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Abstract

A magic square M over an integral domain D is a 3⇥ 3 matrix with entries from

D such that the elements from each row, column, and diagonal add to the same

sum. If all the entries in M are perfect squares in D, we call M a magic square

of squares over D. Martin LaBar raised an open question in 1984, which states,

“Is there a magic square of squares over the ring Z of the integers which has all

the nine entries distinct?” We approach to answering a similar question in case D

is a finite field. Our main result confirms that a magic square of squares over a

finite field F of characteristic greater than 3 can only hold 3, 5, 7, or 9 distinct

entries. Corresponding to LaBar’s question, we claim that there are infinitely

many prime numbers p such that, over a finite field of characteristic p, magic

squares of squares with nine distinct elements exist. Constructively, we build

magic squares of squares using consecutive quadratic residue triples derived from

twin primes. We classify all the magic squares of squares over any finite fields of

characteristic 2. Description of magic squares over a finite field of characteristic 3

is provided.
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Chapter 1

Introduction

1.1 History and Background

A magic square is an n⇥n array such that each of its rows, columns, and the two

diagonals have the same sum. As early as 2800 B.C., Chinese literature demon-

strated how the first magic square, the Chinese Lo Shu, made its first appearance

(Lo-Shu Magic Square). In ancient China, there was a huge flood. People tried

to make sacrifices for the river god to stop the flooding. However, nothing had

worked until a turtle emerged from the river. A child noticed that a grid with

dots on the turtle’s shell followed a pattern: each of the rows, columns, and the

diagonals of the grid added to 15. People believed that 15 is the number of sacri-

fices they had to make for the river god to stop the flooding. The representation

is shown in the figure below. Since it was first discovered, magic squares and their

properties have been studied for centuries.



Labruna 7

Figure 1.1: Graphical Representation of Lo Shu.

Magic squares eventually reached other places in the world such as India,

Arabia, and in medieval Europe. In places like Egypt and India, magic squares

can be engraved on materials such as stone or metal and were worn as talismans

(Lo Shu Magic Square). Magic squares of order at least 3 were devoted to the

planets, moon, and the sun in talismans (Lo Shu Magic Square). These magic

squares were placed in polygons and then the polygons were placed within a circle

that would be inscribed with signs of the zodiac. People also believed that magic

squares provided longevity and prevented diseases. In the 9th century, they were

used to decipher horoscopes by Arabian astrologers (Lo Shu Magic Square). For

a long period of time, magic squares have evolved to become a special interest for

many cultures.

We focus on a special type of 3 ⇥ 3 magic squares. These magic squares are

called magic squares of squares. They are magic squares but each of their entries

is a perfect square of an integer. Martin LaBar in 1984 proposed a question, which

is still open today. He asked, “Does there exist a 3 ⇥ 3 magic square such that

the nine integers are distinct perfect squares of integers?” (LaBar 69). In 1996,

Martin Gardner o↵ered $100 for anyone who can determine whether such a magic

square exists (Bremner 289). LaBar’s question is the motivation for this thesis.

We investigate whether a magic square of squares over a finite field with nine

distinct elements exists. If not, we find the maximal number of distinct square

entries that a magic square of squares can possess.
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1.2 Basic Number Theory Results

In this section, we give some existing results from number theory that are impor-

tant for this thesis. They can be found in any regular number theory book. We

first define a quadratic residue.

Definition 1. (Rosen 402) Let p be a prime number. An integer a is a quadratic

residue modulo p if a ⌘ b2 (mod p) for some integer b. If a is not a quadratic

residue (mod p), it is called a quadratic nonresidue (mod p).

We now provide the definition for the Legendre symbol which is useful in

determining whether an integer is a quadratic residue modulo a prime number p.

Definition 2. (Legendre symbol) (Lehmer 172) For any prime p, the Legendre

symbol of an integer x (mod p) is given by

✓
x

p

◆
=

8
>>>>>><

>>>>>>:

0, if p divides x

1, if x is a quadratic residue modulo p and p - x

�1, if x is a quadratic nonresidue modulo p and p - x

. (1.1)

Note that the Legendre symbol can be used to test whether an integer is

a quadratic residue (for this thesis, we use the Legendre symbol to determine

whether an integer is a quadratic residue in a field F). This test is needed during

the construction of magic squares of squares over a finite field.

Theorem 3. (Quadratic Reciprocity) (Ho↵stein et al. 168) Let p and q be distinct

odd primes. Then

✓
p

q

◆
=

8
>><

>>:

⇣
q
p

⌘
, if p ⌘ 1 (mod 4) or q ⌘ 1 (mod 4)

�
⇣

q
p

⌘
, if p ⌘ 3 (mod 4) and q ⌘ 3 (mod 4)

. (1.2)

Some useful properties of the Legendre symbol are given in the next theorem.

Theorem 4. Let p be an odd prime and a, b 2 Z. Then
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1. If a ⌘ b (mod p), then
⇣

a
p

⌘
=

⇣
b
p

⌘
;

2.
⇣

ab
p

⌘
=

⇣
a
p

⌘⇣
b
p

⌘
.

In the later construction of magic squares of squares over a finite field, we

frequently need two numbers, �1 and 2, to be quadratic residue modulo a prime

number p. The following lemma gives a test for �1 or 2 to be quadratic residue

modulo a prime number.

Lemma 5. Let p be an odd prime number. Then �1 is a quadratic residue modulo

p if and only if p ⌘ 1 (mod 4) and 2 is a quadratic residue if and only if p ⌘ 1 or

7 (mod 8).

