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Rethinking the Teaching and Learning of Area Measurement 
 

Nicole Panorkou, Montclair State University, panorkoun@montclair.edu 
 

Abstract: This study focused on exploring an innovative way of teaching and learning 
measurement, what we refer to as Dynamic Measurement or DYME. Without relying on the 
common approach of counting square units, our goal was to engage students in contextually 
rich digital dynamic tasks to visualize area as a continuous quantity and evaluate the area of a 
rectangular region as a multiplicative relationship between the two lengths of the sides. In this 
paper, we briefly describe the iterative process of designing, testing and refining the tasks for 
DYME pointing to the significance of the design for developing students’ thinking of area as 
length times width. 

Geometric measurement: What we know and pushing forward 
Extensive research on measurement has described the importance of using square units to cover rectangular 
surfaces and quantify that covering by counting the square units (e.g. Barrett & Clements, 2003; Battista, 
Clements, Arnoff, Battista & Borrow, 1998; Izsak, 2005; Kamii & Kysh, 2006). For instance, we can use twenty 
1 sq. inch tiles to cover a 5 by 4 inches rectangle as in Figure 1a and claim that its area is 20 sq. inches. Similar 
to these studies, the Common Core State Standards for Mathematics (CCSSO, 2010) in the United States 
introduce third grade students to area measurement first by counting unit squares in a rectangular surface, thus 
forming an array (Content standards 3.MD.C.5 and 3.MD.C.6). Next, the standards assume that students will 
use this tiling experience to “show that the area is the same as would be found by multiplying the side lengths” 
(3.MD.C.7.A). However, the standards do not provide information on how students will transition from 
counting individual units to constructing the multiplicative area formula.   
 

 
Figure 1. Progression of structuring area based on a synthesis of the measurement literature. 

 
 Although the measurement research studies mentioned above suggest a progression of structuring area 
(Figure 1 a-d), to understand how area is generated by multiplying lengths is a different notion conceptually 
from the construction of a matrix like shown in Figure 1d. As Piaget et al. (1960) argued, “the difference 
between the two operational mechanisms is the difference between a matrix which is made up of a limited 
number of elements and one which is thought of as a continuous structure with an infinite number of elements” 
(p. 350). Indeed, area, length and width are continuous quantities (Kamii & Kysh, 2006) that are related 
multiplicatively while covering a surface with discrete unit squares is one-dimensional and additive in nature 
(e.g. Outhred & Mitchelmore, 2000; Reynolds & Wheatley, 1996).  

As a result, this study aimed to go beyond the static perspective of understanding area as the counting 
of discrete square units and find a more intuitive and accessible approach of illustrating area as a continuous 
quantity that involves a multiplicative relationship between length and width. To do that, we built on the work 
of Confrey et al. (2012) and Lehrer, Slovin, Dougherty, & Zbiek (2014) on visualizing area as a ‘sweep’ of a 
line segment of length a over a distance of b to produce a rectangle of area ab. 

 
Figure 2. Visualizing area as a continuous structure through ‘sweeping.’ 

ICLS 2018 Proceedings 863 © ISLS



For instance, imagine a paint roller with length 5 inches sweeping for a distance of 6 inches and 
generating a surface of 30 square inches (Figure 2). In this approach, which we refer to as Dynamic 
Measurement or DYME, area can be visualized as a continuous dynamic quantity which depends on both the 
length of the roller (length) and the distance of the swipe (width). DYME involves engaging students in dynamic 
experiences of generating 2D surfaces and 3D shapes by iteratively (and multiplicatively) composing lower-
dimensional objects (linear measures). 

Aims and methods 
Our goal was to examine the potential of DYME as an innovative pathway for teaching and learning area 
measurement. More specifically, we aimed to explore: 

a) What type of tasks may be designed for developing students’ DYME reasoning?  
b) How do these tasks assist students in thinking of area as a continuous quantity?  

