show that the lower bound for DDisp in theorem 2 is actually 	M
2

.

Proposition 1. For the dispersion of M particles on the infinite path, DDisp, the greatest

distance from the origin vertex to any particle, is at least 	M
2

.

We will then turn our attention to cycles with an odd number of vertices, and prove

our next main theorem, which basically states that if we have enough particles, and we are

using the dispersion process on an odd-length cycle with more than 3 vertices, then every

configuration of particles is reachable.

Theorem 5. All possible arrangements of M particles on Cn are reachable through dispersion

if n > 3 is an odd integer and M > 3
5
n. Moreover, this bound cannot be improved.

This result gives rise to the following corollary when paired with the previous lemma.

Corollary 1. Let n > 3 ∈ N. The dispersion process for exactly n particles on Cn terminates

in a finite number of steps if and only if n is odd.
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This will be our final result, and the rest of the paper will proceed as follows. In Section

2, we introduce the definitions and notation required for the remainder of the thesis. In

Section 3 we introduce the concepts from the theory of Markov Chains which will be used

along with an example. In Section 4, we describe the state diagrams and corresponding

transition matrices of the Markov Chains which appear in dispersion. In Section ??, we

apply the techniques described in Section 3 to the chains arising from dispersion. In 6 we

prove our first main theorem regarding unbiased dispersion of three particles on an n-cycle.

In Section 7 we prove our second main theorem which compares the number of reachable

states in dispersion to the total number of states,. Finally, in Section 8 we discuss future

work and open problems.

2 Definitions and Notation

2.1 General Definitions

Consider the system modeled by the standard dispersion process as described in [1] on a

graph G on n vertices, with M particles. Cooper et al. define a state of the process simply

as a configuration of M particles on the n vertices of G. The initial state of a dispersion

system is the one in which all M particles occupy a single vertex. They also define a particle

to be unhappy if at time t, another particle occupies the same vertex as itself, and they say

that the particle is happy otherwise. We will actually redefine these terms in the last section,

where we describe an open problem regarding a generalization of Theorem 1.

We define the set of particles which occupy a single vertex the stack of particles on that

vertex at time t. An unhappy stack then is a set of particles which all occupy the same

vertex at a given time step t. We say that a state is reachable from another state if there is

a way to distribute all unhappy particles in the former state to adjacent vertices to obtain

the latter state. We can then say that a state is reachable by the dispersion process if there
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exists a sequence of reachable states leading to it from the initial state. Lastly, the dispersion

process can be either biased or unbiased, the latter only if the adjacent vertex to which an

unhappy particle moves is chosen uniformly at random.

2.2 Definitions on Cn

By convention, since we are mostly going to consider cases where G will be Cn, we will use

the following notation to denote a state of the system, and we will specify if other notation

is implemented.

Given n and M , let Ω = Ω(M,n) be the set of all strings of length n whose entries are

over the alphabet {0, 1, 2, ...,M} and sum to M . Next, let x, y ∈ Ω. Say x ∼ y if x is a

cyclic permutation of y. Then we define Ω′ = Ω′(M,n) to be the set of all equivalence classes

under ∼.
In other words, Ω represents the set of all configurations of M particles on a labeled

n-cycle. Ω′ on the other hand is the set of all rotationally asymmetric configurations of M

particles on Cn. Note that |Ω(M,n)| can be counted using “Pirates and Gold”, so

|Ω(M,n)| =

⎛
⎜⎝M + n− 1

n− 1

⎞
⎟⎠ .

It can also be shown that

|Ω′(M,n)| = 1

n
∗

∑
d|(M+n,n)

ϕ(d)

⎛
⎜⎝

M+n
d
− 1

n
d
− 1

⎞
⎟⎠ ,

where (M + n, n) is the gcd of M + n and n, and ϕ represents Euler’s Totient Function.

Lastly, when G is the labeled Cn or the labeled infinite path P , we would like to define

the parity of a particle, as well as that of a stack of particles. Consider an element of Ω whose
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positions are denoted by v1, v2, . . . , vn. Let x represent a particle or a stack on vi, i ∈ [n] at

time t. Then the parity of x, Par(x) is

Par(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 if i is even

1 if i is odd

In other words, at time t, a particle (or stack of particles) has the same parity as the

labeled vertex it occupies at that time.

3 Markov Chains

In this section we will introduce the concept of absorbing Markov chains and relevant results

which we will make use of later in the thesis. A Markov chain is a stochastic process

consisting of discrete states, X1, X2, ..., XA, which takes place over sequential, discrete time

steps. At each time step, the system transitions from one state to another with a certain

probability. An absorbing Markov chain is one in which there exists at least one state whose

probability of transitioning to itself exactly 1, and it is possible to reach such a state from

any other state in the system. Such a state, which can never be left once entered, is called

an absorbing state, and any other state is called a transient state.

The relationships between the states can be described in a matrix, called the probability

transition matrix, or the adjacency matrix. The ij-th entry of the transition matrix describes

the probability of transitioning to state j from state i. It is common practice to group all

of the absorbing states at the bottom right corner of the matrix. Since each absorbing state

transitions to itself with probability 1, this causes the identity matrix of size equal to the

number of absorbing states to occupy that corner of the matrix.
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P =

⎛
⎜⎜⎜⎜⎝
Q R

0 I

⎞
⎟⎟⎟⎟⎠

In this form, Q represents the probability of one transient state transitioning to another,

R is the probability of a transient state transitioning to an absorbing state, 0 is a zero matrix,

and I is the identity. Note that if Pij represents the probability of transitioning from the

i-th state to the j-th state, then P 2
ij is the probability of transitioning from i to j in exactly

2 time steps. More generally, P k is the probability transition matrix after k time steps.

One of the fundamental properties of absorbing Markov Chains is that the process must

eventually end. Consider the sub-matrix Q, the probability transition matrix of transient

states transitioning between one another only. It is clear that lim
k→∞

Qk = �0. Linear algebra

gives us the following result regarding the geometric series,

N = (I −Q)−1 = I +Q+Q2 +Q3 + . . .

N is often called the Fundamental Matrix of the absorbing Markov Chain. The ij-th

entry of N can be interpreted as the expected number of visits to state j given that the

initial state of the system was state i. This matrix has a multitude of useful properties, but

specifically we want to build on the one regarding the expected number of visits to a state.

If we take N�1 where �1 is a vector of 1’s with length equal to the dimensions of N , we

obtain a column vector of the row sums of N . The i-th entry of N�1 is exactly the expected

number of time steps required for the system to reach an absorbing state, given that the

system started in state i. Note that multiplying a matrix by a vector of 1’s is equivalent to

summing the rows of the matrix. Thus we have all the tools we need to make the connection

from Markov Chains back to particle dispersion.
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4 State Diagrams and Reachable States

4.1 State Diagrams

It is possible to encompass all of the information regarding the relationships between states of

the system using a directed graph (with loops) with weighted edges, called a state diagram.

We first define Disp(M,n) as the directed graph with vertex set Ω′, and directed edges

representing the possibility of the former state changing into the latter state. For example,

Disp(4, 4) gives us the following state diagram. We label the states in the diagram based on

the state which that vertex represents. For example, X(4000) represents the initial state, where

all 4 particles occupy a single vertex. Also, we temporarily omit the transition probabilities

while we describe the underlying graphs themselves.

