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ABSTRACT 

EVALUATING SUSTAINABLE ASPECTS OF HAZARDOUS WASTE 

REMEDIATION 

by Melissa A. Koberle-Harclerode 

The main objective of the research presented herein is to be a major contributor to the 

current international initiative to advance sustainability assessments for remediation 

projects by integrating methodologies from the environmental economics and social 

science disciplines. More specifically, the study aims to address some of the knowledge 

gaps related to conducting a comprehensive sustainability assessment for a remediation 

project. These knowledge gaps include: (1) there are few studies that include 

sustainability assessments of the variety of techniques and technologies implemented 

during site characterization; (2) the majority of sustainable remediation publications and 

assessment tools focus on evaluating the environmental impact of a contaminated site’s 

life cycle and minimally, if at all, on related socio-economic impacts; and (3) the role of 

risk perception in stakeholder engagement has not been explored in existing sustainable 

remediation frameworks. Chapters 2 through 4 presents a societal cost analysis 

methodology to quantify global socio-economic impacts arising from cleanup activity by 

monetizing the emissions and energy consumption through the integration of the social 

cost of environmental metrics. The results of environmental footprint and life cycle 

assessment evaluations conducted at various stages throughout the project life cycle were 

used as the basis for the societal cost analysis. Chapter 5 presents a survey developed and 

implemented to identify risk perception factors that influenced residents’ level of 
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participation in risk management activities conducted by the local health department. 

Based on the case study evaluations presented herein, it can be concluded that the 

integration of methodologies from the environmental economics and social science 

disciplines into existing sustainable remediation frameworks results in a more 

comprehensive evaluation of triple bottom line impacts, a reduction in emissions and 

resources consumed during site activities, efficient use of financial resources, and a 

maximization of benefits to stakeholders, in particular the community.   
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Chapter 1  

INTRODUCTION TO RESEARCH AND ORGANIZATION OF THE 
DISSERTATION 

(A portion of this chapter has been published in the journal, Remediation) 

1. Introduction 

Since 2008, the environmental remediation community has discussed the importance 

of performing contaminated site remediation in a manner that maximizes benefits and 

reduces detrimental impacts towards stakeholders and global society. This concept, 

known as sustainable remediation, seeks to manage unacceptable risks in a safe and 

timely manner, whilst optimizing the overall environmental, social, and economic 

benefits (International Standards Organisation [ISO], 2015; Interstate Technology and & 

Regulatory Council [ITRC], 2011a; Network for Industrially Contaminated Land in 

Figure 1-1: Three Interrelated Dimensions of Sustainability                                                 
(USEPA, 2012a adapted from Beach 2010 and Sikdar 2003). 
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Europe [NICOLE], 2010; Sustainable Remediation Forum [SURF], 2009; SuRF-Italy, 

2014; and SuRF-UK, 2010). The three main dimensions of sustainability, often referred 

to as the triple bottom line, are the environment, society and economy (Pope et al., 2004), 

as presented on Figure 1-1.  

Over the last decade, the international remediation community has made substantial 

progress in developing guidance and tools to evaluate impacts to the triple bottom line 

from remediation activities. Although there are commonalities among guidance and tools, 

how the social dimension of the triple bottom line is defined and measured varies 

significantly within individual countries and organizations (Hadley and Harclerode, 2015; 

Harclerode et al., 2015a; Frantál et al., 2015; and Nathanail, 2011). 

The social aspect of sustainable remediation is one of the three integrated dimensions 

of the triple bottom line (Pope et al., 2004). As such, a sustainable remediation evaluation 

includes assessing the potential impacts to all three of these sustainability dimensions. 

Unfortunately, a single tool does not currently exist that considers both quantitative and 

qualitative data among all three dimensions of the triple bottom line (Harclerode et al., 

2015a). Therefore, remediation practitioners often use multiple tools to comprehensively 

evaluate sustainable aspects of cleanup activities. Pope et al. (2004) suggests that the sum 

of separate environmental, social, and economic assessments does not equal the whole 

(i.e., sustainability). Rather they argued that the sum of an integrated impact assessment 

incorporating the inter-linkages among the three dimensions of the triple bottom line 

would be greater than the whole. As the remediation community advances its 
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understanding of sustainability, it is important to acknowledge the interconnections of 

these dimensions and consider a flexible, integrated, and objective-led impact assessment 

approach when defining sustainability indicators and metrics of remediation (Harclerode 

et al., 2015a; Ridsdale, 2015).   

In addition to impacts, another facet comprising the social dimension of remediation 

activities are the drivers and barriers for achieving sustainable practices (Alexandrescu et 

al., 2013; CLARINET, 2002; CABERNET, 2006; Dixon, 2007; HOMBRE, 2014; 

RESCUE, 2005; and REVIT, 2007). Drivers are those characteristics of a given country, 

region or project, which can be of regulatory, economic or institutional/cultural in nature, 

that foster the regeneration of contaminated properties (Ridsdale, 2015). Barriers, in 

contrast, are characteristics that have the opposite effect, such as outspoken aversion to 

the process, opposition to cleanup, avoidance of the redevelopment (Alexandrescu et al., 

2013) and risk perception (Harclerode et al., 2015a). Recent research on sustainable 

remediation has indicated that the sustainable management of contaminated sites is 

driven, in part, by stakeholder demands from site owners, regulators, or consultants and 

also by institutional processes, including social norms and public policy (CABERNET, 

2006; Cundy et al., 2013; HOMBRE, 2014; Hou and Tabbaa, 2014; RESCUE, 2005; and 

REVIT, 2007).  

Therefore, social drivers and barriers should be identified during project planning and 

integrated into sustainability objectives for the site (Harclerode et al., 2015a).  
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The objective of the research presented herein is to be a major contributor to the current 

international initiative to advance sustainability assessments for remediation projects by 

integrating methodologies from the environmental economics and social science 

disciplines.   

1.1. Literature Review 

The following sub-sections present a literature review of sustainable remediation 

guidance, with a focus on how the social dimension of sustainable remediation is 

assessed among various countries and organizations. 

United States (U.S.) 

Several tools, guidance and policy documents on incorporating and addressing 

sustainable aspects of remediation activities have been issued by federal, state, private, 

and professional organizations (e.g., Interstate Technology and Regulatory Council 

[ITRC], Sustainable Remediation Forum [SURF], and ASTM International). The 

guidance document used for a specific site is usually dictated by the regulatory 

framework and responsible party. Guidance among the different institutions have 

commonalities among evaluating environmental impacts from remedial activities, 

however, are not in alignment for assessing social and economic impacts (Hadley and 

Harclerode, 2015).  

Federal and State Agencies 

Presently, state and federal regulatory sustainability guidance places more weight 
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on quantifying and addressing environmental impacts of remedial activities. Executive 

Orders (EOs) 13514 and 13423 are the basis for incorporation of sustainable practices 

into regulatory cleanup programs. The goal of EO 13514 (2009) is "to establish an 

integrated strategy towards sustainability in the Federal Government and to make 

reduction of [greenhouse gas] GHG [emissions] a priority for Federal agencies." 

EO13423 (2007), which consolidates and strengthens five previous EOs and two 

Memoranda of Understanding (MOU), requires federal agencies to lead by example in 

advancing the country's energy security and environmental performance. It compels 

federal agencies to achieve goals across a variety of environmental and energy-related 

programs, including practices listed under EO13514, as well as pollution prevention, 

alternative fuels, building performance, petroleum conservation, vehicles, and energy 

efficiency. EO 13514 (2009) guides federal agencies to support renewable energy 

generation, water and energy conservation, green buildings, waste minimization, green 

procurement, electronic stewardship, and local and regional planning to promote 

sustainable living and public transit systems near existing town centers. The United 

States Environmental Protection Agency (USEPA) responded to EOs 13514 and 13423 

by issuing the Superfund Green Remediation Strategy (2010a) and developing the 

Spreadsheets for Environmental Footprint Analysis (SEFA) tool (USEPA, 2016a). Green 

remediation is the practice of considering all environmental effects of remedy 

implementation and incorporating options to minimize the environmental footprints of 

cleanup actions (USEPA, 2010a). In 2013, a Memorandum was issued by USEPA’s 

Assistant Administrator that encouraged the use of the ASTM International Standard 
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Guide for Greener Cleanups on remediation sites. State regulatory agencies also 

responded similarly by issuing green and sustainable remediation policies and guidance 

(see Exhibit 1 of Hadley and Harclerode, 2015 for a complete list).   

In the U.S., federal and state regulatory “sustainable” remediation guidance 

emphasizes the quantification of environmental impacts (e.g., emissions and resources 

consumed) of remediation activities more than social and economic impacts (Hadley and 

Harclerode, 2015; USEPA 2010a). Federal regulators identify and address social impacts 

from remediation activities primarily in the form of community outreach. According to 

the Superfund Community Involvement Handbook, the primary objective of community 

outreach is to identify and communicate community concerns and interests to 

remediation decision makers (USEPA, 2005). Local community needs are then 

considered for integration into remediation and redevelopment activities. Economic 

impacts are primarily focused on project implementation cost (i.e., comparing the cost of 

each proposed remediation strategy) (Hadley and Harclerode, 2015; Harclerode et al., 

2015a).  

On the other hand, U.S. federal agencies, including the U.S. Navy, U.S. Army 

Corps of Engineers (USACE), and U.S. Air Force have incorporated remediation worker 

safety and accident risk into their established sustainability evaluation frameworks 

(NAVFAC, 2012; USACE, 2010; and US DOD, 2009) and tools (i.e., SiteWiseTM and 

Sustainable Remediation Tool). These agencies also include social responsibility metrics 

to evaluate potential beneficial and detrimental impacts to the local community from 
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remedial activities (e.g., noise, odor, traffic) (US DOE, 2011; NAVFAC, 2012). The U.S. 

Department of Energy (DOE) 2011 Strategic Sustainability Performance Plan 

recommends utilizing a cost benefit analysis that incorporates the social cost of carbon to 

aid in the policy decision making process (e.g., remedy evaluation). The incorporation of 

the social cost of carbon supports EO 12866, in which agencies are “required, to the 

extent permitted by law to assess both the costs and the benefits of the intended 

regulation” and encourages using the social cost of carbon to consider the social benefits 

of reducing carbon emissions from sustainable practices. 

Private Entities and Professional Organizations 

Other organizations, such as the SURF, ITRC, and ASTM International have 

developed sustainable remediation frameworks. Summaries of each guidance and the 

organization’s contributions to the social dimension of sustainable remediation are 

presented in the following paragraphs.  

Sustainable Remediation Forum (SURF) was initiated in late 2006 to promote 

the use of sustainable practices during remedial action activities with the objective of 

balancing economic viability, conservations of natural resources and biodiversity, and the 

enhancement of the quality of life in surrounding communities. SURF defines sustainable 

remediation as site assessment and remediation that protects human health and the 

environment while maximizing the environmental, social, and economic benefits 

throughout the project life cycle (SURF, 2009).   
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In 2011, SURF published three documents to guide remediation professionals 

while conducting a sustainability assessment, including Framework for Integrating 

Sustainability into Remediation Projects (Holland et al., 2011); Metrics for Integrating 

Sustainability Evaluations into Remediation Projects (Butler et al., 2011); and Guidance 

for Performing Footprint Analyses and Life-Cycle Assessments for the Remediation 

Industry (Favara et al. 2011). These documents illustrate the importance of going beyond 

evaluating environmental and human health impacts by considering potential impacts on 

worker and community safety, stakeholder involvement, and stimulating the local 

economy throughout the entire life cycle of a remediation project. SURF also identified 

the importance and potentiality of linking local emissions to regional and global health 

impacts. SURF’s Sustainable Remediation White Paper referenced tools that evaluated 

social outputs pertaining to community acceptability, risk reduction, socioeconomic cost 

of secondary emissions, human health, and barriers. The tools referenced are among 

international and private organizations that may not be publicly accessible (SURF, 2009).  

In the Spring of 2013, SURF published Integrating Remediation and Reuse to 

Achieve Whole-System Sustainability Benefits. This document presents the concept of 

sustainable reuse, which is the “regeneration of abandoned, derelict, underused, and 

potentially contaminated sites in a way that increases the environmental, economic, and 

social benefits of a site.” Sustainable reuse of a contaminated site is often challenging 

because the objective of remediation and the objective of reuse are not always in 

alignment and may even be in opposition of each other. The objective of remediation is to 

address contamination associated with the site to protect human health and the 
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environment. While, the objective of reuse is to redevelop the site in a timely fashion in 

order to enhance the potential return on investment. Due to perceived conflict among 

these two objectives, the fate of contaminated sites often results in underuse. SURF 

believes this conflict can be addressed by implementing the sustainable reuse concept 

during site cleanup. Holland et al. (2013) states this “collaborative process will allow 

accelerated regulatory site closure, cleanup cost reduction, optimization of site’s natural 

environmental conditions, local economy gains (e.g., through the creation of local jobs), 

and greater consideration of the public’s needs and concerns.” 

Holland et al. (2013) discussed the numerous socio-economic benefits from 

sustainable re-use, including: (1) benefits to the public sector, including the reuse of 

previously developed land that is currently vacant (i.e., Brownfields and “greyfield” 

sites), urban in-fill areas and transit-oriented projects; (2) general beneficial 

consequences from sustainable reuse of these types of sites, including protection of 

undeveloped land (i.e. “greenfields), creation of employment opportunities and expanded 

tax base, development of infrastructure and renewable energy resources, and ecosystem 

enhancement; and (3) benefits to the community, including infrastructure enhancement, 

reduction in urban blight, an increase in the health of neighborhoods, and an increase in 

the economic value of the property.   

The social and economic impacts of a remediation project are also intimately 

linked to water resources. In 2013 SURF published Groundwater Conservation and 

Reuse at Remediation Sites with the objective of stimulating a more holistic view of the 
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groundwater associated with remediation projects and to promote conservation and 

beneficial reuse of this vital natural resource. Water plays a crucial role in a community’s 

wellbeing, especially in water stressed regions. The reuse of treated groundwater is often 

inhibited due to social constraints, such as public perception, economics, and actual and 

perceived liabilities. In order for sustainable reuse of treated groundwater to be successful 

remediation professionals must coordinate with local municipalities and regulators to 

educate stakeholders and develop appropriate permits. The guidance presents several case 

studies highlighting the successful reuse of treated groundwater for agricultural, 

industrial, and potable use. Each case study highlights the social and economic benefits to 

the local and regional communities from reusing treated groundwater (SURF, 2013).  

Interstate Technology & Regulatory Council (ITRC) is a state-led, national 

coalition of personnel from environmental regulatory agencies, tribes, and public and 

industry stakeholders. In 2011, ITRC published Green and Sustainable Remediation: 

State of the Science and Practice and Green and Sustainable Remediation: A Practical 

Framework. These documents present a framework “to help users incorporate 

sustainability factors into site management decision making”. ITRC promotes 

incorporating sustainable practices throughout a contaminated site’s life cycle, from site 

assessment through remediation and redevelopment. The ITRC Guidance presents three 

levels of conducting a sustainability assessment for remedial projects, ranging from 

simple to complex. A Level 1 Evaluation identifies, implements, and evaluates best 

management practices (BMPs) at each stage of a project to reduce impacts to the triple 

bottom line. Examples of BMPs include using local vendors, electronic deliverables, in 
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situ screening and treatment technologies, renewable energy, recycling, treated material 

reuse, and reduced sample volume. Level 2 Evaluation combines the selection and 

implementation of BMPs with a footprint evaluation. Level 3 evaluation combines the 

selection and implementation of BMPs with a life cycle assessment (LCA). The three 

levels were developed to facilitate implementation of sustainable practices on a wide 

array of project types.  

The following categories of social indicators are presented in the ITRC Guidance: 

impacts on human health and safety; ethical and equity considerations; impacts in 

neighborhoods and/or regions; community involvement and satisfaction; compliance with 

policy objectives; and strategies, uncertainty, and evidence. The ITRC framework also 

notes the importance of understanding the socio-cultural impacts of remedial processes 

and actions, and if conducted during the project planning stage, can lead to a reduction in 

antagonistic working relationships, increase community involvement, and facilitate 

negotiation and selection of remedies that are consistent with community needs. 

ASTM International issued the Standard Guide for Integrating Sustainable 

Objectives into Cleanup. The document released in 2013, guides users to focus on the 

socio-economic benefits of site cleanup and land reuse. ASTM International emphasizes 

that each site entails different and unique contexts, and thus flexibility is imperative for 

successful integration of site-specific socio-economic concepts. The scalable framework 

helps users achieve sustainability through the use of BMPs, which are categorized by 

core dimensions. Social core dimensions include community involvement, economic 
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impacts to the local community, enhancements of individual human environments, and 

local community vitality.  

Europe 

Several guidance documents on incorporating and addressing sustainable 

indicators of remediation activities have been developed by European organizations. 

These documents were developed as a collaborative effort among governmental, private, 

and professional organizations such as the Common Forum (CF) on Contaminated Land 

in Europe, International Committee on Contaminated Land (ICCL), Network for 

Industrially Contaminated Land in Europe (NICOLE), SuRF-UK, SuRF Italy, and 

International Organization for Standardization (ISO). Since the development of 

frameworks was a collaborative process, differences in sustainability indicators and tools 

are not as prevalent, as was identified with U.S. frameworks. In addition, the triple 

bottom line dimensions represented in European frameworks are closer to an integrated 

approach, as compared to U.S. frameworks.  

Common Forum (CF) on Contaminated Land in the European Union (EU), 

initiated in 1994, is a network of contaminated land policy makers and advisors from 

national ministries and Environment Agencies in EU Member States. CF’s general 

objectives are to share knowledge and experiences on contaminated land management 

between its members and other stakeholder communities, and to develop new and 

efficient strategies for the management and remediation of contaminated sites and land 

reuse with respect to “sustainable resource protection”. Every other year CF members 
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with their equivalents from around the world meet as the International Committee on 

Contaminated Land (ICCL) to discuss site management and sustainable remediation.  

Network for Industrially Contaminated Land in Europe (NICOLE), is a 

European Network comprised of industry and service providers, as well as individual 

academics. It initiated a Sustainable Remediation Working Group in 2008. This group 

published a Sustainable Remediation Road Map in 2010 with further supporting guidance 

in 2012 (NICOLE, 2012). NICOLE defines a sustainable remediation project as one that 

represents the best solution when considering environmental, social and economic 

factors, as agreed upon by stakeholders. Similar to the concept of risk management and 

risk assessment, NICOLE divides sustainable remediation into two inter-related 

components: 

1. Sustainability management: the discipline of integrating sustainability assessment 

into contaminated land management decision making 

2. Sustainability assessment: the process of gaining an understanding of possible 

outcomes across all three elements (environmental, social and economic) of 

sustainable development. 

In the context of the EU, sustainability assessment is a tool that supports 

sustainability based decision-making within a management plan, and also utilized to 

review and verify sustainability performance during the implementation of remediation. 

The aim of a sustainability assessment is to build trust and consensus between 

stakeholders. NICOLE states that the earlier stakeholders consider sustainability 
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principles, the more opportunities there are to improve sustainable outcomes and so 

provide greater benefit. 

European policy on contaminated site management has evolved since the 1990s and is 

now entering a 4th generation of so called “risk-informed and sustainable land 

management” which integrates three key principles: (1) being risk-informed, (2) 

managing adaptively, and (3) taking a participatory approach. In 2013, the CF and 

NICOLE (2013) published a Joint Statement on Risk-based & Sustainable Remediation, 

published in nine European languages. The Joint Statement highlights goals to (1) define 

and highlight key messages of sustainable remediation as a concept; (2) promote the 

concept through a visible commitment from all parties, Europe wide; (3) encompass a 

broader uptake of sustainable remediation principles, approaches and tools by everyone, 

and (4) link to the wider European policy arena and provide thematic strategies 

(NICOLE, 2011 and 2012; CF and NICOLE, 2013). 

SuRF-UK is the United Kingdom’s (UK) equivalent to the Sustainable Remediation 

Forum founded in the U.S. SuRF-UK’s mission is to improve the UK’s understanding of 

sustainable remediation and functions as a series of initiatives managed by the not-for-

profit organization Contaminated Land: Applications in Real Environments (CL:AIRE) 

beginning in 2006. SuRF-UK has a small steering group which includes consultants, 

academics, responsible parties, and regulators. Publications and supporting activities use 

stakeholder workshops to ensure engagement with the entire remediation community 

(CL:AIRE, 2009, 2010, 2011, and 2014). 
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The SuRF-UK Framework is the most widely used sustainable remediation guidance 

in the EU, Australia, and New Zealand. SuRF-UK defines sustainable remediation as the 

practice of demonstrating, in terms of environmental, economic and social indicators, that 

the benefit of undertaking remediation is greater than its impact, and that the optimum 

remediation solution is selected through the use of a balanced decision-making process. 

To date SuRF-UK publications include the Sustainable Remediation Framework 

(2010) and Guidance on Sustainability Indicators (2011) based on 15 overarching 

categories comprised of the triple bottom line. The framework lists five overarching 

social categories to evaluate during a sustainability assessment of remedial activities: (1) 

human health and safety; (2) ethics and equality; (3) neighborhoods and locality; (4) 

communities and community involvement; and (5) uncertainty and evidence (CL:AIRE, 

2011).  Owing to the synergistic effects among the social and economic sphere, 

overarching categories representing the economic dimension are also relevant to the 

social aspect of sustainable remediation. The economic overarching indicator categories 

are: (1) direct economic costs and benefits; (2) indirect economic cost and benefits; (3) 

employment and employment capital; (4) induced economic costs and benefits; (5) 

project life-span and flexibility. The framework stresses that the indicators are integral to 

the communication and promotion of sustainable development to stakeholders. This 

framework also recommends decision support techniques that can be performed as part of 

a sustainability assessment to evaluate social and economic indicators. These techniques 

include scoring/ranking systems (including multi-criteria decision analysis), best 

available techniques, cost-benefit analysis, cost effectiveness analysis, financial risk 
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assessment, industrial ecology, and quality of life assessment (Bardos et al., 2011a; 

CL:AIRE, 2010). 

SuRF-Italy is an initiative carried out by a group of Italian public and private 

organizations, operating in the remediation sector, aimed at (1) promoting remediation 

actions at local and regional levels, through stakeholder involvement; (2) disseminating 

the successful experiences  and world-wide best practices; and (3) increasing the 

momentum of sustainability concepts for economic, social and environmental benefits. 

SuRF-Italy defines sustainable remediation as ‘”the process of remediation and 

management of a contaminated site, aimed at identifying the best solution, which 

maximize the environmental, social and economic benefits, through a balanced decision 

process, agreed by stakeholders”. Currently, SuRF-Italy is working on developing a 

technical document suggesting operative criteria and practices for evaluating impacts to 

the social dimension of remediation and redevelopment activities, in concurrence with 

economic and environmental ones. Recommendations will be provided on key 

dimensions such as objective setting, indicator selection, option appraisal and selection, 

technologies, and BMPs in order to support sustainable remediation applications in a 

project-specific and a balanced way (SuRF-Italy 2014). 

International Organization for Standardization (ISO) Technical Committee 190’s 

Subcommittee 7 (TC190/SC7/WG12) working group on sustainable remediation has 

defined sustainable remediation as an approach that eliminates and/or controls 

unacceptable risks in a safe and timely manner, and optimizes the overall environmental, 

social, and economic benefits of the remediation work. The ISO document on sustainable 
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remediation would be publicly ‘visible’ and accessible in all countries and, and therefore, 

would allow an international collaboration to take place to ensure maximum benefit is 

gained. In addition, for those organizations operating across national borders, ISO 

guidance would help create a standard approach or at least a shared understanding around 

the world. While it recognizes the importance of the social dimension alongside the 

economic and environmental as well as governance issues, it does not propose a list of 

social, or other, indicators. This reflects both the lack of consensus on such a list and the 

dynamic state of thinking on useful indicators. 

The ISO document concludes that the need for remediation is determined by risk 

assessment and the process of choosing the remediation strategy involves seeking the 

viable strategy that will deliver the best overall environmental, social and economic 

benefits from the remediation work (Harclerode et al., 2015a). 

Canada 

While there are no Canadian specific frameworks for integrating sustainability into 

cleanup activities, there are a number of initiatives by the remediation industry and at all 

levels of government (e.g., municipal, provincial, national) that can be used to 

supplement the protection of human health and the environment with the consideration of 

broader social benefits as well as transparency and citizen involvement in the remediation 

decision-making process. 

Sustainable Remediation Forum Canada (SuRF Canada) which was developed in 

2010 plays a leading role in the promotion of sustainable remediation in Canada. SuRF 



18  

  

Canada defines sustainable remediation as remediation that considers the environmental, 

social and economic impacts of a project to ensure an optimal outcome, while being 

protective of human and environmental health, both at a local level and for the larger 

community (http://www.surfcanada.org/). SuRF Canada’s primary objective is to provide 

a forum for various stakeholders in remediation (e.g., industry, government agencies, 

environmental groups, consultants, and academia) to collaborate, educate, advance, and 

develop consensus on the application of sustainable practices throughout the life-cycle of 

remediation projects, from site investigation to closure. SuRF Canada is currently 

finalizing a white paper that summarizes the current context (regulatory, industry, social, 

etc.) and associated drivers and barriers to sustainable remediation in Canada. The paper 

highlights the role of stakeholder involvement in ensuring an optimal outcome and 

provides recommendations on policies and initiatives that are critically needed to advance 

the practice of sustainable remediation. The paper also includes a compilation of 

Canadian case studies of green and sustainable remediation projects (Harclerode et al., 

2015a). 

Federal Contaminated Sites Action Plan (FCSAP) developed a decision-making 

framework to address the lack of attention given to the social dimension of sustainable 

remediation (Government of Canada, 2014). The framework includes a tool to integrate 

triple bottom line dimensions into remediation. The Sustainable Decision Support Tool 

(SDST), which is not available to the public, is based on the tool GoldSET designed by 

Golder and Associates (also not available to the public, see Golder.com). The SDST is 

both quantitative and qualitative, with the following social indicators: cultural heritage, 
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public and worker safety, project duration, quality of life during the project, public 

benefits, and the federal government’s image. The tool uses a scoring and rating system 

to evaluate each social indicator in relation to the “level of concern to the federal 

government” versus the “level of concern to stakeholders,” for each proposed remedial 

alternative (Klassen, 2012). 

Taiwan 

SuRF Taiwan and the Taiwan Environmental Protection Administration are 

working together to develop guidance to incorporate and evaluate sustainable principles 

during remediation activities. In the guidance, the social dimension of the triple bottom 

line is categorized into two core dimensions supported by a list of principles to consider 

during a sustainability assessment. The first core dimension, human health and safety, is 

comprised of the following principles: human health and risk before remediation, human 

health risk during remediation (considering both local residents and site workers), risk of 

accidental injury, avoidance of secondary contamination, and prevent exposure pathways. 

The second core dimension, social justice and acceptance, is comprised of the following 

principles: stakeholder participation, information disclosure, considering remedial related 

effects on local residents, and preserve cultural heritage. These principles are used to 

develop BMPs that can be implemented to alleviate social impacts of remediation 

activities. In general, human health and safety is primarily addressed by performing a 

human health risk assessment to understand the current health risk to local residents and 

evaluate the health risks among the remediation alternatives. Common social indicators 
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evaluated include worker operation and traffic accidental risks, and site activity related 

effects including noise, odor, and vibration (Harclerode et al., 2015a). 

Common Themes 

As presented in the previous sub-sections, the identification of indicators varies 

among countries and organizations, as well as within countries themselves. In 2015, the 

SURF Social Aspects Technical Initiative developed ten main societal impact categories 

based on a literature review of sustainable remediation frameworks at an international 

level. The intention of developing the social impact categories is, during the project 

planning stage, to provide remediation professionals with a checklist to assist with 

identifying and defining social indicators that are predominately impacted by site-related 

activities. Once site-specific social indicators have been identified, stakeholders can 

determine the applicable metrics and tools to evaluate impacts to the social dimension.  

As stated previously, the triple bottom line dimensions are interrelated and, therefore, 

lead to impact categories that have an overlap of sustainability dimensions. Therefore, the 

societal impact categories listed below may be represented under the environmental 

and/or economic dimension of sustainability in other sustainable remediation frameworks 

(Harclerode et al., 2015). 

