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THE DISPERSION PROCESS FOR PARTICLES ON GRAPHS

Abstract

In this thesis, we study a process called Dispersion, in which M particles are dis-
persed among the vertices of a graph G. All particles initially occupy a single vertex
called the origin vertex. At each discrete time step, all particles which share a vertex
with at least one other, move to a randomly (though not necessarily uniformly) cho-
sen neighbor of the currently occupied vertex. The process ends when each vertex is
occupied by at most one particle.

We will explore various aspects of the Dispersion process. One of these is the
expected time to completion, E[T p;sp] for 3 particles on an n-cycle. Another point of
analysis will be the differences in the behavior of particles on even-length cycles vs.

odd-length cycles.
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1 Introduction

1.1 Current Results

Imagine you are in a boat with your friends moving down a river. You come around a bend
and you see that someone has laid stepping stones all across the river, and your boat crashes
into one of them. You and all your friends are now stacked up on one stone, and in order
to avoid falling into the river, you need to move. You each decide to flip a coin and move
right or left depending on whether you see heads or tails respectively (please ignore the fact
that you've all probably fallen in by now). Everyone moves at the same time, and then you
repeat the following process: everyone who is still sharing a stone flips a coin and moves left
or right according to the outcome. The process ends when everyone has their own stone and
you can wait until help arrives.

This is the fundamental idea behind the process known as Dispersion. Formally, consider
M particles initially placed on a distinguished vertex (called the origin vertex) of a graph G.
The process is synchronous and proceeds in discrete steps. Whenever two or more particles
occupy the same vertex at some step, they move independently to a random neighbor. If
only a single particle occupies a vertex, it stays there until another particle arrives [1]. The
process ends when each vertex is occupied by at most one particle.

In general, a dispersion process is one in which a collection of M € N identical particles
are located at an initial vertex (called the origin vertex) of a graph G. The particles move
about the graph in a distributed fashion until no more than one particle occupies any given
vertex. When this occurs, we say that the particles have dispersed.

Dispersion is symmetric across all particles, in that there is no prioritization, communi-
cation, or any other form of asymmetry [1]. This process can be an interesting way to think
about how a collection of positively charged physical particles would move if placed close
enough together, or how robots could distribute themselves in an area without the knowledge

of how the other robots would move. The river example is actually a specific case where G



is the infinite 2-regular tree.

Another example of this process is in terms of non-aggressive swarm behavior. Take for
example a swarm of bees trying to pollinate a rose bush. In this case, the rose bush would
be the graph G with the flowers as the vertices V(G), and M bees would be the particles.
The rule is that if two bees land on the same flower, each one automatically defers to the
others, and leaves to find a new flower.

Dispersion was very recently introduced by Cooper, McDowell, Radzik, Rivera and Shi-
raga in [1]. We are interested in various points of analysis for this process. Foremost among
them, given a graph G and an initial number of particles, M, along with an origin vertex,
we would like to find the number of time steps to achieve dispersion, Tp;s,. We are also
interested in the farthest distance of a particle from the origin vertex D p;s, after the particles
have dispersed, in the case where G is the infinite path. We use V(G) to denote the vertex
set of G.

In [1], Cooper et al. proved the following result for complete graphs and stars.

Theorem 1 (Cooper et al. [1]). For the complete graph K, and the star S, the following

hold for any constant 6 > 0

1. If the number of particles M satisfies M /n < (1/2)(1 —§), then with probability 1 —

O(1/n), the dispersion process terminates in Tp;s, = O(logn) steps.

2. If the number of particles M satisfies M /n > (1/2)(1 + ), then there is a constant

c=c(0) > 0 s.t. the probability that Tp;s, < e is less than e~ ".

This theorem states that if the ratio of the particles M to the number of vertices n =
|[V(G)| on either K, or S, is less than 1/2, the number of time steps that the process takes
to reach dispersion (Tp;s,) is logarithmic. But if that ratio is greater than 1/2, Tp;, is
exponential. This shows a drastic change in behavior at the ratio of 1/2 particles to vertices.

Cooper et al. define a threshold for a graph G on n vertices as a value of M for which

on G, M(1 + €) particles will require 2(e") iterations to reach dispersion, while M (1 — €)
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particles will disperse in polynomially many iterations.
The next theorem concerns the case where G is the infinite (or at least a sufficiently long)
path, rather than stars or complete graphs. We say a sequence of events A,, holds with high

probability or w.h.p. if P[A,] — 1 as n — oc.

Theorem 2 (Cooper et al. [1]). For a sufficiently long path, and M particles initially placed
at the origin vertez, the following holds w.h.p. (as M — oo) for any € > 0. When the
dispersion process terminates, the maximum distance Dp;s, any particle is from the origin
15 bounded by

[M/2] < Dy < A1+ )M log M, 1)

and Tpisp, = O(M3log M).

Cooper et al. essentially proved an upper bound on the distance of the farthest particle
from the origin vertex. The lower bound is trivial for the following reason. Any smaller
value would indicate that the process has not finished, since more than one particle would
occupy the same vertex by Pigeonhole Principle. In Section 7, we actually show that this
lower bound can be improved to (%W Very recently, in [2], Frieze and Pegden improved the
upper bound on D p;, from O(M log M) to O(M). This answered one of the open problems

in [1].

1.2 New Results

In this thesis, we will prove the following results. First, we will draw various conclusions
regarding the dispersion of exactly 3 particles on the n-cycle, and on the infinite path.
Beginning with our first main theorem, we have

Theorem 3. Let k = |5 — 1]. For the unbiased dispersion of 3 particles on C, with n > 3,

1 1

4
A, == (104 —— |, wh =——— and
3 ( + 3 0%1) where ay, 1o an
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1. if n is even, then oy = o and
o 1
2. if n 1s odd, then ay = 3"

Theorem 4. For the unbiased dispersion of 3 particles on the infinite path, P, the expected

1 4
time to dispersion is 3 (10 + )

14+ 3
Another topic of study is the difference between odd and even cycles. We proved quite a
few results within this topic, since this is the largest portion of our study. First we prove a
lemma which is interesting on its own, but also is our main tool for analysis of odd vs even

cycle behavior.

Lemma 1. Let M > 3 € N particles be dispersed on the graph C,. If n € N is even, all

unhappy particles have the same parity.
Next, we will show that the lower bound for Dp;,, in theorem 2 is actually [£].

Proposition 1. For the dispersion of M particles on the infinite path, Dp;sp,, the greatest

distance from the origin vertex to any particle, is at least [%1

We will then turn our attention to cycles with an odd number of vertices, and prove
our next main theorem, which basically states that if we have enough particles, and we are
using the dispersion process on an odd-length cycle with more than 3 vertices, then every

configuration of particles is reachable.

Theorem 5. All possible arrangements of M particles on C,, are reachable through dispersion

if n > 3 is an odd integer and M > %n Moreover, this bound cannot be improved.
This result gives rise to the following corollary when paired with the previous lemma.

Corollary 1. Letn > 3 € N. The dispersion process for exactly n particles on C,, terminates

n a finite number of steps if and only if n is odd.



This will be our final result, and the rest of the paper will proceed as follows. In Section
2, we introduce the definitions and notation required for the remainder of the thesis. In
Section 3 we introduce the concepts from the theory of Markov Chains which will be used
along with an example. In Section 4, we describe the state diagrams and corresponding
transition matrices of the Markov Chains which appear in dispersion. In Section 77, we
apply the techniques described in Section 3 to the chains arising from dispersion. In 6 we
prove our first main theorem regarding unbiased dispersion of three particles on an n-cycle.
In Section 7 we prove our second main theorem which compares the number of reachable
states in dispersion to the total number of states,. Finally, in Section 8 we discuss future

work and open problems.