X4000

X3100

X3010

X3001

X2200

X2110

X2101

X2020

X2011

X1111

Consider all the edges coming in and out of X(4000). There is a loop at that vertex because

there is a chance that all the particles in the stack move left or right as a unit, which would

send the system to a rotationally symmetric state, which is equivalent to X(4000) in Ω′. It has

a one-directional arrow going to X(3010), because the pile could split into one happy particle

and three unhappy particles. The only other way the particles can split is into two pairs,
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which gives X(2020). This edge goes both directions, because there is a chance that that state

will return to the original, which is impossible for X(3010). Lastly we see two incoming arrows

from X(3100) and X(3001), which represent the chance that the stacks of three particles move

onto the happy particle, forming a stack of 4 particles.

Now take a look at the states X(2200), X(2101), and X(1111). Notice that it is impossible

to enter any of these three states by particle dispersion, since dispersion requires that every

particle starts on the origin vertex, in the stateX(4000). There is no directed path fromX(4000)

to any of the other three, so the dispersion process will never see those states. Because of this,

it is at times completely unnecessary to include them in Disp(M,n). If we “throw away”

these states (omit them from the graph), we can obtain a much more insightful description

of the relationships between states specifically included in the dispersion process.

Thus the following definition. Given M and n, let Λ′ = Λ′(M,n) be the set of all states

which can be reached by a directed path from the initial state in Ω′. We refer to Λ′ as the

set of reachable states. Recall that Disp(M,n) is the graph of all possible arrangements

of M particles on Cn. We now define a new directed subgraph (still allowing loops) called

Disp(M,n)′ as the state diagram whose vertex set is Λ′. For example Disp(4, 4)′ looks like

X4000

X3100

X3010

X3001

X2110

X2020

X2011

10



4.2 Comparison of Ω′ and Λ′

We developed algorithms which could accurately generate the elements of Ω′ and Λ′. While

we will not discuss them here, we will pause and observe some data collected via these

algorithms. The data we’ve collected specifically is the number of configurations of M

particles on Cn vs the number of reachable states for the same particles and cycles.

For the reader’s sake, we show both tables on the same page, to simplify comparison.

The first table shows the number of all possible states (equivalent to necklaces of length n

with characters summing to M , also the sizes of Ω′(M,n)). The second table shows the

number of states in Ω reachable by dispersion (equivalent to the sizes of Λ′(M,n)).
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Possible Arrangements, Ω′(M,n):

Cycle Size n

1 2 3 4 5 6 7 8 9 10

Number of

Particles M

1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 3 3 4 4 5 5 6

3 1 2 4 5 7 10 12 15 19 22

4 1 3 5 10 14 22 30 43 55 73

5 1 3 7 14 26 42 66 99 143 201

6 1 4 10 22 42 80 132 217 335 504

7 1 4 12 30 66 132 246 429 715 1144

8 1 5 15 43 99 217 429 810 1430 2438

9 1 5 19 55 143 335 715 1430 2704 4862

10 1 6 22 73 201 504 1144 2438 4862 9252

Reachable States, Λ′(M,n):

Cycle Size n

1 2 3 4 5 6 7 8 9 10

Number of

Particles M

1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2 2 2

3 1 1 3 5 6 9 10 12 14 16

4 1 1 5 7 14 18 30 37 52 62

5 1 1 7 8 26 29 66 76 142 163

6 1 1 10 10 42 40 132 131 335 337

7 1 1 12 11 66 51 246 194 715 598

8 1 1 15 13 99 64 429 276 1430 956

9 1 1 19 14 143 79 715 368 2704 1433

10 1 1 22 16 201 94 1144 487 4862 2057

One very interesting observation here is that it seems as though for every odd cycle with

12



M > 3
5
n and n > 3, every single arrangement of the M particles is reachable by the disper-

sion process, but for even cycles, the number of reachable states is significantly smaller than

the total number of asymmetric particle configurations. This indicates that many of the

arrangements of particles are unreachable in the even-cycle cases. Indeed, we confirm these

observations in Section 7. This also gives rise to the other interesting conjectures which we

will discuss. We will eventually use this discrepancy to improve the lower bound on DDisp in

Theorem 2 from �M
2
� to 	M

2

, and show that given exactly n particles on Cn, the dispersion

process will terminate if and only if n is odd.

5 Closed-form Results

We now tie together the theory of Markov Chains and the transition matrices we’ve built. We

saw at the end of Section 4.2 that we have the ability to generate the probability matrix for

any M,n, provided that these values aren’t too large. We also introduce a third variable p,

which represents the probability of a particle moving clockwise around the cycle (or moving

right on the path P ). In both [1] and [2], the authors only consider unbiased dispersion

of particles. This generalization does not break the symmetry of the particles, since each

particle still moves independently of the others.

5.1 Example of Technique

We will give a demonstration of the entire process for the dispersion of exactly 3 particles on

C5, where the particles have a probability bias of .6 for moving in the clockwise direction.

First, we create the state diagram (now including the probabilities with the directed edges).

13



7
25

36
125

54
125

9
25

4
25

12
25

9
25

4
25

12
25

9
25

4
25

12
25

4
25

12
25

9
25

1

X30000

X21000

X20100

X20010

X20001

X11010

From this state diagram, we can extract the following transition matrix,

Disp (3, 5) = P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
25

0 36
125

54
125

0 0

9
25

0 4
25

12
25

0 0

0 9
25

0 4
25

0 12
25

0 0 9
25

0 4
25

12
25

4
25

0 12
25

9
25

0 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Continuing in this case, we extract/derive Q,R,N and N�1 as follows.
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Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
25

0 36
125

54
125

0

9
25

0 4
25

12
25

0

0 9
25

0 4
25

0

0 0 9
25

0 4
25

4
25

0 12
25

9
25

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

12
25

12
25

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N = (I −Q)−1 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−18
25

0 − 36
125

− 54
125

0

− 9
25

1 − 4
25

−12
25

0

0 − 9
25

1 − 4
25

0

0 0 − 9
25

1 − 4
25

− 4
25

0 −12
25

− 9
25

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.6067 0.3583 0.9953 1.0880 0.1741

0.7075 1.3325 0.9235 1.1598 0.1856

0.2826 0.5198 1.4439 0.6395 0.1023

0.1746 0.2507 0.6963 1.3871 0.2219

0.4556 0.3971 1.1030 0.9804 1.1569

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.6067 0.3583 0.9953 1.0880 0.1741

0.7075 1.3325 0.9235 1.1598 0.1856

0.2826 0.5198 1.4439 0.6395 0.1023

0.1746 0.2507 0.6963 1.3871 0.2219

0.4556 0.3971 1.1030 0.9804 1.1569

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.2225

4.3089

2.9881

2.7306

4.0929

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that this technique actually gives us more information than we were originally

seeking. The expectation of TDisp is given by the first entry of N�1, but the other entries
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of N�1 hold the expected time to completion for all the other states in Disp(3, 5). We can

conclude from this information that the dispersion process for 3 particles on Cn will take an

expected number of steps approximately equal to 4.2225.