Main Societal Impact Categories  

1. Health and Safety of site workers and the surrounding community including, but 

not limited to, the alleviation, prevention or mitigation: of contamination risks on-
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site, generation of emissions and dust, and hazards of construction and operation 

of remedial systems. 

2. Economic Vitality by contracting local vendors and resources, developing and 

investing in new skilled training and education, and incorporating redevelopment 

into the remediation strategy selection. 

3. Stakeholder Collaboration to identify beneficial and undesirable impacts, to 

discuss perceived risks, to develop future land use and design, and to help aid in 

assessment goals and indicators used in the assessment in order to maximize buy-

in for the eventually implemented remediation strategy.     

4. Benefits Community at Large by promoting the community’s quality of life, 

including increased property value, social and human capital, reuse of treated 

media/materials to meet community needs, and redevelopment of the property. 

5. Alleviate Undesirable Community Impact at the neighborhood and locality 

scale, including noise, traffic, odor, congestion, business disruptions, 

compromising local heritage and cultural concerns. 

6. Social Justice during urban revitalization, through increased housing availability 

for all community members, widened access to employment opportunities, and 

reused brownfields for equitable use throughout the community. 

7. Value of Ecosystem Services and Natural Resources Capital altered by site 

activities and consumption, reuse of treated media, and restoration of ecosystems, 
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hydrological functions, fauna and indigenous flora habitat, in ways that enhance 

local quality of life and otherwise address societal challenges. 

8. Risk-Based Land Management and Remedial Solutions to distribute additional 

resources (e.g., energy, raw materials) in a manner to effectively address the site-

specific human health, environmental justice, and community issues associated 

with contaminated sites.  

9. Regional and Global Societal Impacts, such as long-term, chronic public health 

impacts and financial implications (e.g., mitigating effects of climate change and 

limited water resources) due to the generation of emissions and consumption of 

non-renewable resources. 

10. Contribution to Local and Regional Sustainability Policies and Initiatives, 

such as renewable energy initiatives, climate change legislation (e.g., carbon-

trading economy and climate adaptation), eco-job strategies, regional land use 

policies, regional and local sustainability objectives (e.g., ecological restoration 

goals, water use), and sustainable resource consumption.   

Currently, the majority of sustainability assessments conducted on remediation 

projects evaluate local, and to a lesser extent, global environmental impacts, project 

implementation cost, and, occasionally, local community impacts from proposed 

remediation activities. Due to the complexity of the concept of sustainability, stemming 

from the interrelations among the three dimensions of the triple bottom line, relevant and 

applicable indicators are often lost in the current assessment process (Ridsdale, 2015). 
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1.2. Problem Statement 

The remediation sector has recently been given the added responsibility of 

implementing remedial activities that are sustainable: a practice known as sustainable 

remediation. The three main facets of sustainable remediation, often referred to as the 

triple bottom of sustainability, are the environment, society and economy. Over the last 

several years, the remediation sector has responded robustly by publishing guidance and 

white papers, as well as developing footprint and LCA tools to evaluate the 

environmental impacts incurred during remediation of contaminated sites. While, tools 

and methodologies to evaluate social, including socio-economic, impacts from 

remediation activities are scarce. Furthermore, the paucity of established social impact 

tools is seen by the remediation community as an obstacle to conducting a comprehensive 

sustainability evaluation (Harclerode et al., 2015a,b, 2013; Hou and Al-Tabbaa, 2014a; 

Hou et al., 2014; Reddy et al., 2014; Ridsdale, 2015).  

An extensive literature review of sustainable remediation frameworks and 

publications suggests three knowledge gaps exist among the sustainability assessments 

being performed for remediation projects. 

Knowledge Gap I:  Most sustainable remediation publications and assessment tools 

focus on the remedial action stage of a contaminated site’s life cycle. There are few 

studies that include sustainability assessments of the variety of techniques and 

technologies implemented during site characterization (e.g., Phase II environmental site 

assessments, remedial investigations and pre-design investigations).  
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Knowledge Gap II: The majority of sustainable remediation publications and 

assessment tools focus on evaluating the environmental impact of a contaminated site’s 

life cycle and minimally, if at all, on related socio-economic impacts. Economic 

evaluations are often limited to a cost benefit analysis of project implementation, while a 

measurement methodology for evaluating the societal impacts of a remediation project is 

practically non-existent.  

Knowledge Gap III: The role of risk perception in stakeholder engagement has not 

been explored in existing sustainable remediation frameworks. Rather, has been 

identified as a barrier to implementing sustainable practices without a proposed solution 

to address it.  

1.3. Research Significance and Objectives 

This study aims to address some of the knowledge gaps related to conducting a 

comprehensive sustainability assessment for a remediation project. More specifically,  

1. Develop a methodology to quantify the socio-economic impacts of a 

contaminated site’s lifecycle (i.e., site characterization and remedial action stages) 

using the social cost of environmental metrics. 

2. Conduct a LCA to determine which components and techniques are significantly 

contributing towards environmental impacts in a site-specific scenario. Extend the 

results of the LCA to incorporate the socio-economic cost evaluation 

methodology developed under Task 1.  
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3. Develop and implement a survey to evaluate the role of risk perception in 

stakeholder engagement. 

In order to address the first knowledge gap, an environmental footprint analysis was 

conducted for three different case study sites, each representing a specific stage within a 

remediation project’s life cycle. Among the case studies, project life cycle stages 

represented include site characterization, remedy implementation with associated long 

term monitoring, and optimization of a remedial system. The results of the footprint 

analysis was then extended to quantify global socio-economic impacts arising from each 

remedial activity by monetizing the emissions and energy consumption through the 

integration of the social cost of environmental metrics. A sensitivity analysis was 

conducted to evaluate how different social discount rates and carbon prices influence 

quantified monetized global impacts. The case study site used to address the second 

knowledge gap was a sediment remedial design consisting of excavation, dredging, and 

in situ treatment. A sediment contaminated site was chosen to conduct the LCA since the 

majority of publications on LCAs conducted for remediation projects are focused on 

technologies considered for remediating residual sources areas impacted by dense non-

aqueous phase liquid (DNAPL) and groundwater plumes. A sensitivity analysis was 

conducted to evaluate how site-specific life cycle inventory (LCI) parameters were 

influencing the results of the environmental impact analysis. The results of the LCA were 

extended to quantify global socio-economic impacts using the cost evaluation 

methodology. Lastly, the third knowledge gap was addressed by developing and 

implementing an in-person survey to identify risk perception factors that influenced 
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residents’ level of concern for mitigating their exposure to elevated concentrations of lead 

in household paint and historic fill material.  Evaluating and integrating risk perception of 

stakeholders into outreach efforts allows for greater insight and ultimately, benefits the 

community by protecting its members from environmental hazards. Additional literature 

review conducted for each knowledge gap are presented along with each case study 

evaluation presented in subsequent chapters. 

1.4. Organization of the dissertation 

The above mentioned research objectives were achieved and research findings were 

organized in the form of various chapters in this dissertation. Each chapter covers one 

research objective as follows: 

 Chapter 2 entitled, “Estimating social impacts of a remediation project life cycle 

with environmental footprint evaluation tools”, quantified the costs borne by 

society, in terms of environmental, economic, and societal impacts, resulting from 

site characterization and remediation activities. The results the study 

demonstrated that costs borne by society from a remediation project are 

significant and metric specific. The study also highlighted the benefits of 

conducting a sustainability assessment at the site characterization stage, in 

addition to the remedial design stage, using environmental footprint analysis 

tools, cost benefit analysis, and an evaluation of costs borne by society. 

 Chapter 3 entitled, “Quantifying global impacts to society from the consumption 

of natural resources during environmental remediation activities”, presents a 
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method to integrate the social cost of carbon emissions into carbon footprint 

evaluations to quantify global impacts to society. The study evaluated the 

monetized societal benefits from quantifying carbon emission impacts of the 

proposed cleanup approaches and alternative scenarios. The results suggest 

societal impacts based on monetized carbon emissions can be reduced by 27% by 

optimizing the case study remediation processes. The sensitivity analysis results 

elucidated how variation in carbon prices and social discount rates can influence 

cleanup decisions for remediation projects. 

 Chapter 4 entitled, “Comparison of sustainability evaluation tools for 

contaminated sediment remediation”, evaluated the environmental and global 

socio-economic impacts of three common sediment remediation technologies 

(i.e., excavation, dredging and in situ treatment) using LCA, environmental 

footprint analysis, and societal cost analysis. The study did not find a significant 

difference between the overall conclusions of the environmental footprint and 

LCA methodologies. However, incorporation of social cost metrics were deemed 

useful in normalizing environmental impacts for comparison, as well as 

identifying components of the remedial design that were designated as major, 

secondary, and low impact contributors to environmental, social, and economic 

effects. Thus, study results provided supporting data on where to focus remedial 

design optimization efforts, including consideration of remedy components 

related to mobilization, engineering controls (e.g., silt curtain and turbidity 

curtain), and dewatering. 



28  

  

 Chapter 5 entitled, “Evaluation of the role of risk perception in stakeholder 

engagement to prevent exposure in an urban setting”, identified risk perception 

factors that influenced residents’ level of concern for mitigating their exposure to 

elevated concentrations of lead. Risk perception factors were assessed by 

conducting an in-person survey at public green spaces. The results of the study 

provided insight and recommendations to refine public outreach efforts that would 

communicate actual risk to lead and overcome “optimism bias” exhibited by the 

community. 

 Chapter 6 entitled, “Research study conclusions”, presents the overall 

conclusions, environmental management application, policy implications, 

limitations of the study, future research, and closing statement of the dissertation 

research presented herein.  
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Chapter 2  

ESTIMATING SOCIAL IMPACTS OF A REMEDIATION PROJECT LIFE  

CYCLE WITH ENVIRONMENTAL FOOTPRINT EVALUATION TOOLS 

(This chapter has been published in the journal, Remediation) 

Abstract 

 This chapter presents a methodology to calculate the social cost of sustainability 

metrics with environmental footprint evaluation tools. Measuring the impacts of a 

remediation project on society is challenging because the methods by which these 

impacts can be measured have not been established. To perform a complete sustainability 

assessment of a project’s life cycle, costs borne by society in terms of environmental, 

economic, and community impacts must be evaluated. Two knowledge gaps have been 

identified among the sustainability assessments currently being performed during a 

remediation project’s life cycle: (1) lack of methodologies available to evaluate impacts 

on the socio-economic aspects of remediation; and (2) lack of sustainability assessments 

conducted during the site characterization stage. Sustainability assessments were 

conducted on two case studies using the methodology proposed in this paper: one during 

the site characterization stage and the other during remedial action. The results of this 

study demonstrated that costs borne by society from a remediation project are significant 

and metric specific. This study also highlighted the benefits of conducting a sustainability 

assessment at the site characterization stage using environmental footprint analysis tools, 

cost benefit analysis, and an evaluation of costs borne by society. 



44  

  

2. Introduction 
Sustainable remediation (SR) protects human health and the environment during a 

remediation project’s life cycle, while maximizing its environmental, economic, and 

social benefits (triple bottom line) (Butler, 2011; Favara et al., 2011; Holland et al., 2011; 

and Miller et al., 2010). In 2010, the U. S. Environmental Protection Agency (USEPA) 

developed the Superfund Green Remediation Strategy to reduce greenhouse gas (GHG) 

emissions and other negative environmental impacts that may occur during a site 

remediation project (e.g., generation of harmful waste products and depletion of natural 

resources). The strategy recommended developing white papers that focus on the 

incorporation of SR practices under existing laws and regulations (USEPA, 2010a). Over 

the last several years, the remediation sector has responded robustly by publishing 

guidance documents and white papers, as well as developing environmental footprint and 

life cycle assessment (LCA) tools to evaluate the environmental, economic, and social 

impacts incurred during characterization and remediation of contaminated sites (Favara et 

al., 2011). An extensive literature review of SR publications suggests two knowledge 

gaps exist among the sustainability assessments being performed for remediation 

projects.  The first section of this chapter will introduce and address those knowledge 

gaps: (1) the lack of methodologies available to evaluate the socio-economic impacts of 

remediation, and (2) the lack of sustainability assessments conducted at the site 

characterization stage. The second section of this chapter introduces a methodology to 

quantify the socio-economic impacts of a remediation project life cycle. This section 

includes two case studies, one at the site characterization stage and a second at the 
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remedial action stage. The third section describes and discusses the results of the case 

studies. The fourth section covers the conclusions and challenges faced during the study, 

and the last section discusses the need for future research. 

Knowledge Gap Number 1 

In the remediation industry, the value of a project is defined by improvements in 

human welfare resulting from site characterization and cleanup actions (Holland et al., 

2011; Lee et al., 2009). The majority of SR publications and assessment tools focus on 

evaluating the environmental impact of a remediation project and minimally, if at all, on 

related socio-economic impacts. The 2011 Interstate Technology & Regulatory Council 

(ITRC) Technical/Regulatory Guidance –Green and Sustainable Remediation: A 

Practical Framework presents a problem statement which includes the following: 

“remedial activities often focus on site-specific risks that were not developed in 

consideration of external social and economic impacts beyond identified environmental 

impacts in order to protect human health and the environment” (ITRC, 2011a). Social 

costs are often not included in a site remediation impact assessment (Favara et al., 2011; 

Lee et al., 2009). To perform a complete sustainability assessment of a project’s life 

cycle, costs borne by society in terms of environmental, economic, and community 

impacts must be included. Evaluation of the social impacts of a remediation project is 

challenging because a measurement methodology has not been established.  
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Knowledge Gap Number 2  

Most SR publications and assessment tools focus on the remedial stage of a 

remediation project’s life cycle. There are few studies that include sustainability 

assessments of the variety of techniques and technologies implemented during site 

characterization (e.g., Phase II environmental site assessments, remedial investigations, 

and pre-design investigations). Technical guidance incorporating sustainability elements 

and transparent decision-making is lacking within remediation initiatives, especially at 

the site-planning and remedial-investigation stage (site characterization). Historically, 

risk assessment has been the only technique used to evaluate potential environmental and 

human health impacts during the remedial investigation and feasibility study stages 

(Favara et al., 2011). In November 2011, the ITRC published a technical/regulatory 

guidance establishing a practical framework for SR implementation to optimize all 

phases of site remediation, from site characterization to project closeout. Case studies 

appended to the guidance presented SR practices implemented throughout a remediation 

project’s life cycle. Out of the 10 case studies, only two elaborated on SR practices 

implemented during site investigation activities, but did not include sustainability 

assessments or evaluation of socio-economic impacts at the site characterization stage. In 

addition, the EPA finalized guidance in 2012 for a methodology to quantify green 

remediation metrics associated with environmental cleanups. This guidance also has a 

strong focus on the remedial action rather than the site characterization stage (USEPA, 

2012a).  
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 Interest in sustainable practices during a remediation project is not limited to 

certain regulators. At the company level, corporate social responsibility policies can 

motivate sustainability practices throughout the site remediation process (Lee et al., 

2009). Practices that reduce impacts to the triple bottom line can be implemented without 

sacrificing data quality, project schedule, or budget (Holland et al., 2011; Favara et al., 

2011; Lee et al., 2009). Examples of such SR practices include processes that are less 

energy-intensive, generate fewer harmful waste streams, streamline sampling efforts to 

reduce mobilization costs, and use in situ screening technologies to reduce analytical 

costs.  

The objective of this study was to introduce a methodology to calculate the social 

cost or benefit of sustainability metrics, by means of environmental footprint evaluation 

tools in the context of two case studies based on existing remediation projects. 

2.1. Methods 
A case-study approach was used to meet the objectives of this research. The two 

case studies employed are described below:  

2.1.1. Case Study 1 - Optimizing Site Characterization for Sustainability by a 

Phased Focused Field Investigation  
Site characterization is an essential early step in managing and remediating a 

contaminated site, and a good opportunity to integrate SR practices into the project life 

cycle. This case study involved comparing a phased focused investigation and a 

conventional investigation. A phased focused approach streamlines sampling efforts in 
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order to reduce mobilization and planning events that are geared towards conducting 

subsequent field actions. A phased focused investigation can improve efficiency and 

reduce negative environmental, economic, and social impacts of a remediation project by 

identifying areas of greatest concern and using minimally invasive site surveys and direct 

image screening tools. In comparison, a conventional approach makes use of iterative 

sampling and laboratory analytical programs, thereby spreading the investigative efforts 

across several mobilization and planning events. A conventional investigation can often 

prolong the life cycle of the remediation project and its associated environmental, 

economic, and social impacts.  

The case study data set was gathered during the characterization phase at a former 

petroleum bulk storage and distribution site occupying approximately 23 acres. The 

property was developed in the 1890s and previously used as a lumber yard, machine 

shop, door, sash and blind factory, coal and lumber yard, and petroleum bulk storage 

facility. Later uses included oil storage and bulk petroleum sales. The objective of the site 

characterization was to determine the extent of the on-site petroleum plumes. SR 

practices implemented during site characterization included geophysical methods to 

identify historical infrastructure and the ultraviolet optical screening tool (UVOST) to 

delineate light non-aqueous phase liquid (LNAPL) and focus the sampling efforts. 

UVOST technology uses a laser to induce fluorescence of polycyclic aromatic 

hydrocarbons present in petroleum LNAPL, whose concentration is semi-quantified by 

measuring the florescence intensity in real time. The conventional investigation was a 

hypothetical alternative approach, which would have employed a drill rig and sample 
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analysis at an off-site commercial laboratory to provide the same information. Table 2-1 

summarizes the field investigation parameters for the two scenarios presented in Case 

Study 1.  

Table 2-1: Case Study 1 - Phased Focused Approach: Sustainability Assessment 
Parameters 

LNAPL Site Characterization Environmental Footprint Analyses Parameters 

  
Conventional 
Investigation 

Phased Focused 
Investigation 

Field Days 12 8 

Soil Boring Footage 304 140 

PVC Well Footage 570 180 

UVOST Screening Footage 0 560 

Analytical Soil Samples 80 9 

Analytical Groundwater 
Samples 51 20 

 

2.1.2. Case Study 2 - Evaluating Sustainability of an Interim Remedial Option at an 

Urban Brownfield Redevelopment Project  
The remedial action selection, design, and implementation stage of a remediation 

project is a vital step toward incorporating SR practices. The impacts of a remedial 

technology on the environment are important data for remedial alternative selection. In 

this case study, in situ thermal remediation was one of the proposed remedies for an 

interim remedial option (IRO) at an urban brownfield redevelopment project 

encompassing an 85-acre municipal landfill. The data set was gathered during the pre-
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design investigation. The IRO was chosen to target chlorinated benzene source material 

within the unsaturated zone and migrating plume. The planned IRO implementation 

consisted of the following:  

 Installing a total of 45 co-located electrical resistivity heating and vapor 

extraction wells to a depth of 57 feet below ground surface (bgs).  

 Treating extracted vapors with granular activated carbon.  

 Annual monitoring, post thermal remediation, by sampling 10 groundwater 

screening points advanced to approximately 50 feet bgs using direct-push drilling 

techniques.  The temporary groundwater screening points would be re-installed 

for each monitoring event. 

Since the IRO has not been implemented, the social cost estimate converted these 

future costs and returns to present year values. 

2.1.3. Environmental Impact Evaluation 
An environmental footprint analysis was performed for each case study with the 

Navy Facilities Engineering Command (NAVFAC) SiteWiseTM program (NAVFAC, 

2011). Inputs for the analysis were obtained from lithological borings, field results 

reports, field notes, and engineering data provided by CDM Smith.  

2.1.4. Economic Impact Evaluation 
A cost-benefit analysis was conducted for Case Study 1 using existing 

engineering data and invoices. Due to confidentiality issues, the cost of each line item is 



51  

  

not presented. A cost-benefit analysis was not conducted for Case Study 2 because a 

sustainability assessment was only performed on the chosen IRO for the site.  

2.1.5. Social Impact Evaluation 
Cost borne by society due to environmental, economic, and social impacts was 

calculated by identifying the social monetary values associated with the environmental 

footprint analysis metrics. For this evaluation, social costs were taken from the 

documents focused on emissions and energy described below. Social costs are often 

based on integrated assessment models which combine climate processes, economic 

growth, and feedbacks between the climate and the global economy into a single 

framework. The social costs of some environmental metrics are presented at several 

discount rates. In general terms, a discount rate is a method of aggregating a series of 

future net benefits and costs into an estimate of present value (Field, 2001). All things 

being equal, applying a higher discount rate results in lower future social costs and vice 

versa. For example, the social cost of carbon dioxide (CO2) emissions per metric ton in 

2010 and 2050 at a 5 percent discount rate is $11 and $27, respectively; while the social 

cost of CO2 emissions in 2010 and 2050 at a 2.5 percent discount rate is $52 and $98, 

respectively (USG, 2013). The social cost of carbon at a 2.5 percent discount rate 

represents the costs society will endure in the future in present dollar values. Because the 

social cost is higher in the future, it essentially stresses the importance to mitigate the 

environmental factor causing the social costs now versus in the future.   
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The social cost of CO2 emissions, calculated by the U. S. Government 

Interagency Working Group on Social Cost of Carbon in 2013, represents “monetized 

damages associated with an incremental increase in carbon emissions in a given year. It is 

intended to include (but not limited to) changes in net agricultural productivity, human 

health, property damages from increased flood risk, and the value of ecosystem services 

due to climate change.” Four values representing the social cost of CO2 were presented in 

the report: three values were based on the average social cost of CO2 from three 

integrated assessment models at discount rates of 2.5, 3, and 5 percent, and the fourth 

value represented the 95th percentile social cost of CO2 estimated across all three models 

at a 3-percent discount rate. The integrated assessment models included the Dynamic 

Integrated Climate and Economy (DICE), Policy Analysis of the Greenhouse Effect 

(PAGE), and Climate Framework for Uncertainty, Negotiation and Distribution (FUND). 

These models are used in the Intergovernmental Panel on Climate Change’s (IPCC’s) 

assessment reports (e.g., IPPC’s 2000 Special Report on Emission Scenarios). Out of the 

four discount rates used by U.S. Government, the estimated social cost of CO2 at a 3-

percent discount rate, which was chosen because the social rate of time preference in last 

three decades has averaged around 3 percent in real terms (Federal Circular A-941)1 and 

was most often used in prior studies (e.g., (Anthoff and Toi, 2013). 

                                                             
1 This 2003 Circular provides the Office of Management and Budget’s guidance to Federal 
agencies on the development of regulatory analysis and is available at 
http://www.whitehouse.gov/omb/circulars_a004_a-4  
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The social cost of methane (CH4) and nitrous oxide (N2O) emissions calculated by 

EPA’s National Center for Environmental Economics in 2012 represents “the present 

value of the future damages that would arise from an incremental unit of CH4 and N2O 

(typically one metric ton) being emitted in a given year.” The social cost of CH4 and N2O 

presented in this case study is based on its greenhouse damage potential2, and 

encompasses impacts from climate change on all relevant market and non-market sectors, 

including agriculture, energy production, water availability, human health, coastal 

communities, and biodiversity. Four values representing the social cost of CH4 and N2O 

were presented: three values were based on the average social cost from the DICE 

economic model and the Model for the Assessment of Greenhouse-gas Induced Climate 

Change (MAGICC) at discount rates of 2.5, 3, and 5 percent, and the fourth value 

represented the 95th percentile social cost of CH4 and N2O across both models at a 3 

percent discount rate. The MAGICC climate model has been used in IPCC reports (e.g., 

IPPC’s 2000 Special Report on Emission Scenarios). Out of the four discount rates used 

by Marten et al. (2012), this study estimated the social cost of CH4 and N2O at the 3 

percent discount rate.  

The social costs of nitrogen oxides (NOx), sulfur dioxide (SO2), and coarse 

particulate matter (PM10) emissions calculated by Muller and Mendelsohn (2010) 

                                                             
2 Marten et al. (2012) evaluated the use of global warming potentials to convert marginal non-
CO2 GHG emission reductions into CO2 equivalent (-e) reductions using the social cost of CO2. 
They concluded that this conversion can lead to substantial errors for the abatement benefits of 
individual gases. Based on this observation, social cost of individual gases was used rather than 
the social cost of CO2-e. 



54  

  

represent the consequences of emissions from air quality modeling, exposure, dose-

response, and valuation based on the Air Pollution Emission Experiments and Policy 

(APEEP) Model. This model uses emission data from the EPA. The consequences 

include, but are not limited to, health effects, reduced crop and timber yields, materials 

depreciation, lost recreation services, and reduced visibility. A majority of the social 

costs from these emissions are due to impacts on human health, especially premature 

mortality. The APEEP model attributes a dollar value to the mortality rates from 

exposures to fine particles and ozone. The 10,000 pollution sources in the model 

comprise individual, grouped point, and ground-level sources identified by the EPA. 

Muller and Mendelsohn (2010) presented the social costs of these emissions in terms of 

marginal damages of emissions across the United States at different quantiles (1st, 25th, 

50th, 75th, 99th, and 99.9th). Marginal damage is the incremental loss of net benefits to 

society resulting from the production of one additional ton of NOx, SO2, and PM10 

emissions. The 1st and 99.99th percentiles represent the lowest- marginal damage and 

highest-marginal damage, respectively. The marginal damages of emissions near the 50th 

percentile are found in suburban locations and small urban areas, while highest marginal 

damages are located in the largest metropolitan areas (Muller and Mendelsohn 2010). 

The average social cost of NOx, SO2, and PM10 emissions at the 50th percentile were used 

to perform the social impact evaluation, since both case study sites are located in small 

urban areas.  

The social cost of total energy use estimated by Greenstone and Looney (2011) 

represents the non-carbon social costs from fossil fuel electricity generation. In contrast, 
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the carbon social costs from electricity generation were already accounted for in the CO2 

emissions discussion above. The non-carbon social impacts from energy use include, but 

are not limited to, health costs, shortened life spans, higher military expenditures and 

foreign policy constraints, and expensive environmental clean-ups. The non-carbon social 

costs were calculated from the monetized costs resulting from emissions of SO2, NOx, 

PM2.5, and PM10 from existing natural gas and coal power plants, assuming the value of a 

statistical human life of $6 million (in year 2000 US dollars). The price of a statistical life 

is based on a 2010 National Research Council report that assessed external costs and 

benefits that are associated with the production, distribution, and use of energy. The non-

carbon social costs do not include “upstream” social impacts resulting from mining, 

drilling, construction, and other activities that are not directly associated with electricity 

generation (Greenstone and Looney 2011).  

Impacts on other components of society, such as the immediate ecosystem, 

property value, lost or reduced income by the local community due to site cleanup 

activities, and aesthetic value are important factors to consider while evaluating the 

impact to society from a remediation project. However, the social costs estimated here do 

not capture these attributes due to paucity of data.  

To calculate social cost, each sustainability metric calculated through an 

environmental footprint analysis were multiplied by the associated unit social cost using 

the formula: 
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Environmental  
Footprint Analysis 

Sustainability 
Metric 

X 
Unit Social Cost of 

Sustainability 
Metric 

= Costs Borne by 
Society 

The sustainability metrics generated from these footprint analyses and the 

associated social costs included the components described below. 

 GHG Emissions: The GHG emission footprint calculation in SiteWiseTM includes 

CO2, CH4, and N2O emissions, based on EPA’s 2008 Climate Leaders Program 

Direct Emissions from Stationary Combustion Sources report (NAVFAC, 2011). 

In the United States, GHG emissions consist of more than 99 percent CO2 and 

less than 1 percent CH4 and N2O (USEPA, 2008). Additional GHG contributors, 

such as water vapor, ozone, and chlorofluorocarbons were not included in the 

total emissions calculated by either NAVFAC or EPA. GHG emissions are 

quantified in metric tons. In order to calculate the social cost of GHG emissions, 

the per ton emission values were broken down into CO2, CH4, and N2O. The 

estimated value was then monetized using social costs drawn from the U. S. 