 To provide the experience of visualizing area as a continuous quantity, we used the ‘dragging’ and 
‘trace’ features of Geometer’s Sketchpad (GSP) (Jackiw, 1995) to design a set of tasks. We conducted design 
experiments (Brown, 1992; Cobb, Confrey, diSessa, Lehrer & Shauble, 2003) with six pairs of third-graders and 
had 6-10 sessions of 45-90 minutes with each pair of students. The students represented various abilities 
according to their teacher and all students had some instruction on area as tiling the year before the design 
experiment. A design experiment starts by formulating some initial conjectures, and these conjectures evolve 
following an iterative cycle of design, enactment, analysis and redesign: 

On the reflective side, design experiments are conjecture-driven tests, often at several levels 
of analysis. The initial design is a conjecture about the means of supporting a particular form 
of learning that is to be tested. During the conduct of the design study, however, more 
specialized conjectures are typically framed and tested (Cobb et al., 2003, p. 10). 

 
These conjectures evolve throughout the duration of the design study including further iterations that 

continue in the form of follow-up design experiments. Drawing on the existing literature on area measurement, 
we gathered measurement constructs identified in previous studies (e.g. indirect/direct measurement, measuring 
with no gaps or overlaps) and wondered, “How can this construct be interpreted/modified/used in terms of 
DYME?” We used these wonderings to design some initial tasks and framed humble theories (conjectures) 
about prospective interactions between our task design and the students’ responses. We examined the changes in 
students’ thinking about area when interacting with the DYME tasks, and modified and refined the task design 
accordingly. During this ongoing analysis (Cobb & Gravemeijer, 2008), our initial conjectures evolved and we 
modified the tasks in light of iterative examinations of changes in students’ thinking about area when interacting 
with the DYME tasks. The goal of this ongoing analysis (Table 1) was to develop iterative cycles of invention 
and revision of tasks and humble theories (Cobb et al., 2003). The following section describes in brief this 
iterative design process aiming to illustrate how our task sequence was constructed.  
 
Table 1: Description of ongoing analysis 
 

 

Designing tasks for DYME  
Influenced by the work of Thompson (1993; 1994) on quantitative reasoning, our goal was to design meaningful 
tasks around a storyline that would illustrate area as an attribute that measures the space covered by a 
rectangular shape. Aiming to trigger students’ interest, we developed an overarching storyline, where students 
become part of a “Maker Team” that solves a series of DYME challenges embedded in an interactive digital 
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book. To illustrate the continuous nature of area we used the context of painting with paint rollers (Confrey et 
al., 2012; Lehrer et al. 2014) where we asked students to color surfaces by dragging a roller of a given length 
over varying distances and also dragging rollers of different lengths over the same distance (Figure 3). The task 
introduces the quantities of ‘length of a paint roller’ as the length of a rectangle, ‘rolling distance of the paint 
roller’ as the width of a rectangle, and the ‘space covered by the paint roller’ as the area of the rectangle. Our 
humble theory was that by providing students with opportunities to create a rectangular surface through 
dragging and tracing, they would develop an understanding of area as a continuous quantity that depends on two 
other continuous quantities: the length of roller and the rolling distance. 

 
Figure 3. Dragging a roller of a given length over varying distances. 

  
Indeed, the dynamic nature of the task enabled students to visualize area as a continuous structure and 

helped them recognize that the length of the roller and the rolling distance define the size of a shape. As they 
could drag the roller as far as they could, students reasoned that, “the further we drag the roller, the bigger the 
shape we create.” Although the task was successful in presenting those quantities as continuous, it did not 
provide us with evidence that students a) realized that they need to coordinate both quantities (length of roller 
and rolling distance) in order to make judgments about size and that b) they connected these dynamic 
experiences of generating area to the more ‘static’ length and the width measures of a rectangle.  