Given that the MATLAB language allows for symbolic computation, we are actually able

to extract even more information for small cases. One way we were able to do this was to

calculate the fundamental matrix for some systems in terms of the general probability p.

This gives us the opportunity to generalize Disp(M,n) ∀p ∈ (0, 1). It was by this method

that we obtained the matrices for Disp(4, 4) and Disp(3, 5), as opposed to by hand.

Consider Disp(3, 6) for general p ∈ (0, 1). We calculate the symbolic matrix to appear

as follows, using the symbol “p” for our variable bias.

Disp(3, 6) = P =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p3 + q3 0 3pq2 0 3p2q 0 0 0 0

p2 0 q2 0 2pq 0 0 0 0

0 p2 0 q2 0 0 0 2pq 0

0 0 p2 0 q2 0 0 0 2pq

0 0 0 p2 0 q2 2pq 0 0

q2 0 2pq 0 p2 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Following the above process, we can see that
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Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p3 + q3 0 3pq2 0 3p2q 0

p2 0 q2 0 2pq 0

0 p2 0 q2 0 0

0 0 p2 0 q2 0

0 0 0 p2 0 q2

q2 0 2pq 0 p2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

At this point we need to take N = (I − Q)−1. Unfortunately, every entry is close to a

rational polynomial, with the degree of both the numerator and denominator around 8 and

10 respectively. This would be a waste to include here, so instead we choose to list only the

polynomials in the first row, since these are the elements we sum to obtain TDisp. For the

sake of notation, assume we are starting in the first state. Let E[Xi] be the expected number

of visits to state i. Then, in order from left to right in the first row of N = (I − Q)−1, we

have:

E[X(300000)] =
1− 2p+ 10p2 − 34p3 + 65p4 − 66p5 + 36p6 − 12p7 + 3p8

6p2(1− p)2(3− 8p+ 14p2 − 15p3 + 15p4 − 9p5 + 3p6)

E[X(210000)] =
p− p2 + p6

2(1− p)(14p2 − 8p− 15p3 + 15p4 − 9p5 + 3p6 + 3)

E[X(201000)] =
p5 − p+ 1

2(p− p2)(14p2 − 8p− 15p3 + 15p4 − 9p5 + 3p6 + 3)

E[X(200100)] =
4p2 − 3p− 5p3 + 10p4 − 9p5 + 3p6 + 1

2(p− p2)(14p2 − 8p− 15p3 + 15p4 − 9p5 + 3p6 + 3)

E[X(200010)] =
−4p+ 10p2 − 10p3 + 5p4 − p5 + 1

2(p− p2)(14p2 − 8p− 15p3 + 15p4 − 9p5 + 3p6 + 3)

E[X(200001)] =
14p2 − 5p− 20p3 + 15p4 − 6p5 + p6 + 1

2p(14p2 − 8p− 15p3 + 15p4 − 9p5 + 3p6 + 3)
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A far more significant result comes when we sum these polynomials. While the resulting

polynomial is no less atrocious to look at, it is a generalization of TDisp for 3 particles on

C6.

TDisp =
−27p8 + 108p7 − 204p6 + 234p5 − 187p4 + 110p3 − 44p2 + 10p+ 1

6p2(1− p)2(3p6 − 9p5 + 15p4 − 15p3 + 14p2 − 8p+ 3)

=
1

18(1− p)2
+

1

18p2
+

22

27(1− p)
+

22

27p
− 129p4 − 258p3 + 288p2 − 159p+ 20

54(3p6 − 9p5 + 15p4 − 15p3 + 14p2 − 8p+ 3)

Again, since we are limited by the matrix size, we were only able to obtain a small collec-

tion of these closed forms for TDisp. This includes Disp(3, n, p) for 4 ≤ n ≤ 15, Disp(4, 5, p),

and Disp(4, 6, p). Beyond that would require more intensive computing resources or signifi-

cantly improved algorithms.We will report these formulas in partial fractions form because

they are more legible and some require more than one line of text.

We will use the natural notation TDisp(M,n, p) to represent the expected time for M

particles to disperse on Cn given the probability bias p of a particle moving clockwise. The

following results are only for the dispersion of 3 particles.

TDisp(3, 4, p) =
1

6(1− p)2
+

1

1− p
+

1

p
+

1

6p2
− 2

3

TDisp(3, 5, p) =
1

12(1− p)2
+

7

8(1− p)
+

1

p2 − p+ 1
− 21

8(p2 − p+ 2)
+

7

8p
+

1

12p2
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TDisp(3, 6, p) =
1

18(1− p)2
+

1

18p2
− 129p4 − 258p3 + 288p2 − 159p+ 20

54(3p6 − 9p5 + 15p4 − 15p3 + 14p2 − 8p+ 3)

+
22

27(1− p)
+

22

27p

TDisp(3, 7, p) =
1

24(1− p)2
+

25

32(1− p)
+

1

3(p2 − p+ 1)
+

13

72(2p2 − 2p+ 1)
+

25

32p

+
1

24p2
− 682p2 − 682p+ 589

288(2p4 − 4p3 + 5p2 − 3p+ 4)

TDisp(3, 8, p) =

−584p8 + 2336p7 − 5790p6 + 9194p5 − 9633p4 + 6668p3 − 2670p2 + 479p+ 76

150(4p10 − 20p9 + 61p8 − 124p7 + 187p6 − 211p5 + 188p4 − 129p3 + 68p2 − 24p+ 5)

+
19

25(1− p)
+

1

30(1− p)2
+

19

25p
+

1

30p2

For unbiased cases, the results are much cleaner. Note that in the cases where M = 3,

this is equivalent to substituting p = 1
2
for p in the above formulas.
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TDisp

(
M,n, 1

2

)
:

Number of Particles M

3 4 5 6

Cycle

Size n

4 14
3

∞

5 4 1324
147

165244403
1316285

6 58
15

16150
2343

66096938
4264995

∞

7 23
6

12182338
1898815

10.5911 23.8918

8 218
57

41006344
6520533

9.5472

9 172
45

6.2515

10 814
213

6.2409

11 107
28

12 3038
795

13 2396
627

14 11338
2967

6 Three Particles on Cn

Let An be the expected time to dispersion for 3 particles on Cn, with unbiased dispersion.

We now have enough information about the M = 3 case to generalize for any n-cycle.

Essentially, we have a sequence of rational numbers that converges to some number. The

sequence starts as the first column in the above table, where n = 4. Let A = {A4, A5, A6, . . . }
be the sequence of rationals. In the list of the first 10 terms of A below, we have undone

some of the fraction simplification in order to see the trend.
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A =

{
14

3
,
24

6
,
58

15
,
92

24
,
218

57
,
344

90
,
814

213
,
1284

336
,
3038

795
,
4792

1254
, . . .

}
(2)

Our first main theorem gives an exact formula for this sequence in terms of a recursively

defined constant.

Theorem 6. Let k = �n
2
− 1�. For the unbiased dispersion of 3 particles on Cn with n > 3,

the expected time to dispersion An, satisfies An =
1

3

(
10 +

4

3− αk−1

)
, where αk =

1

4− αk−1
,

and

1. if n is even, then α1 =
1

2
, and

2. if n is odd, then α1 =
1

3
.