The well-known Dirichlet’s Theorem guarantees the existence of infinitely many

of primes of special types. It made it possible for us to construct many magic

squares of squares over infinitely many finite fields.

Theorem 6. (Dirichlet’s Theorem) If a and b are relatively prime positive inte-

gers, then there are infinitely many primes p of the form aq + b where q is an

integer.

Results involving Legendre symbol are very useful for our investigation. We

can also apply the Legendre symbol to test if an element of F is indeed a quadratic

residue. Another useful result is Fermat’s Little Theorem.

Theorem 7. (Fermat’s Little Theorem) Let p be a prime number and a be an

integer. If a 6⌘ 0 (mod p), then ap�1 ⌘ 1 (mod p).

The following proposition gives a method to determine if an element in a finite

field is a quadratic residue or not.

Proposition 8. (Gazali et al. 202) Let p be an odd prime and q = pn, where n

is a positive integer. Assume F is the finite field with q elements and 0 6= a 2 Fq.

Then, a is a quadratic residue in F if and only if a
q�1
2 = 1.

In the next section, we provide some existing results on magic squares.



Labruna 10

1.3 Definitions and Existing Results

To start o↵ this section, we give some formal definitions about magic squares.

Definition 9. A magic square (MS) of order 3 is a 3⇥ 3 matrix M with integer

entries such that all of its rows, columns, and the two diagonals add to the same

sum. This common sum is called the magic sum of M and it satisfies the following:

S(M) =
3X

i=1

aij =
3X

j=1

aij = a11 + a22 + a33 = a13 + a22 + a31, 8 i, j 2 {1, 2, 3}.

The degree of M , denoted deg(M), is the number of distinct entries M possesses

and M is said to be trivial if deg(M) = 1. Also, a magic square M is a magic

square of squares (MSS) if all of its entries are perfect squares.

We now give an example of a magic square.

Example 1. In Figure 1.1, the pattern of the dots on the back of the turtle form a

small magic square and the degree of this magic square is 9 because the numbers

of the dots in each box are distinct. Also, the magic sum is 15. The matrix

representation of the magic square is

2

66664

4 9 2

3 5 7

8 1 6

3

77775
.

Definition 10. A magic square M is isomorphic to another MS N (M ⇠= N)

if one can be obtained by rotations or reflections of the square along the center

vertical or horizontal axis or the diagonals.

The following example shows two magic squares which are isomorphic to each

other.
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Example 2. The two magic squares M and N are isomorphic to each other:

M =

2

66664

4 9 2

3 5 7

8 1 6

3

77775
⇠=

2

66664

8 1 6

3 5 7

4 9 2

3

77775
= N.

We generalize the concept of magic squares of integers into that over any finite

field.

Definition 11. Let F be a finite field. A magic square (MS) M = [aij]3⇥3 with

aij 2 F is called an MS over F provided that each of its rows, columns, and main

diagonals have the same sum. Furthermore, M is anMSS over F if all of its entries

are perfect squares in F. The degree of M , deg(M) is defined in the same way as

in the integer case.

We investigate MSS over finite fields of some characteristic. We define this in

the next definition.

Definition 12. The characteristic of a finite field F is the smallest positive integer

p such that p · 1F = 0F .

For example, Z5 is a finite field of characteristic 5. A magic squares of squares

over Z5 is given below.

Example 3. The following matrix is an MSS of degree 3 over the field Z5 with

magic sum 0:

M =

2

66664

1 4 0

4 0 1

0 1 4

3

77775
.

Note that all three entries of M are squares in Z5. These are all of the squares in

Z5. Consequently, the degree of every MSS over Z5 is at most three and all the

three squares have to be used.

In order for an MS to be an MSS over a field F, we need to determine if each

of the entries of it is a quadratic residue in F, defined in Definition 1. If so, we can
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say that this MS is indeed an MSS. The following lemma provides a configuration

for all 3⇥ 3 magic squares over a field.

Lemma 13. (Sallows, 1997) Let M = [aij]3⇥3 be a matrix with integer entries.

Then M is a magic square if and only if M is a function of three integers a, b, c

with the following form:

M = M(a, b, c) =

2

66664

a 3c� a� b b

c� a+ b c c+ a� b

2c� b a+ b� c 2c� a

3

77775
. (1.3)

Furthermore, the magic sum must be S(M) = 3c.

It is straightforward to check that the above result is true for any magic square

over a finite field F. Magic squares are interesting to many people for various

reasons. It is the open question by Martin LaBar that motivated the start of this

project. The unsolved question is given below.

Open Question. (LaBar 69) Does there exists a 3 ⇥ 3 magic square such that

all of its entries are perfect squares of integers?

Throughout, our magic squares are all of order 3. In this thesis, we attempt

to answer a similar question over finite fields. Below we give a theorem pertaining

what degrees can be achieved by a magic square over Zp.

Theorem 14. (Hengeveld and Li, 2012) Let p be a prime at least 5. Then the

degree of every MS over Zp is odd.

In this thesis, we attempt to show that the above Theorem 14 is true over for

any finite field of characteristic greater than or equal to five. That is, over any

finite field F of characteristic p � 5, the degree of every MSS over F is odd. In this

thesis, we study magic squares of squares of order three whose entries are selected

from a finite field. In the next section, we raise research questions for this thesis.
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1.4 Research Questions

The main focus of this thesis is to attempt to answer a similar question as the

one raised by Martin LaBar regarding the existence of a degree 9 MSS over the

integers. Corresponding to LaBar’s question for magic squares of squares over the

integers, we raise similar questions for magic squares of squares over any finite

field. Specifically, “does there exists a magic square of squares of degree 9 over a

given finite field?”. Let F be a finite field:

Research Questions.