Government Interagency Working Group on Social Cost of Carbon (2013) and 

EPA’s National Center for Environmental Economics (2012). In 2010, the social 

cost of CO2, CH4, and N2O were estimated to be $33, $810, and $13,000 per 

metric ton, respectively. The significantly higher social cost estimates for an 

additional ton of CH4, or N2O relative to CO2 can be attributed to significantly 

larger radiative forcing generated by CH4 or N2O (USG, 2013; Marten and 

Newbold 2012). Radiative forcing is the amount of radiated energy received by 
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the earth in relation to the energy radiated back into space. CH4 and N2O cause 

positive radiative forcing by decreasing the amount of radiated energy sent back 

to space, in turn warming the earth’s atmosphere more than the same quantity of 

CO2 (Kump et al., 2011).  

The social cost of GHG emissions per metric ton estimated at 2010 prices and 

blended for the expected ratios of CO2, CH4, and N2O is:  

(0.99×$33 per metric ton of CO2) + (0.005×$810 per metric ton of CH4) +  

(0.005×13,000 per metric ton of N2O) = $101.72 

The 2010 social cost of GHG emissions was scaled up to the 2012 level using the 

U. S. inflation calculator (http://www.usinflationcalculator.com/). This calculator uses the 

latest U. S. government consumer price index, released on August 15, 2013, to adjust for 

inflation over time. The cumulative rate of inflation from 2010 to 2012 is 5.3 percent.  

 NOx Emissions: NOx emissions are quantified in metric tons. The footprint 

tool-estimated NOx was monetized using social cost values drawn from 

Muller and Mendelsohn (2010). In 2002, the social cost of NOx was 

estimated at $250 per metric ton using the 50th quantile marginal damages 

of emissions (Muller and Mendelsohn, 2010), which was also scaled up to 

2012 level.  

 SOx Emissions: SOx emissions quantified in metric tons were monetized 

using social cost values drawn from Muller and Mendelsohn (2010). In 
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2002, the social cost of SOx was $970 per metric ton using the marginal 

damages of emissions estimated at the 50th quantile (Muller and 

Mendelsohn, 2010), which was scaled up to the 2012 level as before.  

 PM10 Emissions: PM10 emissions were estimated in metric tons and 

monetized using Muller and Mendelsohn (2010). In 2002, the social cost 

of PM10 was estimated to be $170 per metric ton using the marginal 

damage of emissions estimated at 50th quantile (Muller and Mendelsohn, 

2010), which was scaled up to the 2012 level as well. 

 Total Energy Used: The total energy used is quantified in millions of 

British thermal units (MMBTUs). The non-carbon social costs of fossil 

fuel use were estimated to be $0.034 per kilowatt hour (kWh) in 2000 

(Greenstone and Looney 2011) as before.  The non-carbon social cost of 

total energy estimated at 2012 prices was $0.04 per kWh or $0.11.76 per 

MMBTU (using the conversion factor of one kWh equals 0.0034 

MMBTUs).  Table 2-2 displays the unit social cost of each metric 

adjusted to their estimated 2012 values. A sensitivity analysis evaluating 

the effect of the discount rate on the costs borne by society is discussed 

later in this chapter. 
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Table 2-2: Unit Social Cost of Environmental Impact Metrics 

Social Impact Metric Societal Cost in 2012 

GHG (per metric ton)1 $107.10 

NOx (per metric ton)2 $319.06 

SO2 (per metric ton)2 $1,237.94 

PM10 (per metric ton)2 $216.96 

Total Energy (MMBTUs)3 $11.76 

Sources: 1- USG, 2013; Marten and Newbold, 2012; 2- Muller and Mendelsohn, 2010;                                    
3- Greenstone and Looney, 2011. 

2.2. Results and Discussion 
This research calculated sustainability metrics with associated social costs. 

Assigned dollar-value social costs have not been developed for several sustainability 

metrics, such as water usage, so they were not included. Because the field investigation 

(Case Study 1) was conducted in 2012, the social impacts were calculated for that year. 

The IRO (Case Study 2) has not been conducted to date; however, for the purpose of this 

case study evaluation the calculations were performed as if the thermal treatment was 

applied in 2012, and the annual monitoring events occurred from 2013 through 2015.  

2.2.1. Case Study 1 - Phased Focused Site Characterization 
Table 2-3 presents a summary of the results from the environmental footprint 

analysis, which shows a significant reduction in environmental impacts for a phased 

focused site characterization approach compared to conventional characterization 

methods.  
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Table 2-3: Case Study I - Phased Focused Approach: Environmental Impact 
Evaluation 

A. Sustainability Metrics 

Site 
Characterizatio
n Alternatives 

GHG 
Emissions 

Total 
Energy 
Used 

Water 
Usage 

NOx 
Emissions 

SOx 
Emissions 

PM10 

Emissions 

(metric ton) (MMBTUs
) 

(gallons) (metric 
ton) 

(metric ton) (metric ton) 

Conventional 
Investigation  9.05 1.18E+02 1.11E+02 2.00E-02 2.03E-03 6.34E-04 

Phased Focused 
Investigation 5.84 7.31E+01 1.11E+02 1.15E-02 1.20E-03 5.85E-04 
 

B. Relative Impact  

        Site 
Characterizatio

n              
     Alternatives 

GHG 
Emissions 

Total 
Energy 
Used 

Water 
Usage 

NOx 
Emissions 

SOx 
Emissions 

PM10 
Emissions 

 Conventional 
Investigation High High High High High High 

 Phased Focused 
Investigation Medium Medium High Medium Medium High 

 

By implementing a phased focused site characterization compared to a 

conventional approach, the environmental impact showed a reduction of 35 percent in 

GHG emissions, 38 percent in total energy use, 43 percent in NOx emissions, 41 percent 

in SOx emissions, and 8 percent in PM10 emissions. The relative impact rating generated 

by SiteWiseTM was reduced from high to medium in all environmental impact categories 

except PM10 emissions and water usage. The results suggest that GHG emissions, total 
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energy used, and water used are responsible for the greatest environmental impacts. The 

total amount of NOx, SOx, and PM10 emissions produced for both site characterization 

approaches were far below one metric ton. 

Table 2-4 presents the cost-benefit analysis, which shows a 38 percent reduction 

in project implementation costs by conducting a phased focused approach, versus a 

conventional LNAPL investigation.  

Table 2-4: Case Study I – Phased Focused Approach: Economic Impact Evaluation of 
Project Implementation 

Line Item 
Conventional 
Investigation 

Phased Focused 
Investigation 

Subcontractor Costs $31,336.00 $33,937.00 
Analytical Costs $44,278.00  $10,478.00  

Consultant Costs $37,180.00 $24,882.00 
Grand Total $112,794.00 $69,297.00 

 

The total cost of analytical services was reduced by 77 percent, largely due to a 

decrease in numbers of soil and groundwater samples submitted to the laboratory by 

making use of in situ screening tools and a phased focused sampling approach. The 

reduction in the number of field days resulted in a 34 percent reduction in the cost of 

consulting services. On the other hand, the subcontractor cost increased by 8 percent, as 

the UVOST technology is more expensive than a drill rig for the collection of soil and 

groundwater samples. The increase in subcontractor cost did not outweigh the cost 

savings from the decreased analytical and consulting services expenses.  
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Table 2-5 presents the costs borne by society for the two site characterization 

approaches, which shows a net reduction of 37 percent for the phased focused approach 

compared to a conventional investigation. 

Table 2-5: Case Study I – Phased Focused Approach: Costs Borne by Society 

Site 
Characterization 

Alternatives  

GHG 
Emissions 

Total 
Energy 
Used 

NOx 
Emissions  

SOx 
Emissions 

PM10 

Emissions 

Costs 
Borne 

By 
Society 

metric 
ton MMBTU metric 

ton 
metric 

ton 
metric 

ton 
Total 

Dollars 
 Conventional 
Investigation 

$969.26 $1,387.68 $6.38 $2.51 $0.14 $2,365.97 

 Phased Focused 
Investigation 

$625.46 $859.66 $3.67 $1.49 $0.13 $1,490.40 

 

The majority of the savings towards the cost borne by society were realized 

through reduced GHG emissions (41 percent reduction in costs borne by society) and 

total energy used (58 percent reduction in costs borne by society).  The cost borne by 

society from the NOx, SOx, and PM10 emissions was minimal: NOx and SOx emissions 

were below $10, while PM10 emissions were under $0.15. 

The first case study results suggest that the phased focused field approach would 

have significantly lower environmental, economic, and social impacts than a 

conventional field approach.  
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2.2.2. Case Study 2 - In Situ Thermal IRO 
Table 2-6 presents the results from the environmental footprint analysis, which 

indicates that the majority of the environmental impacts occur during the construction 

and thermal treatment stages, as opposed to post-treatment monitoring.  

Table 2-6: Case Study II – In Situ Thermal IRO: Environmental Impact Evaluation 

In-Situ 
Thermal 

IRO 

GHG 
Emissions 

Total 
Energy 
Used 

NOx 
emissions 

SOx 

Emissions 
PM10 

Emissions 

(metric ton) (MMBTUs) 
(metric 

ton) 
(metric 

ton) 
(metric 

ton) 
Thermal 

Treatment 
- ERH  

2.99E+03 5.81E+04 3.70E+01 2.60E+01 1.60E+00 

Annual 
Monitoring 

8.71E-01 1.13E+01 7.81E-03 3.70E-04 1.16E-04 

 

Table 2-7 presents the costs borne by society from the in situ thermal remediation IRO, 

including the cost of annual monitoring.  
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Table 2-7: Case Study II – In Situ Thermal IRO: Costs Borne by Society 

In-Situ 
Thermal 

IRO 
Year 

GHG 
Emissions 

Total 
Energy 
Used 

NOx 
Emissions 

SOx 
Emissions 

PM10 
Emissions 

Costs Borne 
By Society 

(metric ton) (MMBTU) 
(metric 

ton) 
(metric 

ton) 
(metric 

ton) Total Dollars 

Thermal 
Treatment - 

ERH  
2012 $320,229.00 $683,256.00 $11,805.22 $32,186.44 $347.14 $1,047,823.80 

Yearly 
Monitoring 

2013 $94.91 $135.37 $2.54 $0.47 $0.03 $233.31 

2014 $97.76 $139.44 $2.61 $0.48 $0.03 $240.31 

2015 $100.69 $143.62 $2.69 $0.49 $0.03 $247.52 

 

The costs were calculated by multiplying the environmental impact metrics by the 

social cost for the year the impact occurred. The social impacts show that the thermal 

treatment stage results in a significantly higher cost compared to the post-treatment 

annual monitoring, just as observed for the environmental footprint above. Overall, the 

sustainability metrics that contribute the greatest social impact are total energy used, 

GHG, NOx, and SOx emissions, with total energy used and GHG providing the greatest 

contribution by one order of magnitude or more.  

An annual 3 percent discount rate was applied in order to capture the future social 

costs from the monitoring stage in 2014 and 2015. The costs during each subsequent 

annual monitoring event appear to be increasing, although they are equal if the discount 

rate is assumed to be a proxy for future inflation. Furthermore, the costs transferred to the 

future years can be interpreted as social impacts due to the continuous output of 



65  

  

emissions and use of energy and water resources. To best serve society, every effort 

should be made to decrease the remedial action duration in order to reduce the 

accumulation of impacts from emissions and resource use over time.  

In both case studies, the results indicate that total energy used and GHG emissions 

contributed the most to the costs borne by society. Thus, any improvements that focus on 

reducing the total energy used and GHG emissions during a remediation project’s life 

cycle would have significant positive impact on society. In addition, the evaluation 

illustrated that social impacts are metric specific. Future research may explore the roles of 

different sustainability metrics and how they might individually and collectively impact 

social costs. From an environmental management perspective, reducing the number of 

sustainability metrics might lead to a faster and less expensive evaluation; however, 

ignoring less influential sustainability metric(s) might result in an under-estimation of 

social costs. 

2.2.3. Sensitivity Analysis 
A sensitivity analysis was conducted to evaluate how the choice of discount rate 

affects the calculated social costs of environmental metrics. As previously illustrated, 

GHG emissions was one of the major contributors to the costs borne by society. The 

GHG emission footprint calculation in SiteWiseTM includes CO2, CH4, and N2O 

emissions. The literature presented the social costs of these emissions at discount rates of 

2.5, 3, and 5 percent. Table 2-8, column 2 shows the 2012 social costs of GHG emissions 

per metric ton at 2.5 percent, 3 percent, and 5 percent discount rates. The difference in 
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social cost of GHG emissions between a 2.5 and 3 percent discount rate was relatively 

small, approximately $50. However, the 5 percent discount rate resulted in approximately 

$70 to $120 less than the 3 percent and 2.5 percent discount rates, respectively.  

Table 2-8: Sensitivity Analysis of the Social Cost of Greenhouse Gas Emissions and 
Costs Borne By Society from Case Study 1 

Discount 
Rate 

2012 Social Cost of 
GHG Emissions  

2012 Costs Borne 
By Society: Phased 

Focused 

2012 Costs Borne By 
Society: Conventional 

 (per metric ton) (total dollars) (total dollars) 
2.5% $165.29 $1,830.23 $2,892.59 
3% $107.10 $1,490.40 $2,365.97 
5% $31.84 $1,050.88 $1,684.86 

 

Table 2-8, columns 3 and 4 show the calculated social costs by the phased 

focused and conventional investigations, respectively, using the GHG values in column 2 

as well as the social costs of NOx, SOx, PM10 emissions, and total energy used3 presented 

previously. The highest costs borne by society calculated for both investigation 

approaches were obtained using a 2.5 percent discount rate, while the lowest costs were 

obtained with the 5 percent discount rate. The range of costs borne by society was large, 

spanning a difference of approximately 58 percent. 

The sensitivity analysis illustrates how significantly the social costs can vary by 

using one discount rate over the other. Lower discount rates suggest that society is 

                                                             
3 The literature used to identify the social cost of NOx, SOx, and PM10 emissions, as well as total 
energy used did not calculate their associated social cost at varying discount rates. Therefore, the 
social costs of these metrics were not varied for this analysis. 
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placing more weight on the future, while a higher discount rate places more weight on the 

present. The social costs for the environmental metrics presented in this case study 

represent social impacts both in the short and long term. However, there appears to be 

more weight on long-term social impacts such as the effects of climate change and human 

health. In addition, economists argue that discount rates should proxy market transactions 

in which people reveal how they actually make intertemporal tradeoffs. This tradeoff is a 

process by which consumers make decisions based on benefits and costs that include both 

the present period and future consequences flowing from today’s decisions (Field, 2001). 

Lower discount rates should be used when calculating costs borne by society for a 

remediation project, to take into account current market transactions and place more 

weight on long-term social impacts as represented by the social cost of environmental 

metrics. 

2.3. Conclusions 
The remediation sector has approached sustainability assessments by conducting 

environmental footprint analyses and LCAs. These approaches have failed to capture the 

impact to the social and economic aspects of remediation and, therefore, do not address 

the triple bottom line of sustainability. This chapter presented a methodology to identify 

the costs borne by society from a remediation project’s life cycle. Limitations of this case 

study include a lack in literature diversity and data gaps associated the social cost of 

environmental metrics, which prevented us from capturing the full extent of the costs 

borne by society. However, this study is a starting point that motivates future research 

aimed at developing more comprehensive social cost estimates. As such, it is important 
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that environmental researchers and professionals begin to identify, update, and account 

for the socio-economic factors that are impacted by remediation activities.  

In addition, this study shows that the costs borne by society from a contaminated 

site remediation project can be significant and, therefore, continued effort should be made 

to minimize these costs. Potential strategies to minimize or offset social costs by 

implementing risk-based cleanups, natural attenuation optimization, remedial approaches 

to reduce mass flux/mass discharge, re-use of remediated soil and groundwater, and 

property redevelopment, among others, can be explored.  Our results demonstrate that SR 

practices during the site characterization stage (e.g., phased focused investigations, etc.) 

are an improvement over conventional, costly lab-based remedial investigations. The 

results can also serve as supporting documentation for conducting a sustainability 

assessment at the site characterization stage to reduce environmental and social impacts.  

This study broke new ground, and consequently faced several challenges. The 

first challenge arose during the literature review to identify social costs associated with 

sustainability metrics. Since a single source containing social costs for all sustainability 

metrics does not exist, several sources were used, each of which relied upon different 

models for calculating costs. The challenge lies with the sustainability assessor to 

determine which sources and models to use for a social impact evaluation. Does the 

assessor choose a source that uses a well-established model, or sources that use the same 

model for several metrics? Does the assessor take an average of several sources instead of 

relying on just one? For this study, sources where a government agency was either the 
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author or source of the data. EPA was among the authors for calculating the social cost of 

CO2, CH4, and N2O emissions. The social costs of NOx, SOx, and PM10 emissions were 

based on the APEEP model, which used emission data from the EPA. Finally, the social 

cost of energy used incorporated data presented in the 2010 U. S. Government 

Interagency Working Group on Social Cost of Carbon. 

In the literature, social costs were presented at different quantiles (e.g., 25th vs. 

50th quantile) or at different discount rates (e.g., 3 percent vs. 5 percent). How does the 

assessor go about choosing the best option? As shown in the sensitivity analysis, the 

selection of a discount rate can have a significant effect on the cost borne by society 

calculation. 

The second challenge was the lack of source material to determine the social cost 

for some of the environmental footprint metrics. The NAVFAC SiteWiseTM tool 

calculates environmental impacts for water consumption, risk of fatal accident, and risk 

of injury. SiteWiseTM calculates GHG emissions in terms of CO2, CH4, and N2O, but 

additional GHG contributors such as ozone and water vapor are not included in its output. 

Due to the lack of source material and the unknown social impact from ozone and water 

vapor, the full extent of the GHG cost borne by society based on the limited SiteWiseTM 

metrics could not be calculated.    

Another challenge lies with the possibility of offsetting costs borne by society. 

For example, the second case study calculated the social cost from total energy used, 

GHG, NOx, and SOx emissions at approximately $683, 256.00, $320,000, $11,800, and 
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$32,000 for construction and application of thermal treatment. In order to offset the costs 

borne by society, the responsible party would have to “pay back” society a significant 

amount. Potential approaches for offsetting costs borne by society include purchasing of 

carbon and renewable energy credits, donations towards causes affecting the local 

community, and investing in the local community by creating employment opportunities. 

Social benefits from successful cleanup of the contaminated media, site redevelopment, 

and/or re-use of remediated soil and groundwater might also assist in offsetting the costs 

borne by society. Such estimates should be included in future social impact evaluations. 

From an environmental management perspective, it would be advantageous to develop 

remedial approaches that have low social costs by implementing technologies and 

approaches that produce low GHG, SOx, and NOx emissions and use less energy. 

Lastly, the social costs used for the social impact evaluation were derived from 

environmental, social, and economic models. The social or socio-economic cost/benefit 

related to an increase in property value and quality of life by local communities has not 

been represented in this case study.   

Future research should assist the remediation sector in developing a 

comprehensive list of social costs for environmental impact metrics. Future work should 

also explore sensitivity analyses of available sources to narrow down and clearly define 

which social cost value to use and why (e.g., investigate social cost of CO2 at various 

discount rates). The valuation of water resources and insurance valuation for accidents 

could be an interesting extension of this work. Additional research could also focus on 
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developing methodologies to assess socio-economic costs and benefits related to 

increased property value and societal quality of life in local communities.  
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Chapter 3  

QUANTIFYING GLOBAL IMPACTS TO SOCIETY FROM THE 

CONSUMPTION OF NATURAL RESOURCES DURING ENVIRONMENTAL 

REMEDIATION ACTIVITIES 

(This chapter has been published in the journal, Journal of Industrial Ecology) 

Abstract  

Environmental remediation activities often require the management of large volumes 

of water and the consumption of significant amounts of local natural resources, including 

energy and fossil fuels. Traditionally, proposed remedial approaches for a specific 

cleanup scenario are evaluated by overall project implementation cost, timeframe of the 

cleanup, and effectiveness to meet cleanup goals. A new paradigm shift, referred to as 

sustainable remediation, has influenced the remediation industry to consider 

environmental, social, and economic impacts from cleanup activities. An environmental 

footprint analysis is the most common method to evaluate environmental implications of 

cleanup approaches. Presently, these footprint tools do not associate the environmental 

implications with global impacts. In this article, the method has been extended to 

integrate the social cost of carbon emissions to quantify global impacts. The case study 

site is a former aircraft parts manufacturing facility which caused chlorinated solvent 

contamination in soil and groundwater beneath the building. A groundwater pump-and-

treat system was initially installed, followed by its gradual phase out with concurrent 

phase in of in situ bioremediation. The case study evaluates the monetized societal 
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benefits from quantifying carbon emission impacts of the proposed cleanup approaches 

and alternative scenarios. Our results suggest societal impacts based on monetized carbon 

emissions can be reduced by 27% by optimizing the remediation processes. The 

sensitivity analysis results elucidate how variation in carbon prices and social discount 

rates can influence cleanup decisions for remediation projects. 

3.1. Introduction 
Remediation is the process of containing or removing contamination from the 

environment. An array of technologies currently used today were developed in the mid-

1970s through the 1990s to clean up contamination, including groundwater pump-and-

treat, soil excavation, waste incineration, and promotion of biological and chemical 

reactions within the subsurface (in situ) to encourage degradation of contaminants. Over 

the past four decades, the decision making process to select a site-specific cleanup 

technology has moved from a cost-centered approach to technology feasibility and risk-

based approaches (Pollard et al., 2004). Today the remediation industry is progressing 

toward incorporation of sustainability benchmarks into the decision making process to 

evaluate environmental and cost implications from remedial actions. This concept, 

referred as sustainable remediation, identifies, catalogs, and addresses impacts to the 

environment, society, and economy (i.e., the triple bottom line of sustainability) during 

cleanup activities (Hadley and Harclerode, 2015; USEPA, 2012a, 2010; ITRC, 2011a, 

2011b; Reddy et al., 2011; Bardos et al., 2011a,b; Ellis and Hadley, 2009; Pollard et al., 

2004). 
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 A commonly implemented sustainable remediation practice is to choose and 

design a remediation process that consumes the least amount of natural resources (Hadley 

and Harclerode, 2015; USEPA, 2012a, 2010a; ITRC, 2011a,b; and Ellis and Hadley, 

2009). Remediation activities typically consume large amounts of energy, water, and 

other natural resources both on and off site. On-site resource consumption occurs on a 

specific local scale, defined by the contaminant boundaries. Off-site consumption occurs 

during transportation activities involving site workers and bulk supplies (such as 

treatment chemicals, construction materials, and specialized equipment). Even though the 

majority of natural resources are consumed on a relatively local scale during cleanup, the 

consumption of these resources have both local and global impacts. 

Currently, footprint analysis tools are used to assess environmental implications 

associated with cleanup activities. Environmental metrics commonly evaluated include 

emissions of greenhouse gases (GHG), nitrogen oxides (NOx), sulfur oxides (SOx), and 

coarse particulate matter (PM10), as well as the total energy and water consumed 

(NAVFAC, 2013; USEPA, 2012a). Presently, these tools do not link the environmental 

footprint results with global impacts. For example, GHG emissions contribute to climate 

change, which is an inherently global process (Field et al., 2014). Life cycle impact 

assessment tools, such as the United States Environmental Protection Agency (USEPA) 

Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 

(TRACI) (Bare, 2002), make the link between environmental metrics and global impacts. 

However, detailed life cycle assessment (LCA) is rarely applied to remediation projects, 
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thereby missing the link between cleanup activities (e.g., resource consumption) and 

global impacts.  

In addition to assessing environmental implications from cleanup activities, 

consideration of social and economic effects while deciding the remediation option is 

typically limited to the cost of project implementation, community acceptance, and 

sometimes worker health and safety risk (Hadley and Harclerode, 2015; NAVFAC, 2013; 

USEPA, 2012a). Apart from workers’ accident risk, there are many other socio-economic 

factors that could be considered, including quality of life, property values, ability to reuse 

property, economic vitality, cultural resources, and related externality cost (i.e., social 

cost of environmental metrics) (Bohmholdt, 2014; Harclerode et al., 2013; Holland et al., 

2013; and Oughton, 2013). These socio-economic factors are currently not included in 

the decision-making process, largely due to lack of readily available supporting 

information that can be used to evaluate them. In addition, environmental regulators (e.g., 

U.S. Environmental Protection Agency [EPA]) resist incorporation of sustainable 

remediation principles largely because they are bound by the constraints of regulatory 

processes, protocols, and preferences, and are focused on the act of remediation rather 

than its long-term and global implications (Hadley and Harclerode, 2015). 

In order to address this knowledge gap, we propose a method that links 

environmental footprint analysis metrics to global socio-economic impacts. The method 

consists of scaling up quantified environmental metrics using non-market valuation 

techniques to arrive at monetized values of societal dis-amenities (i.e., harm, such as 
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chronic human health impacts and stress on water availability), arising from various 

remedial approaches. Monetized societal dis-amenities are evaluated using social cost 

benefit (SCBA) analysis methodology. Recently, Bohmoldt (2014) and Harclerode et al. 

(2013) have used this method to identify remedial approaches that can have the least 

socio-economic impacts arising due to natural resources used in the remedial process. 

This case study builds upon the proposed method by assessing how the variation in 

carbon prices and social discount rates can influence the SCBA and in turn the cleanup 

decision for a specific contaminated site. 

The proposed method is one step closer than current practice to an integrated 

impact assessment approach that considers interrelations among the triple bottom line 

elements. These inter-linkages are represented by the social cost of environmental metrics 

used to conduct the SCBA. The assessment is considered “integrated” because the results 

of the footprint analysis act as direct inputs for the socio-economic impact evaluation. 

Pope et al. (2004) suggested that the sum of an integrated impact assessment 

incorporating the inter-linkages among the triple bottom line objectives will create a 

whole greater than the sum of its parts. The proposed method provides an opportunity to 

move toward such an integrated evaluation approach and creates more sustainable 

contaminated site clean-ups (Hadley and Harclerode, 2015).  

Herein we demonstrate, through a remediation case study, how global impacts can 

be integrated into the triple bottom line and showcase how local consumption of natural 

resources can be efficiently utilized through an example of monetizing GHG emissions. 
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The supporting methodologies and information will be made readily available for 

industry use and advancement. 

3.2. Methods 
A carbon footprint analysis was conducted for a remediation project using 

existing engineering data and invoices to quantify GHG emissions in terms of carbon 

dioxide equivalents (CO2-eq) for different remedial approaches. The carbon footprint 

analysis was extended to quantify global impacts arising from each remedial process by 

monetizing the emissions using social cost of carbon dioxide (CO2) values. For this 

study, global impacts quantified in terms of monetized CO2-eq values are considered as 

the cost borne by society due to local consumption of resources during cleanup activities. 

A sensitivity analysis was conducted to evaluate how different social discount rates and 

carbon prices influence the monetized value of global GHG emission impacts. Carbon 

prices were researched from a number of sources, including work by USEPA and the 

United States Government (USG) Interagency Working Group on Social Cost of Carbon 

(USG, 2013), as well as market values of carbon drawn from California’s Greenhouse 

Gas Cap-and-Trade Program (C2ES, 2014), Regional Greenhouse Gas Initiative (RGGI) 

(C2ES 2014), Quebec’s Carbon Market (C2ES, 2014), and Synapse Energy Economics, 

Inc. (Synapse) 2011 Carbon Dioxide Price Forecast (Johnston, 2011).  

3.2.1. Case Study Site 
The case study site is a former aircraft parts manufacturing facility that left 

chlorinated solvent volatile organic compound (VOC) contamination within the shallow 

aquifer (i.e., groundwater) directly beneath the factory building. Historically, the most 
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common approach to cleanup and/or control of groundwater contamination is the use of a 

pump-and-treat (P&T) system (SURF, 2013), whereby contaminated groundwater is 

pumped from the subsurface, purified by above-ground equipment, and discharged to a 

sewer or surface water drainage channel. The case study P&T system ran the 

contaminated groundwater through an aerator to remove VOCs by volatilization, and then 

granular activated carbon (GAC) to remove the remaining VOCs by absorption. A soil 

vapor extraction (SVE) system was also installed to remove VOCs from the unsaturated 

(vadose) zone, which encompasses the dry soils above the water table. The extracted 

vapor was passed through the GAC to remove VOCs before being discharged to the 

atmosphere. Operation of the SVE system was only necessary from 1997 through 1999, 

when it reached its cleanup objective. 