2 Definitions and Notation

2.1 General Definitions

Consider the system modeled by the standard dispersion process as described in [1] on a
graph G on n vertices, with M particles. Cooper et al. define a state of the process simply
as a configuration of M particles on the n vertices of G. The initial state of a dispersion
system is the one in which all M particles occupy a single vertex. They also define a particle
to be unhappy if at time ¢, another particle occupies the same vertex as itself, and they say
that the particle is happy otherwise. We will actually redefine these terms in the last section,
where we describe an open problem regarding a generalization of Theorem 1.

We define the set of particles which occupy a single vertex the stack of particles on that
vertex at time t. An unhappy stack then is a set of particles which all occupy the same
vertex at a given time step t. We say that a state is reachable from another state if there is
a way to distribute all unhappy particles in the former state to adjacent vertices to obtain

the latter state. We can then say that a state is reachable by the dispersion process if there



exists a sequence of reachable states leading to it from the initial state. Lastly, the dispersion
process can be either biased or unbiased, the latter only if the adjacent vertex to which an

unhappy particle moves is chosen uniformly at random.

2.2 Definitions on C),,

By convention, since we are mostly going to consider cases where G will be C),, we will use
the following notation to denote a state of the system, and we will specify if other notation
is implemented.

Given n and M, let Q = Q(M,n) be the set of all strings of length n whose entries are
over the alphabet {0,1,2,..., M} and sum to M. Next, let z,y € Q. Say z ~ y if z is a
cyclic permutation of y. Then we define ' = Q'(M, n) to be the set of all equivalence classes
under ~.

In other words, €2 represents the set of all configurations of M particles on a labeled
n-cycle. € on the other hand is the set of all rotationally asymmetric configurations of M

particles on C,,. Note that |Q2(M,n)| can be counted using “Pirates and Gold”, so

M4n—1
|Q(M,n)| =
n—1
It can also be shown that
QL) = S () ,
d|(M+4n,n) nq

where (M + n,n) is the ged of M + n and n, and ¢ represents Euler’s Totient Function.
Lastly, when G is the labeled C), or the labeled infinite path P, we would like to define

the parity of a particle, as well as that of a stack of particles. Consider an element of {2 whose



positions are denoted by vy, vs,...,v,. Let x represent a particle or a stack on v;,7 € [n] at

time t. Then the parity of x, Par(x) is

0 if 7 is even
Par(z) =

1if 7 is odd
In other words, at time ¢, a particle (or stack of particles) has the same parity as the

labeled vertex it occupies at that time.

3 Markov Chains

In this section we will introduce the concept of absorbing Markov chains and relevant results
which we will make use of later in the thesis. A Markov chain is a stochastic process
consisting of discrete states, X, Xo, ..., X4, which takes place over sequential, discrete time
steps. At each time step, the system transitions from one state to another with a certain
probability. An absorbing Markov chain is one in which there exists at least one state whose
probability of transitioning to itself exactly 1, and it is possible to reach such a state from
any other state in the system. Such a state, which can never be left once entered, is called
an absorbing state, and any other state is called a transient state.

The relationships between the states can be described in a matrix, called the probability
transition matrix, or the adjacency matrix. The ij-th entry of the transition matrix describes
the probability of transitioning to state j from state 7. It is common practice to group all
of the absorbing states at the bottom right corner of the matrix. Since each absorbing state
transitions to itself with probability 1, this causes the identity matrix of size equal to the

number of absorbing states to occupy that corner of the matrix.



In this form, () represents the probability of one transient state transitioning to another,
R is the probability of a transient state transitioning to an absorbing state, 0 is a zero matrix,
and [ is the identity. Note that if F;; represents the probability of transitioning from the
i-th state to the j-th state, then PZ% is the probability of transitioning from 7 to j in exactly
2 time steps. More generally, P* is the probability transition matrix after k time steps.

One of the fundamental properties of absorbing Markov Chains is that the process must
eventually end. Consider the sub-matrix @), the probability transition matrix of transient
states transitioning between one another only. It is clear that lim QF = 0. Linear algebra

k—o0

gives us the following result regarding the geometric series,

N=I-Q)'=T1+Q+Q>+@Q*+...

N is often called the Fundamental Matrix of the absorbing Markov Chain. The ¢j-th
entry of N can be interpreted as the expected number of visits to state j given that the
initial state of the system was state ¢. This matrix has a multitude of useful properties, but
specifically we want to build on the one regarding the expected number of visits to a state.

If we take N1 where 1 is a vector of 1’s with length equal to the dimensions of N, we
obtain a column vector of the row sums of N. The i-th entry of N1 is exactly the expected
number of time steps required for the system to reach an absorbing state, given that the
system started in state ¢. Note that multiplying a matrix by a vector of 1’s is equivalent to
summing the rows of the matrix. Thus we have all the tools we need to make the connection

from Markov Chains back to particle dispersion.



4 State Diagrams and Reachable States

4.1 State Diagrams

It is possible to encompass all of the information regarding the relationships between states of
the system using a directed graph (with loops) with weighted edges, called a state diagram.
We first define Disp(M,n) as the directed graph with vertex set ', and directed edges
representing the possibility of the former state changing into the latter state. For example,
Disp(4,4) gives us the following state diagram. We label the states in the diagram based on
the state which that vertex represents. For example, X 4000) represents the initial state, where
all 4 particles occupy a single vertex. Also, we temporarily omit the transition probabilities
while we describe the underlying graphs themselves.

X4000

X (D>
o

o N

X2020

X3100

X3010
°

X3001

- ¥# »
Xo101 X / k_) Xa200
U Xoa110

Consider all the edges coming in and out of X 4900). There is a loop at that vertex because
there is a chance that all the particles in the stack move left or right as a unit, which would
send the system to a rotationally symmetric state, which is equivalent to X400y in €. It has
a one-directional arrow going to X(3010), because the pile could split into one happy particle

and three unhappy particles. The only other way the particles can split is into two pairs,



which gives X(2020y. This edge goes both directions, because there is a chance that that state
will return to the original, which is impossible for X 3010). Lastly we see two incoming arrows
from X(3100) and X(3001), which represent the chance that the stacks of three particles move
onto the happy particle, forming a stack of 4 particles.

Now take a look at the states X(2200), X(2101), and X(i111). Notice that it is impossible
to enter any of these three states by particle dispersion, since dispersion requires that every
particle starts on the origin vertex, in the state Xo00). There is no directed path from X 4900)
to any of the other three, so the dispersion process will never see those states. Because of this,
it is at times completely unnecessary to include them in Disp(M,n). If we “throw away”
these states (omit them from the graph), we can obtain a much more insightful description
of the relationships between states specifically included in the dispersion process.

Thus the following definition. Given M and n, let A’ = A’(M,n) be the set of all states
which can be reached by a directed path from the initial state in . We refer to A’ as the
set of reachable states. Recall that Disp(M,n) is the graph of all possible arrangements
of M particles on C,. We now define a new directed subgraph (still allowing loops) called

Disp(M,n)" as the state diagram whose vertex set is A’. For example Disp(4,4)" looks like

X 4000

X3100

b X3001

X2110
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4.2 Comparison of €)' and A’

We developed algorithms which could accurately generate the elements of ' and A’. While
we will not discuss them here, we will pause and observe some data collected via these
algorithms. The data we’ve collected specifically is the number of configurations of M
particles on C), vs the number of reachable states for the same particles and cycles.