1. Does there exist a MSS over F of degree 9?

2. Given an integer r with 2  r  9, for what finite field F does there exist

an MSS of degree r over F?

3. For a given prime number p, what is the maximal degree that an MSS over

a finite field F of characteristic p can achieve?

4. Can we get an MSS of even degree?

The answer to question 4 parallels the result in Theorem 14. The above questions

are what we attempt to answer in this thesis.

1.5 Overview of Main Results

Instead of attempting LaBar’s open question for MSS over the integers, we

focus on a similar question for finite fields. We first characterize all MSSs over

any field of characteristic 2. We show that a magic square of squares of degree 4

exists which does not happen for MSS over the integers. Work is done over finite

fields of characteristic 3. In the characteristic 3 case, we show that the degree of

any non-trivial MS must be 3 or 9 and both types are achievable over any finite

field of characteristic 3.

Chapter 4 focuses on MSS over finite fields of characteristic greater than three.
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In this chapter, we generalize the result given by Hengeveld and Li in Theorem

14 over finite fields.

The main results show that there are infinitely many finite fields of charac-

teristic greater than 3 over which MSS of full degree exists. The same is true

for MSS of degree 3, 5, or 7. Precisely, we construct magic squares of squares of

degree 3, 5, 7, or 9 over infinitely many finite fields. The main technique used is

based on Dirichlet’s Theorem. A study on consecutive quadratic residue triples

is performed which helps the construction of MSS over certain finite fields in a

di↵erent way.
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Chapter 2

MSS over Finite Fields of

Characteristic 2 or 3

2.1 Case of Characteristic 2

In this part of the thesis, we first give results about the existence of magic squares

of squares and their degrees over a finite field F with characteristic 2. We start

the section with a lemma.

Lemma 15. Let F be any finite field of characteristic 2. Then every element in

F is a quadratic residue in F.

Proof. Assume the order of F is 2n, where n is a positive integer. The group

F \ {0} is of order 2n � 1. So for every x 2 F,

x2n�1 = 1 =) x = x2n =
⇣
x2n�1

⌘2

.

Thus x is a quadratic residue in F. ⌅

From the above lemma, we know that all MS over a finite field of characteristic

2 are also MSS.

Example 4. Consider F = Z2[x]/(x3 + x + 1) ⇠= GF (23), the Galois field of 8

elements. Note that in F, x3 = x + 1 and x4 = x2 + x. The eight elements in F
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are 0, 1, x, x + 1, x2, x2 + 1, x2 + x, and x2 + x + 1. The following table shows all

of these eight elements are squares of some elements in F.

a 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

a2 0 1 x2 x2 + 1 x2 + x x2 + x+ 1 x x+ 1

This example confirms Lemma 15.

We can classify all MSS over a finite field of characteristic 2.

Theorem 16. Let F be a finite field of characteristic 2 with 2n elements (n � 1)

and a, b, c 2 F. Then

1. If n = 1 (F = Z2), all the non-trivial MSS are of degree 2 which are listed

below:

M(0, 1, 0) =

2

66664

0 1 1

1 0 1

1 1 0

3

77775
, M(0, 0, 1) =

2

66664

0 1 0

1 1 1

0 1 0

3

77775
,

M(1, 0, 1) =

2

66664

1 0 0

0 1 0

0 0 1

3

77775
, and M(1, 1, 0) =

2

66664

1 0 1

0 0 0

1 0 1

3

77775
.

2. For n > 1 (|F| � 4), every non-trivial MSS over F has degree 2 or 4 and is

in one of the following forms:

M(a, b, a) =

2

66664

a b b

b a b

b b a

3

77775
, M(a, a, c) =

2

66664

a c a

c c c

a c a

3

77775
, or

M(a, b, c) =

2

66664

a a+ b+ c b

a+ b+ c c a+ b+ c

b a+ b+ c a

3

77775
,
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where a, b, c 2 F. Furthermore, M(a, b, c) is of degree 4 if and only if a, b,

and c are all distinct.

Proof. Let F be a finite field of characteristic 2. The general form of an MS over

F is

M(a, b, c) =

2

66664

a a+ b+ c b

a+ b+ c c a+ b+ c

b a+ b+ c a

3

77775
, (2.1)

where a, b, c 2 F. Note that deg(M(a, b, c))  4. To show what possible degrees

we can obtain for M(a, b, c), we consider all the possible cases:

Case 1. If a = c 6= b, then

M(a, b, a) =

2

66664

a 2a+ b b

b a 2a+ b

2a+ b b a

3

77775
=

2

66664

a b b

b a b

b b a

3

77775
.

Since a 6= b, deg(M(a, b, a)) = 2.

Case 2. In the case of a = b 6= c,

M(a, a, c) =

2

66664

a 2a+ c a

c c c

a 2a+ c a

3

77775
=

2

66664

a c a

c c c

a c a

3

77775
.

Since a 6= c, deg(M(a, a, c)) = 2.

Case 3. If a, b, and c are all distinct, then deg(M(a, b, c)) = 4. This is because

a+b+c 6= a, b, or c. Without loss of generality, let a+b+c = a. Then b+c = 0

which implies that b = �c = c. By the form in (2.1), deg(M(a, b, c))  4.

Thus, deg(M(a, b, c)) = 4.