Subsequently, we thought to engage students in experiences where they had to modify a shape to fit 
another shape, in order to create the need for considering both the base and height when comparing two shapes. 
(Due to the ambiguity of the word ‘length’ we used the terms ‘base’ and ‘height’ in the beginning, and ‘length’ 
and ‘width’ later.) Thus, in the next set of tasks we asked the students to modify envelops to fit the size of some 
cards. Students had to change only the base or the height or both on the envelop (Figure 4a). Then students were 
asked to color each envelop they created by modifying the length of a paint roller and dragging the roller over a 
distance to color the whole shape (Figure 4b).  

Indeed, through task 4a students’ articulations showed that they began looking at both the base and the 
height of the rectangle to compare two shapes. Examples included, “the height needs to change and the base 
remains the same, because it’s the same [the base] as the envelope’s.” Additionally, task 4b assisted students in 
connecting the dynamic experiences of painting to the static attributes of a rectangle, such as “If the height is 8, 
so you are gonna want to make the length of the paint roller 8 cm too so that it can match. If the base is 10 then 
the distance of paint should be 10 cm.” Although our design up to this point was successful in assisting students 
in comparing two shapes by comparing and making inferences about their dimensions, students still could not 
relate their dimensions multiplicatively. 
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(a)                                                                            (b) 

Figure 4. (a) Modifying the base and/or height of the rectangle to fit in the card, (b) Coloring the envelop using 
a paint roller. 

 
 This led to a reformulation of our humble theory to include the conjecture that students could reach to 
the goal of length times width if they recognize the proportional relationship between length and area (when one 
dimension is constant.) Subsequently, we designed tasks that asked students to explore ways to double/half a 
rectangular parking space designed by GSP (Figure 5). Through this task, students recognized that to 
double/halve the area they needed to double/halve the length or the width. Although this task helped students to 
move from non-numeric covariation (“The bigger the roller the bigger the shape”) to expressing covariation 
numerically (“If I double the length, the area is doubled”) providing some evidence of understanding the 
multiplicative relationship that underlies length and area, still they were not able to identify the multiplicative 
relationship of the formula. 
 

 
 

Figure 5. Students double the length of a rectangle to double the area.  
 
   Therefore, our focus shifted on research about iterating a fixed unit to find area (Izsak 2005; 
Lehrer, 2003). We conjectured that if students could iterate a roller of a fixed length (e.g. 1 inch) to cover a 
surface, they would consider the distance covered in one swipe of the roller with the number of swipes, and 
construct a repeating pattern for covering the shape (Outhred & Mitchelmore, 2000; Reynolds & Wheatley, 
1996). This involved identifying that a length can be partitioned into a number of equal–sized units (Izsak 2005; 
Lehrer, 2003), which in our case would mean 1-inch rollers. To do that, we designed a task where students had 
to paint shapes of different lengths and widths using a single 1-inch roller (Figure 6). Students’ articulations 
showed that the task design encouraged students to describe area using the multiplicative ‘times’ language, such 
as “this is 30 [bottom right rectangle in Figure 6] because the base is 10 and we are going to swipe three times” 
or “we need to do 10 three times.”  
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Figure 6. Students use 1-inch rollers to paint walls of different lengths and widths. 
 
 Aiming to show that the position of the roller can vary and also illustrate the commutativity of the 
multiplicative relationship in our design, we constructed tasks where the roller was placed vertically or on the 
right of the shape (Figure 7). Viewing both the horizontal and the vertical alignment of the roller led to 
generalizations like “4 swipes of 5 cover the space as 5 swipes of 4.” 

 
Figure 7. Students use 1-inch rollers in various positions and reason about the space covered. 

 
 Although our conjecture of iterating a 1-inch roller along the length of a rectangle was helpful for 
expressing the space covered multiplicatively, still students were not able to describe area as base times height. 
This led to a reformulation of our humble theory. Our next conjecture was that central to the construction of the 
area formula would be to give students a roller with the same length as the height of the rectangle and help them 
identify that a 3-inch roller covers the same space as three 1-inch rollers. For example, students painted a 
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rectangle of base 4 units and height 3 units using a roller of 3 units (Figure 8). We observed that to find the 
space covered, students began decomposing mentally the large roller to 1-inch rollers. They realized that 
decomposing the length into unit lengths does not affect the area, for example, “we could cut a 3-inch roller 
into 3 parts and go across 3 times for a distance of 4, the shape will cover 12.” Engaging students in these tasks 
helped them visualize a large swipe as a composite of 1-inch swipes. As we progressed towards the final 
sessions of the design experiments, students gradually distanced from the terminology of rollers and began 
using length times width intuitively recognizing that the height of a shape shows the number of 1-inch swipes 
and the base shows the rolling distance.  
 