For the reader’s sake, we show both tables on the same page, to simplify comparison.
The first table shows the number of all possible states (equivalent to necklaces of length n
with characters summing to M, also the sizes of (M, n)). The second table shows the

number of states in €2 reachable by dispersion (equivalent to the sizes of A’(M,n)).

11



Possible Arrangements, Q' (M, n):

Cycle Size n

12 3 4 5 6 7 & 9 10

1711 1 1 1 1 1 1 1
2112 2 3 3 4 4 5 5 6

311 2 4 5 7 10 12 15 19 22
411 3 5 10 14 22 30 43 95 73
Number of 5|1 3 7 14 26 42 66 99 143 201
Particles M | 6 |1 4 10 22 42 80 132 217 335 504
711 4 12 30 66 132 246 429 715 1144
8 (1 5 15 43 99 217 429 810 1430 2438
911 5 19 55 143 335 715 1430 2704 4862

1011 6 22 73 201 504 1144 2438 4862 9252

Reachable States, A'(M,n):

Cycle Size n

12 3 4 5 6 7 8 9 10

111 1 1 1 1 1 1 1 1 1
211 1 2 2 2 2 2 2 2 2
31 1 3 5 6 9 10 12 14 16
411 1 5 7 14 18 30 37 52 62
Number of > |1 1 7 8 26 29 66 76 142 163
Particles M | 6 |1 1 10 10 42 40 132 131 335 337
701 1 12 11 66 51 246 194 715 598
|1 1 15 13 99 64 429 276 1430 956
911 1 19 14 143 79 715 368 2704 1433
101 1 22 16 201 94 1144 487 4862 2057

One very interesting observation here is that it seems as though for every odd cycle with

12



M > %n and n > 3, every single arrangement of the M particles is reachable by the disper-
sion process, but for even cycles, the number of reachable states is significantly smaller than
the total number of asymmetric particle configurations. This indicates that many of the
arrangements of particles are unreachable in the even-cycle cases. Indeed, we confirm these
observations in Section 7. This also gives rise to the other interesting conjectures which we
will discuss. We will eventually use this discrepancy to improve the lower bound on D p;g), in
Theorem 2 from [ | to [4£], and show that given exactly n particles on C,,, the dispersion

process will terminate if and only if n is odd.

5 Closed-form Results

We now tie together the theory of Markov Chains and the transition matrices we’ve built. We
saw at the end of Section 4.2 that we have the ability to generate the probability matrix for
any M, n, provided that these values aren’t too large. We also introduce a third variable p,
which represents the probability of a particle moving clockwise around the cycle (or moving
right on the path P). In both [1] and [2], the authors only consider unbiased dispersion
of particles. This generalization does not break the symmetry of the particles, since each

particle still moves independently of the others.

5.1 Example of Technique

We will give a demonstration of the entire process for the dispersion of exactly 3 particles on
Cs, where the particles have a probability bias of .6 for moving in the clockwise direction.

First, we create the state diagram (now including the probabilities with the directed edges).

13



.
25

X30000

From this state diagram, we can extract the following transition matrix,

7

% 0 0
% 0 5
02%0

Disp (3,5) = P =

0 0 3
s 0 3
0 0 0

Continuing in this case, we extract/derive ), R, N and N 1 as follows.

14

54
125

12

25

0

12
25

12
25




T o 26 54 0

25 125 125
% 0 & £ 0 0
12
Q=10 & 0 5 0 R= |5
00 2 0 £ %
0
s 0 2 % 0
N=(I-Q)'=
1
18 g _36 _5
2 o1 1.6067 0.3583 0.9953 1.0880 0.1741
9 1 _4 12
% % 2 0.7075 1.3325 0.9235 1.1598 0.1856
0 -2 1 - 0 ~ | 0.2826 0.5198 1.4439 0.6395 0.1023

0.1746 0.2507 0.6963 1.3871 0.2219

25 25
0.4556 0.3971 1.1030 0.9804 1.1569
4 0 12 _9 1
25 25 25
1.6067 0.3583 0.9953 1.0880 0.1741 1 4.2225
0.7075 1.3325 0.9235 1.1598 0.1856 1 4.3089
NI = {02826 0.5198 1.4439 0.6395 0.1023 | * |1 | = | 2.9881
0.1746 0.2507 0.6963 1.3871 0.2219 1 2.7306
0.4556 0.3971 1.1030 0.9804 1.1569 1 4.0929

Notice that this technique actually gives us more information than we were originally

seeking. The expectation of T p;g, is given by the first entry of N 1, but the other entries

15



of N1 hold the expected time to completion for all the other states in Disp(3,5). We can
conclude from this information that the dispersion process for 3 particles on C,, will take an
expected number of steps approximately equal to 4.2225.

Given that the MATLAB language allows for symbolic computation, we are actually able
to extract even more information for small cases. One way we were able to do this was to
calculate the fundamental matrix for some systems in terms of the general probability p.
This gives us the opportunity to generalize Disp(M,n) Vp € (0,1). It was by this method
that we obtained the matrices for Disp(4,4) and Disp(3,5), as opposed to by hand.

Consider Disp(3,6) for general p € (0,1). We calculate the symbolic matrix to appear

as follows, using the symbol “p” for our variable bias.

Disp(3,6) = P =

[a)
(@)
[a)
[e)

p’+¢* 0 3pg® 0 3p’
p? 0 ¢ 0 29 0|0 0 O
p 0 ¢ 0 0] 0 2pg O

0
0 0O p> 0 ¢ 0] 0 0 2pq
0

0 0 p> 0 ¢Z|29 0 0
¢’ 0 2p¢ 0 p* 0] 0 0 O
0 0 0 0 0 0 1 0 0
0 0 0 0 0 010 1 0
0 0 0 0 0 0] O 0 1

Following the above process, we can see that

16
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At this point we need to take N = (I — Q)~'. Unfortunately, every entry is close to a
rational polynomial, with the degree of both the numerator and denominator around 8 and
10 respectively. This would be a waste to include here, so instead we choose to list only the
polynomials in the first row, since these are the elements we sum to obtain Tp;,. For the
sake of notation, assume we are starting in the first state. Let E[X;] be the expected number

of visits to state 7. Then, in order from left to right in the first row of N = (I — Q)™', we

have:

1 —2p + 10p? — 34p> 4 65p* — 66p° + 36p° — 12p” + 3p®

E[X =

X 00000 6p2(1 — p)2(3 — 8p + 14p? — 15p3 + 15p* — 9p5 + 3p6)

2 6

p—p +p

E[X =
X @10000)] 2(1 — p)(14p? — 8p — 15p3 + 15p* — 9p° + 3p® + 3)
5
—p+1
E[X(201000)] = P .

2(p — p?)(14p? — 8p — 15p3 + 15p* — 9p° + 3pb + 3)

4p* — 3p — 5p® + 10p* — 9p° + 3p° + 1
2(p — p?)(14p® — 8p — 15p3 + 15p* — 9p° + 3pb + 3)

E[X 200100 =

—4p + 10p* — 10p® + 5p* — p° + 1
2(p — p?)(14p? — 8p — 15p3 + 15p* — 9p° + 3pb + 3)

E[X (200010)] =

14p? — 5p — 20p° + 15p* — 6p° + pb + 1
2p(14p? — 8p — 15p3 + 15p* — 9p® 4 3pb + 3)

E[X 200001)] =

17



A far more significant result comes when we sum these polynomials. While the resulting

polynomial is no less atrocious to look at, it is a generalization of T p;s, for 3 particles on

Cs.