The P&T system greatly decreased the footprint of the VOC contamination within 

the groundwater and reduced their concentrations. However, removal efficiencies of 

VOCs declined over time, which ultimately led to the consideration of an alternative 

method, enhanced anaerobic bioremediation, in which food-grade chemicals are added to 

the groundwater to stimulate the existing native bacteria to break down the VOCs and 

create non-toxic end products. The poor performance and decline of chemical removal 

efficiency with time is a common problem with P&T systems and thus an important issue 

for site remediation (ITRC, 2011c; McGuire et al., 2006; Newell et al., 2006; Geosyntec, 

2004; and Mackay and Cherry, 1989). In addition, P&T involves the management of 

large quantities of water, and can consume large amounts of energy from fossil fuel 

powered utilities over several years to decades or more (Conroy et al., 2014; SURF, 
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2013; USEPA, 2010a). Furthermore, P&T systems in their later stages become very 

inefficient, using large amounts of energy to remove small additional increments of 

contaminant mass. While on the other hand, bioremediation is far less energy and 

resource intensive, and yet is very effective particularly with lower contaminant starting 

concentrations, such as encountered at the end of a P&T system’s useful life. The 

replacement of the P&T system with bioremediation reduced the amount of energy and 

volume of water consumed, and the overall cost of remedy implementation. The active 

bioremediation was monitored by measuring contaminant concentrations and other 

natural chemical and biological characteristics of the aquifer throughout the treatment 

program.  

Once the in situ bioremediation began, vinyl chloride (VC) was generated 

temporarily in the groundwater as part of the TCE break-down process. VC is the most 

toxic of the chlorinated ethylene compounds. Chlorinated VOCs present in groundwater 

also have the ability to volatilize from the subsurface into overlying buildings, potentially 

degrading indoor air quality (ITRC 2007).  It was only after VC began to appear in 

August 2005 that the SVE system was re-activated — at a lower vapor flow rate — to act 

as a sub-slab depressurization system (SSDS), to capture VC before it could potentially 

migrate into the building and negatively impact indoor air quality. 

In order to compare global socio-economic impacts between groundwater 

pumping and in-place bioremediation, GHG emissions values arrived by a carbon 

footprint analysis were monetized with a variety of CO2-eq prices. In addition, the 
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difference in the volume of water utilized and amount of resources consumed were also 

quantified for each remedial scenario.  

The first remedial scenario (I) encompasses the initial treatment system (P&T) 

operating throughout the contaminated site’s life cycle, from 1997 through 2009. SVE 

was run for just two years, as described above.  Site activities conducted under scenario I 

include groundwater sampling, replacing spent GAC, and operating the P&T and SVE 

systems. These activities are considered as “operation and maintenance” (O&M) of the 

remedial system.  

Scenario II encompasses the transition from the P&T system to the in situ 

bioremediation approach, better suited to groundwater contaminant conditions at the 

time. Site activities conducted under scenario II included O&M of the P&T system, 

followed by its phase-out and simultaneous replacement with bioremediation and 

subsequent activation of the SSDS. The P&T system was sequentially shut down by 

turning off one pumping well at a time, while simultaneously injecting into the aquifer 

food-grade treatment chemicals to sustain the native bacteria. The bioremediation 

approach started with an upgradient injection. Groundwater flow naturally moved the 

treatment chemicals into the immediately downgradient (in the direction of groundwater 

flow) portion of the contaminated aquifer. The first pumping well, also located 

downgradient, was shut off to avoid removing the treatment chemicals from the 

groundwater. Injection of additional bio-treatment chemicals proceeded further 
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downgradient over the next few years, and additional pumping wells were taken off line 

as the treatment chemicals reached those areas as well.  

The timeline for each remedial scenario is presented in Figure 3-1.  

 

3.2.2. Local Consumption and Carbon Footprint of Remedial Scenarios 
The carbon footprint for each remedial scenario, represented CO2-eq, was 

calculated using primary data from engineering specifications and utility invoices. 

Engineering specifications include records of material use (e.g., treatment chemicals), 

number of road trips and total mileage accrued through personnel and materials transport, 

and logs of heavy machinery (e.g., drill rig) use. Data collected from utility invoices 

include the total amount of electricity used for operating remediation systems (in 

particular, blowers and pumps).   

Figure 3-1: Remedial Scenario Timeline. Scenario I encompasses the O&M of the P&T and SVE 
system from 1997 to 2009. Scenario II encompasses O&M of the initial remedial system, followed by its 
phase-out and replacement with bioremediation and SSDS during the same time period. 
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The results of the carbon footprint analysis estimate the total amount of GHG 

emissions from on- and off-site cleanup activities related to transportation, drilling, 

energy usage, and O&M of the remedial system. A breakdown of each scenario’s 

activities included in the analysis is presented below. The construction of the on-site 

building to store equipment, as well as the installation of pumps and other infrastructure 

for the P&T and SVE/SSDS were not included in the footprint analysis. The carbon 

footprint is quantified as CO2-eq of various GHGs based on their global warming 

potentials (C2SE, 2014).   

The carbon footprint related to electricity consumption was calculated for each 

remedial scenario. The total amount of energy consumed was estimated using average 

power consumption (measured in kilowatts) of the P&T and SVE/SSDS. The total 

amount of electricity consumed from December 2002 through March 2009 was obtained 

by summing up utility invoices. Prior to December 2002 (when utility invoices were not 

available), the average power consumption was estimated not only based on 2002-2009 

use, but also in terms of engineering knowledge of similar systems and the operational 

period of the remedial system components. The bioremediation component associated 

with scenario II did not use any electricity. However, electricity was used by the P&T, 

during its phase-out, and by the SSDS in scenario II. 

The carbon footprint related to the consumption of fuel from transportation (of 

site workers and bulk supplies) and drilling for both scenarios was also calculated. In 

scenario I, monthly visits to the site were required as part of the O&M of the P&T 
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system. The emissions (i.e., CO2-eq) generated by traveling to and from the site, 

deliveries of GAC, and drilling activities were quantified. In scenario II, monthly O&M 

visits and shipment of GAC gradually decreased over time, starting in 2004, with gradual 

phase out of the P&T system due to incorporation of bioremediation. Drilling activities 

increased in 2004 to install injection wells and inject treatment chemicals into the aquifer 

to promote bioremediation. Additional transportation activities commenced in 2004 to 

transport the treatment chemicals to the site and investigation-derived waste off site. By 

2009, overall fuel consumption was drastically reduced due to success of the 

bioremediation approach, resulting in a significant reduction in the amount of treatment 

chemicals and visits required for scenario II O&M. 

In addition to electricity and fuel usage, the CO2-eq emissions related to GAC 

regeneration and natural gas use for the SSDS and the P&T system, respectively, were 

quantified. The methane produced from the bioremediation process was also measured 

and translated to CO2-eq. Methane was measured from the SSDS off gas. The carbon 

footprint for each remedial scenario is presented Figure 3-2.  
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Figure 3-2: Carbon Footprint for Each Remedial Scenario. Shows the total amount of 
CO2e emissions per year for each remedial scenario. The green bar represents scenario I (P&T 
system only), and the blue and red bars represent scenario II (P&T phase out and phase in 
bioremediation).  
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The volume of water consumed under each remedial scenario was quantified and 

presented in Figure 3-3. P&T consumed a large volume of water constantly. Much less 

water was required for bioremediation as P&T was phased out, and nearly none after 

P&T termination in 2008.  

Figure 3-3: Volume of Water Managed for Each Remedial Scenario. The blue line 
represents scenario I, and the red line represents scenario II.  
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3.2.3. Global Impacts from Local Consumption of Resources 

3.2.3.1. Social Cost of Carbon 
The local consumption of fuel, electricity, and other materials for the remedial 

approaches was used to estimate global impacts in terms of social cost of CO2. The social 

cost of CO2 emissions as per the USG Interagency Working Group on Social Cost of 

Carbon in 2013, represents: 

“…monetized damages associated with an incremental increase in carbon 

emissions in a given year. It is intended to include (but not limited to) 

changes in net agricultural productivity, human health, property damages 

from increased flood risk, and the value of ecosystem services due to 

climate change.” 

The USG social cost of carbon made use of integrated assessment models that 

combine climate processes, economic growth, and feedbacks between the climate and the 

global economy. The models included Dynamic Integrated Climate and Economy 

(DICE), Policy Analysis of the Greenhouse Effect (PAGE), and the Climate Framework 

for Uncertainty, Negotiation and Distribution (FUND) (USG, 2013). These models are 

also utilized in the Intergovernmental Panel on Climate Change’s (IPCC) assessment 

reports (IPCC 2000 Special Report on Emission Scenarios). 

The social cost of an environmental metric (e.g., CO2) incorporates the private 

costs of that metric plus environmental externalities arising from its emissions. The 

private costs encompass production and manufacturing expenses. The externality value 



90  

  

on the other hand represents the monetary value that can be assigned for societal dis-

amenities such as long-term global impacts of climate change and associated sea-level 

rise that can be attributed to that metric. For example, the externality value of CO2 

represents costs associated with mitigation of climate change impacts (USG, 2013; 

Greenstone and Looney, 2011). 

The market price of carbon is another metric that incorporates externalities (i.e., 

societal damages), and represents prices set for carbon trading (cap-and-trade) or carbon 

taxation programs. Figure 3-4 shows several published market values and social costs of 

CO2 from the literature. In order to adjust for inflation over time, the cost of CO2 across 

several years was converted using the USG consumer price index. Several sources have 

developed values for the market price of CO2, as shown on Figure 3-4, including 

California Greenhouse Gas Cap-and-Trade Program, RGGI, Quebec’s Carbon Market, 

and Synapse (C2ES, 2014; Johnston, 2011). Based on these sources, the market values of 

CO2 in 2009 ranged from $1.80 to $12.44 metric tons. 
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Figure 3-4: Social Cost and Market Prices of CO2 
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In addition to having several literature sources of carbon prices to choose from, 

these prices are often presented at various discount rates, also shown on Figure 3-4. The 

USG Interagency Report quantified the social cost of CO2 using three discount rates 

(2.5%, 3%, and 5%). A lower discount rate means society places higher value on future 

impacts (e.g., climate change and chronic human health impacts). While a higher 

discount rate means society places higher value on present impacts (e.g., daily traffic 

congestion and general inconvenience due to site activities taking place). This effect is 

because a high discount rate implies that a dollar in the near term is more valued than in 

the future, and vice versa (Bohmholdt, 2014; Field, 2001).  We suggest using a lower 

discount rate to evaluate cleanup scenarios, since the environmental metrics (e.g., GHG 

emissions) used in footprint analyses are associated with long-term or intergenerational 

societal impacts. For example, CO2 emissions generated over time are expected to 

produce larger incremental damages as physical and economic systems become more 

stressed in response to greater climatic change (USG, 2013). Therefore, the dollar value 

associated with the social cost is more valued in the future, than in the near term, to 

mitigate forthcoming impacts of cumulative emissions (e.g., sea level rise due to climate 

change), thus supporting the use of a lower discount rate.  

A sensitivity analysis was conducted using a variety of sources for carbon prices, 

as well as several different discount rates. The sensitivity analysis is important because it 

demonstrates the influence these critical selections have on the estimated costs borne by 

society and ultimately the cleanup decision for a specific remediation project. 
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3.2.3.2. Non-Carbon-Emission Social Cost of Energy Use 

Greenstone and Looney (2011) calculated the non-carbon-emission social cost of 

electricity that was generated by burning fossil fuels. This social cost was calculated from 

the externality costs (i.e., monetized damages) resulting from emissions of sulfur dioxide 

(SO2), NOx, fine particulate matter (PM2.5), and PM10 from existing natural gas and coal 

fired power plants. Note that their calculation did not include “upstream” social impacts 

resulting from mining, drilling, construction, and other activities that are not directly 

associated with electricity generation. Thus, their study estimated an externality cost (i.e., 

monetized societal dis-amenities) of $0.036 per kilowatt (kW) in 2010 U.S. dollars, 

which represents “health costs, shortened life spans, higher military expenditures and 

foreign policy constraints, and expensive environmental clean-ups”.  The private cost 

associated with the production and manufacturing of electricity use was excluded to 

avoid double counting because this value is already accounted for in the cost of energy 

usage represented by the social cost of carbon (i.e., private plus externality cost).  

3.2.3.3. Social Cost of Additional Environmental Metrics 

Muller and Mendelsohn (2010) monetized the social cost of NOx, SOx, and PM10 

emissions in 2002 U.S. dollars at $250, $970, and $170 per metric ton, respectively, for 

sources located in suburban locations and small urban areas. USEPA’s National Center 

for Environmental Economics monetized the social cost of methane (CH4) and nitrous 

oxide (N2O) emissions in 2010 U.S. dollars at $810 and $13,000 per metric ton, 

respectively (Marten and Newbold, 2012). This study only quantified emissions in CO2-
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eq and therefore the social cost of these additional metrics was not incorporated into the 

cost analysis. 

Further, impacts to other components of society, such as ecosystem services, 

property value, lost or reduced income by the local community due to site cleanup 

activities, and aesthetic and cultural value, are also relevant factors to consider. In this 

study, we do not capture these values due to lack of literature data or calculation 

protocols beyond energy, fuel, and water use. 

3.2.3.4. Costs Borne By Society 
In order to make the linkage between local consumption and related global 

impacts, we quantified the costs borne by society from CO2-eq emissions generated by 

electricity, fuel, and materials (e.g., GAC) use for each remedial scenario. The costs 

borne by society for each year of remediation were calculated using the following 

formula: 

CBSt = (CO2-eqt × SCCt) +    (kWht × SCNCt) 

in which, 

CBSt = costs borne by society for year t of system operation  

CO2-eqt = total amount CO2-eq emissions in metric tons for year t of operation 

SCCt = social cost of carbon per metric ton in year t 

kWht = total amount of electricity in kilowatt hours used in the year t 

SCNCt = social cost of non-carbon-emissions per kilowatt hour in year t 
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The value of the costs borne by society in 1997 US dollars, the year remediation began at 

the site, was calculated using: 

V1997 = ∑  [(CBSt) / (1 + DR)t-1997] 

in which, 

∑, the summation is over the years 1997 through 2009 

V1997 = value, in 1997 US dollars  

t = the year the CBS was accrued 

DR = discount rate 

 

  For comparison purposes, the costs borne by society in 1997 US dollars (V1997) 

was converted to 2014 US dollars using the U. S. government consumer price index. 

Table 3-1 shows the costs borne by society for each remedial scenario using the 

Greenstone and Looney (2011) non-carbon-emission social cost of fossil fuel electricity 

generation, and the USG social cost of CO2 at 2.5%, 3%, and 5% discount rates.  

 As previously stated, we suggest using a lower discount rate when conducting a 

social cost benefit analysis for a remediation project to represent long-term and 

intergenerational societal dis-amenities. To demonstrate, we compared the difference in 

the estimated social and market costs of CO2 between the two remedial scenarios. Table 

3-2 shows the costs borne by society, excluding non-carbon-emission social costs, for 

each remedial scenario using the USG social cost of CO2 at2.5% and 5% discount rates 

and the market value of CO2 based on California’s Greenhouse Gas Cap-and-Trade 

Program, RGGI, Quebec’s Carbon Market, and Synapse Energy Economics, Inc. 

(Synapse) 2011 Carbon Dioxide Price Forecast at a 2.5% discount rate. Various market 
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prices of carbon were included in this analysis because, presently, there is no absolute 

market for carbon and these sources provide a range of possible values.  

Table 3-1 : Costs Borne By Society (CBS) for Each Remedial Scenario: U.S. 
Government (USG) Interagency social cost of carbon at 2.5%, 3%, and 5% discount 
rates (DR).  P&T = Scenario I and Bio = Scenario II. 

  CBS 2.5% DR CBS 3% DR CBS 5% DR 
Year P&T: 

USG 
2.5% 

Bio: USG 
2.5% 

P&T: 
USG 3.0% 

Bio: USG 
3.0% 

P&T: 
USG 
5% 

Bio: USG 
5% 

1997 $2,065.76  $2,065.76  $1,312.72  $1,312.72  $440.64  $440.64  
1998 $4,078.07  $4,078.07  $2,578.76  $2,578.76  $848.34  $848.34  
1999 $3,391.63  $3,391.63  $2,133.73  $2,133.73  $688.48  $688.48  
2000 $1,557.09  $1,557.09  $975.03  $975.03  $308.79  $308.79  
2001 $1,551.18  $1,551.18  $966.61  $966.61  $300.16  $300.16  
2002 $1,514.20  $1,514.20  $939.07  $939.07  $286.19  $286.19  
2003 $838.91  $838.91  $518.13  $518.13  $155.47  $155.47  
2004 $1,907.80  $932.96  $1,171.10  $573.15  $342.63  $168.40  
2005 $1,860.94  $877.73  $1,136.97  $536.71  $326.16  $154.67  
2006 $1,816.66  $1,031.59  $1,104.50  $627.67  $311.35  $177.67  
2007 $1,772.30  $902.44  $1,072.37  $546.55  $296.54  $151.93  
2008 $1,728.14  $484.90  $1,040.31  $292.47  $281.83  $80.08  
2009 $1,685.66  $203.89  $1,009.79  $122.69  $268.06  $33.37  
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3.3. Results and Discussion 

3.3.1. Carbon Footprint 
The total amount of CO2-eq emissions generated from the local consumption of 

natural resources for each remedial scenario is presented in Figures 3-2 and 3-5. The 

overall carbon footprint of the initial remediation system decreased by approximately 

86.5 % after phasing out the P&T system and replacing it with bioremediation. The 

amount of CO2-eq emissions generated for individual elements of the project were also 

quantified for each remedial scenario, as shown on Figure 3-5. A footprint analysis of 

separate processes in a remedial system identifies which component(s) contribute the 

most and least towards specific environmental impacts. In scenario I (P&T system only), 

approximately 78 % of the CO2-eq emissions were generated from electricity 

consumption. In scenario II (P&T system phase-out and introduction of bioremediation), 

electricity and fuel usage each contributed to approximately 50% of the (greatly reduced) 

CO2-eq emissions. Such carbon footprint results are typically used to re-design and 

improve the system components and practices that are generating the majority of CO2-eq 

emissions. For example, solar panels and fuel-efficient vehicles could be substituted to 

reduce the consumption of electricity and fuel.  
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Figure 3-5: Carbon Footprint for Remedial System Components. Shows the amount of 
CO2e emissions generated from the consumption of fossil fuels and energy for each remedial 
system component. Methane was measured in the SSDS off gas.  

 

3.3.2. Costs Borne By Society 
The social cost of an environmental metric links local consumption of natural 

resources to monetized global impacts. As shown in Table 3-1, the costs borne by 

society, represented by the social costs of CO2-eq and non-carbon emissions from 

electricity generation, decreased over time by phasing out the P&T system and 

incorporating bioremediation. The cumulative social cost calculated using a 2.5 % 

discount rate is $29,894.67 for scenario I, and $21,792.59 for scenario II; a difference of 

$8,102.08 (i.e., an overall 27% reduction in monetized global impacts).  
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To put the costs borne by society from remedial activities into a broader context, 

the monetized global impacts calculated for scenarios I and II at a 2.5% discount rate 

were used to predict the costs society may bear from cleaning up the remaining hazardous 

waste sites in the United States. USEPA projected a total of 169,000 hazardous waste 

sites will require clean up between 2004 and 2033, excluding small underground storage 

tank sites (USEPA, 2012b). These site cleanups vary dramatically due to the size of the 

property and the amount of time required to remove and/or contain the contamination. 

The case study site is relatively small compared to a typical remediation project. In order 

to use the case study site as a broad representation of typical cleanup sites, the costs 

borne by society (using a 2.5% discount rate) from scenarios I and II was scaled up five 

folds to get a lower and ten folds to get a higher range for an average per-site social cost 

of remedial activities. Thus, the rough average per-site social cost of remediation might 

be: 

 Scenario I: $150,000 to $300,000 

 Scenario II: $110,000 to $220,000 

Estimated remediation-related social costs for the remaining 169,000 hazardous 

waste sites would range between $19 billion and $51 billion. This calculation illustrates 

that CO2-eq emissions from the local consumption of resources as part of remedial 

activities over an extended period of time has the potential to be a significant contributor 

to monetized global impacts.  
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3.3.3. Choosing an Appropriate Discount Rate 
Table 3-1 shows the costs borne by society for each remedial scenario using 

various discount rates for the USG social cost of carbon. The discount rate can have a 

significant effect on the calculated social costs (i.e., monetized global impact). In 2014 

US dollars, the difference between the monetized global impacts from the P&T system 

over the life cycle of the remedial process, using 2.5% and 5% social cost of carbon 

discounts rates, is $23,985.21. This substantial difference highlights the importance in 

understanding and incorporating the appropriate discount rate in a SCBA.  

By considering a lower discount rate in a SCBA, more weight is placed on long-

term, intergenerational impacts. This is simply illustrated by the calculated social costs 

using a 5% discount rate ($4,089.53 to $5,195.05, Table 2), and with a 2.5% discount rate 

($21,267.17 to $29,369.26, Table 3-2). Then compare the market value of CO2-eq 

($749.63 to $6,168.44, Table 3-2). The higher discount rate places more weight on short 

term impacts, and therefore the costs borne by society using the USG social cost of CO2 

at a 5% discount rate is closer in value with the total market value of CO2-eq than the 

social cost of CO2 at 2.5% discount rate. The social cost of carbon at a 2.5% discount rate 

is more representative of increases in the social cost of carbon over time because future 

emissions are expected to produce larger incremental damages as physical and economic 

systems become more stressed in the response to worsening climate change over time 

(USG, 2013). 
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3.3.4. Social Cost vs. Market Price of CO2 Evaluation 
Table 3-2 presents the monetized global damages of CO2-eq for each remedial 

scenario, using the USG social cost of carbon at 2.5% and 5% discount rates and several 

market prices of CO2. In 2009, the social cost of carbon for replacing P&T with 

bioremediation ($270.10, USG 2.5% discount rate) is less than the total market price of 

CO2 for maintaining the P&T system for three out of the four carbon price regimes 

($410.91 to $472.55) This analysis shows that the monetized global impacts of the 

reduced-footprint remedial system eventually became lower than the cost of the old 

system. Social planners and remediation decision makers could use this comparative 

analysis to set sustainability goals for system optimization. 

The total market value of CO2 using the RGGI carbon price ranged from $749.63 

to $1,034.95. The average total market value of CO2 of the three other carbon price 

regimes (California GHG Cap-and-Trade, Quebec’s Carbon Market, and Synapse) ranged 

from $4,078.932 to $5,632.65. The difference in the total market value between RGGI 

and an average of three other carbon regimes is 82%. Each carbon regime is 

representative of a specific geographic region and the associated carbon price for each 

regime is influenced by regional policy, sustainability objects, and stakeholder input. As 

stated earlier, there is no absolute market for carbon. Therefore careful consideration 

should be taken in identifying a representative market price of carbon to use for a CBA. 

The market price used for the analysis should be representative of the site’s geographic 

location and the stakeholder’s sustainability objectives.  
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The cumulative total market price of CO2-eq (in 2014 US dollars) for scenario I 

ranged from $1,034.95 to $6,168.44; and for scenario II it ranged from $749.63 to 

$4,466.92. The long-term potential benefits from reducing the cumulative market cost of 

CO2 for a specific project can include a reduction in the required emission credits to be 

purchased for operating the system, and the affordability to use “saved” CO2 emission 

credits to install a system at another cleanup site.  

3.3.5. Water Footprint 
The literature search did not find a representative social cost of water to include in 

the cost borne by society calculations. Therefore, the monetized global impacts for each 

remedial scenario are underestimated due to this missing information.  

We found that the amount of water consumed (Figure 3-3) was substantially 

decreased, and ultimately reduced to zero, by phasing out the P&T system and phasing in 

bioremediation. This decreasing trend parallels the reduction in costs borne by society 

from enhancing the remedial approach at the case study site. This aspect of reducing local 

consumption is of particular global importance in regions that are water stressed. The 

Sustainable Remediation Forum (SURF) recently published guidance on implementing 

groundwater conservation and reuse practices at remediation sites (SURF, 2013). In 

alignment with SURF’s Guidance, this case study shows the benefits from implementing 

groundwater conservation practices by transforming the remedial action from an ex situ 

remedy (i.e., removing contaminated media from the subsurface) to an in situ remedy 

(i.e., treating contaminated media in place). 
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The impact to the triple bottom line from the consumption and management of 

water resources is not typically evaluated during remedy selection, and remains a 

knowledge gap within the remediation industry. In addition, treated groundwater 

extracted to the subsurface is often discharged to a local sewer instead of being re-used. 

The practice of reusing treated groundwater is uncommon due to several challenges, 

including public perception, liabilities, water balance and reliability issues, and economic 

considerations (e.g., additional treatment required prior to reuse) (SURF, 2013). 

However, the SURF 2013 guidance presented several case studies that illustrated the 

successful re-use of treated groundwater for agricultural, industrial, ecosystem 

restoration, and drinking water purposes. The development of social costs of varying 

water resources would enable social planners and remediation decision makers to 

incorporate the value of water conservation and re-use efforts into the SCBA. Near-term 

further research should be directed at developing this metric.  

3.4. Conclusion 
Remedial practices consume large amounts of natural resources, over long periods 

of time on a local scale. Although the contamination is treated, the consumption of these 

resources also results in harmful emissions (e.g., GHG). And the emissions in turn are 

linked to global harm such as climate change and sea-level rise. Quantification of these 

global damages in monetary terms provides a measurement tool and an argument for 

more vigilant environmental stewardship that can be appreciated by a broad swath of 

society.  However, such global costs are not factored into remedy selection; instead only 

CBA of the project is considered and therefore, socio-economic and long-term 
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environmental impacts are lost. This study presented a simplified approach towards an 

integrated sustainability assessment for remediation projects, thus enabling stakeholders 

to move towards the triple bottom line of cleanup activities with fairly simple 

calculations free from expensive, specialized software.  

We demonstrated that a socio-economic impact assessment can support 

improvement of existing remedial systems and identify new approaches that contribute 

the least towards monetized global impacts. An environmental footprint analysis in 

combination with SCBA can be used by social planners and remediation decision makers 

to not only choose a more sustainable cleanup approach, but to also set and achieve 

targeted sustainability goals, such as a 20% decrease in monetized global impacts (i.e., 

costs borne by society) from on-site electricity consumption. Furthermore, the concept of 

monetized impacts can be used to convince various stakeholders and decision makers to 

pursue more globally sustainable cleanup remedies. 

Technologies that reduce costs borne by society have long term, beneficial supply 

chain impacts including reduced taxpayer and federal funds required to address global 

damages. P&T systems are the selected cleanup remedy for a majority of contaminated 

legacy sites. The industry needs to reconsider long term operation of P&T systems and 

potential phase out scenarios to reduce natural resource consumption, subsequent global 

impacts, and project implementation cost. Potential reuse opportunities for the treated 

groundwater should also be evaluated. Incorporation of reuse methods can assist in 

mitigating water scarcity concerns and provide lower cost water sources for alternative 
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uses (Lenker et al., 2014; SURF, 2013). Lenker et al. (2014) presents the “value of 

integrating groundwater conservation and reuse practices into remediation projects to 

increase their sustainability, and to protect and conserve water resources for future 

generations”.   

In addition to enhancing existing systems, global impacts due to resource 

consumption should be considered prior to remedial action selection. In contrast, the 

current practice favored by regulatory agencies in the US is to include such concerns only 

after the remedy has been chosen. Consideration of resource consumption this late in the 

project life cycle can result in global impacts that could have been reduced if not avoided 

altogether. A fully integrated sustainability evaluation allows alternative remedies to be 

compared more quantitatively and confidently (Hadley and Harclerode, 2015). The 

remediation industry should consider the development of a flexible, resilient cleanup 

approach that incorporates a variety of technologies over the project life cycle that use the 

least resources possible and mitigate socio-economic impacts from continued GHG 

emissions and water consumption.  