Proof. We begin by splitting the expected time to completion for odd and even cycles into

two distinct subsequences, Aodd, and Aeven respectively. The motivation behind this is dis-

cussed heavily in the next section. Superficially, we do this because the subsequences are

significantly easier to quantify separately. Moreover, we will show that both individual se-

quences converge to the same number. Bear in mind that the expected number of steps to

completion for C4 occurs at n = 4, so also the sequences begin incrementing from n = 4.

Aeven =

{
14

3
,
58

15
,
218

57
,
814

213
,
3038

795
, . . .

}

Aodd =

{
24

6
,
92

24
,
344

90
,
1284

336
,
4792

1254
, . . .

}

Let Xf be the “first” state, and Xi for i ∈ 0, 1, ..., k be the transient state where the

smallest number of empty vertices between the unhappy stack of 2 and the happy particle

is exactly i, and k = �n
2
− 1�. For example, X0 = X(210...0), X1 = X(2010...0), etc. In unbiased
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dispersion, it is convenient to consider X(21000) = X(20001) (reflections of states are part of

the same equivalence classes), since in terms of probability, clockwise and counterclockwise

motion of particles is equal. In a slight abuse of notation, in what follows, we use Xf

and Xi to represent the corresponding value in the first row of the fundamental matrix N

corresponding to this Markov chain. Recall that the expected time to dispersion appears as

the sum of the entries in the first row of N . Thus we have

An = Xf +
k∑

i=0

Xi. (3)

Case 1: Assume n is even. By analyzing the possible transient states of three particles

on an n-cycle, we arrive at the following state diagram with transition probabilities included.

Xf X1

X0

X2 Xk−1 Xk

1/4

1/4

3/4

3/4

1/4

1/4

1/4

1/41/4

1/4

1/2 1/2 1/2 1/2

1/2

Here we make note that from this state diagram, we can write down the general form of

the transition matrix and relevant submatrix Q. Again, the expected value of TDisp is the

sum of the first row of the matrix N = (I−Q)−1. Since we are only concerned with the first

row of N , we obtain a system of k + 2 equations (shown below) and k + 2 unknowns. We

have multiplied each equation through by 4 (to clear denominators):
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3Xf = X0 + 4

4X0 = X1

4X1 = 3Xf + 3X0 +X2

4X2 = X3 +X1

...

4Xk−2 = Xk−1 +Xk−3

4Xk−1 = 2Xk +Xk−2

4Xk = Xk−1

Summing up the left and right hand sides of this equations and making use of equation (3),

we have

4An −Xf = 4 + 3Xf + 4
k∑

i=0

Xi

= 4 + 3Xf + 4X0 + 2X1 + ...+ 2Xk−1 + 2Xk

= 4 +Xf + 2X0 + 2An

which implies that

An = 2 +Xf +X0. (4)

Next, we need to obtain the system’s dependence on k, since the above is true for all n.

We would like to specifically represent X0 and Xf in terms of k. Observe that ∀k > 1, Xk is
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dependent only on Xk−1. This fact does change in the odd n case, but only slightly. Then

Xk =
1

4
Xk−1

=⇒ 4Xk−1 − 1

2
Xk−1 = Xk−2, where α1 =

1

2
,

=⇒ Xk−1 =
1

4− 1
2

Xk−2 = α2Xk−2, where α2 =
1

4− α1

=⇒ Xk−2 =
1

4− 1

4− 1
2

Xk−3 = α3Xk−3, where α3 =
1

4− α2

...

=⇒ X2 = αk−1X1

Case 2: Assume n is odd.

The proof for this case is almost identical to that of the previous case. The only difference

is that at Xk, there is a 1
4
chance the state returns to itself, since the system is unbiased,

and Xk is defined as k being the minimum number of empty vertices separating the happy

particle from the unhappy stack. The diagram for this is as follows.

Xf X1

X0

X2 Xk−1 Xk

1/4

1/4

3/4

3/4

1/4

1/4

1/4

1/41/4

1/4

1/2 1/2 1/2 1/2

1/4

1/4
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We derive almost the same equations, except we furter solve Xk to be in terms of only Xk−1.

3Xf = X0 + 4

4X0 = X1

4X1 = 3Xf + 3X0 +X2

...

4Xk−1 = Xk +Xk−2

3Xk = Xk−1

Again combining these relationships with Equation (4), we obtain exactly Equation (5) from

the previous case,

An = 2 +Xf +X0. (5)

In order to apply this equation, we must derive values for αk in a similar fashion to that

of the previous case.

Xk =
1

3
Xk−1

=⇒ 4Xk−1 − 1

3
Xk−1 = Xk−2, where α1 =

1

3
,

=⇒ Xk−1 =
1

4− 1
3

Xk−2 = α2Xk−2, where α2 =
1

4− α1

=⇒ Xk−2 =
1

4− 1

4− 1
3

Xk−3 = α3Xk−3, where α3 =
1

4− α2

...

=⇒ X2 = αk−1X1

At this point, we can treat the cases as one, and finish the argument. Because of the

dependence on k only in the coefficient αk, we can reduce the system of equations from k+2
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unknowns down to 2, namely X0 and Xf if we substitute 4X0 = X1. This gives us

3Xf −X0 = 4

3Xf + (4αk−1 − 13)X0 = 0

or equivalently, ⎛
⎜⎝3 −1 4

3 4αk−1 − 13 0

⎞
⎟⎠

By solving the system of two equations, we obtain

X0 =
1

3− αk−1

Xf =
1

3

(
4 +

1

3− αk−1

)

Finally, substituting into equation (3), we have

An = 2 +
1

3

(
4 +

1

3− αk−1

)
+

1

3− αk−1
=

1

3

(
10 +

4

3− αk−1

)
. (6)

Theorem 7. For the unbiased dispersion of 3 particles on the infinite path, P, the expected

time to dispersion is
1

3

(
10 +

4

1 +
√
3

)
.

Proof. We know that dispersion on P behaves almost exactly like that on Cn with sufficiently

large n, so TDisp = lim
n→∞

An. We will show that α = lim
k→∞

αk = 2 −√3 when n is both odd

and even. First note that α satisfies

α =
1

4− α
=⇒ α2 − 4α + 1 = 0 =⇒ (α− r1) (α− r2) = 0

where r1 = 2−√3 and r2 = 2+
√
3. We will show the limit is r1 by induction on k, and give
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different base cases for the different parities of n. Remember that k → k+1 =⇒ n→ n+2.

Induction Hypothesis: Assume for some k that αk ≤ αk−1. It follows that

1

4− αk−1
≤ αk−1 =⇒ α2

k−1 − 4αk−1 + 1 ≤ 0.

Moreover, we can say that (αk−1 − r1) (αk−1 − r2) ≤ 0. Since the polynomial is upwards

facing, we can claim that αk−1 ∈ (r1, r2).