—27p% 4 108p" — 204p5 + 234p° — 187p* 4 110p3 — 44p® + 10p + 1
6p%(1 — p)2(3p® — 9p® + 15p* — 15p3 + 14p2 — 8p + 3)

TDisp -

1 1 22 22 129p* — 258p? + 288p% — 159p + 20
- - +— -
18(1 —p)2  18p?>  27(1—p) 27p  54(3p® — 9p® + 15p* — 15p3 + 14p? — 8p + 3)

Again, since we are limited by the matrix size, we were only able to obtain a small collec-
tion of these closed forms for T p;sp,. This includes Disp(3,n,p) for 4 < n < 15, Disp(4, 5, p),
and Disp(4,6,p). Beyond that would require more intensive computing resources or signifi-
cantly improved algorithms.We will report these formulas in partial fractions form because
they are more legible and some require more than one line of text.

We will use the natural notation T p;s,(M, n,p) to represent the expected time for M
particles to disperse on C,, given the probability bias p of a particle moving clockwise. The

following results are only for the dispersion of 3 particles.

1
+ + -+
6(1-p)? 1-p p 6p?

1 7 1 21 7 1

Tis 3757 = -
iar(3,5.7) 12(1—p)2+8(1—p)+p2—p+1 8(p2—p+2)+8p+12p2
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1 1 129p* — 258p° + 288p? — 159p + 20
TDisp(3767p) - 2 + 2 4 2

18(1—p)2 ' 18p%  5A(3p° — 9pd + 15p" — 15p° + 14p% — 8p + 3)

22 22

i—p) 27

_|_

Tpisp(3,7.p) = ! + By ! + 13 + 5
AT 24(1—p)2  32(0—p) 32 —p+1) 7222 —2p+1) 32

1 632p2 — 682p + 589
24p2  288(2pt — 4p3 4 5p? — 3p + 4)

+

TDisp(3a 87 p) -

—584p® + 2336p" — 5790p° + 9194p° — 9633p* + 6668p> — 2670p* + 479p + 76
150(4p'0 — 20p% 4+ 61p® — 124p7 + 187p5 — 211p° + 188p* — 129p? + 68p? — 24p + 5)
19 1 19 1

o5 —p) T30 —p2 " 25p 3002

For unbiased cases, the results are much cleaner. Note that in the cases where M = 3,

this is equivalent to substituting p = % for p in the above formulas.
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TDisp (Mu n, %)

Number of Particles M

3 4 5 6

VR ISR

514 9F e

0 % 126314530 T206Ef999358 o0
Cycle | 7| % ‘own 105911 23.8018
Siwen | 8| 3 4 osar2

9 | 2 6.2515

10| 55 6.2409

11| W

12 | 3088

13 | 29

14 | L

6 Three Particles on C),,

Let A, be the expected time to dispersion for 3 particles on C,,, with unbiased dispersion.
We now have enough information about the M = 3 case to generalize for any n-cycle.
Essentially, we have a sequence of rational numbers that converges to some number. The
sequence starts as the first column in the above table, where n = 4. Let A = {Ay4, As, As, . . .
be the sequence of rationals. In the list of the first 10 terms of A below, we have undone

some of the fraction simplification in order to see the trend.
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[ 14 24 58 92 218 344 814 1284 3038 4792 @)
S 13767157247 5779072137 336 7 795 1 1254°

Our first main theorem gives an exact formula for this sequence in terms of a recursively

defined constant.

Theorem 6. Let k = |5 — 1]. For the unbiased dispersion of 3 particles on C, with n > 3,

1 4 1
the expected time to dispersion A, satisfies A,, = = (10 + 3—), where ay, = o
- Q-1

3 — Qg1
and

1

1. if n is even, then oy = o and
o 1
2. if n is odd, then ay = 3"

Proof. We begin by splitting the expected time to completion for odd and even cycles into
two distinct subsequences, A,qq, and Ag,e, respectively. The motivation behind this is dis-
cussed heavily in the next section. Superficially, we do this because the subsequences are
significantly easier to quantify separately. Moreover, we will show that both individual se-
quences converge to the same number. Bear in mind that the expected number of steps to

completion for Cy occurs at n = 4, so also the sequences begin incrementing from n = 4.

A 14 58 218 814 3038
er 1 37157 5772137 795 7

L [24 92 344 1284 4792
odd ™) 76724 90 7 336 712547

Let Xy be the “first” state, and X; for i € 0,1,...,k be the transient state where the
smallest number of empty vertices between the unhappy stack of 2 and the happy particle

is exactly ¢, and k = [§ — 1]. For example, Xo = X(210..0), X1 = X(2010..0), etc. In unbiased
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dispersion, it is convenient to consider X(21000) = X(20001) (reflections of states are part of
the same equivalence classes), since in terms of probability, clockwise and counterclockwise
motion of particles is equal. In a slight abuse of notation, in what follows, we use X;
and X; to represent the corresponding value in the first row of the fundamental matrix N
corresponding to this Markov chain. Recall that the expected time to dispersion appears as

the sum of the entries in the first row of N. Thus we have

A= Xp+ ) X, (3)

Case 1: Assume n is even. By analyzing the possible transient states of three particles

on an n-cycle, we arrive at the following state diagram with transition probabilities included.

1/4

Here we make note that from this state diagram, we can write down the general form of
the transition matrix and relevant submatrix (). Again, the expected value of Tp;s), is the
sum of the first row of the matrix N = (I —Q)~!. Since we are only concerned with the first
row of N, we obtain a system of k + 2 equations (shown below) and k + 2 unknowns. We

have multiplied each equation through by 4 (to clear denominators):
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3X; = Xo+4
1X) = X,
AX) = 3X; +3Xo + X,

14X = X5+ X4

4Xy9 = Xp—1 + Xj3
4Xp1 = 2Xp + Xjo

4Xy, = X

Summing up the left and right hand sides of this equations and making use of equation (3),

we have

k
A, — Xp=4+3X;+4> X,

1=0
=4+ 3Xp+4Xo +2X) + ...+ 2X +2X

=4+ X;+2X + 24,

which implies that

Next, we need to obtain the system’s dependence on k, since the above is true for all n.

We would like to specifically represent X, and Xy in terms of k. Observe that V& > 1, X}, is
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dependent only on X ;. This fact does change in the odd n case, but only slightly. Then

1
X = ZXk—l
1 1
— 4X,_ 1 — §Xk,1 = Xk,Q, where a; = 5,
1 1
= X1 = T Xp—2 = X} _o, where ap =
4 — 3 —
1 1
= X, 9= —1Xk_3 = a3 Xj_3, where az = o
4 — — G2
i

= Xo=ap1Xy

Case 2: Assume n is odd.
The proof for this case is almost identical to that of the previous case. The only difference

is that at X}, there is a }l chance the state returns to itself, since the system is unbiased,

and Xy is defined as k being the minimum number of empty vertices separating the happy

particle from the unhappy stack. The diagram for this is as follows.

1/4

1/4
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We derive almost the same equations, except we furter solve X, to be in terms of only Xj;_;.

3X; = Xo+4
1X) = X,

AX) = 3X; +3Xo + X,

4Xp1 = Xp + Xp—o

3Xy = Xj

Again combining these relationships with Equation (4), we obtain exactly Equation (5) from

the previous case,

Ay, =2+ X+ Xo. (5)

In order to apply this equation, we must derive values for a4, in a similar fashion to that

of the previous case.