 
Figure 8. Students cover a rectangular park with grass rollers of different measurements. 

  
 Using the 1-inch rollers and iterating was a compromise we had made in our design in order for the 
students to think multiplicatively about the relationship between length, width and area. As students’ 
multiplicative thinking of area developed further, our next conjecture was that students could use this 
knowledge to think about the proportional relationship between length and area. We designed tasks, such as the 
one we had in Figure 6, and also included tasks for students to recognize that in order to split area (fractional 
thinking), they need to split the length or the width. The tasks engaged students in creating shapes that have a 
fraction of an area of another shape.  For example, students were asked to create a cafeteria which is 1/4 of an 8 
by 5 inches garden (Figure 9) and argued that “If we split this into four parts, then one of the parts will be the 
cafeteria. It would be 2 inches [the height of the cafeteria] because the if we use only 1-inch roller it would go 8 
times across but if you use 2-inch roller then it would go 1,2,3, and that would go 4 parts.” 
 

 
Figure 9. Students create a cafeteria which is ¼ of an 8 by 5 inches garden 
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 Additionally, we wanted to test the conjecture that students could use this dynamic measurement 
knowledge to recognize area as a multiple of its dimensions and identify factors that give the same area. Our 
tasks involve asking students to create different rectangles of the same area (e.g. 12 sq. inches) (Figure 10). This 
connects area measurement to geometry and the concept of congruence by recognizing congruent shapes in 
different orientations (e.g. 2 x 6 or 6 x 2) and describing congruence by using geometric motions, such as 
rotation (Huang & Witz, 2011). It also directly relates to the properties of multiplication (e.g. commutative 
property) as well as factors and multiples, for example during this task students stated, “length 4 and width 3 is 
doing 4 swipes of 3. This is same as two swipes of 6, so length 2 and width 6.” Although students were not 
asked to paint as they did in previous explorations, we provided paint rollers as a resource. We found that these 
rollers became a powerful tool to help students visualize the size of covered spaces and for transitioning from 
sweeping-based reasoning to reasoning about area as length times width. 

 
 

Figure 10. Students create stores that have area of 12 sq. inches and different length and width from other stores. 

Concluding remarks 
This study examined a dynamic way of learning and teaching measurement. The aim of this paper was to 
illustrate the iterative process of designing tasks for DYME aiming to show how the task design and the 
sequence of tasks evolved to assist students in visualizing the multiplicative relationship underlying the area 
formula. The examples of student behavior presented in this paper illustrate some of the ways that students’ 
thinking of area progressed through the study. Results showed that the paint rollers were a very powerful tool 
for students in visualizing area as a continuous, dynamic structure defined by two quantities: length and width. 
Students also used this knowledge to understand more advanced notions such as scaling, factors and fractions. 

This paper presented a snapshot of the first cycle of design experiments. In subsequent cycles, that 
included whole classroom design experiments, we explored further how students’ thinking progresses through 
the particular tasks and designed a learning trajectory (Simon, 1995), illustrating how students’ DYME 
reasoning may develop over time (Panorkou, 2017). The overall study shows DYME’s potential as a route to 
area measurement that would make the multiplicative formula of area more intuitive and accessible. These 
findings are also useful for continuing the discussion around the potential of technology to change what is 
possible to learn. In the future, we plan to examine further how DYME thinking may assist students in making 
connections between various mathematical ideas, such as multiplication/division, fractions, transformations, and 
covariation. We are also currently exploring how DYME may be extended to non-rectangular surfaces and 
volume in the later years of schooling.  
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