As shown in this study, careful consideration should be taken when choosing a 

carbon price and discount rate for a SCBA. The carbon price and discount rate should be 

representative of the environmental metrics being used and project objectives. We 

suggest using a lower discount rate for a remediation project SCBA to incorporate 

intergenerational and cumulative impacts represented by environmental metrics. Since an 

absolute market for carbon currently does not exist, we suggest conducting a sensitivity 
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analysis using various market values or calculating an average market value 

representative of the project’s regional characteristics and stakeholders’ sustainability 

objectives.   

Of course, environmental footprint analysis and social cost of environmental 

metrics are not limited to remediation projects. The methodology presented here could be 

used by a diverse array of industries. Our analysis could also be extended to incorporate 

non-market valuation methods, such as willingness to pay and hedonic valuation, to 

address socio-economic impacts not representative of environmental metrics (e.g., 

property value and aesthetic value of green-space).   

Lastly, future research is needed to fill in the data gap of environmental metrics 

without a social cost, such as water consumption. Analysis of climate models, economic 

growth frameworks, and valuation methods could be used to quantify such social costs. 

For example, the wastewater treatment sector has developed a methodology to monetize 

water. Further research is necessary to determine if the methodology is relevant or can be 

modified to serve the remediation industry. An extensive literature review of the value of 

environmental metrics beyond social costs, such as the value of ecosystem services, 

should also be conducted.  
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Chapter 4  

COMPARISON OF SUSTAINABILTY EVALUATION TOOLS FOR 

CONTAMINATED SEDIMENT REMEDIATION 

Abstract 

Environmental and socio-economic impacts arising from common sediment 

remediation and management activities were evaluated using an integrated sustainability 

assessment approach at a polychlorinated biphenyl (PCB)-contaminated case study site. 

Environmental impacts were quantified using both footprint analysis and life cycle 

assessment methodologies. The results of both tools were extended to quantify monetized 

global impacts from emission generation and resource consumption by integrating the 

social cost of environmental metrics. Sensitivity analyses were conducted to evaluate 

how varying inventory parameters and social cost metrics influenced the results of the 

sustainability assessment. The study did not find a significant difference between the 

overall conclusions of the environmental footprint and life cycle assessment (LCA) 

methodologies. However, incorporation of social cost metrics were deemed useful in 

normalizing environmental impacts for comparison, as well as identifying components of 

the remedial design that were designated as major, secondary, and low impact 

contributors to environmental, social, and economic effects. Thus, the results provided 

supporting data on where to focus remedial design optimization efforts. In addition, the 

results of the sustainability assessment revealed the importance of considering 

mobilization, engineering controls (e.g., silt curtain and turbidity curtain), and dewatering 
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as major impact contributors. The results also demonstrated the vital role site-specific 

inventory parameters have on influencing the results of the sustainability assessment, thus 

highlighting the importance of conducting site-specific assessments in lieu of 

extrapolating findings from previous studies.    

4. Introduction 
Sediment management, the process of coordinating dredging activities in the coastal 

zone for the purposes of retaining sand in the littoral system, is essential to maintaining 

navigable waterways, shoreline ecosystems, and beach nourishment projects (USACE, 

2012a, 2002). During management activities, one may encounter sediment contaminated 

with chemicals including heavy metals (Bates et al., 2015). Under this scenario, sediment 

management is extended to include remediation activities to address risks posed to human 

and environmental health.  In addition, sediment management including remediation is 

required at numerous designated contaminated sites around the globe (European 

Sediment Research Network [SedNet], 2004; USEPA, 2015), including 66 Tier 1 

Superfund Sites in the United States (i.e., a site that manages at least 10,000 cubic yards 

or five acres of contaminated sediment) (USEPA, 2015). Additional challenges 

encountered during sediment management activities include balancing economic and 

social concerns, regulatory and policy issues, heterogeneous geomorphology, adjacent 

land use activities, and competing waterway uses (Read et al., 2014).   

To overcome these challenges, the environmental community is exploring the concept 

of sustainable sediment management, “a comprehensive approach for addressing the 

long-term conservation of sediments within a watershed to maintain current and future 
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beneficial uses while addressing regional environmental, economic, and social 

objectives” (Bridges et al., 2012). This concept is in alignment with sustainable 

remediation, which considers the three integrated dimensions of the triple bottom line 

(i.e., environment, society, and the economy) during cleanup and management of 

contaminated sites (International Standards Organisation [ISO], 2015; Interstate 

Technology and & Regulatory Council [ITRC], 2011a; Network for Industrially 

Contaminated Land in Europe [NICOLE], 2010; Sustainable Remediation Forum 

[SURF], 2009; SuRF-Italy, 2014; and SuRF-UK, 2010). Both sustainable sediment 

management and sustainable remediation compliment the United States Army Corps of 

Engineers (USACE) regional sediment management (RSM) strategy; a “systems 

approach to deliberately manage sediments in a manner that maximizes natural and 

economic efficiencies to contribute to sustainable water resource projects, environments, 

and communities” (USACE, 2012b). Contaminated sediment, however, is not managed 

under USACE RSM, but rather by complimentary regulatory programs (e.g., United 

States Environmental Protection Agency [USEPA] Superfund) (USACE, 2002). In 

contrast, SedNet has made headway in Europe with integrating the concepts of RSM and 

sustainable remediation to achieve sustainable sediment management encompassing 

remediation activities (SedNet, 2004). The integration of sustainable practices into 

sediment management allows for streamlining broader organizational sustainability goals 

among complimentary governmental agencies. This will likely result in the efficient use 

of resources (both financial and natural) and maximization of benefits to stakeholders. 
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For the purpose of this paper, the term “sediment management” referenced herein also 

includes remediation activities. 

Environmental life cycle assessment (LCA) and multi-criteria decision analysis 

(MCDA) are the most commonly used tools to evaluate and integrate sustainable 

practices and management of contaminated sediments (Bates et al., 2015; Hou et al., 

2014; Kiker et al., 2008; Linkov and Seager, 2011; Read et al., 2014; SedNet, 2004; 

Sparrevik et al., 2010, 2011; and Yatsalo et al., 2007). Environmental LCAs 

systematically tracks energy, resource, and environmental implications for a product or 

process using a cradle-to-grave approach (ISO, 2006). LCAs performed for sediment 

contaminated sites focus on comparing environmental impacts among proposed risk 

management and remedial strategies (e.g., soil washing, natural recovery, capping, 

dredging) (Choi et al., 2016; Hou et al., 2014; and Sparrevik et al., 2010, 2011), as well 

as major system components, including placement of dredged material (Bates et al., 

2015) and amendments applied for in situ treatment (e.g., clay, limestone, and activated 

carbon) (Sparrevik et al., 2011). 

Even though LCA has been shown to successfully evaluate environmental 

implications of sediment management activities, this tool is rarely utilized during industry 

practices. One explanation may be the lack of non-land applications (Sparrevik et al., 

2011) and remedial technology components (Hou et al., 2014) in available life cycle 

inventory (LCI) databases. The lack of available LCI data can result in costly and time 

consuming assessments; therefore, LCA is not commonly performed due to budget 
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constraints. The remediation community has responded to this financial obstacle by 

developing environmental footprint evaluation tools specifically designed for remediation 

projects (NAVFAC, 2011; USEPA, 2016a, 2012). These footprint tools often require half 

the amount of financial resources to perform in comparison to LCA. However, until 

recently, remediation footprint tools faced a similar obstacle in lacking input parameters 

unique to sediment management technologies. In September 2015, Naval Facilities 

Engineering Command (NAVFAC) released Version 3.1 of the SiteWiseTM 

environmental footprint evaluation tool, which includes sediment remediation input 

parameters (e.g., silt curtain materials, watercraft operation, and sediment management 

components associated with dredging, capping, staging and drying). To the best of the 

authors’ knowledge, a comparison of LCA and SiteWiseTM Version 3.1 results for a 

sediment remediation project has not been published to date.  

Current LCA and footprint evaluation tools used by the remediation industry fall 

short for proper evaluation of social and economic impacts on sediment management. 

Over the last five years, remediation practitioners have started to perform comprehensive 

sustainability assessments of risk management and remedial strategies by integrating 

complimentary methodologies from the environmental economics and social science 

disciplines (Harclerode et al., 2015a). As stated previously, MCDA has been widely used 

to identify and integrate stakeholder needs into remedial objectives. Hou et al. (2014) 

developed a hybrid LCI, for evaluating sediment remediation technologies, based on the 

United Kingdom’s (UK) socioeconomic input-output data, including employment, 

compensation for employees, and worker fatality and injuries. Lemming et al. (2010) 



118  

  

extended a LCA, for evaluating source remediation technologies, to include the market 

cost of carbon and the human health risk and cost (based on Denmark Gross Domestic 

Product [GDP]) associated with exposure to residual contamination and remediated 

media. In the United States, environmental footprint analyses have been extended to 

quantify global impacts arising from remedial activities by monetizing emissions and 

energy consumption and integrating the social cost of environmental metrics (Harclerode 

et al., 2015b, 2013; Bohmholdt, 2014). NAVFAC’s SiteWiseTM tool quantitatively 

evaluates worker safety and accident risk metrics and has a placeholder to qualitatively 

evaluate (i.e., low, medium or high) community impacts and lost ecological resources 

(NAVFAC, 2015).  

In this case study, we evaluated the environmental and global socio-economic 

impacts of three common sediment remediation technologies: excavation, dredging and 

in situ treatment. All three technologies comprise the overall remediation strategy for the 

case study site. Thus, this study does not seek to compare sustainable attributes among 

the three technologies, but serves to compare outcomes between LCA or the SiteWiseTM 

Version 3.1 footprint evaluation tool to determine environmental and global implications 

of site activities. Both environmental assessments have been extended to quantify 

monetized global impacts using the social cost of environmental metrics. The use of 

social cost metrics, specifically carbon, is encouraged by the USEPA (2016b) and US 

federal agencies (USDOE, 2011) to estimate the climate benefits of the decision-making 

process, following United States Executive Order 12866 – Regulatory Planning and 

Review (USG, 2013).  
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4.1. Methods 

4.1.1. Case Study 
The sustainability assessment was conducted on a remedial design developed to 

manage polychlorinated biphenyls (PCBs) contaminated sediment within two adjacent 

coastal inlets connected to the Atlantic Ocean. The main source of PCBs was the former 

transformers which were located farther inland. The contaminated site was historically 

used to build and test aircraft. Other potential sources of PCBs include historic site 

operations and releases during building demolition. PCBs were identified at 

concentrations above 50 milligrams per kilogram (mg/kg) (maximum of 3,600 mg/kg); 

thus, they were subject to disposal requirements under the federal Toxic Substances 

Control Act (TSCA) and regulations promulgated thereunder, primarily at 40 Code of 

Federal Regulations 761. The sediment also contained polycyclic aromatic hydrocarbon 

(PAH) and heavy metal contamination.  

The planned remedial action is a multi-remedy approach consisting of excavation, 

dredging, and in situ treatment with activated carbon. In addition, dewatering of 

sediment, disposal of investigation derived waste, and installation of engineering controls 

to control migration of sediment (i.e., silt curtain and turbidity curtain) are considered 

major components of remedy implementation.  

4.1.2. Sustainability Assessment 
The sustainability assessment is comprised of a multi-method approach to 

evaluate the environmental, social, and economic impacts from remedial activities. 

Environmental impacts were evaluated using both environmental footprint and LCA 
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methods. Social and economic impacts were evaluated using a societal cost analysis, 

consisting of integrating the social cost of environmental metrics into the footprint 

analysis and LCA.  

The environmental footprint analysis was conducted using the NAVFAC 

SiteWiseTM program Version 3.1 (NAVFAC, 2015), which is the first version of this tool 

to include sediment remediation components. The LCA was conducted using SimaPro 

software. The societal cost analysis was conducted using methodologies presented in 

Harclerode et al. (2015b, 2013).  

The goal of the sustainability assessment is to identify components of the design 

that contribute the most towards environmental, social, and economic impacts from 

remedial activities. The functional unit is the cleanup goal of managing PCB 

contaminated sediment where the lateral extent is above 50 mg/kg and vertical extent is 

above 0.676 mg/kg. The remedial goal of 0.676 mg/kg minimizes the need for return 

dredging within the impacted area during full remedy construction. The timeframe for the 

assessment inventory is unrestricted to evaluate both short- and long-term impacts.   

The scope of the sustainability assessment is to include all major remedial 

activities to be conducted on site and off site associated with both coastal inlets, herein 

referred to as Area of Concern (AOC) 1 and AOC 2. AOC-1 is associated with the 

coastal inlet along the southwestern boundary of the site, and AOC-2 is the coastal inlet 

along the southeastern boundary. The greatest detected concentrations of PCBs and PAHs 

were observed within AOC-2 along the shoreline and in shallow sediment near the 
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outfalls of the Site. Elevated metal concentrations, primarily cadmium, were observed 

within AOC-1, and in the deeper sediments of AOC-2. Both inlets flow towards the apex 

of a river which connects to the Atlantic Ocean. This includes consumption of raw 

materials and natural resources during materials acquisition, production, use stages, and 

end-of-life processes. An overview of the remedial action components is summarized in 

Table 4-1. Primary data regarding energy and material consumption during each 

remedial activity was compiled from engineering data and vendor invoices originally 

used to prepare the design documentation. Assumptions and input parameters for the 

environmental footprint analysis and LCA are provided as Supplemental Information (SI) 

in Tables SI and S2.  

Table 4-1: Remedial Action Components 

Remedy 
Technology/ 
Component 

Major Input Parameters 
AOC 1 AOC 2 Process 

Mobilization/ 
Engineering 
Controls 

800 linear feet 
of turbidity 
curtain; 500 
linear feet of 
silt curtain; 
1,140 tons of 
raw materials 

1800 linear 
feet of 
turbidity 
curtain; 1,050 
linear feet of 
silt curtain; 
14.5 tons of 
raw materials 

Silt/turbidity curtain materials 
(i.e., geotextile membrane, 
polyethylene pipe, polystyrene, 
and steel) plywood, filter log, 
and raw materials (i.e., asphalt 
and gravel) 

Excavation 26,500 cubic 
yards of 
sediment 

------ 
 

Excavator operation, steel 
sheeting, and transport of 
sediment to staging/dewatering 
areas 

Reconstruction 
and 
Stabilization 

18,680 cubic 
yards of raw 
materials 

------ 
 
 

Excavator and loader operation, 
and raw materials (i.e., soil, 
gravel and sand) 
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Remedy 
Technology/ 
Component 

Major Input Parameters 
AOC 1 AOC 2 Process 

Reconstruction ------ 
 

5,125 cubic 
yards of raw 
material 

Excavator operation, 
watercraft/barge operation, and 
raw materials (i.e., sand) 

Dredge 4,600 cubic 
yards of 
sediment 

12,400 cubic 
yards of 
sediment 

Excavator/crane operation, 
watercraft/barge operation, and 
transport of sediment to 
staging/dewatering areas 

In Situ 
Treatment 

------ 
 

250 tons of 
activated 
carbon 

Watercraft/barge operation, 
conveyor belt system for 
distribution, activated carbon 

Dewatering 113,000 gallon 
of water; 2,028 
tons of 
coagulant; 
36,000 square 
foot pad 

82,000 gallons 
of water; 3,198 
tons of 
coagulant; 
27,00 square 
foot pad 

System materials, including 
activated carbon, polyvinyl 
chloride pipe, geotextile 
membrane, treatment materials 
(i.e., coagulant 
polydiallyldimethylammonium 
chloride [polyDADMAC] and 
raw materials (i.e., gravel) 

Investigation 
derived waste 
(IDW) disposal 
and transport 

3,562,000 tons 
of waste 
material 

2,934,970 tons 
of waste 
material 

Transport of excavated sediment, 
water, and debris; and landfill 
operations 

 

Life cycle inventory data for the remedial system (e.g., production of steel, 

plastic, excavator operation, lorry and coastal transport) were primarily based on average 

technology data from the Ecoinvent life cycle unit process database Version 2.2 

(Ecoinvent, 2010). Due to specific input parameters not available in the Ecoinvent 

Database, the following databases were used: (1) United States Life Cycle Inventory 

(USLCI) Database was used for the galvanized steel sheet, wood fiber, electricity grid, 

and natural gas input parameters; and (2) European Reference Life Cycle Database 
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(ELCD) for the steel hot rolled section input parameter. Remedial design parameters 

(e.g., coir log - erosion control device comprised of coconut fibers, silt fence and 

coagulant) for which no data are found in Ecoinvent or other general LCI databases were 

each designed as a process using generic data from the Ecoinvent database. The process 

inventory for each of these parameters is provided in SI Table S2. The life cycle impact 

assessment method is ReCiPE. Both the Ecoinvent database and ReCiPE impact 

assessment method were used in previous LCA studies evaluating sediment management 

(Bates et al., 2015; Sparrevik et al., 2011). 

The environmental footprint of each remedial component was assessed using 

NAVFAC’s SiteWiseTM tool. SiteWiseTM is a stand-alone tool developed jointly by the 

U.S. Navy, the U.S. Army, the USACE, and Battelle that assesses the environmental 

footprint of a remedial alternative/technology in terms of a consistent set of metrics, 

including: (1) greenhouse gas (GHG) emissions; (2) energy use (total energy use and 

electricity from renewable and non-renewable sources); (3) air emissions of criteria 

pollutants (total emissions and on site emissions) including nitrogen oxide (NOx), sulfur 

oxide (SOx), and coarse particulate matter (PM10); (4) water consumption; (5) resource 

consumption (e.g., landfill space and top soil use); and (6) worker safety (risk of fatality, 

injury and lost hours) (NAVFAC, 2015). The SiteWiseTM tool does not have input 

parameters for plywood, filter logs, coir logs, coagulant, and dewatering pad materials. 

Therefore, the CO2, PM10, and sulfur dioxide (SO2) emissions for these materials 

calculated as part of the LCA were accounted for under the “other known on site 

activities” category in the SiteWiseTM tool. 
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The societal cost analysis quantifies the costs borne by society, which evaluates 

costs associated with monetized global impacts from emissions and resource 

consumption during remedial activities (Harclerode et al., 2015b, 2013). Monetized 

global impacts represent the monetary value that can be assigned for societal disamenities 

(damages) associated with an incremental increase in emissions and resource 

consumption. These societal disamenities and their associated unit social costs are listed 

in Table 4-2. 

The social cost of environmental metrics used for this analysis was obtained from 

literature presented in Table 4-2. The United States Government (USG) Interagency 

Working  Group on Social Cost of Carbon (2013) and USEPA (Marten et al., 2015) 

quantified the social cost for carbon dioxide (CO2), methane (CH4), and nitrous oxide 

(N2O) for the years 2015 and 2020 (in 2007 US dollars) at discount rates of 2.5, 3, and 5 

percent. A lower discount rate means society places higher value on future impacts (e.g., 

climate change and chronic human health impacts), while a higher discount rate means 

society places higher value on present impacts (e.g., daily traffic congestion and general 

inconvenience due to ongoing site activities). The social costs with a discount rate of 2.5 

percent were used in the societal cost analysis since the environmental footprint metrics 

(e.g., GHG emissions) used in this sustainability assessment are associated with long-

term and even intergenerational societal impacts (Harclerode et al., 2015). Muller and 

Mendelsohn (2010) quantified the social cost of NOx, SOx, and PM10 (2002 US$) in 

quantiles (1st, 25th, 50th, 75th, 99th, and 99.9th) based on the environmental setting of the 

project and geographic distribution of existing nearby point sources. For example, a high 
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quantile represents an area densely populated by point sources of NOx, SOx, and PM10 

emissions. The case study site is located within a metropolitan area. Spatial patterns of 

ground sources of fine particulate matter and SO2 prepared by Muller and Mendelsohn 

(2010) identify the case study site within the 99th social cost quantile. The non-carbon 

social cost of energy is a set cost value quantified in 2000 US$ by Greenstone and 

Looney (2011), based on monetized damages resulting from emissions of SO2, NOX, fine 

particulate matter (PM2.5), and PM10, but not carbon compounds. All social cost values 

were adjusted for inflation over time using the United States Government Consumer 

Price Index.  

Table 4-2: Social Cost Metrics 

Environmental Metric Societal Disamenities Unit Social Costs                 
(2015 US $) 
  

Greenhouse 
Gas 

Carbon 
Dioxide 
(CO2) 

Long-term global impacts of 
climate change, including 
changes in net agricultural 
productivity, human health, 
property damages from 
increased flood risk, and the 
lost value of ecosystem 
services (USG, 2013). 

$64.01 per metric ton 

Methane 
(CH4)  

Long-term global impacts of 
climate change, including 
changes in agriculture, 
energy production, water 
availability, human health, 
coastal communities, and 
biodiversity (Marten and 
Newbold, 2012; Marten et 
al., 2015). 

$1,616.57 per metric ton 

Nitrous 
Oxide 
(N2O) 

$22,227.75 per metric ton 
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Environmental Metric Societal Disamenities Unit Social Costs                 
(2015 US $) 
  

Criteria 
Pollutants 

Total 
Nitrogen 
Oxides 
(NOx) 

Long-term societal impacts, 
including health effects, 
reduced crop and timber 
yields, materials 
depreciation, lost recreation 
services, and reduced 
visibility (Muller and 
Mendelsohn, 2010). 

$1,100 per metric ton 

Sulfur 
Oxides 
(SOx) 

$4,130 per metric ton 

Particulate 
Matter 
(PM10) 

$1,960 per metric ton 

Energy Consumption          
(non-carbon social cost) 

Long-term societal impacts, 
including health costs, 
shortened life spans, cost of 
environmental mitigation, 
and broad impacts of climate 
change (Greenstone et al., 
2011). 

$14 per million 
British 
Thermal 
Units 
(MMBTU) 
  

 

To calculate costs borne by society, we multiplied selected sustainability metrics 

calculated either through the environmental footprint analysis or LCA by the associated 

unit social cost using the following formula (Harclerode et al., 2015b, 2013): 

Environmental  
Footprint Analysis 

Sustainability 
Metric 

X 
Unit Social Cost of 

Sustainability 
Metric 

= Costs Borne by 
Society 
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4.2. Results and Discussion 

4.2.1. Life Cycle Assessment Results 
Normalized mid-point impact values of each remedial component quantified for 

AOC-1 and AOC-2 are shown in Figures 4-1 and 4-2, respectively. Mid-point impact 

categories reflect the relative potency of sustainability metrics (e.g., carbon dioxide 

emissions and chlorofluorocarbon emissions) at a common midpoint (e.g., climate change 

and ozone depletion) within the cause-effect chain (Curran, 2006). For both AOCs, 

impacts to marine ecotoxicity, human toxicity, and freshwater eutrophication were the 

dominant impact categories. The mobilization/engineering controls and dewatering 

components of the remedial design contribute the most towards environmental impacts. 

The in situ treatment component is also a major impact contributor in AOC-2. The 

disposal of investigation derived waste (i.e., sediment, water, and debris) was not a major 

impact contributor, likely due to the volume of waste material generated compared to the 

amount raw materials consumed. 

Mobilization/engineering controls was the primary contributor to impacts 

followed by dewatering for AOC-1, and the complete opposite was found for AOC-2. 

Table 4-1 shows the differences in the quantity of major input parameters for each 

remedial component between the AOCs. For the mobilization/engineering control 

component, AOC-1 consumes a greater amount of raw materials (e.g., gravel and 

plywood) and requires less linear footage of the turbidity/silt curtain, as compared to 

AOC-2. For the dewatering component, AOC-2 consumes more coagulant than AOC-1, 

however, AOC-2 generates less wastewater and requires a smaller dewatering pad 
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(consisting of polyvinyl chloride pipe and geotextile membrane). In addition, the in situ 

treatment using activated carbon was also a major contributor to impacts under AOC-2. 

The in situ treatment component also consisted of watercraft/barge operation and a 

conveyor belt system for distributing the amendment. Other remedial components that 

included watercraft/barge operations, such as dredging and reconstruction, were not 

identified as major impact contributors. Based on this comparison, the consumption of 

raw materials (e.g., plywood and gravel) and amendments (e.g., coagulant and activated 

carbon) are the primary drivers to environmental impacts from site remedial activities.  

4.2.2. LCA Sensitivity Analysis 
The consumption of plywood is driving environmental impacts associated with 

the mobilization/engineering control component for both AOCs (SI Figure 1S). If the 

plywood input parameter is removed from this remedial component, the input parameters 

driving environmental impacts from mobilization and installation of engineering controls 

vary among the two AOCs. The consumption of gravel becomes the primary input driver 

for AOC-1 and the turbidity curtain for AOC-2 (SI Figure 2S). Processed materials (e.g., 

polypropylene, high density polyethylene, and galvanized steel) were identified as 

primary impact drivers for the turbidity and silt curtain subcomponents (SI Figures 3S 

and 4S). As shown on Table 4-1, AOC-1 consumes a greater amount of raw materials, 

primarily gravel in this scenario, and has less linear footage of curtain, as compared to 

AOC-2. Based on this comparison, AOC-specific input parameters (e.g., raw material 

consumption and length of silt curtain) influence subcomponents that are identified as 

major contributors to environmental impacts. Overall, the timber mats (i.e., plywood) 
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were concealing other AOC-specific input parameters of the mobilization/engineering 

control component that were also driving environmental impacts.  

If the plywood input parameter is removed from this remedial component, 

dewatering and in situ treatment become the major impact contributors (SI Figure 5S). 

For the dewatering component, the use of coagulant is driving environmental impacts 

during water treatment (SI Figure 6S). On the other hand, the use of a hopper is driving 

environmental impacts for in situ application instead of the quantity of activated carbon 

used (SI Figure 7S). If carbon is replaced by the coagulant polyDADMAC used during 

the dewatering process, the use of the hopper is still the primary impact driver (SI Figure 

7S). However, the amendment has a larger contribution to the overall environmental 

impact. The Ecoinvent inventory parameter used for the hopper, “industrial machine, 

heavy, unspecified, at plant,” may not accurately represent the vessel-mounted spreader 

or equipment used to distribute the amendment. However, based on the available LCI 

databases, this input parameter was determined to be the most applicable.  

In order to identify additional AOC-specific components that were driving 

environmental impacts, plywood, amendments (i.e., carbon and coagulant), and the 

hopper were removed from the impact assessment. In this scenario, dewatering becomes 

the major impact contributor for both AOCs (SI Figure 8S) and polyethylene is the 

primary impact driver (SI Figure 9S).  
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4.2.3. Environmental Footprint Results 
Normalized sustainability metric values from SiteWiseTM (e.g., percent allocation 

of greenhouse gas and NOx emissions) for each remedial component quantified for AOC-

1 and AOC-2 are shown in Figure 4-3. Similar to the LCA evaluation, the 

mobilization/engineering controls and dewatering components of the remedial design are 

the primary contributors to environmental footprints for both AOCs. In addition, the 

dewatering component plays a greater role as an impact contributor in AOC-2, as 

compared to AOC-1.  

Input parameters that fall into the “equipment use and miscellaneous” category 

are driving the environmental footprint for the mobilization/engineering controls 

component (SI Figure 10S). Impacts from the turbidity/silt curtain is accounted for under 

the “material production” category of the SiteWiseTM tool (NAVFAC, 2015), while 

impacts from the plywood and filter log materials are accounted for under the 

“miscellaneous” category. Similar to the LCA, the consumption of plywood is the 

primary environmental footprint driver for the mobilization/engineering controls 

component.    

Consumables are the primary input parameters driving the environmental 

footprint for the dewatering and in situ treatment components (SI Figure 11S and 12S). 