We want to show that αk+1 ≤ αk, or equivalently that α2
k − 4αk + 1 ≤ 0. Applying our

definition of αk, we have

(
1

4− αk−1

)2

− 4

(
1

4− αk−1

)
+ 1

=
1

(4− αk−1)
2

(
1− 16 + 4αk−1 + 16− 8αk−1 + α2

k−1
)

=
α2
k−1 − 4αk−1 + 1

(4− αk−1)
2 =

(αk−1 − r1) (αk−1 − r2)

(4− αk−1)
2

Since the denominator is always positive, and by the inductive hypothesis, we assume

that the numerator is not positive. For base cases, we have α1 = 1
2
, α2 = 2

7
for even

cycles, and α1 = 1
3
, α2 = 3

11
for odd cycles, all of which hold for the induction. Therefore,

α2
k − 4αk + 1 ≤ 0, so αk+1 ≤ αk. Thus, the sequence of αk is decreasing and bounded below

by r1, and α = lim
k→∞

αk = 2−√3. Moreover,

TDisp = lim
n→∞

An =
1

3

⎛
⎝10 +

4

3− lim
k→∞

αk

⎞
⎠ =

1

3

(
10 +

4

1 +
√
3

)
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7 The Parity of Vertices

In the table for TDisp(M,n, 1
2
), notice that TDisp(4, 4,

1
2
) and TDisp(6, 6,

1
2
) are both ∞, but

TDisp(5, 5,
1
2
) has a finite, reasonable value. As it turns out, TDisp(7, 7,

1
2
) also has a finite

value, and in general, it seems that odd values for n particles on the n cycle all eventually

terminate. Conversely, none of the even values of n particles on Cn terminate. We mentioned

this phenomenon briefly earlier, and now we revisit it, in addition to some other observations.

In this section, we will prove the following results.

Lemma 1: Let M > 3 ∈ N particles be dispersed on the graph Cn. If n ∈ N is even, all

unhappy particles have the same parity.

Proposition 1: For the dispersion of M particles on the infinite path, DDisp, the great-

est distance from the origin vertex to any particle, is at least 	M
2

.

Theorem 5: All possible arrangements of M particles on Cn are reachable through dis-

persion if n > 3 is an odd integer and M > 3
5
n. Moreover, this bound cannot be improved.

Corollary 1: Let n > 3 ∈ N. The dispersion process for exactly n particles on Cn

terminates in a finite number of steps if and only if n is odd.

7.1 Proof for Lemma 1

First, we will prove a lemma about even cycles. This lemma also has ties into many other

ideas regarding dispersion, each with discussions to follow.

Assume n is an even number.

Recall that the definition of a particle’s parity is rooted in the labeling of the vertices of
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Cn. Specifically, let V (G) = {v1, v2, . . . , vn}, where v1 is the origin vertex, and the vertices

are labeled sequentially clockwise around Cn. For the sake of notation, let |vi| denote the

number of particles at vi (e.g. |vi| ≥ 2 =⇒ all particles at vi are unhappy). Also note that

v0 = vn, and vn+1 = v1.

Assume now, for the purpose of contradiction, that for some time step t, ∃a, b ∈ [n] s.t.

|va| ≥ 2, |vb| ≥ 2, and |a− b| is an odd integer. In other words, we are assuming there exist

2 stacks of unhappy particles with opposite parities at time t. since the following holds for

both va and vb, WLOG we will only consider what happens at va.

Note that when the state jumped from time t−1 to t, there are two cases for the particles

at va.

Case 1: At t− 1, |va| ≤ 1. Because at time t the particles at va are unhappy, we know

that at least one unhappy particle came from either va−1 or va+1.

Case 2: At t− 1, |va| ≥ 2. In this case, the particles at va are all unhappy. This means

that when the state changes, all the particles must leave va. But again because at t the

particles at va are unhappy, we know that at least two particles must have come from some

combination of either va−1 or va+1.

In either case, we know this: that at time t− 1, either va−1 or va+1 contained a stack of

unhappy particles. Because n is even, both va−1 and va+1 must have the opposite parity as

va. Since these hold for vb in addition to va, we can claim the following.

Let vA be the vertex with max {|va−1|, |va+1|} at t−1, and vB the vertex with max {|vb−1|, |vb+1|},
also at t− 1. Then |vA| ≥ 2, |vB| ≥ 2, and |A− B| is an odd number.

Therefore, for any time step t for which our assumption is true, it must also have been

true at t−1. By reverse induction on t, we arrive at our contradiction, since the initial state

for particle dispersion does not meet this condition. Thus, through the dispersion process of

M particles on Cn with n even, it is impossible for two stacks of unhappy particles to have

the opposite parity. In other words, all unhappy particles share the same parity.
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7.2 Proof for Proposition 1

In and of itself, the above result is rather satisfying, but we will use it to show the following.

This item has to do with what happens in particle dispersion on the infinite path. Theorem 2

talks about the bounds on DDisp, the distance of the farthest particle from the origin vertex.

Specifically, the theorem claims that

�M
2
� ≤ DDisp ≤ 4(1 + ε)M logM.

Freize and Pegden improved the upper bound in [2] to O(n), but we would like to mention

(and slightly improve) the lower bound to 	M
2



Let P be the infinite path, and M ∈ N the number of particles.

The number �M
2
� is almost trivial to prove; if the greatest distance of a particle from the

origin is less than this, then by Pigeonhole Principle, there must exist a vertex occupied by

more than 1 particle.

The additional 1 comes from this problem of parity. The infinite path behaves like an

even cycle in terms of the parity of particles. Label the vertices of P as exactly V (P ) =

{. . . v−1, v0, v1, v2, . . . }, where v0 is the origin vertex, vi with i > 0 is the i-th vertex to the

right of the origin, and vi with i < 0 the i-th vertex to the left of the origin. Then at every

distinct time step, all unhappy particles change parities, and the result from Lemma 1 holds

that all unhappy particles share the same parity.

The ending condition still holds that all unhappy stacks in the state before the ending

state must be of exactly size 2. Coupling these two facts, we see that any unhappy stack in

this state splits into two happy particles, and must leave behind an empty vertex between

the origin and the particle at DDisp. This fact guarantees that there will be an empty vertex

somewhere between the farthest particle to the left and that to the right.

Thus, the distance of the farthest particle from the origin must be at least 	M
2

.
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7.3 Proof for Theorem 5

Next, we will revisit the phenomenon observed in Table 1 and Table 2, where the number

of states reachable through dispersion is equal to the number of arrangements of particles

when n is odd.

Let X(t) be an arbitrary state at time t called the target state, and as always, label

the vertices V (Cn) = {v1, . . . , vn}. In what follows, we present a scheme in which the

particles can reach X(t) by moving according to the rules of dispersion, provided that various

conditions around X(t) are met. Then we discuss cases where some of these conditions fail,

but the state is still reachable. Finally, we will show that if all arrangements are reachable,

then n > 3, n is odd, and M > 3
5
n. Note that the probability of the particles moving

according to our scheme is inconsequential, so long as it is possible for them to do so.

We begin by stating the following lemmas, the first of which lets us guarantee that any

two of the stacks in X(t) can have either the same or opposite parities.

Lemma 2. Let n be an odd integer with n ≥ 3. Given any two stacks in state X(t), the

parity of those stacks can be either opposite or equal, depending on the labeling of V (Cn).