1
Xy = §Xk71
1 1
— 4X,_ 1 — ng;—1 = X}_2, where oy = 3
1 1
— X1 = I Xpo = CYQXk,Q, where oy =
1-1 “ o
1 1
= Xp_o= —1Xk_3 = 043Xk_3, where az =
4 T
=

= Xo=ap1X

At this point, we can treat the cases as one, and finish the argument. Because of the

dependence on k only in the coefficient a4, we can reduce the system of equations from k + 2
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unknowns down to 2, namely X, and X if we substitute 4X, = X;. This gives us

3X;— Xg=4

3Xf + (4(Jék_1 - 13) XO =0

or equivalently,
3 -1 4
3 4day_1—1310

By solving the system of two equations, we obtain

Finally, substituting into equation (3), we have

1 1 1 1 4
A, =2+= (4 =_(10+——). 6
+3( +3_ak—1)+3_ak—1 3( +3—ak_1> ()

]

Theorem 7. For the unbiased dispersion of 3 particles on the infinite path, P, the expected

1 4
time to dispersion is 3 (10 + )

14+ 3
Proof. We know that dispersion on P behaves almost exactly like that on C,, with sufficiently
large n, so Tp;s = lim A,. We will show that o = klim ay = 2 — /3 when n is both odd
n—oo —00

and even. First note that « satisfies

— a’—4a+1=0 = (a—1)(a—1y) =0

where r; = 2 —+/3 and r, = 2+1/3. We will show the limit is r; by induction on k, and give
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different base cases for the different parities of n. Remember that &k - k+1 = n — n+2.

Induction Hypothesis: Assume for some k that oy < ay_;. It follows that

1
4— <ap, = Cki_l —4da_ 1 +1<L0.
— Q-1

Moreover, we can say that (ag_1 —r1) (ag_1 —r2) < 0. Since the polynomial is upwards

facing, we can claim that ag_q € (r1,72).

We want to show that a1 < ag, or equivalently that af — 4a; + 1 < 0. Applying our
definition of «y,, we have

1 2 1
SN T (P S |
(4— Oék1) (4— Oékl) *

1
m (1 — 16 + 40[k_1 + 16 — SOék_l + 042_1)

_ Ckz_l — 40&]{71 + 1 . (Oék_l — Tl) (Oék_l — 7’2>

(4—apq) (4 — opr)”

Since the denominator is always positive, and by the inductive hypothesis, we assume

that the numerator is not positive. For base cases, we have a; = %,Oég

% for even
cycles, and oy = %, g = 13—1 for odd cycles, all of which hold for the induction. Therefore,

az —4day, +1 <0, s0 agsq < ag. Thus, the sequence of oy, is decreasing and bounded below

by r, and o = klim a, = 2 — /3. Moreover,
—00

1 4 1 4
Tpisy=limA,==- |10+ —— | =110
Disp = 10 3 +3—11H104k 3( +1+\/§)

k—o00
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7 The Parity of Vertices

In the table for T p;s, (M, n, %), notice that T p;s,(4, 4, %) and T p;s,(6, 6, %) are both oo, but
T pisp(5, 5, %) has a finite, reasonable value. As it turns out, T p;, (7,7, %) also has a finite
value, and in general, it seems that odd values for n particles on the n cycle all eventually
terminate. Conversely, none of the even values of n particles on C), terminate. We mentioned
this phenomenon briefly earlier, and now we revisit it, in addition to some other observations.

In this section, we will prove the following results.

Lemma 1: Let M > 3 € N particles be dispersed on the graph C,,. If n € N is even, all

unhappy particles have the same parity.

Proposition 1: For the dispersion of M particles on the infinite path, Dp;sp,, the great-

est distance from the origin vertex to any particle, is at least [£].

Theorem 5: All possible arrangements of M particles on C), are reachable through dis-

persion if n > 3 is an odd integer and M > %n Moreover, this bound cannot be improved.

Corollary 1: Let n > 3 € N. The dispersion process for exactly n particles on C),

terminates in a finite number of steps if and only if n is odd.

7.1 Proof for Lemma 1

First, we will prove a lemma about even cycles. This lemma also has ties into many other
ideas regarding dispersion, each with discussions to follow.
Assume n is an even number.

Recall that the definition of a particle’s parity is rooted in the labeling of the vertices of
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C,,. Specifically, let V(G) = {vy,vs,...,v,}, where vy is the origin vertex, and the vertices
are labeled sequentially clockwise around C),. For the sake of notation, let |v;| denote the
number of particles at v; (e.g. |v;] > 2 = all particles at v; are unhappy). Also note that
Vo = Up, and v,41 = V1.

Assume now, for the purpose of contradiction, that for some time step ¢, Ja,b € [n] s.t.
|va| > 2, |vp| > 2, and |a — b| is an odd integer. In other words, we are assuming there exist
2 stacks of unhappy particles with opposite parities at time ¢. since the following holds for
both v, and v,, WLOG we will only consider what happens at v,.

Note that when the state jumped from time ¢t —1 to ¢, there are two cases for the particles
at v,.

Case 1: At ¢t — 1, |v,| < 1. Because at time ¢ the particles at v, are unhappy, we know
that at least one unhappy particle came from either v, 1 or v, 1.

Case 2: At t—1, |v,| > 2. In this case, the particles at v, are all unhappy. This means
that when the state changes, all the particles must leave v,. But again because at ¢ the
particles at v, are unhappy, we know that at least two particles must have come from some
combination of either v, 1 or v, 1.

In either case, we know this: that at time ¢t — 1, either v,_; or v, contained a stack of
unhappy particles. Because n is even, both v, ; and v,,; must have the opposite parity as
v,. Since these hold for v, in addition to v,, we can claim the following.

Let v4 be the vertex with max {|v,_1|, |[va11]} at t—1, and vp the vertex with max {|vy_1], |vp11]},
also at t — 1. Then |va| > 2, |vp| > 2, and |A — B| is an odd number.

Therefore, for any time step ¢ for which our assumption is true, it must also have been
true at ¢ — 1. By reverse induction on ¢, we arrive at our contradiction, since the initial state
for particle dispersion does not meet this condition. Thus, through the dispersion process of
M particles on C,, with n even, it is impossible for two stacks of unhappy particles to have

the opposite parity. In other words, all unhappy particles share the same parity. O
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7.2 Proof for Proposition 1

In and of itself, the above result is rather satisfying, but we will use it to show the following.
This item has to do with what happens in particle dispersion on the infinite path. Theorem 2
talks about the bounds on D p;p,, the distance of the farthest particle from the origin vertex.

Specifically, the theorem claims that

M
L?J < DDisp < 4(1 + €>M10g M.

Freize and Pegden improved the upper bound in [2] to O(n), but we would like to mention
(and slightly improve) the lower bound to [4]

Let P be the infinite path, and M € N the number of particles.

The number L%J is almost trivial to prove; if the greatest distance of a particle from the
origin is less than this, then by Pigeonhole Principle, there must exist a vertex occupied by
more than 1 particle.

The additional 1 comes from this problem of parity. The infinite path behaves like an
even cycle in terms of the parity of particles. Label the vertices of P as exactly V(P) =
{...v_1,v0,01, 02, ...}, where vy is the origin vertex, v; with ¢ > 0 is the i-th vertex to the
right of the origin, and v; with ¢ < 0 the i-th vertex to the left of the origin. Then at every
distinct time step, all unhappy particles change parities, and the result from Lemma 1 holds
that all unhappy particles share the same parity.