The above analysis covers all possible cases for M(a, b, c) over F of characteristic

2. Thus, every non-trivial MSS over F has degree 2 or 4. ⌅
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The above theorem shows us what kinds of MSSs we can get over a finite field

of characteristic 2. It is obvious that the di↵erent forms of the MSSs given in the

above theorem are non-isomorphic. It is also interesting to see that we obtained

an MSS of degree 4 over a finite field of characteristic 2. Among the magic squares

over the integers or any finite field of characteristic greater than 2, no one is of

degree 4. Thus it is a unique situation here.

Now, we claim a corollary to Theorem 16.

Corollary 17. Let F be a field of characteristic 2 with at least 4 elements. Then

for every x 2 F, there exists an MSS of degree 4 over F with the magic sum x.

Proof. We consider the following cases:

Case 1. When x = 0, take a 2 F with a 6= 0, 1. We construct the MSM(1, a+1, x) =

M(1, a+ 1, 0) as follows:

M(1, a+ 1, 0) =

2

66664

1 a a+ 1

a 0 a

a+ 1 a 1

3

77775
.

From the above, M(1, a+ 1, 0) is an MSS of degree 4 with magic sum 0.

Case 2. When x = 1, take a 2 F with a 6= 0, 1. An MSS M(0, a + 1, 1) is given by

the following:

M(0, a+ 1, 1) =

2

66664

0 a a+ 1

a 1 a

a+ 1 a 0

3

77775
.

We see from the above that M(0, a+1, 1) is an MSS of degree 4 with magic

sum 1.
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Case 3. If x 6= 0, 1, then

M(1, 0, x) =

2

66664

1 x+ 1 0

x+ 1 x x+ 1

0 x+ 1 1

3

77775

is an MSS of degree 4 with magic sum x.

We have considered all the elements x 2 F and have constructed a magic square

of squares of degree 4 over F having the magic sum x. ⌅

2.2 Case of Characteristic 3

Throughout this section, all the considered finite fields are of characteristic 3.

We give a closer look at what types of MSS we can achieve over a finite field of

characteristic 3, denoted by F.

Lemma 18. Let a, b, c 2 F. If a + b + c = 0, then a + b = 2c, b + c = 2a, and

a + c = 2b. On the other hand, if a + b = 2c or b + c = 2a or a + c = 2b, then

a+ b+ c = 0.

Proof. Recall that we are doing modulo 3 arithmetic. Assume a+ b+ c = 0. Then

a + b = �c = 2c. Similarly, a + c = 2b and b + c = 2a. The proof of the rest is

similar. ⌅

We present the following existing result. It states that 2 can be a quadratic

residue in some finite field of characteristic 3.

Lemma 19. (Lahtonen, 2016) Over the finite field F of order 3n where n is a

positive integer, 2 is a quadratic residue in F if and only if n is even.

In the following theorem, we show that every non-trivial MS over F is of odd

degree.
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Theorem 20. Let F be a finite field of characteristic 3. Then the magic sum of

any MS over F must be 0. Every non-trivial MS over F is of degree 3 or 9 and

there exists an MSS of degree 3 if 2 is a quadratic residue of F.

Proof. Since the characteristic of F is 3 and the magic sum of any MS is three

times the middle entry, the magic sum of M over F must be 0. It reduces the

general form M = M(a, b, c) for MS over F defined in Lemma 13 into the following

form:

M(a, b, c) =

2

66664

a 2(a+ b) b

c+ 2a+ b c c+ a+ 2b

2(b+ c) a+ b+ 2c 2(a+ c)

3

77775
.

Note that the full degree of an MS is 9 but it is possible over F there is no MS

of degree 9. This occurs especially when F has less than 9 quadratic residues. We

consider the following cases: For every a, b, c 2 F,

1. If a = b 6= c, then

M(a, a, c) =

2

66664

a a a

c c c

2(a+ c) 2(a+ c) 2(a+ c)

3

77775
.

Without loss of generality, if 2(a+ c) = a then 2a+2c = a which is the same

as a = c, a contradiction. Similarly, if 2(a+ c) = c we would eventually get

a = c. Thus, deg(M(a, a, c)) = 3.

2. If a = c 6= b, then

M(a, b, a) =

2

66664

a 2(a+ b) b

b a 2(a+ b)

2(a+ b) b a

3

77775
.



Labruna 21

If a, b, and 2(a+b) are distinct, then deg(M(a, b, b)) = 3. Assume 2(a+b) =

a. Then 2(a+ b) = 2a+ 2b = a which is the same as a = b, a contradiction.

Also, if 2(a+ b) = b then 2(a+ b) = 2a+2b = b which gives us a = b. Hence,

deg(M(a, b, b)) = 3.

3. If a, b, and c are all distinct, then deg(M(a, b, c)) � 3 and one of the following

cases will occur:

Case 1. If a + b + c = 0, then by Lemma 18, 2c = a + b, 2a = b + c, and

2b = a+ c. It implies

M(a, b, c) =

2

66664

a 2a+ 2b b

c+ 2a+ b c c+ a+ 2b

2b+ 2c a+ b+ 2c 2a+ 2c

3

77775
=

2

66664

a c b

a c b

a c b

3

77775
.

It clearly shows that deg(M(a, b, c)) = 3.

Case 2. a+ b+ c 6= 0. By Lemma 18, 2c 6= a+ b, 2a 6= b+ c, and 2b 6= a+ c.

Rewrite M into:

M(a, b, c) =

2

66664

a 2(a+ b) b

(a+ b+ c) + a c (a+ b+ c) + b

2(b+ c) (a+ b+ c) + c 2(a+ c)

3

77775
.

Then all the nine elements are distinct which shows that deg(M(a, b, c)) = 9.