These findings are complimentary to the LCA evaluation and sensitivity analysis, in 

which amendments and polyethylene were identified as main contributors to 

environmental impacts for these two components. In contrast to the LCA evaluation, 

equipment use (i.e., the hopper) was not identified as a primary environmental footprint 
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contributor under the in situ treatment component. The “sediment capping” sub-

component under the “equipment use” category of the SiteWiseTM tool was used to enter 

parameters for the in situ treatment. Input parameter choices include a selection of 

capping methods (i.e., surface, mechanical, or pipeline release), types of fuel (diesel or 

biodiesel), and sizes for the supporting vessel (i.e., large research vessel or small/medium 

light craft). Under the surface release capping option, a hopper barge is included as a 

default within the sediment capping sub-component, thus “surface release” was used for 

this case study analysis. Equipment used for the mechanical and pipeline capping method 

are a crawler crane and a hydraulic dredge head, respectively. Based on findings from the 

LCA and footprint evaluations, the SiteWiseTM tool may be underestimating 

environmental impacts from the hopper or the Ecoinvent LCI input parameter for the 

hopper may not be reflecting site remedial activities accurately.  
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Figure 4-4: Normalized SiteWiseTM Impacts 
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 Figure 4-5: Normalized SiteWiseTM Impacts with Disposal 
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Lastly, the footprint evaluation also identified reconstruction/stabilization as 

having a notable contribution to the total NOx emissions (Figure 4-3 and 4-4). The LCA 

ReCiPE mid-point impacts do not include a quantification of NOx emissions and, 

therefore, may be underestimating the environmental impacts from reconstruction and 

stabilization. In addition, the footprint evaluation identified waste disposal as having a 

significant contribution to the overall environmental footprint (Figure 4-4), while the 

LCA did not identify reconstruction/stabilization or waste hauling components as major 

impact contributors. The assumptions built into the SiteWiseTM tool and the LCA 

inventory database and impact methods vary, and are most likely the source of 

discrepancies between the tools.  

4.2.4. Comparison of Using Environmental Impact Tools to Aid the Decision 

Making Process 
Environmental impact (footprint) evaluations are primarily conducted for two 

reasons: (1) to identify which remedial approach has the overall least and most 

environmental impacts; and (2) to identify which components of the selected remedy 

contribute the most toward environmental impacts. The results of the impact evaluation 

are then used to aid in the selection of a sustainable remedy and to optimize remedy 

components to alleviate unsustainable impacts. In general, the results of the SiteWiseTM 

tool and the LCA method were comparatively similar in identifying remedial approaches 

that were considered a major contributor to environmental impacts. Therefore, the results 

of both methods would inform decision makers in a similar manner during remedy 

selection. This conclusion is important for the remediation community because the 
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amount of labor hours and associated costs to conduct a footprint analysis compared to 

LCA is significantly lower. Therefore, the evaluation of environmental impacts between 

proposed remedial approaches can be incorporated into the decision making process with 

relatively low level of effort.  

The main difference between the results of the footprint evaluation and the LCA 

is the identification of remedy components as secondary impact contributors that should 

be optimized to reduce the overall environmental footprint. The SiteWiseTM tool 

identified reconstruction/stabilization and waste disposal as secondary impact 

contributors, while the LCA did not. This difference between the SiteWiseTM tool and the 

LCA method aids decision makers in an inconsistent manner when identifying remedy 

components that should be optimized to achieve a sustainable outcome. Users of the 

SiteWiseTM tool would allocate funds and labor to evaluate sustainable best management 

practices that can be implemented to optimize the reconstruction/stabilization and waste 

disposal components, in addition to the mobilization/engineering controls, dewatering, 

and in situ treatment components. While, users of the LCA tool would only allocate funds 

and labor to optimize the mobilization/engineering controls, dewatering, and in situ 

treatment components.  

By relying solely on the results of the environmental footprint or LCA, decision 

makers are faced with uncertainty pertaining to which secondary remedial components 

are driving unsustainable impacts and should invest efforts in optimization. A societal 

cost analysis can be performed to overcome this uncertainty by extending the 
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environmental impact evaluation to integrate the social cost of environmental metrics 

(presented in the subsequent section). The integration of a societal cost analysis 

normalizes the metrics into one monetary unit for ease of comparison, reducing 

uncertainty in decision-making, and alleviating trade-offs among environmental metrics 

(e.g., tons of CO2 versus tons of NOx) and impact categories (e.g., climate change versus 

ozone depletion). In addition, it enables decision makers to develop sustainable solutions 

as opposed to environmentally friendly ones.   

4.2.5. Societal Cost Analysis 
Both the SiteWiseTM tool and the LCA method quantify sustainability metrics and 

therefore have common indicators (i.e., CO2, SOx, and PM10) to aid in comparison of 

costs borne by society quantified under each assessment. The results of the societal cost 

analysis are presented in Table 4-3. Under all remedial components, GHG (or carbon for 

the LCA) emissions and energy consumption contribute the most towards monetized 

global impacts (i.e., societal disamenitites). Complimentary to the findings of the 

environmental footprint evaluation and LCA, the cost analysis identified the 

mobilization/engineering controls, dewatering, and in situ treatment components as the 

major contributors to monetized global impacts. In addition, the primary contributor to 

global impacts is the mobilization/engineering controls component for AOC-1 and the 

dewatering component for AOC-2.  

In contrast, the monetized global impacts quantified from the environmental 

footprint evaluation for AOC-2 waste disposal are relatively similar to the monetized 

impacts quantified for mobilization/engineering controls. Under AOC-2 for both the 
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footprint evaluation and the LCA evaluation, the percent allocation of global monetized 

impacts for waste disposal is relatively comparable to the mobilization/ engineering 

controls and in situ treatment. The footprint evaluation also identified 

reconstruction/stabilization as one of the main contributors to total NOx emissions. Based 

on the societal cost analysis, this remedial component is not a significant contributor to 

monetized global impacts for either AOC. By extending the footprint evaluation to 

include the social cost of environmental metrics, remediation practitioners can focus 

resources to optimize the design of remedial components that were identified as major 

(i.e., dewatering and mobilization/engineering controls) and secondary (i.e., in situ 

treatment and waste disposal) global impact contributors, while having confidence and 

certainty in not optimizing low impact contributors (i.e., reconstruction/stabilization).  

4.2.6. Costs Borne by Society Sensitivity Analysis 
Environmental sustainability metrics differ between the SiteWiseTM tool and the 

ReCiPE LCA impact assessment method. The footprint evaluation quantifies NOx 

emissions and includes CH4 and N2O in the quantification of GHG emissions; while, the 

ReCiPE LCA impact assessment method quantifies CO2 equivalent emissions and does 

quantify NOx emissions. A sensitivity analysis (SI Table S3) was performed to determine 

if the conclusions of the societal cost analysis would change if the costs borne by society 

were quantified using only the sustainability metrics both tools have in common. The 

results of the sensitivity analysis did not identify any modifications to the overall findings 

of the societal cost analysis, with one exception. The monetized global impacts from 

waste disposal for AOC-2 in the modified societal cost analysis were comparatively less 
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than the mobilization/engineering controls component, and likely would not be 

considered a primary contributor to global impacts under this evaluation.  

Both tools quantify sustainability metrics that currently do not have associated 

social costs including, but not limited to, water consumption, chlorofluorocarbon 

emissions (indicator of ozone depletion), 1,4-dichlorobenzene (indicator of human 

toxicity), land use/loss, and nutrient loads (e.g., phosphorous and nitrogen equivalents). 

Financial implications to society from long-term damages from these metrics are 

currently not accounted for in the societal cost analysis. Therefore, monetized global 

impacts for the remedy are underestimated. However, the findings of the cost analysis 

still inform remediation practitioners regarding which remedial components and 

sustainability metrics (e.g., carbon emissions and energy usage) should be optimized to 

reduce long-term global environmental and socio-economic damages from the remedial 

action.  

4.3. Conclusion 
The overall findings of the sustainability assessment led to concurrent conclusions 

with either the SiteWiseTM footprint evaluation tool or the LCA ReCiPE impact 

assessment method. Integration of societal cost analysis into the sustainability assessment 

helped to define remedial components as major, secondary, and low impact contributors 

to environmental, social, and economic effects. In addition, the integrated sustainability 

assessment also provided supporting data suggesting that optimization efforts focus on 

waste disposal and not on reconstruction/stabilization activities.  
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The footprint evaluation tool required outputs from the LCA to accurately 

incorporate environmental impacts from amendments, streambank controls (e.g., filter 

log and coir logs), and natural resources (e.g., plywood) not included in the default 

parameters. The use of two tools is not ideal for conducting a sustainability assessment 

due to conflicting assumptions between the methodologies. However, we did not identify 

significant differences or changes in conclusions based on the incorporation of LCA 

outputs in the footprint tool. In addition, the integration of the social cost of 

environmental metrics normalized the varying environmental metric outputs into one unit 

(dollars) for ease of comparison.  

A majority of the literature on LCAs conducted on sediment remediation projects 

focuses on comparing amendments, in situ and ex situ alternatives, and sediment 

containment options. The LCAs rarely take into consideration the environmental and 

socio-economic implications of supporting components, such as the silt curtain and 

dewatering process. This study highlights the importance of considering these 

components in a sustainability assessment for a sediment remediation project. In addition, 

the study demonstrated the vital role site-specific parameters have in influencing the 

results of a sustainability assessment. The primary impact contributor to AOC-1 versus 

AOC-2 differed due to variations in natural resources and amendments consumed. 

Therefore, findings from sustainability assessments for a specific site should be not easily 

transferable and extrapolated to another site. Literature on identifying which remedial 

alternatives that have greater negative sustainability impacts is important to guide the 

remediation community toward sustainable sediment management, as well as to push 
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research toward more sustainable amendments, material substitutes, etc. However, a site-

specific evaluation should always be performed to assist with the decision-making 

process.  

Lastly, normalized mid-point impact values generated by LCA can result in a 

decision making process that requires trade-offs between impact categories. For example, 

one remedial alternative may be a major contributor to marine ecotoxicity, while a second 

alternative may be a major contributor to climate change. This scenario forces decision-

makers to choose whether a contribution to marine ecotoxicity is more or less important 

than a contribution to climate change. Multi-criteria decision analysis (MCDA) has been 

shown to assist in identifying sustainability goals among stakeholders to support this type 

of decision making process. However, a societal cost analysis, as presented in this study, 

normalizes the impact categories into one unit (dollars) to facilitate the decision-making 

process. As stated previously, future research is needed to develop cost values for 

commonly used metrics, in addition to emissions and energy, and will be vital to moving 

towards a more holistic and comprehensive sustainability assessment. 

In closing, the choice of method used to evaluate environmental impacts from 

remedial activities directly influences optimization efforts identified to reduce those 

impacts. Therefore, it is highly recommended to extend the environmental impact 

evaluation by integrating social costs to normalize environmental metrics and provide a 

comprehensive data set to aid the decision making process. Overall, it is vital to consider 
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social and economic impacts of remedial activities in conjunction with environmental 

impacts to alleviate trade-offs and ultimately achieve a sustainable solution.  
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Chapter 5  

EVALUATION OF THE ROLE OF RISK PERCEPTION IN STAKEHOLDER 

ENGAGEMENT TO PREVENT EXPOSURE IN AN URBAN SETTING 

(This paper has been accepted in the journal, Journal of Environmental Management) 

Abstract 
Stakeholder engagement is a vital sustainable remediation practice for obtaining 

useful feedback and identifying societal needs. Evaluating and integrating risk perception 

of stakeholders into outreach efforts allows for greater insight and ultimately, benefits the 

community by protecting its members from environmental hazards. In this study, we 

identified risk perception factors that influenced residents’ level of concern for mitigating 

their exposure to elevated concentrations of lead in household paint and historic fill 

material. Risk perception factors were assessed by conducting an in-person survey at 

public green spaces. After analyzing responses, survey participants indicated that their 

perception of risk to exposed lead was mostly influenced by the presence of hazardous 

materials in close proximity to their residence, the ability to address pollution, and 

awareness, interest, and individual accountability in mitigating environmental risks. 

Responses also revealed that residents considered risk of lead and soil pollution as less 

menacing than the presence of more immediate and perceptible risks posed by factors 

such as air and water pollution. In addition, the community seemed to exhibit “optimism 

bias” and did not identify itself at high risk to susceptible and immediate hazards, 

including lead exposure. This lack of concern over lead exposure created a significant 

obstacle to community participation in state-led education and outreach programs. By 
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integrating risk perception analysis and increasing stakeholder engagement, we can bring 

more attention to this issue, educate the public about the threat of lead pollution, and 

efficiently use financial resources to implement a more sustainable solution.   

5. Introduction   
Sustainable remediation considers the three integrated dimensions of the triple bottom 

line (i.e., environment, society, and the economy) during cleanup and management of 

contaminated sites (International Standards Organisation [ISO], 2015; Interstate 

Technology and & Regulatory Council [ITRC], 2011; Network for Industrially 

Contaminated Land in Europe [NICOLE], 2010; Pope et al., 2004; Sustainable 

Remediation Forum [SURF], 2011; SuRF-Italy, 2014; and SuRF-UK, 2010). A 

sustainability assessment can be conducted to identify beneficial and detrimental impacts 

to these dimensions from remediation and preventative activities (ISO, 2015; ITRC, 

2011; SURF, 2011; SuRF-UK, 2010). One of the potential benefits of considering the 

social impacts of remedial activities is increased stakeholder engagement and community 

empowerment (Harclerode et al., 2015; Risdale, 2015). In view of the numerous benefits 

conferred by stakeholder engagement, it is widely considered a sustainable remediation 

best management practice (ASTM, 2013; ISO, 2015; ITRC, 2011a; NICOLE, 2010; 

SURF, 2011; SuRF-UK, 2010). In addition, stakeholder engagement is required by 

regulatory entities internationally (ASTM, 2013; Cundy et al., 2013; Harclerode et al., 

2015a; ISO, 2015; Mazmanian and Kraft, 2009; REVIT, 2007; Rizzo, 2015; and USEPA, 

2005).  
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The concept of “stakeholder participation” has come to occupy an important place in 

environmental management (Reed, 2008).  A stakeholder can be defined as any 

organization, group, or individual who takes an interest in a project, can influence project 

outcomes, and may be affected by project activities (Cundy et al., 2013). Stakeholders’ 

perceived risk associated with environmental protection and management activities can 

directly affect the success of remediation and preventative activities (Bickerstaff, 2004; 

Harclerode et al., 2015a; SURF, 2009; SURF, 2013; Vandermoere, 2008; Weber et al., 

2001). Risk can be understood as the relationship between the probability of harm 

associated with an activity and vulnerability of exposed elements (i.e., people, buildings, 

and environment) (Slovic 1987, 2003; UN-ISDR, 2002). Risk perception, as defined by 

the Royal Society’s landmark report on risk, involves, “people’s beliefs, attitudes, 

judgements and feelings, as well as the wider cultural and social dispositions they adopt 

towards hazards and their benefits” (Pidgeon et al., 1992, p. 89). Risk perceptions are 

influenced by a wide array of factors; among them, knowledge, vulnerability, capability 

to respond to hazards and demographics.  

Vulnerability is a “combination of exposure and sensitivity to perturbations or 

external stresses and adaptive capacity or resilience to a hazard or stressor (Adger, 2006; 

Cutter, 2003; and Glatron and Beck 2008). Glatron and Beck (2008) identified three main 

factors of social vulnerability based on the work of D’Ercole (1996): (1) perception of 

risks; (2) the knowledge and management of risks (e.g., geography and history of local 

hazards; preventative information); and (3) constraining factors (e.g., location of the 

person and socio-demographic characteristics). Communities vulnerable to environmental 
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and health risks are often concentrated in low-income, underserved, disenfranchised, 

ethnically diverse, and marginalized communities (Bickerstaff, 2004; Bullard, 1990; 

Coughlin, 1996; and Slovic, 1997, 2000). Systematic overestimation of risk, associated 

with a sense of hopelessness, is common among individuals who are divorced, have low 

incomes, and unemployed (Boholm, 1998). This “sense of hopelessness” is also 

correlated with individuals in “positions of less power and control, benefit less from 

many technologies and institutions, are more vulnerable to discrimination and therefore 

see the world as more dangerous” (Finucane et al., 2000, p. 161). Vulnerable populations 

that have a “sense of hopelessness” often do not view themselves as having the ability to 

bring about change and address hazards present within their community. Paradoxically, 

an individual’s sense of their ability to bring about change through behavior has little 

imperative to do so (Bickerstaff and Walker, 2001). Therefore, vulnerable populations 

within a community who perceive themselves as agents of change may not actually 

participate in risk mitigation activities. 

In addition, perceptions of risk vary between different groups of people. Individuals 

with a higher education, more power, and greatest socio-economic advantage tend to 

underestimate risk (Boholm, 1998). White males have a lower risk perception to 

environmental hazards than non-white males and females (Bickerstaff, 2004; Slovic, 

1997, 2000; Wester Herber, 2004). Women tend to express higher risk perception of 

threats to the environment, and that this tendency is particularly strong with regard to 

pollution and risk to health from local facilities (Davidson and Freudenburg, 1996). 

Among ethnic sub-groups, Asian Americans usually rate risks as low, while African 
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Americans tend to rate risks as high. Women and non-white males are a common 

demographic among individuals expressing a “sense of hopelessness” (Bickerstaff, 

2004). 

Experts and the general public often disagree on the severity of risk attached to a 

situation (e.g., a remediation project) because each individual assigns a different 

significance to various factors that influence risk (Slovic et al., 2004; Bickerstaff, 2004). 

Studying risk perception can help environmental managers improve the efficacy of the 

relevant practices. The amount of risk that individuals associate with possibly harmful 

activities affects their attitudes toward environmental remediation for such issues, 

including preferences for government management of hazards affecting personal safety 

and public health (Gerber and Neeley, 2005). In addition, individual assessment of risk 

affects what precautionary and mitigation efforts he or she may take to reduce personal 

harm from exposure to environmental hazards (Flynn et al., 1999).  

Internationally, stakeholder engagement is practiced as an effective tool for 

mitigating community and individual exposure to contaminated media (Chappells et al., 

2014; Wiséen and Herber, 2007). A hybrid “bottom-up/top-down” approach to 

stakeholder engagement can be performed to address the role of perceived risk in 

determining whether or not the implementation of remediation and preventative activities 

are successful (Koontz et al., 2004; Kootnz and Newig, 2014; and Margerum, 2011). The 

“bottom-up/top-down” approach seeks to combine expert and public knowledge and 

tackle common misperceptions to collaboratively address environmental issues 
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(Chappells et al., 2014; Innes and Booher, 2010; Weber, 2003; Weible et al., 2004; and 

Wiséen and Herber, 2007). Surveys, interviews, and other forms of stakeholder 

engagement (e.g., multi-criterion decision analysis and social network analysis) can be 

undertaken to identify factors contributing to the stakeholders’ perceptions of risk 

management. Once factors are identified, decision makers can provide direct support and 

education to communicate actual risk and overcome inaccurate perceived risk 

(Bickerstaff, 2004; Harclerode et al., 2015a; and Palma-Oliveira and Gaspar, 2004). In 

addition, having a comprehensive understanding of stakeholders’ perceptions of risk 

allows remediation decision-makers to effectively communicate and promote legitimacy 

and compliance with policies and protective measures (Botzen et al., 2009).      

5.1. Study Objective 
 The role of public risk perception in environmental management has been 

investigated internationally for a wide range of hazards, including water and noise 

pollution (Preston et al., 1983; Chappells et al., 2014), air pollution (Bickerstaff, 2004), 

climate adaptation (Grothmann and Patt, 2005; Patt and Schroter, 2008; and Tam and 

McDaniels, 2013), and multi-hazard environments (e.g., flood, crime, and toxic chemical 

release) (Gerber and Neeley, 2005; Lindell and Hwang, 2008). Recently, research on 

climate change has involved analysis of the role that risk perceptions play in inhibiting or 

encouraging adaptive action by individuals and institutions alike (Leiserowitz 2006, 

2005; Kahan et al., 2012).   

Relatively few studies have evaluated how risk perception factors specifically 

affect preferences towards government action to manage potential public health and 
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personal safety hazards (Gerber and Neeley, 2005). Existing studies provide little 

understanding of the basis of risk perception variation between places and social groups 

(Bickerstaff, 2004). In addition, discussions on the role of stakeholder engagement as a 

sustainable remediation practice have tended to focus heavily on identifying societal level 

needs and remedial goal prioritization, and rarely on identifying the need to understand 

individual behavior and life style choices to successfully implement and maximize the 

benefit of risk management.  

For the present study, we surveyed residents in a diverse urban community 

impacted by non-point source lead pollution. The principal goal was to identify risk 

perception factors influencing these stakeholders’ responses to mitigating their exposure 

to household paint and historic fill material containing elevated concentrations of lead. 

Non-point source pollution can be defined as pollution that originates from multiple 

sources over a relatively large, diffuse area that is not introduced into a receiving entity 

from a standard outlet (USEPA, 2010b). Widespread distribution of lead, a recalcitrant 

compound, may be present in the form of paint, historic fill material, historic leaded 

gasoline (Zakrzewski, 2002, p. 204-205), and/or deteriorating pipes. Eradicating multiple 

sources of recalcitrant, non-point source pollutants within a large-scale residential setting 

can be technically and financially infeasible, requiring stakeholder engagement to play a 

dominant role in risk management. We hope this study illustrates the importance of 

evaluating and incorporating risk perception into remedial decision-making to promote 

the effective use of financial resources for maximizing the benefit of public outreach 

activities, thus driving a more sustainable solution. 
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5.2. Methods 

5.2.1. Case Study 
Communities throughout the United States, as well as internationally, are 

currently subjected to residential lead exposure via paint and surface soils. The United 

States Department of Housing and Urban Development, as well as state and municipal 

departments of health, provide public outreach support and technical assistance to 

communities for mitigating residential lead exposure (CDC, 2015; CJC, 2007a; and 

NJDOH, 2009). 

Jersey City was chosen as the case study site due to the presence of widespread 

non-point source lead pollution and an active public outreach campaign by the municipal 

health department to empower residents to prevent and mitigate exposure. Jersey City is 

part of the New York metropolitan area, bounded to the east by the Hudson River and 

Upper New York Bay and to the west by the Hackensack River and Newark Bay. 

Historically, Jersey City was a dock and manufacturing town. The City is impacted by 

historic, legacy contamination, including lead-based paint and historic fill. Buildings in 

Jersey City may still contain leaded paint if erected prior to 1971, after which leaded 

paint was banned for residential use in New Jersey, and subsequently nationwide in 1978. 

Statewide, approximately 30.2% of housing units were built before 1950 (CDC, 2015). 

The New Jersey Department of Environmental Protection (NJDEP) historical fill map of 

Jersey City is presented in Figure 5-1. 
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Figure 5-1: – Case Study Sites and Respondent Distribution
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Jersey City has been conducting lead screening of residents, primarily children, 

since 1958 (CDC, 2015). The Department of Health and Human Services established a 

Childhood Lead Poisoning Prevention Program, which provides blood screening for lead, 

case management for children who are lead poisoned, environmental intervention 

support, and education and awareness on lead risks and hazards to the community (CJC, 

2007a). While conducting this survey, respondents indicated that before their child first 

started school, the municipal health department hosted lead prevention seminars and 

conducted blood screening on the child.  

5.2.2. Sampling Approach  
We chose public green spaces for the surveys because of their accessibility. These 

spaces are open to the public and provide an opportunity to reach a diverse sample 

population. Lincoln Park and Arlington Park were selected as case-study sites because of 

their location between two NJDEP designated historic fill areas, the western portion of 

Lincoln Park and Liberty State Park to the east, shown on Figure 5-1. In addition, based 

on the age of residential structures in the area and the history of Jersey City, it was 

assumed that structures containing lead-based paint were present within close proximity 

of the parks.  

Jersey City is considered one of the most diverse community populations in the 

United States (CJC, 2007b). The City of Jersey City website states that the City is, 

“composed of substantial communities of Jewish, Italian, Cuban, Filipino, Polish, Indian, 

Irish, Puerto Rican, Dominican, African, Arab, and Asian descent.” Jersey City is the 
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second-most populous city in New Jersey and is Hudson County’s largest city. As of 

2014, Jersey City’s Census-estimated population was 262,146.  

The survey sample contained 244 respondents with the demographic distribution 

presented in Table 5-1. Distribution characteristics can be considered similar to the 2010 

census (USCB, 2015). For this study, sensitive populations were identified and were 

comprised of the following distribution: 19.26% of the respondents have at least one 

child under 3 years of age; 44.67% have at least one child between 3 and 12 years of age; 

10.66% have at least one child between 13 and 17; and 10.66% were or had a senior 

citizen over the age of 65 residing at the household.  

Table 5-1: Demographic Distribution of Sample Population 

Demographic 
Category 

Variable Composition of 
Sample (%) 

US Census, 2010 (%) 

Gender Male 42.92 49.4 
Female 57.08 50.6 

Ethnicity Caucasian 16.32 21.5 
Asian or Pacific 

Islander 
15.90 23.7 

Hispanic 29.29 27.6 
African American 30.13 25.8 
“Other” ethnicity 8.36 --- 

Age 30 and younger 29.75  
 

--- 
31 to 40 35.54 
41 to 50 21.49 
51 to 65 11.57 

Older than 65 1.65 
Highest 
Level of 
Education 

Elementary 
School 

5.53 --- 

High School 20.43 84.8 High School Graduate or 
higher Some College 25.96 

College graduate 
and above 

48.09 42.0 Bachelor’s Degree or 
higher 
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Demographic 
Category 

Variable Composition of 
Sample (%) 

US Census, 2010 (%) 

Approximate 
Family Gross 
Income 

Less than 
$22,000 

28.05  
*median household income 

$58,206 $22,000 to 
$49,999 

29.86 

$50,000 to 
$89,999 

23.98 

Greater than 
$90,000 

18.10 

Employment 
Status 

Employed/Self-
Employed 

67.38  
 

--- Homemaker 9.87 
Unemployed 14.59 

Student 4.72 
Retired 3.43 

Residency 
Status  

Owns and Lives 
at Property 

22.22 30.0 

Owns the Rental 
Property 

17.95 --- 

Tenant 59.83  
 

Resided at 
Current 
Residence 

Less than a year 17.72  
85.2 living in same house 1 

year and over 
1 to 5 years 44.30 

5 to 10 years 15.19 
Over 10 years 22.36 

Average Number of Residents in 
Household 

3.56 2.59 

*18.4-percent of the population is below the poverty level 

 

5.2.3. The Questionnaire 
The questionnaire consisted of two parts: the risk perception section and a section 

requesting socioeconomic data. Risk perception questions included qualitative answer 

categories to evaluate factors influencing perception of risk to lead exposure, as well as to 

conduct a risk analysis of various hazards that community stakeholders may encounter. 

The questions were based on a literature review of risk perception in a remediation 
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context, discussions with a technical expert team consisting of an environmental 

economist, a remediation consultant, and a social scientist, as well as a pilot survey. A 

copy of the survey is provided in Supplementary Material. 

The study is based on data collected via an in-person survey conducted two to 

four days per week between May and August 2015 in Lincoln and Arlington Parks. We 

solicited responses from all park visitors 18 years of age and older whom we encountered 

at the study sites. Each day of the week and time of day (i.e., morning, afternoon, and 

early evening) was represented during the survey event. Respondents were also asked to 

identify their neighborhood of residence. Spatial distribution of respondents by 

neighborhood is presented in Figure 5-1. 

Compared to other modes, in-person surveys provide some distinct advantages. 

For example, they allow the researcher to collect detailed and relatively complete 

information, increase survey response rate, explain a question if required, keep the 

respondent focused, and maintain data quality by avoiding ambiguous markings or 

illegible handwriting, among others (Doyle, 2005). The use of in-person surveys is 

relatively common in the environmental management and public health literature. 

Vandermoere (2008) employed an in-person survey to examine the relationship between 

risk perception and the need for remediation among stakeholders exposed to soil 

pollution. Weber et al. (2001) evaluated the perception of risk to heavy metals in soil and 

the use of various remedial technologies (e.g., bioremediation, excavation, and chemical 

treatment). In-person surveys have also been utilized to understand individual behavior 

and life style choices of fisherman catching fish on designated Superfund Sites (Burger 
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and Gochfeld, 1991).  

5.2.4. Risk Analysis  
 As people are exposed to hazards, the community and broader society 

reacts, directly impacting an individual’s risk perception of those hazards. Perceived risk 

is either heightened or diminished by exposure and societal influences. Risk attenuation 

occurs when experts judge hazards as relatively serious, even while the community does 

not and pays comparatively little attention to that risk. Risk amplification occurs when 

experts assess a hazard as carrying a significant degree of risk, and the community, and 

sometimes broader society, perceives it as a major concern. Risk amplification is usually 

triggered by a single event (Lewis and Tyshenko, 2009; Kasperson and Kasperson, 

1996). Risk attenuation is commonly associated with hazards from complex problems, 

such as regional interactions over long periods of time. The degree of attenuation or 

amplification influences the ripple effect of that risk (i.e., how the public, experts, policy 

makers, media, and broader society conduct risk management strategies) (Kasperson and 

Kasperson, 1996). In this study, the risk analysis was conducted to assess how individuals 

perceived their risk of lead paint exposure and soil pollution relative to other hazards they 

may encounter and, therefore, put the perceptions of lead-based paint and soil pollution 

into perspective. Results of the risk analysis were also used to identify if risk attenuation 

or risk amplification was occurring.  