The ending condition still holds that all unhappy stacks in the state before the ending
state must be of exactly size 2. Coupling these two facts, we see that any unhappy stack in
this state splits into two happy particles, and must leave behind an empty vertex between
the origin and the particle at D p;g,. This fact guarantees that there will be an empty vertex
somewhere between the farthest particle to the left and that to the right.

Thus, the distance of the farthest particle from the origin must be at least [£]. O
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7.3 Proof for Theorem 5

Next, we will revisit the phenomenon observed in Table 1 and Table 2, where the number
of states reachable through dispersion is equal to the number of arrangements of particles
when n is odd.

Let X(t) be an arbitrary state at time ¢ called the target state, and as always, label
the vertices V(C,,) = {vy,...,v,}. In what follows, we present a scheme in which the
particles can reach X (¢) by moving according to the rules of dispersion, provided that various
conditions around X (¢) are met. Then we discuss cases where some of these conditions fail,
but the state is still reachable. Finally, we will show that if all arrangements are reachable,
then n > 3, n is odd, and M > %n Note that the probability of the particles moving
according to our scheme is inconsequential, so long as it is possible for them to do so.

We begin by stating the following lemmas, the first of which lets us guarantee that any

two of the stacks in X (¢) can have either the same or opposite parities.

Lemma 2. Let n be an odd integer with n > 3. Given any two stacks in state X (t), the

parity of those stacks can be either opposite or equal, depending on the labeling of V(C,,).

Next, we must define a downbeat as a value of ¢t which has the same parity as the time
step in which X (¢) is reached. The motivation behind this definition is to subdivide the
sequence of discrete time steps into two alternating subsequences (one of downbeats, the
other as upbeats), so that at each downbeat, we would like each stack to have the same
parity as its target vertex. An upbeat is a time step which is not a downbeat.

The following lemma gives us the power to claim that unhappy stacks can move inde-
pendently throughout the cycle as long as they avoid crossing from v, to v; or vice-versa.
The proof is rather trivial, given our definition of a downbeat. Nevertheless we will give the

proof at the end of this section, along with that for Lemma 2.

Lemma 3. At each time step t for dispersion of M particles on an odd-cycle, no two un-

happy stacks of opposite parities will have any particles move to the same vertex unless that
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vertex is the origin vertex.

We will now discuss the algorithm which can be used to reach most states, and then we

will address cases which require a more creative approach at the end.

First, we list the assumptions necessary for this algorithm:
1. There are at least 2 unhappy stacks in X (¢).

2. Every unhappy stack in X (¢) is either adjacent to another unhappy stack, or an unoc-

cupied vertex.

We will demonstrate in what follows that X (¢) is reachable by an alternate strategy even
if the assumptions are relaxed, although doing so requires some work. Next, we list the rules

governing particle motion throughout the process:

1. Any time an unhappy stack lands on a vertex with a happy particle, that unhappy
stack returns the happy particle to its vertex two time steps later by splitting it off as

the stack continues to move.

2. If an unhappy stack arrives at its target vertex in X (¢) before time step ¢, it must
wait there until step t. “Waiting” is possible if and only if there is an empty vertex or
unhappy stack adjacent to the stack which is waiting. The process of waiting involves
the whole stack moving as a unit between its target vertex (on the downbeats) and the

viable neighboring vertex (on the upbeats).

3. After the stack of unhappy particles (in X (¢)) splits into the odd stack nd even stack
(defined below), these stacks never land on the origin vertex again. This ensures that

Lemma 3 holds, and the two parities maintain their independence of one another.
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4. At every downbeat, each stack which has reached the vertex it will eventually end on

returns to that vertex.

Finally, here are the steps for the algorithm itself:

1. By Lemma 2, we can relabel the vertices V(C,,) so that at least 2 unhappy stacks in
the final arrangement of particles are on the opposite parity. We can choose move the
initial stack from the origin vertex to the new vertex labeled vy, but this will not affect

the execution.

2. The first n + 1 time steps simply let the stack of particles run clockwise around the
cycle, dropping off happy particles as it goes on vertices which, in X (¢), contain happy
particles. At the end of this loop, all particles which belong to an unhappy stack in
X (t) should occupy the origin vertex, along with the happy particle which ends at that

vertex, if such is the case in X(t).

3. Let Ny be the number of particles in unhappy stacks with parity 1 in X (¢) (the sum of
the odd stacks), and Ny be the number of particles in unhappy stacks with parity 0 in
X(t) (the sum of the even stacks). At the next time step, the current stack splits into

two unhappy stacks, one of size Ny called the even stack, one of size Ny, the odd stack.

4. The odd stack and the even stack begin by moving clockwise and counter-clockwise,
respectively. They march all the way around the cycle splitting off unhappy stacks
on the downbeats. Those unhappy stacks wait until all the others have reached their

target vertices.

If either of the two assumptions we’ve made are not met, then this algorithm fails, so we
will deal with the cases where X (¢) is a state which does not meet these conditions. Note

that if we show that a state which can itself reach the ending state X (¢), and that that state
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(call it X (¢t — 1)) is reachable, then this is equivalent to showing the target state X () is
reachable.

First, assume that condition 1 fails, that there are not at least 2 unhappy stacks in X ()
(= 3 at most 1 unhappy stack). Then we have the following cases:

Case 1: Assume there is exactly one stack in X ().

Since condition 2 still holds, the process ends immediately after the unhappy stack drops
off all its happy particles

Case 2: Assume there are no unhappy stacks in X (¢).

Since %n < M, by averaging, we know that there exists a sequence of 5 adjacent vertices
in X (t) with at least 4 of them having happy particles. If these particles are all adjacent,
then at X (¢t — 1), there were 2 adjacent stacks of size 2 which both split. Otherwise, in
X (t — 1) there was a stack of size 2 at the empty vertex in X (¢) which split into two happy

particles.

Now we assume condition 2 fails, so that there exists in X (¢) an unhappy stack with both
adjacent vertices occupied by happy particles, say at v;,v;_1,v;41 respectively for j € [n].
This formation is only reachable by X (¢ — 1) having a stack of exactly 2 at v;, and the
unhappy stack occupying either v;_; or v;1; (it doesn’t matter which). All of the other
unhappy stacks would be on their respective adjacent upbeat vertices.

But this both assumptions are met for X (¢ — 1) which implies that X (¢ — 1) is reachable
through the algorithm, so X (¢) is reachable by dispersion.

Note that condition 2 states that every unhappy stack needs a viable adjacent vertex at
which it can wait during the upbeats. For this condition to fail for a given unhappy stack,
that stack must be straddled by two unhappy particles in the ending state. But there could
be a chain of unhappy stacks all on the same parity with happy particles in between them,
causing condition 2 to fail for each stack. There could also be multiple independent cases

around the cycle of this condition.
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The solution generalizes from the previous example in that at X (¢t — 1), each of those
happy particles must have come from somewhere. For each independent chain of particle
stacks following the pattern 1,k,1, ko, 1, ks, ..., 1, k;, 1, where Vi € [l],k; > 2, that section
of X(t — 1) looks like k1,2, ks, 0, k3,2, k4,0, .... In this state, the happy particles have been
paired up into stacks of 2 which will split when the time step updates from ¢t —1 to ¢, and the
unhappy stacks all sifted (arbitrarily) clockwise. All other unhappy stacks did not conform
to this pattern so they must have been able to wait, and thus at ¢ — 1 they each occupied a
viable adjacent vertex. If [ was odd, then one happy particle was not paired up, and occupied
the same location at both ¢ — 1 and t. Now, X (¢ — 1) satisfies all five conditions and thus

X (t) is reachable by dispersion.