Without loss of generality, if (a + b + c) + a = a, we have a + b + c = 0, a

contradiction. If (a+ b+ c) + a = b, then 2a+ c = 0, a contradiction again.

Similarly, it is straightforward to check all these 9 entries are distinct. Hence,

deg(M(a, b, c)) = 9.

All of the cases given above cover all possibilities of what types of MSS we can

achieve over a finite field of characteristic 3.
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Finally, assume 2 is a quadratic residue in F. Then,

M(1, 1, 0) =

2

66664

1 1 1

0 0 0

2 2 2

3

77775
, M(1, 0, 1) =

2

66664

1 2 0

0 1 2

2 0 1

3

77775
,

and

M(0, 1, 2) =

2

66664

0 2 1

0 2 1

0 2 1

3

77775

created from the previous proof are certainly MSS over F. Thus, the proof is

complete. ⌅

We give examples of magic squares constructed based on the above theorem.

One example shows over Z3 there is no non-trivial MSS. Another example shows

MSS of degree 3 over another finite field exists.

Example 5. Consider the finite field Z3 = {0, 1, 2}. There is no MSS of degree

3 over Z3 because 2 is not a quadratic residue mod 3 but 2 has to be an entry of

every magic square of degree 3 over Z3. The following are MS of degree 3 over Z3:

M(1, 1, 0) =

2

66664

1 1 1

0 0 0

2 2 2

3

77775
, M(1, 0, 1) =

2

66664

1 2 0

0 1 2

2 0 1

3

77775
,

and

M(0, 1, 2) =

2

66664

0 2 1

0 2 1

0 2 1

3

77775
.

Note that the magic sum of every MS over Z3 must be 0.

Example 6. Over the finite field F = Z3[x]/(x2 + 1) ⇠= GF (9), there exists a

magic square of squares of degree 3 and a magic square of degree 9. However,
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there is no magic square of squares of degree 9.

Note that in F, x2 = �1. The nine elements of F are 0, 1, 2, x, 2x, x + 1, x +

2, 2x + 1, 2x + 2. By Lemma 19, 2 is a quadratic residue in F because |F| = 32.

The matrices M(1, 1, 0),M(1, 0, 1), and M(0, 1, 2) are all magic squares of squares

of degree 3 over F because 0, 1, 2 are all quadratic residues in F.

The following matrix represents a magic square over F which is of degree 9:

M(0, 1, x) =

2

66664

0 2 1

x+ 1 x x+ 2

2x+ 2 2x+ 1 2x

3

77775
.

However, it is not a magic square of squares over F because x+ 1 is not a perfect

square in F. Actually, magic squares of squares over F do not exist because F

has only 5 perfect squares: 0, 1, 2 = x2, x = (2x + 1)2, and 2x = (2x + 2)2. This

example shows that over a finite field of characteristic 3, magic squares of squares

of degree 9 may not exist.
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Chapter 3

Possible Degrees for an MS over

a Finite Field

In Chapter 2, we show that over a finite field of characteristic 2, the degree of an

MS can only be 1, 2, or 4. Over a finite field of characteristic 3, the only possible

degree of an MS is 3 or 9. In Hengeveld’s thesis [3], it is shown that over Zp,

where p is a prime greater than 3, the degree of an MS is odd. In this chapter, we

consider finite fields with characteristic greater than 3. We show similar results

as the case over Zp.

The following lemma shows that the equality of two entries in a magic square

M over F may cause the equality of another pair of entries in M . This behavior

tells something about the degree of M .

Lemma 21. Consider an MS of the form M = M(a, b, c). Then

1. c� a+ b = 2c� b () c+ a� b = b;

2. c� a+ b = a () c+ a� b = 2c� a;

3. 3c� a� b = b () b+ a� c = 2c� b;

4. 3c� a� b = a () a+ b� c = 2c� a.

Proof. We skip the proof because it is straightforward. ⌅
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Each equivalence in the above lemma represents two pairs of equal entries of

M(a, b, c). That is, if two entries of M(a, b, c) are equal, there is another pair of

identical entries. So, deg(M(a, b, c))  7.

The following theorem generalizes Theorem 14 to any finite field whose char-

acteristic is greater than 3.

Theorem 22. Let F be a finite field of characteristic greater than 3. Then the

degree of every non-trivial MS over F is odd.

Proof. Let the characteristic of F be greater than 3 and M(a, b, c) be a non-trivial

MS over F. We have the following:

1. If a = c 6= b, then

M(a, b, a) =

2

66664

a 2a� b b

b a 2a� b

2a� b b a

3

77775
.

From the above, deg(M(a, b, c))  3. Without loss of generality, if 2a�b = a,

then a = b, a contradiction. This is the same outcome if 2a � b = b. So

deg(M(a, b, a)) = 3.

2. If a = b 6= c, then

M(a, a, c) =

2

66664

a 3c� 2a a

c c c

2c� a 2a� c 2c� a

3

77775
.

Note that 3c � 2a cannot equal to a or c as we would ultimately end up

having a = c, which is a contradiction. If 3c � 2a = 2c � a or 2a � c, then

a = c which is also a contradiction. Similarly, setting 2c�a or 2a�c equal to

any of the other elements of M(a, a, c) causes contradiction as well. Hence,

deg(M(a, a, c)) = 5.
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3. If a, b, and c are all distinct, we show thatM(a, b, c) can only achieve degrees

5, 7, or 9. We examine all of the possible cases:

Case 1. 2c = a+ b. For this case, M(a, b, c) has the following form:

M(a, b, c) =

2

66664

a c 2c� a

3c� 2a c 2a� c

a c 2c� a

3

77775
.