The respondents were asked to rate on a scale from 1 to 5, “How serious of a risk 

does the following pose to you?” and, “How would you rate the following risk to the 

average person living in New Jersey?” Respondents were asked to rate death, injury, 



167  

  

property damage, terrorist attack, flood damage, burglary, house fire, traffic accident, 

asbestos exposure, lead paint exposure, air pollution, water pollution, and soil pollution. 

On this scale, 1 represented no risk (i.e, “not at all risky”); 3 was a moderate option (i.e., 

“moderately risky”); and 5 represented high risk (i.e., “extremely risky”). Similar scales 

have been successfully used to assess perceived health and environmental risks (Botzen, 

2009; Gerber and Neeley, 2005; Hurd and McGarry, 1995; and Kunreuther et al., 2001). 

A percentage distribution analysis (Botzen, 2009) was conducted for this study to assess 

perceived likelihoods of risks to listed hazards.  

5.2.5. Factors Influencing Risk Perception 
 The success of public outreach in motivating community members to prevent and 

mitigate exposure to a risk is based on site-specific physical, psychological, sociological, 

and demographic characteristics. Identifying these risk perception factors among the 

population allows agencies to implement outreach activities, refine education material, 

and determine modes of delivery that maximize benefits to the community and meet 

specific needs of the targeted public (Bickerstaff, 2004; Palma-Oliveira and Gaspar, 

2004; REVIT, 2007; USEPA, 2005). 

 Individual risk perceptions are shaped by interactions of a variety of personal, 

social, and institutional factors. Bickerstaff (2004) presented three key dimensions of risk 

perception factors based on socio-cultural and psychological research: place and locality, 

agency and power, and trust and communication. 
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 We used the Pearson correlation analysis (Tam and McDaniels, 2013) and the 

gamma measure of association test (Fischhoff et al., 2010) to evaluate the relationship 

between perceived risk and key dimension factors. Correlation analyses give insight into 

how different variables relate to one another. Such results can indicate the directional 

relationship between variables, along with the magnitude and significance of that 

relationship. Pearson correlation analysis was used to evaluate questions posed with 

nominal variables consisting of “yes” and “no” as potential answers. These variables are 

considered nominal because there is not an intrinsic ordering to the potential responses. 

The gamma measure of association test was used to evaluate questions posed with ordinal 

variables, in which potential answers were classified in a specific order (e.g., not at all 

(1), very little (2), somewhat (3), and to a great extent (4)). 

5.2.6. Demographics   
 Stakeholder engagement and public outreach efforts should cater to the specific 

needs of each individual and stakeholder group impacted. The public consists of a wide 

range of individuals including, but not limited to, potentially responsible parties, 

demographic sub-populations, members of special interest groups, and policy-makers. 

This mosaic of individuals and groups brings a range of ideas to their understanding of 

risk and risk-based decisions (Bickerstaff, 2004; Wester and Herber, 2004; USEPA, 

2005). Several studies indicate that perceptions of risk vary among different demographic 

groups (Hakes and Viscusi, 1997; Botzen, 2009). Low-income, underserved, 

disenfranchised, and ethnically diverse communities like Jersey City are subject to 

environmental and health problems (Bullard, 1990; Coughlin, 1996). The socioeconomic 
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variables included in this study are the age of the respondent, gender, education level, 

type of household, approximate gross family income, employment status, and residency 

status.  

 The ordinal logistic regression model (Tate et al., 2003) was used to estimate 

more reliable coefficients by controlling for relevant variables. Given that survey 

responses were measured on an ordinal scale, this approach was considered appropriate 

to analyze the data. This model accounts for the order between the levels, as opposed to 

the actual distance. It estimates similar parameters and produces n-1 number of 

intercepts, fitting a succession of parallel logistic curves to the cumulative probabilities. 

The econometric model can be specified as: 

 ----------------------------------(1) 

  =    -------------------------------------------------------------(2) 

where m represents the number of response levels in each survey question and 

F(x) is the standard logistic cumulative distribution function.  

 The analysis was conducted using the stepwise regression method and our model 

(equation 1) with lead paint exposure and soil pollution exposure as dependent variables. 

JMP software was used to determine the covariates (independent variables) that optimize 

the model. Accordingly, we formulated alternative and reference groups to narrow down 

the demographic characteristics that exhibited a significant correlation with exposure to 

lead-based paint and soil pollution.  
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Figure 5-2: Risk Analysis 

5.3. Results and Discussion 

5.3.1. Risk Analysis 
Figure 5-2 presents the results of the risk analysis. For a majority of the hazards 

evaluated, respondents generally perceived risk to these hazards as moderately risky for 

individuals, but more so for the average New Jersey resident. For instance, the 

respondents rated their risk of being exposed to lead based paint as generally lower 
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compared to the average person living in New Jersey. This is unexpected due to the 

ongoing public outreach efforts conducted by the municipal health department on 

preventing and mitigating lead exposure. These results could have been influenced by the 

“optimism bias” (Weinstein, 1987), which has been well documented in studies on risk 

perception. “Optimism bias” may be at work when respondents consider themselves less 

susceptible to risks than others. The “optimism bias” seemingly occurring here could 

have been amplified by the relatively young age of the average respondent (De Joy, 

1989).   

The analysis also suggests that risk perception of lead paint exposure and soil 

pollution are indicative of “risk attenuation” (Lewis and Tyshenko, 2009; Kasperson and 

Kasperson, 1996), wherein abstract and seemingly remote risks are outweighed by more 

immediate and perceptible ones (such as air and water pollution). The respondents’ 

heightened perception of risk appeared to be related to their awareness of these risks 

being endemic in urban areas (Bickerstaff and Walker, 2001). Another possible 

explanation could be the effect of the “availability heuristic,” proposed by Tversky and 

Kahneman (1974), which points to the exaggerated effect that recent events related to 

hazards (e.g., terrorist attacks or a house fire) can have on the perception of risks in 

everyday life. More distant and slowly unfolding risks, such as chronic, long-term 

exposure to lead, could be overshadowed by adverse events that have been prominent in 

public discourse.   
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Table 5-2:  Correlations among Key Risk Perception Factors (nominal scale) 

 
 
Key Dimensions 

 

 
 

Risk Perception 
Factors 

Lead Paint 
Exposure 

Soil Pollution 

Individual 
Chi 
Square 

p Chi 
Square 

p 

Place and 
Locality 

Aware of Polluted  
Site w/in Two Blocks 

3.32 0.506 9.19 0.057* 

Place and 
Locality 

Aware of Polluted Site 
w/in Neighborhood 

5.87 0.209 6.57 0.161 

Trust and 
Communication 

Aware of Lead 
Exposure Damage Vital 
Systems 

3.05 0.549 6.95 0.139 

Trust and 
Communication 

Aware of 
Developmental Issues 
from Lead Exposure 

2.20 0.700 10.29 0.036** 

Place and 
Locality 

Grow Plants for 
Consumption 

2.38 0.666 0.70 0.952 

Place and 
Locality 

Grow Plants for 
Decoration 

10.82 0.029** 8.91 0.064* 

Agency and 
Power 

Purchase Top Soil for 
Gardening 

3.74 0.442 6.47 0.167 

Place and 
Locality 

Plant Directly in 
Ground 

3.76 0.439 4.85 0.303 

Place and 
Locality 

Residents Interact with 
Garden/ Grass  

0.87 0.930 5.22 0.266 

Place and 
Locality 

Pets Interact with 
Garden/Grass 

4.42 0.352 2.59 0.628 

Place and 
Locality 

Soil Tested For Lead 3.06 0.931 5.84 0.666 

Place and 
Locality 

Paint Test for Lead 12.31 0.138 4.26 0.833 

Place and 
Locality 

Lead Pollution 
Identified in Soils 

5.71 0.680 11.58 0.171 

Place and 
Locality 

Lead Pollution 
Identified in Residence 

8.49 0.387 5.71 0.680 

Agency and 
Power 

Measures Taken to 
Mitigate Lead 

5.99 0.648 6.01 0.646 

Note: Correlation analysis was conducted using Pearson. ***p <0.01, **p<0.05, *p <0.10  
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Table 5-3: Correlations among Key Risk Perception Factors (ordinal scale) 

 
 

Key 
Dimensions 

 

 
 
Risk Perception Factors 

Lead Paint Exposure Soil Pollution 
Individual 

correlation 
coefficient  

95% CI correlation 
coefficient 

95% CI 

Place and 
Locality 

Going to Get Worse in 
the Future - Household 
Pollution  

0.348* [0.211 -  
0.486]  

0.483* [0.354 - 
0.613] 

Place and 
Locality 

Going to Get Worse in 
the Future - Community 
Pollution 

0.360* [0.221 - 
0.500] 

0.513* [0.387 - 
0.639] 

Trust and 
Communication  

Heard or Read about 
Pollution in the Jersey 
City Area 

0.309* [0.190 - 
0.429] 

0.297* [0.165 - 
0.429] 

Trust and 
Communication 

Interest in Learning 
More about Pollution in 
the Jersey City Area 

0.121 [-0.032 - 
0.275] 

0.230* [0.082 - 
0.379] 

Trust and 
Communication 

Individual’s 
Responsibility to be 
Aware of Env. Risks 
and Address Them 

0.196* [0.047 - 
0.344] 

0.217* [0.077 - 
0.358] 

Trust and 
Communication 

How Sensitive is the 
Environment to Human 
Activities  

0.104 [-0.075 - 
0.282] 

0.277* [0.099 - 
0.454] 

Trust and 
Communication 

Human Population’s 
Impact on the 
Environment 

0.122 [-0.080 - 
0.324] 

0.230* [0.026 - 
0.435] 

Agency and 
Power 

Ability to Address – 
Household Pollution 

0.366* [0.231 - 
0.501] 

0.449* [0.319 - 
0.579] 

Agency and 
Power 

Ability to Address – 
Community Pollution 

0.296* [0.153 - 
0.439] 

0.458* [0.330 - 
0.586] 

Note: Correlation analysis conducted using gamma measure of association test, *p<0.05.           
CI = confidence interval 

 

5.3.2. Key Dimensions of Risk Perception 
 The relationship between key risk perception factors (Bickerstaff, 2004) and 

perceived risk to lead paint exposure and soil pollution for individual respondents is 

presented in Tables 5-2 and 5-3. In Table 5-2, the chi square statistic is used to evaluate 

whether distributions of nominal variables differ from each other. Significant correlations 

are represented by p-values less than 0.10. In Table 5-3, significant correlations are 
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represented by correlation coefficients that fall within the 95-percent confidence level, in 

which the range does not include zero. By identifying these significant correlations, we 

can determine which factors have the greatest influence on risk perception. We can then 

focus on these factors when developing a plan to spread public awareness and limit the 

harmful impact of exposed lead.  

 The same set of factors were correlated to perceived risk of lead paint exposure 

and soil pollution, which included: 

 Growing plants for decoration (place and locality); 

 Having the ability to address both household and community pollution (agency 

and power); 

 Heard and read about pollution in the Jersey City area (trust and communication); 

 Understanding the responsibility of the individual to be aware of and to address 

environmental risk (trust and communication); and 

 Sense of a personal safe space and belief that household and community pollution 

are going to get worse in the future (place and locality). 

 Additional factors were correlated to perceived risk of soil pollution only, which 

included: 

 Awareness of a polluted site within two blocks of the property (place and 

locality); 

 Awareness of developmental issues from lead exposure (trust and 

communication); 
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 Interest in learning more about pollution in the Jersey City area (trust and 

communication);  

 Sensitivity of the environment to human activities; and  

 Human population’s impact on the environment. 

The results of the correlation analysis suggest that individual respondents hold 

themselves accountable and perceive themselves as having the ability to address 

environmental risks within their household and community. Therefore, public outreach 

focused on risk management of lead would encourage respondents to prevent and 

mitigate their exposure. In addition, hearing and reading about pollution would most 

likely heighten their awareness of risk from lead exposure and would motivate them to 

undertake precautionary and mitigation efforts to reduce personal harm (Flynn et al., 

1999). Wiséen and Herber (2007) found that when a substance was subject to public and 

media attention, it was positively linked to a higher risk perception. They saw the media 

as an important delivery mode for transferring information to a large audience (i.e., 

community). The results of our risk analysis indicate that the community members 

believe that they are at less risk to lead exposure than the average New Jersey resident. 

By using media, such as local newsletters and participation in community events (such as 

farmers markets and fairs), the municipal health department can raise the community’s 

awareness of exposed lead and the health threats it poses.  

 Respondents mostly agreed that household pollution, including lead paint 

exposure and soil pollution, is going to worsen in the future. However, respondents did 
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not correlate lead exposure to damaging vital human systems (e.g., neurological and 

circulatory). Respondents only correlated detrimental developmental effects from lead 

exposure with soil pollution and not with paint. Chronic lead exposure via paint can 

cause permanent health and developmental effects (CDC, 2015). Therefore, there appears 

to be a disconnect between the perceived danger of exposure to lead based paint and its 

actual detrimental health impacts. It is common for individuals who acknowledge the 

presence of a hazard to deny that it will cause harm to them personally. Individuals who 

believe they have the power and ability (e.g., politically and economically) to address a 

hazard, paradoxically have little imperative to do so (Bickerstaff, 2004). Individuals are 

also inclined to accept a risk when it is voluntary (Bickerstaff, 2004; Burger et al., 1991; 

Pflugh et al., 1999). These mindsets may be reflective of “optimism bias,” which seemed 

to be a contributing factor in the risk analysis, as many respondents underestimated the 

potential dangers of lead exposure.   

 Current public outreach efforts of the municipal health department provide 

material explaining the detrimental health effects of lead exposure and how to identify, 

prevent, and mitigate exposure. As shown in Table 5-2, lead testing and mitigation 

measures conducted at an individual’s residence did not have a significant correlation to 

risk perception. This may be due to the misbelief that lead exposure will not harm oneself 

nor one’s family. Based on these results, stakeholder engagement should be incorporated 

to strengthen the connection between being able to address environmental risks and 

understanding the subsequent long-term health benefits of avoiding lead exposure.  
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 Lastly, the results indicated that respondents who know of a polluted site in close 

vicinity to their residence are more likely to have higher risk perceptions of lead, 

especially soil pollution. Therefore, public outreach efforts would likely benefit the 

community by notifying and educating community members about the presence of lead-

impacted structures in close proximity to their households. Once they are aware of lead-

impacted areas nearby, residents may take advantage of free testing for lead in their 

homes and other preventative services provided by the municipality. Outreach should be 

thoughtfully executed, possibly with the help of trusted community partners (e.g., church 

and other non-governmental organizations) to avoid panic within the community. 

5.3.3. Demographics 
The socioeconomic variables and their respective levels used for this analysis are 

presented in Table 5-4. Demographic variables that significantly influenced respondents’ 

perceived risk to lead paint exposure and soil pollution are presented in Tables 5-5 and 5-

6. Significant correlations are reflected by p-values less than 0.10. Sub-populations 

assigning different levels of risk to each hazard emerged within the sample population. 

To be successful, stakeholder engagement must cater to the specific needs of each 

demographically defined group impacted by a hazard. This may require several types of 

approaches to meet corresponding needs (Bickerstaff, 2004; Wester-Herber, 2004; 

Wester- Herber and Warg, 2004; USEPA, 2005). 
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5.3.4. Lead Paint Exposure 
Table 5-4: Socioeconomic Variables Evaluated 

Socioeconomic variable  Data type Data levels 
Gender   Nominal   Male (1) Female (2) 
Ethnic group   Nominal   Caucasian (1) Asian or pacific islander (2) 

Hispanic (3) African-American (4) Other (5) 
Age   Nominal   30 and younger (1); 31-40 (2); 41-50 (3); 51-65 

(4); Older than 65 (5)  
Number of people in the 
household 

Count --- 

Type of household   Nominal   Husband-wife family (1); Male household, 
other family (2); One person, nonfamily (3); 
Female household, other family (4); Two or 
more people, nonfamily (5) 

Have children younger 
than 3 years old  

Nominal   No (0); Yes (1) 

Highest level of education 
completed  

Ordinal  Elementary school (1); High school (2); Some 
college (3); College graduate and above (4) 

Gross family income  Ordinal  Less than $22,000 (1); $22,000-$49,999 (2); 
$50,000-$89,000 (3); Greater than $90,000 (4) 

Employment Status  Nominal   Employed/self-employed (1); Homemaker (2); 
Military (3); Unemployed (4); Student (5); 
Retired (6) 

Residency status  Nominal   Owns and lives at property (1); Owns the rental 
property (2); Tenant (3). 

Duration in current 
residence   

Ordinal  Less than a year (1); 1-5 years (2); 5-10 
years(3); Over 10 years (4) 
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Table 5-5: Demographic Variables of Risk Perception to Lead Paint Exposure 

Variable Estimate 
(regression 
coefficient) 

Chi Square p 

Ethnic group {5&3&4-1&2} 0.18 1.68 0.195 
Age {1&2-3&4&5} -0.16 1.22 0.270 
Age {1-2} 0.22 1.94 0.163 
Type of household  {1&5&2-4&3} 0.36 6.95 0.008*** 
Gross family income{1-2&3&4} -0.37 5.49 0.019** 
Employment Status {2&4&1&5-6} 0.70 2.58 0.109 
Employment Status {2&4-1&5} 0.33 4.14 0.042** 
Duration in current residence  {1-
2&3&4} 

-0.38 4.11 0.043** 

Duration in current residence  {2&3-4} 0.32 3.69 0.055* 
Duration in current residence  {2-3} -0.33 3.12 0.077* 
Whole Model Test Parameters 
Model  Log Likelihood Degrees of 

Freedom 
(DF) 

ChiSquar
e 

p 

Difference 17.08215 10 34.16 0.000*** 
Note: *** significant at <0.01 level; ** p<0.05; * p<0.10; See Table 5-4 for corresponding 
numerical variables. The Log Likelihood tests goodness of fit of the model. It tests whether the 
regression coefficients    are all simultaneously zero. The p value indicates whether each 
regression coefficient is zero (p value < 0.1 indicating that the value is significant). The results 
conclude that the model itself is significant. 
 
 Results suggest that respondents’ assessment of their own risk from lead paint is 

affected by gross family income, type of household, employment status, and how long the 

respondent has lived at their current residence. Compared to a single person or a female 

headed household, respondents that belong to a male headed household or larger 

households are likely to attribute lower risk to lead paint exposure. This finding aligns 

with previous studies identifying a lower risk perception to environmental hazards in 

males than in females (Bickerstaff, 2004; Slovic, 1997, 2003; Wester Herber, 2004).  
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 Respondents who are students or employed are likely to consider lead paint 

exposure as more risky, compared to homemakers and those who are unemployed. In 

addition, lower income households (below $22,000 a year) attribute more risk to lead 

paint exposure than those with a higher income. Respondents, who are currently 

unemployed or retired reflect socio-economic marginality and often assess risk 

differently than other sub-populations (Bullard, 1990; Coughlin, 1996). 

 Compared to respondents who have lived in their homes for more than a decade, 

shorter-term residents are likely to consider lead paint exposure as less risky. However, if 

we break down the years of residence further, those living in houses for less than a year 

attribute more risk to lead exposure than those who have exceeded one year of residency. 

The lead risk perception is also higher for households that have been residing in their 

home between 1 to 5 years versus between 5 to 10 years. Hazards that are regional and 

present over long periods of time are often perceived as less risky (Kasperson and 

Kasperson, 1996). These results further suggest the presence of an “optimism bias” and 

“risk attenuation,” in which a significant portion of the respondents do not perceive 

themselves at a high risk to lead exposure.  
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5.3.5. Soil Pollution Exposure 
Table 5-6: Demographic Variables of Risk Perception to Soil Pollution 

Variables Estimate 
(regression 
coefficient) 

Chi Square P 

Gender  [1] 0.08 0.41 0.52 
Ethnic group  {3-4&2&1&5} 0.35 4.35 0.04* 
Ethnic group  {4&2&1-5} 0.39 2.87 0.09** 
Have children younger than 3 years old 
[0] 

-0.20 1.70 0.19 

Employment Status {2&4&1&5-6} 0.61 3.10 0.08** 
Employment Status {2&4-1&5} 0.31 4.25 0.04* 
Duration in current residence  
{1&2&3-4} 

0.27 2.74 0.10** 

Duration in current residence  {1&2-3} -0.44 5.79 0.02* 
Duration in current residence  {1-2} -0.27 2.33 0.13 
Whole Model Test Parameters 
Model  Log Likelihood Degrees of 

Freedom 
(DF) 

Chi 
Square 

P 

Difference 10.30838 9 20.62 0.015** 
Note: *** significant at <0.01 level; ** p<0.05; * p<0.10; See Table 5-4 for corresponding 
numerical variables. The results of the Log Likelihood test conclude that the model itself is 
significant. 
 
 Results suggest that respondents’ assessment of their risk to soil pollution is 

affected by their ethnicity, employment status, and how long the respondent has lived at 

their current residence. Respondents who identified themselves as Hispanic or under the 

“other ethnicity” category are likely to consider exposure to soil pollution as less risky 

compared to Caucasian, Asian or Pacific Islander, or African-American respondents. 

Among ethnic sub-groups, Caucasians and Asian Americans usually rate risks as low, 

while African Americans tend to rate risks as high (Bickerstaff, 2004; Slovic, 1997, 

2003). The African American respondents for this case study, however, are likely to 
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consider soil pollution as less risky. Moreover, results showed that retired people, 

employed/self-employed, homemaker, unemployed, and students are likely to attribute 

lower risk to soil pollution.  

 Compared to respondents who have lived in their homes for more than a decade, 

shorter-term residents are likely to consider soil pollution as less risky. Furthermore, 

respondents that have lived in their house for less than five years are likely to consider 

exposure to soil pollution as more risky. These findings mirror the lead paint exposure 

results and reiterate the presence of an “optimism bias” and “risk attenuation.” 

5.3.6. Overall Findings 
The findings indicated that sub-populations are present among the respondents, each 

assessing their risk to lead paint exposure and soil pollution differently: 

Lead Paint Exposure 

 Perceived Risk as Low: Male and larger family households, homemakers, 

unemployed, higher income, and resided at current residence between 5 to 10 

years 

 Perceived Risk as High: Female, single person, student, unemployed, lower 

income, and resided at current residence between 1 and 5 years 

Soil Pollution  

 Perceived Risk as Low: Hispanic, Other (ethnicity), retirees, employed/self-

employed, homemaker, unemployed, students, and resided at current residence 

over 10 years 
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 Perceived Risk as High: Resided at residence less than 5 years 

 Overall, there are some similarities among the sub-populations that perceive risk 

to lead paint exposure and soil pollution at the same level (i.e., low versus high), 

including employment status and duration of residency. However, several differences 

were identified among the sub-populations. For instance, type of household significantly 

influenced risk perception of lead paint exposure and not soil pollution. These findings 

suggest that target stakeholder groups are defined uniquely by the risk (hazard) being 

evaluated. Stakeholder groups that severely underestimate their risk of different hazards 

require focused attention and more vigorous outreach to change their views to reflect 

actual risk.   

 Respondents living at their current residence for more than 5 years also seem to 

be unconcerned about lead paint risk. This is alarming since newly established families 

likely have children under the age of three, and belong to the segment of respondents 

with greatest actual risk from lead paint and soil contamination. The results could not 

identify a significant correlation between risk perception and households with children 

younger than three years old. The opposite would be expected, knowing that early 

childhood exposure to lead causes detrimental health effects (CDC, 2015). In addition, 

60% of the respondents were tenants (see Table 5-1) and may not have control over 

preventative and mitigation activities at their residence. During the survey, a small 

number of respondents indicated challenges to soliciting landlords to test and mitigate 

lead paint exposure at their residence, and often moved due to non-response. The findings 
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suggest that stakeholder engagement for vulnerable sub-populations needs to be refined 

to meet their specific needs, such as landlord communication support and education on 

detrimental effects of lead exposure to sensitive populations (e.g., children under the age 

of three).  

5.4. Conclusion  
Residents’ perceived risk to lead paint exposure and soil pollution appears to be 

overshadowed by the presence of more immediate and perceptible risks (such as air and 

water pollution). In addition, the community exhibits “optimism bias” and the majority of 

residents do not identify themselves at high risk to susceptible and immediate hazards, 

including lead exposure. The underestimation of the immediate threat from lead 

contamination creates a significant obstacle to community participation in municipal-led 

education and outreach programs. 

Based on this analysis, we recommend that decision-makers address the 

community’s “optimism bias” by emphasizing that everyone has the ability to address 

environmental risks associated with lead, and that doing so will subsequently improve 

long-term health, especially for more vulnerable sub-population groups (residents living 

in Jersey City more than 5 years, tenants, and households containing children under 3 

years of age). In addition, stakeholder engagement could clearly identify hazardous 

materials in close proximity to residences. More residents would likely take advantage of 

outreach (e.g., testing) activities if they were aware of nearby buildings containing 

elevated concentrations of lead. This may also encourage more landlord-tenant 
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communication. In addition, risk managers should consider using media and participating 

in community events to spread greater awareness of risk to lead. 

Since the community believes it has the ability to address environmental risks, 

additional “bottom-up” stakeholder engagement approaches should be considered. 

Community leaders should provide interactive opportunities where residents can 

participate in testing and mitigation activities to prevent future exposure. For example, 

the municipality could team with a local youth group, church, or other community groups 

to mitigate lead sources in public areas (e.g., sand and repaint chipped paint areas). The 

knowledge and hands-on experience would give residents the proper instruction to 

conduct similar mitigation efforts within their own households. Finally, the heterogeneity 

of individual stakeholder groups must be taken into consideration when developing risk 

management activities in order engage all representative stakeholders. 
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Chapter 6  

RESEARCH STUDY CONCLUSIONS 

6. Overall Conclusion 
Incorporation of methodologies from the environmental economics and social science 

disciplines into existing environmental impact evaluations performed by the remediation 

community is relevant and necessary to assess impacts to the triple bottom line (i.e., 

environmental, social, and economic). Consideration of triple bottom line impacts 

throughout the remediation project’s life cycle ultimately results in short-term and long-

term cost savings to both the responsible party and society. In addition, it has direct and 

indirect impacts on the quality of life for the local community and global society.  

Historically, environmentalism does not take into account alleviating socio-economic 

costs and environmental justice issues. As evidenced in our present political environment, 

climate change impacts will have the greatest impact on socio-economically 

disadvantaged communities (i.e., cannot afford to relocate to areas not impacted by 

climate change). These indirect consequences of consuming limited natural resources and 

emitting chemicals into the atmosphere can be incorporated into a sustainability 

assessment using the social cost of environmental metrics. Unfortunately, there is an 

overall trend toward underestimating externality cost from greenhouse gas emissions and 

a backlash to using social cost metrics. This research study stresses the importance of 

using and refining these metrics to accurately reflect how human activities are leading to 

costs borne by society.  
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In addition, this research study touched upon how the social and economic 

dimensions of the triple bottom line can be the drivers for implementing sustainable 

practices. More often than not, the remedial or risk management approach implemented 

on a contaminated site directly impacts the quality of life for socially vulnerable 

populations, both in the short and long terms. In the risk perception case study, short term 

impacts to the community from mitigating lead exposure include reductions in lead levels 

in blood, learning disability in children, and costly medical bills. Long term quality of life 

impacts from lead mitigation include a decrease in the indirect effects of lead related 

health problems (e.g., learning disabilities linked to lower education status and increased 

crime rates). The limited resource that needs to be used in a sustainable manner in 

socially driven remediation and mitigation efforts is often money.    