Next, we must define a downbeat as a value of t which has the same parity as the time

step in which X(t) is reached. The motivation behind this definition is to subdivide the

sequence of discrete time steps into two alternating subsequences (one of downbeats, the

other as upbeats), so that at each downbeat, we would like each stack to have the same

parity as its target vertex. An upbeat is a time step which is not a downbeat.

The following lemma gives us the power to claim that unhappy stacks can move inde-

pendently throughout the cycle as long as they avoid crossing from vn to v1 or vice-versa.

The proof is rather trivial, given our definition of a downbeat. Nevertheless we will give the

proof at the end of this section, along with that for Lemma 2.

Lemma 3. At each time step t for dispersion of M particles on an odd-cycle, no two un-

happy stacks of opposite parities will have any particles move to the same vertex unless that
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vertex is the origin vertex.

We will now discuss the algorithm which can be used to reach most states, and then we

will address cases which require a more creative approach at the end.

First, we list the assumptions necessary for this algorithm:

1. There are at least 2 unhappy stacks in X(t).

2. Every unhappy stack in X(t) is either adjacent to another unhappy stack, or an unoc-

cupied vertex.

We will demonstrate in what follows that X(t) is reachable by an alternate strategy even

if the assumptions are relaxed, although doing so requires some work. Next, we list the rules

governing particle motion throughout the process:

1. Any time an unhappy stack lands on a vertex with a happy particle, that unhappy

stack returns the happy particle to its vertex two time steps later by splitting it off as

the stack continues to move.

2. If an unhappy stack arrives at its target vertex in X(t) before time step t, it must

wait there until step t. “Waiting” is possible if and only if there is an empty vertex or

unhappy stack adjacent to the stack which is waiting. The process of waiting involves

the whole stack moving as a unit between its target vertex (on the downbeats) and the

viable neighboring vertex (on the upbeats).

3. After the stack of unhappy particles (in X(t)) splits into the odd stack nd even stack

(defined below), these stacks never land on the origin vertex again. This ensures that

Lemma 3 holds, and the two parities maintain their independence of one another.
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4. At every downbeat, each stack which has reached the vertex it will eventually end on

returns to that vertex.

Finally, here are the steps for the algorithm itself:

1. By Lemma 2, we can relabel the vertices V (Cn) so that at least 2 unhappy stacks in

the final arrangement of particles are on the opposite parity. We can choose move the

initial stack from the origin vertex to the new vertex labeled v1, but this will not affect

the execution.

2. The first n + 1 time steps simply let the stack of particles run clockwise around the

cycle, dropping off happy particles as it goes on vertices which, in X(t), contain happy

particles. At the end of this loop, all particles which belong to an unhappy stack in

X(t) should occupy the origin vertex, along with the happy particle which ends at that

vertex, if such is the case in X(t).

3. Let N1 be the number of particles in unhappy stacks with parity 1 in X(t) (the sum of

the odd stacks), and N0 be the number of particles in unhappy stacks with parity 0 in

X(t) (the sum of the even stacks). At the next time step, the current stack splits into

two unhappy stacks, one of size N0 called the even stack, one of size N1, the odd stack.

4. The odd stack and the even stack begin by moving clockwise and counter-clockwise,

respectively. They march all the way around the cycle splitting off unhappy stacks

on the downbeats. Those unhappy stacks wait until all the others have reached their

target vertices.

If either of the two assumptions we’ve made are not met, then this algorithm fails, so we

will deal with the cases where X(t) is a state which does not meet these conditions. Note

that if we show that a state which can itself reach the ending state X(t), and that that state
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(call it X(t − 1)) is reachable, then this is equivalent to showing the target state X(t) is

reachable.

First, assume that condition 1 fails, that there are not at least 2 unhappy stacks in X(t)

( =⇒ ∃ at most 1 unhappy stack). Then we have the following cases:

Case 1: Assume there is exactly one stack in X(t).

Since condition 2 still holds, the process ends immediately after the unhappy stack drops

off all its happy particles

Case 2: Assume there are no unhappy stacks in X(t).

Since 3
5
n < M , by averaging, we know that there exists a sequence of 5 adjacent vertices

in X(t) with at least 4 of them having happy particles. If these particles are all adjacent,

then at X(t − 1), there were 2 adjacent stacks of size 2 which both split. Otherwise, in

X(t− 1) there was a stack of size 2 at the empty vertex in X(t) which split into two happy

particles.

Now we assume condition 2 fails, so that there exists in X(t) an unhappy stack with both

adjacent vertices occupied by happy particles, say at vj, vj−1, vj+1 respectively for j ∈ [n].

This formation is only reachable by X(t − 1) having a stack of exactly 2 at vj, and the

unhappy stack occupying either vj−1 or vj+1 (it doesn’t matter which). All of the other

unhappy stacks would be on their respective adjacent upbeat vertices.

But this both assumptions are met for X(t− 1) which implies that X(t− 1) is reachable

through the algorithm, so X(t) is reachable by dispersion.

Note that condition 2 states that every unhappy stack needs a viable adjacent vertex at

which it can wait during the upbeats. For this condition to fail for a given unhappy stack,

that stack must be straddled by two unhappy particles in the ending state. But there could

be a chain of unhappy stacks all on the same parity with happy particles in between them,

causing condition 2 to fail for each stack. There could also be multiple independent cases

around the cycle of this condition.
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The solution generalizes from the previous example in that at X(t − 1), each of those

happy particles must have come from somewhere. For each independent chain of particle

stacks following the pattern 1, k1, 1, k2, 1, k3, ..., 1, kl, 1, where ∀i ∈ [l], ki ≥ 2, that section

of X(t − 1) looks like k1, 2, k2, 0, k3, 2, k4, 0, .... In this state, the happy particles have been

paired up into stacks of 2 which will split when the time step updates from t−1 to t, and the

unhappy stacks all sifted (arbitrarily) clockwise. All other unhappy stacks did not conform

to this pattern so they must have been able to wait, and thus at t− 1 they each occupied a

viable adjacent vertex. If l was odd, then one happy particle was not paired up, and occupied

the same location at both t − 1 and t. Now, X(t − 1) satisfies all five conditions and thus

X(t) is reachable by dispersion.

Now, we will show that the bound M > 3
5
n cannot be improved.

First, we will show the necessity that n is odd and n > 3. We will prove both of these

conditions by counterexample. Specifically, assume each condition is not true, and show a

state which cannot be reached by dispersion.

First, assume that n = 3, and M = 3. Then the ending state X(111) is unreachable, since

the initial state can either go to itself or the pile can split into stacks of size 1 and 2. Because

when the 2 splits to “finish”, it actually wraps around and one of the 1’s combines with the

currently happy particle, the game will never end. For n ≤ 2, we are not interested in this

result.

Next, assume n is an even number. By Lemma 1, any arrangement of particles in which

there can be found 2 unhappy stacks of opposite parities is unreachable.

Lastly, assume M ≤ 3
5
n. Realistically, this bound is only a signpost result. Indeed, there

are 5 different cases to consider where this assumption breaks down. In what follows, we

discuss all 5 and give the necessary bound for each.

Remark: Heuristically, the idea is that what causes an arrangement of particles to be
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unreachable on account of insufficient quantity is when there is too much space between

small strings of happy particles.