From the above, deg(M(a, b, c))  5. Without loss of generality, if

3c� 2a = a then 3c = 3a which implies that a = c, a contradiction. It

is similar for the case of 3c�2a = c. If 3c�2a = 2a�c or 2c�a, we would

also get a = c. Similarly, one can show the remaining elements cannot

be equal to each other as the resulting outcome causes the impossible

equality: a = c. Thus, deg(M(a, b, c)) = 5.

Case 2. 2b = a+ c. In this case, M(a, b, c) has the following form:

M(a, b, c) =

2

66664

2b� c 4c� 3b b

2c� b c b

2c� b 3b� 2c 3b� 2c

3

77775
.

Note that deg(M(a, b, c))  7. We need to check if all the seven in

elements in M(a, b, c) are distinct. Without loss of generality, set 2b�

c = b. If 2b� c = b, then b� c = 0 which implies b = c, a contradiction.

Similarly, one can check all the seven elements are distinct. Hence,

deg(M(a, a, c)) = 7.

Case 3. 2a = b+ c. The degree of M(a, b, c) is 7. This proof is similar as in the

case of 2b = a+ c.

Case 4. 2c 6= a+ b, 2b 6= a+ c, and b+ c 6= 2a, but 2a+ b = 3c or 2b+ a = 3c.
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M(a, b, c) has the following form:

M(a, b, c) =

2

66664

a a 3c� 2a

4c� 3a c 3a� 2c

2a� c 2c� a 2c� a

3

77775
,

which implies that the degree of M(a, b, c) is at most 7. We next show

that all the seven elements are distinct. Without loss of generality, let

4c � 3a = a. Then 4c = 4a which gives a = c, a contradiction. The

other cases are done similarly. Then deg(M(a, b, c)) = 7.

Case 5. 2c 6= a + b, 2b 6= a + c, b + c 6= 2a, 2a + b 6= 3c, and 2b + a 6= 3c. With

these conditions, one can show that all of the elements of M(a, b, c) are

distinct. Hence, deg(M(a, b, c)) = 9.

The above analysis covers all of the possible cases and the only outcome for

the degree of M(a, b, c) is 5, 7, or 9. It confirms the theorem. ⌅
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Chapter 4

Construction of MSS with a

Desired Degree

4.1 Searching for Special Prime Numbers

In this section, we explore on how to obtain an MSS of a desired degree in a

finite field that has an appropriate prime number as its characteristic. We apply

Dirichlet’s Theorem for such a search. Let F be a finite field of characteristic

p > 3. By Theorem 22, the possible degrees for an MS over F is 3, 5, 7, or 9. In

the following theorem, we show that for each possible degree there are infinitely

many finite fields over which an MSS of that degree exists. The theorem is proved

constructively.

Theorem 23. Let F be a finite field with characteristic p, where p is in the form

of p = 120m + 1 for some integer m. Then for each r 2 {3, 5, 7, 9}, there exists



Labruna 29

an MSS over F of degrees r. Some of such MSSs are given below:

M(0, 1, 0) =

2

66664

0 �1 1

1 0 �1

�1 1 0

3

77775
, M(1, 1, 0) =

2

66664

1 �2 1

0 0 0

�1 2 �1

3

77775
,

M(1, 2, 0) =

2

66664

1 �3 2

1 0 �1

�2 3 �1

3

77775
, M(1, 4, 0) =

2

66664

1 �5 4

3 0 �3

�4 5 �1

3

77775
.

Note that the above MSS have degrees 3, 5, 7, or 9, respectively.

Proof. By Dirichlet’s Theorem, there exist infinitely many primes p in the form of

p = 120m + 1 for some integer m. Since p ⌘ 1 (mod 8), �1 and 2 are quadratic

residues modulo p by Lemma 5. Also, 3 and 5 are quadratic residues modulo p

since p ⌘ 1 (mod 4) and
⇣

3
p

⌘
=

�
p
3

�
=

�
1
3

�
= 1 and

⇣
5
p

⌘
=

�
p
5

�
=

�
1
5

�
= 1. Thus,

the above MS are MSS over F. ⌅

From the proof of the above theorem, we see that for M(0, 1, 0),M(1, 1, 0),

M(1, 2, 0), and M(1, 4, 0) to be MSS over F, �1, 2, 3, and 5 must be quadratic

residues modulo p. This is the reason why we select p in the form of p = 120m+1.

By Dirichlet’s Theorem, there are infinitely many such primes p. For example,

241, 601, 1201, or 1321 are among them. The MS are MSS over any finite field of

characteristic p = 241, 601, 1201, or 1321.

We now present a corollary on the existence of an MSS of degree 9 over infinitely

many finite fields.

Corollary 24. For each r 2 {3, 5, 7, 9}, there are infinitely many finite fields over

which an MSS of degree r exists.

Proof. Immediately from Theorem 23, we can create a finite field F with char-

acteristic p = 120m + 1. Over F, there is an MSS of degree r. By Dirichlet’s

Theorem, there are infinitely many such primes. ⌅
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We reflect on the open question raised by Martin LaBar. The above corollary

answers his question in terms of finite fields.

4.2 Constructing MSS Using Consecutive

Quadratic Residue Triples

We first define a special type of triples which will be used to construct MSSs later.

Definition 25. Let p be a prime number and a be any integer. A triple of

consecutive integers (a, a+1, a+2) is called a consecutive quadratic residue triple

(CQR-triple) modulo p if a, a+ 1 and a+ 2 are all quadratic residues modulo p.

Example 7. If p = 61, (3, 4, 5) is a CQR-triple. It is because 3 = 82, 4 = 22, and

5 = 262 modulo 61.