Now, we will show that the bound M > %n cannot be improved.

First, we will show the necessity that n is odd and n > 3. We will prove both of these
conditions by counterexample. Specifically, assume each condition is not true, and show a
state which cannot be reached by dispersion.

First, assume that n = 3, and M = 3. Then the ending state X(;;) is unreachable, since
the initial state can either go to itself or the pile can split into stacks of size 1 and 2. Because
when the 2 splits to “finish”, it actually wraps around and one of the 1’s combines with the
currently happy particle, the game will never end. For n < 2, we are not interested in this
result.

Next, assume n is an even number. By Lemma 1, any arrangement of particles in which
there can be found 2 unhappy stacks of opposite parities is unreachable.

Lastly, assume M < %n Realistically, this bound is only a signpost result. Indeed, there
are 5 different cases to consider where this assumption breaks down. In what follows, we

discuss all 5 and give the necessary bound for each.

Remark: Heuristically, the idea is that what causes an arrangement of particles to be
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unreachable on account of insufficient quantity is when there is too much space between
small strings of happy particles.

Under our assumption, the source of the contradiction arises from the fact that no un-
happy stack can deposit particles in the arrangement of X (¢). This gives rise to a new set of
conditions which must apply in order to break the algorithm. If any of these are not true,

the state would satisfy the necessary conditions above.
1. The target arrangement X (¢) cannot contain any unhappy stacks.

2. any unoccupied vertex between happy particles must be adjacent to another unoccupied

vertex (creating a gap between happy particles of length at least 2).

3. A string of happy particles in the ending state can be at most 3 particles long, since a
string of 4 happy particles could have come from a state with two adjacent unhappy

pairs.

Combining these rules, we see that the particle arrangements X (¢) which cause the algo-
rithm to fail in this way all take the form of a set of strings of adjacent happy particles with
length at most 3, separated by strings of at least 2 adjacent empty vertices. Therefore, the
greatest number of particles we can use in order to find a state which cannot be reached by
dispersion can be found by packing the happy particles in to the final state as efficiently as
possible, obtaining the highest ratio of happy particles to empty vertices as possible.

Since every string of happy particles is adjacent to at least 2 empty vertices, we try to
minimize the empty vertices and maximize the happy particles. It is from this minimization
process that we obtain the following cases. Note that 3 happy particles per 2 empty vertices
is the best ratio possible, so we use as many sequences of “1,1,1,0,0” as possible. In what

follows, let £ € N be odd, and n = 5k + b for b even in N

Case 1: Assume b =0 = n = bk.
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This case gives us our signpost result, because there is no more efficient way to arrange
particles on (), than by forming a sequence of T strings, each of 3 happy particles followed
by 2 empty vertices. Thus, if n = 5k, M > gn for all states to be reachable by dispersion.

Case 1: Assume b =2 =— n =5k + 2.

Notice that in our above example, we have exactly one state which cannot be reached
by dispersion. When we add 2 vertices to the cycle, it is actually impossible to add more
particles to the system, because no matter where we place those happy particles, there will
be at most 1 empty vertex between the inserted particle and a string of 3 happy particles.

While the number of particles does not incerase, the number of states which cause dis-

persion to fail does increase, since there are more ways to arrange the particles in such a

3n—6

way so as to satisfy the three conditions above. Thus, if n = 5k + 2, M > %(n —2) =%

for all states to be reachable by dispersion.

Case 3: Assume b =4 = n =5k +4.

When we add 4 vertices to the first case, we can add exactly 2 patricles before we hit
capacity. The state looks like tat of the case 1, but one of the strings of happy particles is
only length 2. This creates the bound for when n = 5k 4+ 4M > 3(n — 4) + 2 = 322,

Case 4: Assume b=6 =— n =5k + 6.

Adding 2 vertices from the previous case only allows us to add one more particle, which
completes the string of 3 unhappy particles. the other vertex must remain unoccupied,
otherwise it will cause the state to become reachable. In this case that also means that there
is a string of at least 3 unoccupied vertices. Thus we obtain the bound n = 5k + 6, —
M >32(n—6)+3 =32

Case 5: Assume b =8 = n =5k +38.

From the last case, if we add two more vertices, then we can add one more particle,
which will allow for an isolated happy particle. There are other arrangements of this many
particles which fail to be reached by the dispersion process, but none with more particles.

Thus, for n = 5k 4 8, we have that M > 2(n — 8) +4 = ¥4,
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The greatest proportion of these is M = 33", so we use this as our lower bound for the
theorem. Thus, if all possible arrangements of M particles on C), are reachable by dispersion,

then M > %”, n is odd, and n > 3. ]

Proof of Lemma 2:

This Lemma is called the spin-lemma, because by relabeling the vertices of C),, or “spin-
ning” the labels on the vertices, we can control whether two stacks have the same or opposite
parities.

Let X (t) be any arrangement of M particles on C,, with n an odd integer > 3. Fix two
vertices v, and v, in V' (C,,) with a,b € [n]. Now label the vertices V(C,,) = {v1, v, ..., 0.},
with a = 1. Then b — a = b — 1 is either odd or even. Next, relabel the vertices in the same
way, except b = 1. Then we have b —a = 1 — a is also either odd or even. We want to show
that b — @ in the first labeling is odd = b — a in the second labeling is even (and also the
case where b —a even = b — a odd.

Note that because v, and v, are fixed, we have that in the first labeling, b —a = b — 1
is the number of vertices between v, and v, including the latter but not the former. The
significance behind the labeling is that we are counting clockwise, starting from v, and going
to vp. Likewise, in the second labeling, b —a = 1 — a is the number of vertices between v,
and v, counting clockwise starting from (but not including v,

Then the sum of these two numbers is exactly n. Moreover, since n is odd, one of them
must be odd and the other must be even. Therefore, if the labeling of V' (C,,) starts at v, = v;
and b and a have the same parity, then labeling V(C,,) with v, = v; gives that b and a have

the opposite parity. O

Proof of Lemma 3:
Let v, and vy, be vertecies in V(C,,), with a,b € [n], such that a — b is an odd number,

and |v,| > 2, and |vp] > 2. At time step ¢, the unhappy particles on v, and v, all move to
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an adjacent vertex, v,i1, Vq_1, Up+1, and v,_1. since v, and v, had the opposite parity, v,.1
and v,_; share the same parity which is opposite to that of v,,; and v,_1.

The only time this is not true is when either @ = n or b = n. in this case, v,11 = vy
which is the origin vertex, but more importantly, it shares the same parity as n since n is
odd. Then, if the other unhappy stack was at v, both stacks can meet at the origin vertex.

Otherwise, The unhappy stacks will not interact. O

Another way of thinking about this Lemma is to say, “As long as no unhappy stacks touch
the origin vertex, their parities will change consistently on every time step.” This allows us

to control and monitor the independence of stacks which occupy vertices of opposite parities.

7.4 Proof for Corollary 1

We now have the tools for a very clean proof of the corollary regarding the termination of the
dispersion process for exactly n particles on C),,. Consider one of the ending conditions for
the general dispersion process, that at the time step before the system reaches its end state,
the number of particles in a stack is at most 2. Specifically for n particles being dispersed on
C,,, we have the following additional ending condition for the second to last state - that two
stacks of two particles must lie on adjacent vertices, with no particles on a vertex adjacent
to the pair. Equivalently, one of the permutations of the state label must contain “0220”
(e.g. X(220110))-

To verify this, simply observe that when the last step occurs, for the process to end, a
stack of exactly 2 must split onto two adjacent empty vertices. Since that would leave a
vertex unoccupied, another particle must simultaneously move to the vertex from which the
pair split. that particle must also come from a stack of 2 which was adjacent to the first
pair, and must have an empty vertex on the other side.