Under our assumption, the source of the contradiction arises from the fact that no un-

happy stack can deposit particles in the arrangement of X(t). This gives rise to a new set of

conditions which must apply in order to break the algorithm. If any of these are not true,

the state would satisfy the necessary conditions above.

1. The target arrangement X(t) cannot contain any unhappy stacks.

2. any unoccupied vertex between happy particles must be adjacent to another unoccupied

vertex (creating a gap between happy particles of length at least 2).

3. A string of happy particles in the ending state can be at most 3 particles long, since a

string of 4 happy particles could have come from a state with two adjacent unhappy

pairs.

Combining these rules, we see that the particle arrangements X(t) which cause the algo-

rithm to fail in this way all take the form of a set of strings of adjacent happy particles with

length at most 3, separated by strings of at least 2 adjacent empty vertices. Therefore, the

greatest number of particles we can use in order to find a state which cannot be reached by

dispersion can be found by packing the happy particles in to the final state as efficiently as

possible, obtaining the highest ratio of happy particles to empty vertices as possible.

Since every string of happy particles is adjacent to at least 2 empty vertices, we try to

minimize the empty vertices and maximize the happy particles. It is from this minimization

process that we obtain the following cases. Note that 3 happy particles per 2 empty vertices

is the best ratio possible, so we use as many sequences of “1, 1, 1, 0, 0” as possible. In what

follows, let k ∈ N be odd, and n = 5k + b for b even in N

Case 1: Assume b = 0 =⇒ n = 5k.
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This case gives us our signpost result, because there is no more efficient way to arrange

particles on Cn than by forming a sequence of n
5
strings, each of 3 happy particles followed

by 2 empty vertices. Thus, if n = 5k,M > 3
5
n for all states to be reachable by dispersion.

Case 1: Assume b = 2 =⇒ n = 5k + 2.

Notice that in our above example, we have exactly one state which cannot be reached

by dispersion. When we add 2 vertices to the cycle, it is actually impossible to add more

particles to the system, because no matter where we place those happy particles, there will

be at most 1 empty vertex between the inserted particle and a string of 3 happy particles.

While the number of particles does not incerase, the number of states which cause dis-

persion to fail does increase, since there are more ways to arrange the particles in such a

way so as to satisfy the three conditions above. Thus, if n = 5k + 2,M > 3
5
(n − 2) = 3n−6

5

for all states to be reachable by dispersion.

Case 3: Assume b = 4 =⇒ n = 5k + 4.

When we add 4 vertices to the first case, we can add exactly 2 patricles before we hit

capacity. The state looks like tat of the case 1, but one of the strings of happy particles is

only length 2. This creates the bound for when n = 5k + 4M > 3
5
(n− 4) + 2 = 3n−2

5
.

Case 4: Assume b = 6 =⇒ n = 5k + 6.

Adding 2 vertices from the previous case only allows us to add one more particle, which

completes the string of 3 unhappy particles. the other vertex must remain unoccupied,

otherwise it will cause the state to become reachable. In this case that also means that there

is a string of at least 3 unoccupied vertices. Thus we obtain the bound n = 5k + 6, =⇒
M > 3

5
(n− 6) + 3 = 3n−3

5
.

Case 5: Assume b = 8 =⇒ n = 5k + 8.

From the last case, if we add two more vertices, then we can add one more particle,

which will allow for an isolated happy particle. There are other arrangements of this many

particles which fail to be reached by the dispersion process, but none with more particles.

Thus, for n = 5k + 8, we have that M > 3
5
(n− 8) + 4 = 3n−4

5
.
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The greatest proportion of these is M = 3n
5
, so we use this as our lower bound for the

theorem. Thus, if all possible arrangements of M particles on Cn are reachable by dispersion,

then M > 3n
5
, n is odd, and n > 3.

Proof of Lemma 2:

This Lemma is called the spin-lemma, because by relabeling the vertices of Cn, or “spin-

ning” the labels on the vertices, we can control whether two stacks have the same or opposite

parities.

Let X(t) be any arrangement of M particles on Cn with n an odd integer > 3. Fix two

vertices va and vb in V (Cn) with a, b ∈ [n]. Now label the vertices V (Cn) = {v1, v2, . . . , vn},
with a = 1. Then b− a = b− 1 is either odd or even. Next, relabel the vertices in the same

way, except b = 1. Then we have b− a = 1− a is also either odd or even. We want to show

that b− a in the first labeling is odd =⇒ b− a in the second labeling is even (and also the

case where b− a even =⇒ b− a odd.

Note that because va and vb are fixed, we have that in the first labeling, b − a = b − 1

is the number of vertices between va and vb, including the latter but not the former. The

significance behind the labeling is that we are counting clockwise, starting from va and going

to vb. Likewise, in the second labeling, b − a = 1 − a is the number of vertices between va

and vb counting clockwise starting from (but not including vb.

Then the sum of these two numbers is exactly n. Moreover, since n is odd, one of them

must be odd and the other must be even. Therefore, if the labeling of V (Cn) starts at va = v1

and b and a have the same parity, then labeling V (Cn) with vb = v1 gives that b and a have

the opposite parity.

Proof of Lemma 3:

Let va and vb be vertecies in V (Cn), with a, b ∈ [n], such that a − b is an odd number,

and |va| ≥ 2, and |vb| ≥ 2. At time step t, the unhappy particles on va and vb all move to
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an adjacent vertex, va+1, va−1, vb+1, and vb−1. since va and vb had the opposite parity, va+1

and va−1 share the same parity which is opposite to that of vb+1 and vb−1.

The only time this is not true is when either a = n or b = n. in this case, vn+1 = v1

which is the origin vertex, but more importantly, it shares the same parity as n since n is

odd. Then, if the other unhappy stack was at v2, both stacks can meet at the origin vertex.

Otherwise, The unhappy stacks will not interact.

Another way of thinking about this Lemma is to say, “As long as no unhappy stacks touch

the origin vertex, their parities will change consistently on every time step.” This allows us

to control and monitor the independence of stacks which occupy vertices of opposite parities.

7.4 Proof for Corollary 1

We now have the tools for a very clean proof of the corollary regarding the termination of the

dispersion process for exactly n particles on Cn. Consider one of the ending conditions for

the general dispersion process, that at the time step before the system reaches its end state,

the number of particles in a stack is at most 2. Specifically for n particles being dispersed on

Cn, we have the following additional ending condition for the second to last state - that two

stacks of two particles must lie on adjacent vertices, with no particles on a vertex adjacent

to the pair. Equivalently, one of the permutations of the state label must contain “0220”

(e.g. X(220110)).

To verify this, simply observe that when the last step occurs, for the process to end, a

stack of exactly 2 must split onto two adjacent empty vertices. Since that would leave a

vertex unoccupied, another particle must simultaneously move to the vertex from which the

pair split. that particle must also come from a stack of 2 which was adjacent to the first

pair, and must have an empty vertex on the other side.

By Lemma 1, this is automatically impossible for all even n, since the parity of adjacent

stacks is always opposite on an even cycle. If n is odd, we just proved that every possible
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arrangement of the particles is reachable by the dispersion process on Cn. Since X(11...1) is a

possible arrangement, it can be reached. Since the process will not end until this state has

been reached, the process must eventually reach it and thus come to an end.