We now show the existence of infinitely many primes that can produce a CQR-

triple.

Lemma 26. Let a a positive integer greater than 1. Then there exist infinitely

many primes p such that a is a quadratic residue modulo p.

Proof. Let a = 2e0qe11 qe22 · · · qerr be the primary decomposition of a where each qi is

an odd prime, e0 � 0, and e1, . . . , er are positive integers. By Dirichlet’s Theorem,

there exist infinitely many primes p in the form of p = (4qe11 qe22 · · · qerr )m+1 (m is

an integer). Then for any such a prime p,

✓
a

p

◆
=

✓
2e0

p

qe11 qe22 · · · qerr
p

◆
=

✓
2

p

◆e0 ✓q1
p

◆e1 ✓q2
p

◆e2

· · ·
✓
qr
p

◆er

.

Note that if e0 > 0, p ⌘ 1 (mod 8), so 2 is a quadratic residue mod p. If e0 = 0, a

is odd and p = 4am+ 1. In either case, by the form of p,

✓
a

p

◆
=

✓
2

p

◆e0 ✓1

p

◆e1 ✓1

p

◆e2

· · ·
✓
1

p

◆er

= 1.
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Thus, there exist infinitely many primes p such that a is a quadratic residue

modulo p. ⌅

Corollary 27. Let p1 and p1 + 2 be odd twin primes. Then there exist infinitely

many primes p such that (p1, p1 + 1, p1 + 2) is a CQR-triple modulo p.

Proof. Let p1 + 1 = 2e0qe11 qe22 · · · qess be the primary decomposition, where ei > 0

for each i = 0, 1, . . . , s and q1, . . . , qs are distinct odd primes. It is obvious that p1

and p1 + 2 are not in the set {q1, q2, · · · , qs}. By Dirichlet’s Theorem, there are

infinitely many primes in the form of p = [4p1(p1 + 2)q1q2 · · · qs]m + 1 for some

integers m. Now we test if p1+1 is a quadratic residue modulo p. By the Legendre

symbol, ✓
p1 + 1

p

◆
=

✓
q1
p

◆e1 ✓q2
p

◆e2

· · ·
✓
qs
p

◆es

.

Since p ⌘ 1 (mod 4), for each i,
⇣

qi
p

⌘
=

⇣
p
qi

⌘
. By the form of p,

⇣
p
qi

⌘
= 1. So

✓
p1 + 1

p

◆
= 1.

As we can see, p1 is a quadratic residue. Also,
⇣

p1
p

⌘
= 1 and

⇣
p1+2
p

⌘
= 1. Thus,

for any twin primes p1 and p1 + 2, there exist infinitely many primes p such that

(p1, p1 + 1, p1 + 2) is a CQR-triple modulo p. ⌅

4.3 Using CQR-Triples to Construct MSS of Full

Degree

We defined CQR-triple in the previous section and showed that there exist in-

finitely many prime numbers admitting CQR-triples. In this chapter, we demon-

strate a method of constructing MSSs of full degree using CQR-triples. Let F be

a finite field of characteristic p > 3 and k 2 F with k 6= 0, 1,�1. It is obvious that
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the matrix M(1, k, 0) is a magic square over F of degree at least 5:

M = M(1, k, 0) =

2

66664

1 �1� k k

k � 1 0 1� k

�k k + 1 �1

3

77775
. (4.1)

For this magic square to be a magic square of squares over F of degree 9, the

following conditions are needed: (1) �1 is a quadratic residue in F, (2) k 6=

(p � 1)/2, (3) k 6= (p + 1)/2, and most importantly, (k � 1, k, k + 1) must be

a CQR-triple mod p. Satisfying conditions (2) and (3) guarantees that all the

nine entries of M are distinct. To satisfy condition (1), it needs p ⌘ 1 (mod 4).

We show below that there are infinitely many finite fields in which all of these

conditions are satisfied. Thus we can build magic squares of squares of degree 9

over them.

Theorem 28. There are infinitely many finite fields over which an MSS of degree

9 exist.

Proof. Let p1 and p1 + 1 be odd twin primes. Then k = p1 + 1 is even. We create

a prime number in the same way as that in the proof of Corollary 27. Select a

prime number in the form of p = 4p1(p1 + 1)(p1 + 2)m + 1, where m 2 Z. One

can see that p > 240 since (3, 4, 5) is the smallest CQR-triple starting with an odd

prime. Note that there are infinitely many such primes by Dirichlet’s Theorem.

Let F be any finite field of characteristic p. It is obvious that k equals none of

these: 0, 1,�1, (p� 1)/2, (p+ 2)/2. Thus k 6= �k � 1 and k 6= �k + 1 in F. Thus

we obtain a magic square of degree 9 from the configuration (4.1):

M(1, k, 0) = M(1, p1 + 1, 0) =

2

66664

1 �(p1 + 2) p1 + 1

p1 0 �p1

�(p1 + 1) p1 + 2 �1

3

77775
. (4.2)

Since p ⌘ 1 (mod 4), �1 is a quadratic residue (mod p). Similarly as in the
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proof of Corollary 27, (p1, p1 + 1, p1 + 2) is a CQR-triple (mod p). This makes

M(1, p1 + 1, 0) an MSS of degree 9 over F. ⌅

The following example is constructed by using the twin primes 3 and 5. Any

prime number p in the form of p = 4(3 · 4 · 5)m+ 1, where m 2 Z, makes (3, 4, 5)

a CQR-triple (mod p). That is, (3, 4, 5) is a CQR-triple in any finite field of

characteristic p. The prime p = 61 is such a prime.