By Lemma 1, this is automatically impossible for all even n, since the parity of adjacent

stacks is always opposite on an even cycle. If n is odd, we just proved that every possible
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arrangement of the particles is reachable by the dispersion process on C,,. Since X1, 1) is a
possible arrangement, it can be reached. Since the process will not end until this state has

been reached, the process must eventually reach it and thus come to an end. O

8 Future Endeavors and Open Questions

One of the major obstacles we encountered was trying to calculate the matrix inverse in
order to obtain the fundamental matrix for the absorbing Markov Chain. One pattern we
noticed specifically for the M = 3 case was that the main diagonal of the ) matrix looked
almost completely 2 - banded. For example, here is the () section of the transition matrix

for Disp(3,10), with clockwise bias %

1/3 0 49 0 0 0 0 0 2/9 0
1/9 0 49 0 0 0 0 0 4/9 0
0 1/9 0 49 0 0 0 0 0 0
0 1/9 0 49 0 0 0 0 0
0 0 1/9 0 4/9 0 0 0 0
0 0 0 1/9 0 4/9 0 0 0

1/9 0 4/9 0 0
0 1/9 0 4/9 0
0

)

o o o o o o o
@)
)

0
0

0O 0 0 0 0 1/9 0 4/9
0

4/9 4/9 0 0 0 0 1/9 0
While there are a few strange non-zero entries in this matrix, it is both sparse and
organized, which indicates that it may be possible to decrease the time it takes to compute
the inverse of I — Q.
In [6], they show that it is possible to recursively calculate the inverse of general r-

banded matrices. We were able to show that the information contained in our matrix can

be rearranged so that all the transition probabilities are preserved, but we can reduce the
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problem to a 3-banded matrix. The reason we cannot further reduce the problem is because
there exists a state, namely X (29100...0) Which can be reached from three different states, none
of which are itself. This requires three different vertical entries in the matrix at the column
corresponding to that state, again none of which can lie on the main diagonal.

Still, this is very useful and even the third band is almost entirely empty. Using the
results in [6], it should be possible to find an easier (more computationally efficient) way to
invert this matrix. One open problem that arises from this is, can we algorithmically rear-
range the order of the rows/columns of @) so as to minimize the number of bands required

for the matrix?

One interesting point of future discussion is the proof for Proposition 5. We presented
an algorithm which can reach all states in an odd cycle, given the proper initial conditions.
The probability of this occurring is incredibly low, but still possible.

It would be interesting to look at the ties this idea has to machine learning. In practice,
it seemed possible to generate the target state for any (reasonable) n-cycle by simply letting
the computer conduct a random simulation, and breaking the loop if the target state has
been reached. But machine learning could let us “teach” the computer that less iterations to
get to the solution is better. If we did this, it would learn how to take the fastest route from
the initial state to any target state, and we could then observe its movements, and formalize

them into a much more efficient and probable algorithm.

Perhaps the most difficult question is so simply ask, what is the closed form for the
expected time to reach dispersion for M particles on C), with probability bias p? While we
know that the answer does exist, this question is incredibly vast, and all of the results in
this paper, as well as those in [1] and [2] only point us in the direction of answering that
question.

We looked for example at the unbiased dispersion of exactly 3 particles on any n cycle,
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and we were able to draw various conclusions about the behavior of the expected time. But
if we ask the same questions for 4 particles on the n cycle, we immediately hit a wall, because
the particles are able to interact in a vast number of ways.

All that said, there is a large trade-off to having access to that closed form solution, be-
cause literally every single result would fall out of it. We would be able to see intuitively why
things behave so differently, taking limits would explain the behavior of dispersion on the infi-

nite path, and we could explore what happens as we sharply increase the number of particles.

The last future project we have is the idea of capacity on the vertices of G. Recall
Theorem 1, which states that for the complete graph K,,, and the star .S,, the following hold

for any constant d > 0:

1. If the number of particles M satisfies M/n < (1/2)(1 — §), then with probability

1 —O(1/n), the dispersion process terminates in T p;s, = O(logn) steps.

2. If the number of particles M satisfies M/n < (1/2)(1 + §), then there is a constant

¢ =c(d) > 0 s.t. the probability that T p;s, < €™ is less than e=“".

We would like to generalize this theorem, as well as offer a more general way to view the
dispersion process in terms of a new variable. We define the capacity k(v) of a vertex in
v € V(G) as the maximum number of particles allowed on that vertex before all the particles
on that vertex at time ¢ become unhappy.

In every single case we’ve seen so far, the capacity of all the vertices in GG has been exactly
1. We conjecture that the following result holds for k£ = 2.

For the complete graph K, and the star S, with k(v) = 2 Vv € V(K,,) or V(S,,), the

following hold for any constant § > 0

1. If the number of particles M satisfies M /n < (1—4), then with probability 1 —O(1/n),

the dispersion process terminates in T p;s, = O(logn) steps.
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2. If the number of particles M satisfies M/n < (1 + ¢), then there is a constant ¢ =

c(9) > 0 s.t. the probability that T p;s, < e is less than e~ ",

Although we failed to give a formal proof for this conjecture, structure of our analysis is
similar to that of the proof given for 1 in [1].

We begin by letting H be the number of happy particles at time ¢, U the number of
unhappy particles at ¢, and we assume that happy particles do not move at each time step t,
but unhappy particles do move. Also let H' be the number of happy particles at time ¢ + 1,
which we will bound.

A particle is happy if either it is the only particle on its vertex, or if it shares that vertex
with exactly one other particle. We will distinguish between these two cases by letting H; be
the number of vertices containing particles which are “one-happy”, in that they are the only
particles on their vertex. Similarly, we let Hy the number of vertices containing “two-happy”
particles, which are particles that share a vertex with exactly one other particle.

Note that H; +2H, = H, and that in the case where k(v) =1 Vv € V(G), H; = H. The

process will end when H = M. Define the following variables.

1. Xy is the number of previously one-happy particles which have become unhappy from

at least 2 particles landing on them.

2. X5 is the number of previously two-happy particles which have become unhappy from

at least 1 particle landing on them.

3. Y] is the number of previously unhappy particles which have become one-happy by

being the only unhappy particle to land on an empty vertex.

4. Y5 is the number of previously unhappy particles which have become two-happy, either
by being 1 of 2 unhappy particles to land on an empty vertex or by being the only

unhappy particle to land on a previously one-happy particle (thus making both two-

happy).
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At any time step t, given values for U, Hy, Hy, randomly allocating U balls into n boxes,

we can obtain the following expected values or X7, Xs,Y], and Y5.

EX, = H, (1-(1—%>U—%(1—%)U_1> 7)
EX, — 20, <1 - <1 - %>U> (8)

EHzU(n_(H;+H2)) (1—1)U_1 (9)

EY, = U (U; ! (”_ (H;JFH?)) (1 - %)U_QJF % (1 - %)H) (10)

We cannot say much beyond this without talking about different concentrations, and

perhaps the relative expected values of H; and H,. If we could prove this generalization

however, it would be interesting to explore whether the notion of capacity generalizes for an

arbitrary capacity .
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