8 Future Endeavors and Open Questions

One of the major obstacles we encountered was trying to calculate the matrix inverse in

order to obtain the fundamental matrix for the absorbing Markov Chain. One pattern we

noticed specifically for the M = 3 case was that the main diagonal of the Q matrix looked

almost completely 2 - banded. For example, here is the Q section of the transition matrix

for Disp(3, 10), with clockwise bias 1
3
.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/3 0 4/9 0 0 0 0 0 2/9 0

1/9 0 4/9 0 0 0 0 0 4/9 0

0 1/9 0 4/9 0 0 0 0 0 0

0 0 1/9 0 4/9 0 0 0 0 0

0 0 0 1/9 0 4/9 0 0 0 0

0 0 0 0 1/9 0 4/9 0 0 0

0 0 0 0 0 1/9 0 4/9 0 0

0 0 0 0 0 0 1/9 0 4/9 0

0 0 0 0 0 0 0 1/9 0 4/9

4/9 0 4/9 0 0 0 0 0 1/9 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

While there are a few strange non-zero entries in this matrix, it is both sparse and

organized, which indicates that it may be possible to decrease the time it takes to compute

the inverse of I −Q.

In [6], they show that it is possible to recursively calculate the inverse of general r-

banded matrices. We were able to show that the information contained in our matrix can

be rearranged so that all the transition probabilities are preserved, but we can reduce the
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problem to a 3-banded matrix. The reason we cannot further reduce the problem is because

there exists a state, namely X(20100...0) which can be reached from three different states, none

of which are itself. This requires three different vertical entries in the matrix at the column

corresponding to that state, again none of which can lie on the main diagonal.

Still, this is very useful and even the third band is almost entirely empty. Using the

results in [6], it should be possible to find an easier (more computationally efficient) way to

invert this matrix. One open problem that arises from this is, can we algorithmically rear-

range the order of the rows/columns of Q so as to minimize the number of bands required

for the matrix?

One interesting point of future discussion is the proof for Proposition 5. We presented

an algorithm which can reach all states in an odd cycle, given the proper initial conditions.

The probability of this occurring is incredibly low, but still possible.

It would be interesting to look at the ties this idea has to machine learning. In practice,

it seemed possible to generate the target state for any (reasonable) n-cycle by simply letting

the computer conduct a random simulation, and breaking the loop if the target state has

been reached. But machine learning could let us “teach” the computer that less iterations to

get to the solution is better. If we did this, it would learn how to take the fastest route from

the initial state to any target state, and we could then observe its movements, and formalize

them into a much more efficient and probable algorithm.

Perhaps the most difficult question is so simply ask, what is the closed form for the

expected time to reach dispersion for M particles on Cn with probability bias p? While we

know that the answer does exist, this question is incredibly vast, and all of the results in

this paper, as well as those in [1] and [2] only point us in the direction of answering that

question.

We looked for example at the unbiased dispersion of exactly 3 particles on any n cycle,
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and we were able to draw various conclusions about the behavior of the expected time. But

if we ask the same questions for 4 particles on the n cycle, we immediately hit a wall, because

the particles are able to interact in a vast number of ways.

All that said, there is a large trade-off to having access to that closed form solution, be-

cause literally every single result would fall out of it. We would be able to see intuitively why

things behave so differently, taking limits would explain the behavior of dispersion on the infi-

nite path, and we could explore what happens as we sharply increase the number of particles.

The last future project we have is the idea of capacity on the vertices of G. Recall

Theorem 1, which states that for the complete graph Kn, and the star Sn the following hold

for any constant δ > 0:

1. If the number of particles M satisfies M/n ≤ (1/2)(1 − δ), then with probability

1−O(1/n), the dispersion process terminates in TDisp = O(log n) steps.

2. If the number of particles M satisfies M/n ≤ (1/2)(1 + δ), then there is a constant

c = c(δ) > 0 s.t. the probability that TDisp ≤ ecn is less than e−cn.

We would like to generalize this theorem, as well as offer a more general way to view the

dispersion process in terms of a new variable. We define the capacity k(v) of a vertex in

v ∈ V (G) as the maximum number of particles allowed on that vertex before all the particles

on that vertex at time t become unhappy.

In every single case we’ve seen so far, the capacity of all the vertices in G has been exactly

1. We conjecture that the following result holds for k = 2.

For the complete graph Kn, and the star Sn with k(v) = 2 ∀v ∈ V (Kn) or V (Sn), the

following hold for any constant δ > 0

1. If the number of particles M satisfies M/n ≤ (1−δ), then with probability 1−O(1/n),

the dispersion process terminates in TDisp = O(log n) steps.
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2. If the number of particles M satisfies M/n ≤ (1 + δ), then there is a constant c =

c(δ) > 0 s.t. the probability that TDisp ≤ ecn is less than e−cn.

Although we failed to give a formal proof for this conjecture, structure of our analysis is

similar to that of the proof given for 1 in [1].

We begin by letting H be the number of happy particles at time t, U the number of

unhappy particles at t, and we assume that happy particles do not move at each time step t,

but unhappy particles do move. Also let H ′ be the number of happy particles at time t+ 1,

which we will bound.

A particle is happy if either it is the only particle on its vertex, or if it shares that vertex

with exactly one other particle. We will distinguish between these two cases by letting H1 be

the number of vertices containing particles which are “one-happy”, in that they are the only

particles on their vertex. Similarly, we let H2 the number of vertices containing “two-happy”

particles, which are particles that share a vertex with exactly one other particle.

Note that H1+2H2 = H, and that in the case where k(v) = 1 ∀v ∈ V (G), H1 = H. The

process will end when H = M . Define the following variables.

1. X1 is the number of previously one-happy particles which have become unhappy from

at least 2 particles landing on them.

2. X2 is the number of previously two-happy particles which have become unhappy from

at least 1 particle landing on them.

3. Y1 is the number of previously unhappy particles which have become one-happy by

being the only unhappy particle to land on an empty vertex.

4. Y2 is the number of previously unhappy particles which have become two-happy, either

by being 1 of 2 unhappy particles to land on an empty vertex or by being the only

unhappy particle to land on a previously one-happy particle (thus making both two-

happy).
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At any time step t, given values for U,H1, H2, randomly allocating U balls into n boxes,

we can obtain the following expected values or X1, X2, Y1, and Y2.

EX1 = H1

(
1−

(
1− 1

n

)U

− U

n

(
1− 1

n

)U−1)
(7)

EX2 = 2H2

(
1−

(
1− 1

n

)U
)

(8)

EY1 = U

(
n− (H1 +H2)

n

)(
1− 1

n

)U−1
(9)

EY2 = U

(
U − 1

n

(
n− (H1 +H2)

n

)(
1− 1

n

)U−2
+

H1

n

(
1− 1

n

)U−1)
(10)

We cannot say much beyond this without talking about different concentrations, and

perhaps the relative expected values of H1 and H2. If we could prove this generalization

however, it would be interesting to explore whether the notion of capacity generalizes for an

arbitrary capacity κ.
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