Example 8. Consider twin primes 3 and 5. Then (3, 4, 5) is a CQR-triple modulo

p = 61. Let F be any finite field of characteristic 61. The magic square

M(1, 4, 0) =

2

66664

12 �262 22

82 02 �82

�22 262 �12

3

77775
=

2

66664

1 �5 4

3 0 �3

�4 5 �1

3

77775
(mod 61).

Consider another pair of odd primes 11 and 13 (twin primes).

Example 9. Select a prime number p in the form of p = 4(11 · 3 · 13)m + 1 =

1716m + 1. The triple (11, 12, 13) is a CQR-triple and there are infinitely many

such primes p. In any finite field F of characteristic p, the following magic square

is a magic square of squares of degree 9 in F. By an easy check, 3433 = 1716⇥2+1

is a prime number. Let F = Z3433. Then we obtain a magic square of squares in

F:

M(1, 12, 0) =

2

66664

12 �2032 16872

12362 02 �12362

�16872 2032 �1

3

77775
=

2

66664

1 �13 12

11 0 �11

�12 13 �1

3

77775
(mod 3433).

The above examples demonstrate a method of constructing MSS from a pair

of twin primes. One can obtain infinitely many prime numbers p such that the

twin primes can produce a CQR-triple (mod p). Using the resulted CQR-triple,

an MSS of degree 9 can be constructed over any finite field of characteristic p.



Labruna 34

Chapter 5

Constructing MSS with Nonzero

Sum

In the previous chapter, we discussed how to construct an MSS using CQR-triples.

In either example given at the end of Chapter 4, the MSS has 0 as the middle entry,

that is, the magic sum is 0. In this chapter, we provide a set of MSSs, each with

nonzero magic sum, by other methods. In the example given below, we show how

to construct another MSS with nonzero magic sum using the CQR-triple (3, 4, 5).

Example 10. Consider the CQR-triple (3, 4, 5) modulo the prime number p =

9241. A magic square over Zp is shown below:

M(1, 0, 4) =

2

66664

12 29302 92412

83922 92392 45132

35152 89082 6232

3

77775
=

2

66664

1 11 0

3 4 5

8 �3 7

3

77775
(mod p).

Since p � 1 = 9240 = 8 · 11 · 3 · 7 · 5, �1, 2, 3, 5, 7, 11, are all quadratic residues

mod 9241. Thus M(1, 0, 4) is an MSS over Z9241.

In a similar way, we can construct many MSSs. We provide a chart showing

the MSSs along with the forms of primes (characteristic of the ground field), and

one representative.



Labruna 35

MSS Degree of MSS Form of Prime p

and One Representative2

66664

1 12 2

6 5 4

8 �2 9

3

77775
9 5760m+ 1, 23041

2

66664

1 8 3

6 4 2

5 0 7

3

77775
9 10080m+ 1, 20161

2

66664

1 11 3

7 5 3

7 �1 9

3

77775
7 1155m+ 1, 2311

2

66664

1 3 5

7 3 �1

1 3 5

3

77775
5 105m+ 1, 211

2

66664

0 11 1

5 4 3

7 �3 8

3

77775
9 9240m+ 1, 9241

2

66664

0 14 1

6 5 4

9 �4 10

3

77775
9 4200m+ 1, 4201

2

66664

2 12 1

4 5 6

9 �2 8

3

77775
9 5760m+ 1, 23041

2

66664

3 8 1

2 4 6

7 0 5

3

77775
9 10080m+ 1, 20161
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2

66664

3 11 1

3 5 7

9 �1 7

3

77775
7 1155m+ 1, 2311

2

66664

4 10 1

2 5 8

9 0 6

3

77775
9 4800m+ 1, 4801

2

66664

5 3 1

�1 3 7

5 3 1

3

77775
5 105m+ 1, 211

2

66664

3 �5 5

3 1 �1

�3 7 �1

3

77775
9 105m+ 1, 211

2

66664

5 �5 3

�1 1 3

�1 7 �3

3

77775
7 105m+ 1, 211
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Chapter 6

Conclusions and Future Direction

LaBar’s open question concerned about the existence of MSS over the integers. In

our case, we focused on whether such an MSS exists over finite fields. In Chapter

2, we provided results on the existence of MSS over a finite field of characteristic 2.

We claimed that every MS over a finite field of characteristic 2 is an MSS and can

achieve degree 2 or 4. Next, we showed that every non-trivial MSS over a finite

field of characteristic 3 must have degree 3 or 9. In Chapter 3, we investigate MS

or MSS over finite fields of characteristic greater than 3. We generalized Hengeveld

and Li’s result (Theorem 14) regarding the degree of an MS. We claimed a similar

result that the degree of a non-trivial MS over any finite field of characteristic

greater than 3 must be 3, 5, 7, or 9.

In Chapter 4, for each of the possible degrees 3, 5, 7, or 9, we construct MSS of

the indicated degree over infinitely many finite fields. The construction involves

finding consecutive quadratic residue triples using twin primes. The resulting MSS

have magic sum 0.

In Chapter 5, we apply Dirichlet’s Theorem to construct MSS with magic sum

not equal to 0. For each configuration, there are infinitely many primes admitting

the configuration as the MSS.

Many questions remain to be answered. For example,

• Can we use the CQR-triple method to construct MSS of degree less than 9?
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• Can we find a degree 9 MSS over a finite field of characteristic 3?

• Over what finite fields an MSS of degree 9 does not exist?

• What number in a finite field cannot be the magic sum of an MSS over it?



Labruna 39

Chapter 7
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