Traditionally, the remediation community has placed more weight on evaluating the 

environmental dimension of remedial activities and isolating the social dimension to 

stakeholder engagement. In addition, green remediation and sustainable remediation 

practices have been implemented primarily at the remedial selection and design stage, 

with little regard to long-term preventative and mitigation strategies. The conclusions of 

this research study stress the importance of shifting the remediation community’s 

sustainability efforts towards integrating and embracing the interconnectivity among the 

triple bottom line dimensions throughout the project life cycle, thus efficiently utilizing 

limited resources (natural and financial) and continuously improving upon society’s 

quality of life to achieve a true sustainable state. 
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6.1. Environmental Management Application  
Human activities, including remediation, have both beneficial and detrimental 

impacts towards the environment, society, and economy. The balancing of these impacts 

are essential in maximizing benefits while minimizing costs both short and long-term. 

Evaluating and incorporating long-term benefits and costs of remediation can be 

challenging and may require further integration of complementary disciplines, including 

environmental economics and social science.  

As presented in Chapters 2 through 4, methodologies commonly used in 

environmental economics can be incorporated into a footprint evaluation or life cycle 

assessment (LCA) to quantify long-term global impacts from resource consumption and 

chemical emissions (e.g., climate change and human health impacts). These global 

impacts have significant financial implications on our society, particularly in mitigating 

and repairing damage caused by climate change. Such effects are also apparent in funding 

now required to build systems and infrastructure, beyond remediation, resilient to climate 

change impacts (e.g., sea level rise or extended drought). In a holistic view of 

remediation, reducing resource consumption and emissions not only alleviates short-term 

environmental and financial impacts for the remediation sector, but also reduces long-

term environmental and financial impacts to society.  

As presented in Chapter 5, methodologies from the social science discipline can 

assist remediation professionals with stakeholder engagement and evaluating long-term 

impacts (both beneficial and detrimental) from risk management activities. Stakeholder 

engagement is a vital sustainable remediation best management practice that results in 
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successfully managing and integrating stakeholder needs into remediation, identifying 

drivers and barriers to sustainable remediation, empowering the community (e.g., take 

ownership of maintaining a redeveloped parcel), and addressing challenges posed by risk 

perception to re-use of treated impacted media, mitigation of household risks (e.g., lead-

based paint), and alternative cleanup approaches. 

Regardless of the methodologies used and level of evaluation for implementing 

sustainable practices, early consideration and development of sustainability objectives 

during project planning is essential. Similar to the site characterization and remediation 

techniques implemented during remedial activities, the tools used to conduct a 

sustainable remediation assessment are based on site-specific variables or contexts 

(including legal and regulatory contexts), that are unique to every project. Successful 

consideration of the social dimension during a sustainability assessment is a core part of 

an integrated assessment that helps all stakeholders involved identify the most 

sustainable, viable strategy for remediating a site (Harclerode et al., 2015a). 

6.2. Policy Implications 
It is evident from the numerous frameworks and research studies issued over the 

last decade, that sustainable remediation is an integral practice in risk management, 

including cleanup activities and preventative measures. None of the established 

frameworks to date are required or enforced by regulatory agencies at an international 

level. Therefore, the implementation of comprehensive sustainable remediation 

assessments are limited, especially in the U.S.  The findings of this research study 

highlight resources, both natural and financial, that can be saved by conducting 
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comprehensive sustainability evaluations of cleanup activities throughout the project life 

cycle. Thereby supporting the issuance of policies mandating the incorporation of 

sustainable remediation practices to maximize benefits to all stakeholders and alleviate 

detrimental impacts to global society.  

In Chapters 2 through 4, the social cost of environmental metrics were used to 

quantify global monetized impacts from site-specific cleanup activities. The use of social 

cost metrics, specifically carbon, is encouraged by the United State Protection Agency 

(USEPA) (2016b) and U.S. Department of Energy (DOE) (2011) to estimate the climate 

benefits of the decision-making process, following United States Executive Order 12866 

– Regulatory Planning and Review. The findings of this research present a cost effective 

methodology to incorporate EO 12866 into the remedial decision-making process by 

using the results of established environmental footprint and life cycle assessment (LCA) 

tools. In addition, individual case study evaluations using the proposed methodology 

resulted in identifying opportunities to incorporate sustainable solutions as part of 

optimization efforts for existing resource-heavy remedial systems (e.g., groundwater 

pump and treat). The use of social cost metrics in the decision-making process is often 

criticized for not accurately representing financial damages society will endure from 

chemical emissions and resource consumption; and in turn not frequently utilized in cost 

benefit analysis. Two negative outcomes arise from not utilizing social cost metrics: (1) 

long term, intergenerational socio-economic impacts are not accounted for in the decision 

making process; and (2) research is not performed to develop more accurate social costs, 

because decision-makers are simply not using these metrics. It is the hope of this study 
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that the case studies presented herein provide confidence and less uncertainty in using 

social cost metrics drive innovation in this area of environmental economics, and foster 

future, more widespread use of sustainability evaluations in remediation projects. 

In Chapter 5, the case study showcased how integration of risk perception 

analysis in stakeholder engagement can help identify obstacles and address them to 

maximize beneficial outcomes of risk management activities. Financial resources 

available to conduct pollution prevention and mitigation efforts within a localized 

community are dwindling. In order to efficiently use limited financial resources, while 

simultaneously benefiting all stakeholders within a community, policies can be issued to 

consider and incorporate risk perception analysis as part of preventative measures.  

Sustainable remediation expertise is widely accessible in academia, consulting 

companies, regulatory agencies, and private organizations. Remediation decision-makers 

should take advantage of these experts to choose not only appropriate tools and 

methodologies, but to also assist in identifying experts from other disciplines (e.g., 

ecology, urban planning, economics, sociology, and anthropology) that can address site-

specific social concerns and accurately characterize the remediation context (Harclerode 

et al., 2015a).  

6.3. Limitations of the Study  
The research study presented herein was not without its limitations, as presented 

below. However, these limitations did not diminish meeting the study’s objectives and 

overall outcomes of each case study evaluation. 
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Environmental Impact Evaluation: Remedial design parameters (e.g., timber 

mats, in situ amendments, and silt fence) are not available in general life cycle inventory 

(LCI) databases and environmental footprint tool inputs (not including the silt fence 

parameter). In order to account for these design parameters in the LCA case study 

evaluation, the inputs were developed as a process using generic data from the LCI 

database. For the environmental footprint analysis, chemical emissions for these design 

parameters were calculated as part of the LCA and accounted for under the “other known 

onsite activities” category in the footprint tool. The lack of available remediation-specific 

inventory data can lead to inaccuracies in environmental impact outputs associated with 

specific remedial components.   

Social-Economic Impact Evaluation: Both the LCA and footprint tools quantify 

sustainability metrics that currently do not have associated social cost including, but not 

limited to, water consumption, chlorofluorocarbon emissions (indicator of ozone 

depletion), 1,4-dichlorobenzene (indicator of human toxicity), land use/loss, and nutrient 

loads (e.g., phosphorous and nitrogen equivalents). Financial implications society 

endures from long-term damages represented by these metrics are currently not 

accounted for in the societal cost analysis. Therefore, monetized global impacts 

quantified for the remedy are underestimated. In addition, the social costs used for the 

social impact evaluation were derived from environmental, social, and economic models. 

The social or socio-economic cost/benefit related to an increase in property value and 

quality of life by local communities has not been represented in this research study.   
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Risk Perception Evaluation: According to the 2010 U.S. Census (USCB, 2015) 

for Jersey City, New Jersey, 1.4-percent of the population is comprised of “other” 

ethnicity and 23.7-percent is “Asian or pacific islander”. During the in-person survey, 

individuals whose primary language was Arabic, French, or Indian were unable to 

participate in the survey. Even though the sample population distribution characteristics 

were considered similar to the 2010 U.S., the results of the study may not accurately 

reflect those sub-populations. In addition, the case study evaluation is based on results 

collected during in-person surveys. Two sets of 250-mailings were sent out to reach 

residents who do not frequent the case study sites (e.g., Lincoln and Arlington Parks), 

however only approximately 10-percent of the mailed surveys were returned. Due to the 

limited response from the mailings, these surveys were not included in the analysis; and 

therefore, the study results may not accurately reflect sub-populations that do not visit 

designated recreational areas within the community  

6.4. Future Research 
As the international community advances its understanding of sustainable 

remediation and moves towards a multi-disciplinary, integrated objectives-led assessment 

approach, it is important to acknowledge and encourage future research in this subject 

(Harclerode et al., 2015a). 

Environmental Impact Inventory: A major data gap exists among the generic 

input parameters available in LCI databases and footprint tools, specifically used in 

common remedial design components (e.g., amendments for in situ treatment, coir and 

filter logs for bank stabilization, and dewatering pad materials). The lack of inventory 
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data leads to greater uncertainty in the assessment results and inconsistency among 

assessments performed by different parties. Future research is needed to develop generic 

input parameters that are currently missing. In addition, remediation professionals should 

require vendors with proprietary information (e.g., amendments) to provide downstream 

chemical emission and resource consumption data for consideration in the sustainability 

assessment.  

Value of Social Cost Metrics: The literature on social cost metrics is limited and 

often not site specific. Social costs need to be developed for common environmental 

metrics to account for financial implications due to chlorofluorocarbon emissions 

(indicator of ozone depletion), 1,4-dichlorobenzene (indicator of human toxicity), land 

use/loss, and nutrient loads (e.g., phosphorous and nitrogen equivalents). In addition, 

research is needed to assist remediation professionals in estimating site-specific social 

costs that can be incorporated into societal cost analysis evaluations. Particularly, data 

gaps exist for monetizing societal benefits and dis-amenities associated with 

remediation's impacts on water consumption/availability, ecosystem services, urban 

services, and social and human capital. 

Role of the Values-Beliefs-Norms Theory in Risk Perception: The values-beliefs-

norms (VBN) theory identifies factors that influences an individual’s awareness of the 

beneficial consequences related to environmental stewardship and perceived 

responsibility to avert detrimental consequences of non-environmentally friendly 

behavior (Lind et al., 2015; Stern, 2000; Stern et al., 1999). Application of the VBN 
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theory can assist in explaining variance in policy support, environmental citizenship, and 

ecological risk perception (i.e., severity in a ecosystem’s risk to a hazard) among 

individuals and subpopulations within a community (Dietz et al., 2005; Stern, 2000). 

Slimak and Dietz (2006) states “the theory postulates that values, and especially concern 

with the well-being of other humans and the biosphere (i.e., altruism), are at the core of 

environmental perceptions” (pp. 1691).  Based on the risk perception study, individuals’ 

perceive themselves as being responsible to be aware of and address environmental risks 

associated with lead-based paint. Application of the VBN theory can assist the municipal 

health department in further understanding the community’s value (morality) variables 

correlated to these risk perception factors and ultimately use the results of this analysis to 

help address the community’s “optimism bias”. Slimak and Dietz (2006) also applied this 

theory to evaluate differences in ecological risk perception between lay public, 

experienced public, and risk professionals (i.e., assessors and managers). Similar to 

Slimak and Dietz (2006, this case study observed the dichotomy in the severity of 

perceived risk related to lead-based paint between the lay public and risk professionals. 

Therefore, the results of a VBN theory study can also help better understand and close 

this gap.   

Risk Perception of Lead-Impacted Drinking Water: The risk perception study 

focused on evaluating factors that were contributing to resident’s risk perception toward 

lead-based paint and lead-impact soils. Future research is needed to understand factors 

contributing to a vulnerable community’s perception of risk associated with lead-

impacted drinking water. Specifically, once mitigation approaches are implemented to 
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remediate lead in drinking water, research is needed to better understand risk perception 

factors influencing whether community members regain trust in the municipal water 

supply or manifest an overestimation of risk and subsequently do not use the public water 

source.  

Risk Perception of Reuse: The layman’s perception of risk for reusing treated 

media, such as remediated groundwater or soil, often inhibits reuse. Future research is 

needed to understand factors contributing to society’s perception of the risk associated 

with reuse. An increased knowledge base on this subject will assist remediation 

practitioners in educating stakeholders and addressing community concerns pertaining to 

reuse. 

Integrated, Objective-led Assessment: The development and performance of an 

integrated assessment approach for remediation sites is needed to evaluate interrelations 

among the three dimensions of the triple bottom line. This methodology attempts to value 

the effects, identify beneficial interventions, and fully expose unavoidable tradeoffs 

(Pope et al., 2004). The development of this approach should consider integration and 

evaluation of qualitative and quantitative data sets. Future research is needed to expand 

and/or combine existing assessment frameworks into one single approach to address 

trade-off concerns. 

6.5. Closing Statement 
This research study identified sustainability metrics and evaluation tools from the 

environmental economics and social science disciplines that are easily transferable to 
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remediation projects. The methodologies presented herein can be used at any phase of a 

project’s life cycle and to evaluate any type of technological and management strategy 

implemented to mitigate risk. These metrics and tools help alleviate trade-offs among the 

triple bottom line components during remediation. In addition, they provide an 

opportunity to address transparency and uncertainty in using sustainability as an 

evaluation criterion during the decision making process.  

It is imperative to incorporate sustainable practices into existing, as well as new, 

remediation projects to avoid irreversible changes to our ecological systems and improve 

upon our quality of life. In order to achieve sustainability through remediation, decision 

makers and stakeholders must engage sustainability experts and take advantage of 

multidisciplinary tools to ensure scientific integrity and comprehensive analysis are 

driving the decision-making process. In addition, placing value on the interconnectedness 

of the triple bottom line elements in research and development efforts will ensure the 

field of remediation will follow a sustainable path. 

Lastly, remediation professionals play a role as environmental stewards and 

advocates of sustainable development. The remediation sector is often viewed as a small 

player in business, and is an unwanted cost threatening profitable gains. Therefore, little 

effort and funds are provided to consider sustainability in this context. As environmental 

stewards, remediation professionals are responsible for not letting long term benefits of 

sustainability be overshadowed by short term financial gains and unwillingness to 

collaborate with stakeholders. Remediation professionals have a unique opportunity to 
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educate society, including local communities, on the benefits of sustainability and 

creating a vehicle for incorporating sustainability in complementary sectors (e.g., 

wastewater treatment, climate change resilience, and urban development). It is the hopes 

of this research to inspire and equip remediation professionals with knowledge to 

implement sustainable remediation practices throughout the project life cycle, in a 

“business as usual” manner.  
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Supplemental Table 1S 

Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

AOC 1: Excavation 
Sediment Management 
(Staging and Drying) 

Excavator, 
Diesel, 26,500 
cu.yd, saturated 
sediment 

Excavation , skid-
steer loader/RER 
U 

26500 cu.yd 

Sediment Management 
(Staging and Drying) 

Excavator, 
Diesel, 26,500 
cu.yd, saturated 
sediment 

Excavation, 
hydraulic 
digger/RER U 

26500 cu.yd 

Equipment 
Transportation - 
Dedicated Load Road 

Diesel, 16t, 
estimated 6.66 
miles to cover 
the 35200 feet 
(one way), return 
trips accounted 
separately 

Operation, lorry > 
16t, fleet 
average/RER U 

70400 ft. 

Equipment 
Transportation - 
Dedicated Load Road 

Diesel, 16t, 
estimated 6.66 
miles to cover 
the 35200 feet 
(one way), return 
trips accounted 
separately 

Operation, lorry > 
16t, fleet 
average/RER U 

70400 ft. 

Bulk Material Quantities Steel, 71,760 lbs. Steel hot rolled 
section, blast 
furnace and 
electric arc 
furnace 

71760 lb. 

AOC 1: Reconstruction and Stabilization  
Bulk Material Quantities Gravel, 

27028000 lbs. 
Gravel, round, at 
mine/CH S 

13514 ton 

Bulk Material Quantities Sand, 810000 
lbs. 

Sand, at mine/CH 
S 

405 ton 

Equipment Use, 
Earthwork 

Excavator, 
Diesel, 6040 
cu.yd 

Excavation, 
hydraulic 
digger/RER U 

6040 
 

 

cu.yd 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Equipment Use, 
Earthwork 

Excavator, 
Diesel, 3300 
cu.yd 

Excavation, 
hydraulic 
digger/RER U 

3300 cu.yd 

Equipment Use, 
Earthwork 

Loader/Backhoe, 
Diesel, 6040 
cu.yd 

Excavation , skid-
steer loader/RER 
U 

6040 cu.yd 

Equipment Use, 
Earthwork 

Loader/Backhoe,, 
Diesel, 3300 
cu.yd 

Excavation , skid-
steer loader/RER 
U 

3300 cu.yd 

Bulk Material Quantities Mulch, 696.96 
lbs. 

Wood fiber, 
softwood, green, 
at sawmill, 
INW/kg/RNA 

696.96 lb. 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Coir Log - 16-
inch 

5880 ft. 

Bulk Material Quantities Gravel, 372000 
lbs. 

Gravel, round, at 
mine/CH S 

186 tons 

Bulk Material Quantities Soil, 2710000 
lbs. 

topsoil 1355 tons 

AOC 1 & AOC 2: Dredge  
Sediment Dredging - Mechanical, crawler 
crane (100 ton, 4 cy) two sets of equipment 
dredging 10,735 cu.yd each. Assume 3 
support vessels for each. This input does not 
include extra excavators, so included 
excavators/loaders under Equipment Use, 
Earthwork. 

Excavator, 
technology mix, 
100 kW, 
Construction GL 
O 

47041 ton 

Excavation , skid-
steer loader/RER 
U 

10,735 cu.yd 

Excavation, 
hydraulic 
digger/RER U 

10,735 cu.yd 

Operation, lorry > 
16t, fleet 
average/RER U 

44000 ft. 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Operation, lorry > 
16t, fleet 
average/RER U 

44000 ft. 

Operation, 
barge/RER U 

47041 tkm 

Excavation, 
hydraulic 
digger/RER U 

21470 cu.yd 

Operation, 
barge/RER U 

23520.5 tkm 

Operation, 
barge/RER U 

23520.5 tkm 

Operation, 
barge/RER U (not 
best option for a 
tugboat" - water 
transport) 

47041 tkm 

AOC 2:Reconstruction 
Bulk Material Quantities Sand, 1.3838e+7 

lbs. 
Sand, at mine/CH 
S 

6919 ton 

Watercraft Operation Research Vessel 
(Large), 14 days 
x 8 hours a day = 
112 hours 

Operation, 
barge/RER U 

6919 tkm 

Equipment Use, 
Earthwork 

Excavator, 
Diesel, 
5125.185185 
cu.yd 

Excavation, 
hydraulic 
digger/RER U 

5125.185185 cu.yd 

Watercraft Operation Research Vessel 
(Large), 14 days 
x 8 hours a day = 
112 hours 

Operation, 
barge/RER U 

3459.5 tkm 

Watercraft Operation Research Vessel 
(Large), 14 days 
x 8 hours a day = 
112 hours 

Operation, 
barge/RER U 

3459.5 tkm 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Watercraft Operation Research Vessel 
(Large), 14 days 
x 8 hours a day = 
112 hours 

Operation, 
barge/RER U (not 
best option for a 
tugboat" - water 
transport) 

6919 tkm 

AOC 2: In Situ Treatment 
Sediment Capping - Surface Release of 549 
cubic yards, including Hopper Barge, scow 
tenders (support barge), and large research 
barge. The only item not accounted for is the 
powered activated carbon amendment. This 
input is under treatment materials, virgin 
GAC, 1.24e+6 lbs. 

Operation, 
barge/RER U 

620 tkm 

Operation, 
barge/RER U (not 
best option for a 
tugboat" - water 
transport) 

620 tkm 

Conveyor belt, at 
plant/RER/I U 
(process bldg. 
equip 
infrastructure) = 
telebelt 

8.1882 yd. 

industrial 
machine, heavy, 
unspecified, at 
plant = hopper 

620 ton 

Excavation , skid-
steer loader/RER 
U 

549 cu.yd 

Carbon black, at 
plant/GLO S 

620 ton 

Operation, 
barge/RER U 

620 tkm 

Operation, 
barge/RER U (not 
best option for a 
tugboat" - water 
transport) 

620 tkm  

AOC 1: Dewatering 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Electric 
Submersible 
Pumps, 0.5HP 

60 kg 

Equipment use, Pump 
Operation, Method 1  - 
Electrical Usage is 
Known 

1041.92 wk Electricity 
(Medium 
Voltage) 

1041.92 kWh 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Polyester 
Cartridge Filter 

2 kg 

Material Production, 
Treatment Media 

Virgin GAC, 910 
kg of GAC in 
LCA input = 
2006.21 lbs. 

LPGAC Vessels - 
Alt. 2 (larger 
vessel) 

1,907.38 kg 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Sludge Tank, 500 
gal, Enclosed 
Top, 150 lbs. 

138 kg 

Bulk Material Quantities HDPE, 353 lbs. Plastic Pipes, 
HDPE, 6", 
SDR11 

353 lb. 

IDW Disposal AOC 1 
(Sediment RD - AOC 1 
& 2); Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 15 trips; 
150 miles per trip 

Operation, lorry 
>28t, fleet 
average,/CH S 

3,630 km 

Bulk Material Quantities LDPE, 2,110,320 
lbs. 

Polyethylene, 
LLDPE, 
granulate, at 
plant/RER S 

2110320 lb. 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Geotextile 
Membrane 

1517 kg 

Bulk Material 
Quantitates 

Gravel, 4334000 
lbs. 

Gravel, crushed, 
at mine/CH S 

2,167 tons 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Coagulant 
PolyDADMAC 

2,028 tons 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Coagulant tank 48 kg 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Coagulant feed 
pump 

22 kg 

AOC 2: Dewatering 
Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Electric 
Submersible 
Pumps, 0.5HP 

60 kg 

Equipment use, Pump 
Operation, Method 1  - 
Electrical Usage is 
Known 

651.2 kWh Electricity 
(Medium 
Voltage) 

651.2 kWh 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Polyester 
Cartridge Filter 

2 kg 

Material Production, 
Treatment Media 

Virgin GAC, 
4400.819176 lbs. 

LPGAC Vessels - 
Alt. 2 (larger 
vessel) 

1,907.38 kg 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Sludge Tank, 500 
gal, Enclosed 
Top, 150 lbs. 

138 kg 

Bulk Material Quantities HDPE, 353 lbs. Plastic Pipes, 
HDPE, 6", 
SDR11 

353 lb. 

IDW Disposal AOC 1 
(Sediment RD - AOC 1 
& 2); Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 11 trips; 
150 miles per trip 

Operation, lorry 
>28t, fleet 
average,/CH S 

2,635 km 

Bulk Material Quantities LDPE, 1582740 
lbs. 

Polyethylene, 
LLDPE, 
granulate, at 
plant/RER S 

1582740 lb. 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Geotextile 
Membrane 

1137.781555 kg 

Bulk Material Quantities Gravel, 3250000 
lbs. 

Gravel, crushed, 
at mine/CH S 

1,625 tons 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Coagulant 
PolyDADMAC 

3,198 tons 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Coagulant tank 48 kg 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering DHC 
Results 

Coagulant feed 
pump 

22 kg 

AOC 1: Waste Disposal  
Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 1365 
trips; 150 miles 
per trip 

Operation, lorry > 
28t, fleet 
average/CH S 

330,088 km 

Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 1 trip; 
10 miles per trip 

debris - wood 16 km 

Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 7 trips; 
10 miles per trip 

debris - concrete 
and rubble 

103 km 

Landfill Operations 
(Non-Haz) 

38615.05 tons 
disposed in 
landfill 

Landfill/CH U 38395 tons 

AOC 2: Waste Disposal  
Residue 
Disposal/Recycling 

Weight per trip 
28 tons ; 1125 
trips; 150 miles 
per trip 

Sediment: 
Transport, lorry > 
28t, fleet 
average/CH S 

272,017 km 

Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 2 trips; 
10 miles per trip 

debris: Transport, 
lorry > 28t, fleet 
average/CH S 

32 km 

Residue 
Disposal/Recycling 

Weight per trip 
28 tons; 4 trips; 
10 miles per trip 

volume of soil 
piles: Transport, 
lorry > 28t, fleet 
average/CH S 

57 km 

Landfill Operations 
(Non-Haz) 

31877.82 tons 
disposed in 
landfill 

Landfill/CH U 31623 tons 

AOC 2: Mobilization/Engineering Controls 
Silt Curtain Materials 1800 linear feet/ 

3.5 feet in height 
turbidity curtain 6,642 lb. 
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Sitewise Inputs LCA Inputs 
Input Category Quantity/Unit LCA Input Quantity/Unit 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Plywood, outdoor 
use, at plant/RER 
S 

3,121 m3 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

filter log 11,200 lb. 

Silt Curtain Materials 1050 linear feet/ 
3.5 feet in height 

silt fence 3,138 lb. 

    

Bulk Material Quantities Asphalt, 938 lbs. asphalt (mastic 
asphalt) 

938 lb. 

Bulk Material Quantities Gravel, 28,000 
lbs. 

gravel, round, at 
mine/CH S 

14 tons 

AOC 1: Mobilization/Engineering Controls 
Silt Curtain Materials 800 linear feet/ 

3.5 feet in height 
turbidity curtain 2,965 lb. 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

Plywood, outdoor 
use, at plant/RER 
S 

40,572 m3 

Other Known Onsite 
Activities 

LCA SiteWise 
Dewatering CPC 
Results 

filter log 8,000 lb. 

Silt Curtain Materials 500 linear feet/ 
3.5 feet in height 

silt fence 1,494 lb. 

Bulk Material Quantities Asphalt, 1,688 
lbs. 

asphalt (mastic 
asphalt) 

1,688 lb. 

Bulk Material Quantities Gravel, 1,140 
lbs. 

gravel, round, at 
mine/CH S 

1,140 tons 
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Supplemental Table 2S 

LCA Input Quantity/Unit 

AOC 1: Silt Fence 

geotextile membrane 21 kg 

galvanized steel sheet, at plant/RNA 1,448 lb 
steel waste 1,448 lb 

AOC 2: Silt Fence 
geotextile membrane 44 kg 
galvanized steel sheet, at plant/RNA 3,041 lb 
steel waste 3,041 lb 

AOC 1: Filter Log 
Polyethylene, HDPE, granulate, at plant/RER S 1200 lb 
Polyethylene waste 1200 lb 
compost, at plant  6800 lb 
Compost - final waste flow 6800 lb 

AOC 2: Filter Log 
Polyethylene, HDPE, granulate, at plant/RER S 1680 lb 
Polyethylene waste 1680 lb 
compost, at plant  9520 lb 
Compost - final waste flow 9520 lb 

AOC 1: Turbidity Curtain 
nylon 6, at plant/RER S 45.35874641 kg 
ethylene vinyl acetate copolymer, at plant/RER S 45.35874641 kg 
plastic pipe, HDPE, 6", SDR11 141.2 lb 
Galvanized steel sheet, at plant/RNA 18.16 lb 
Galvanized steel sheet, at plant/RNA 95.25 lb 
ethylene vinyl acetate copolymer, at plant/RER S 31.75 lb 
polystyrene, granulate, at plant/RER S 1600 lb 
Galvanized steel sheet, at plant/RNA 880 lb 
plastic waste 45.35874641 kg 
polyethylene waste - final waste flow 45.35874641 kg 
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LCA Input Quantity/Unit 

plastic waste 141.2 lb 
polyethylene waste - final waste flow 31.75 lb 
polystyrene waste 1600 lb 

AOC 1: Turbidity Curtain 
steel waste 993.41 lb 

AOC 2: Turbidity Curtain 
nylon 6, at plant/RER S 102.0571794 kg 
ethylene vinyl acetate copolymer, at plant/RER S 102.0571794 kg 
plastic pipe, HDPE, 6", SDR11 317.7 lb 
Galvanized steel sheet, at plant/RNA 40.86 lb 
Galvanized steel sheet, at plant/RNA 190.5 lb 
ethylene vinyl acetate copolymer, at plant/RER S 63.5 lb 
polystyrene, granulate, at plant/RER S 3600 lb 
Galvanized steel sheet, at plant/RNA 1980 lb 
plastic waste 102.0571794 kg 
polyethylene waste - final waste flow 102.0571794 kg 
plastic waste 317.7 lb 
polyethylene waste - final waste flow 63.5 lb 
polystyrene waste 3600 lb 
steel waste 2211.36 lb 

Top Soil 
Known Input from nature, soil, unspecified, in 
ground   1 ton 
Excavation , skid-steer loader/RER U 1 cu.yd 
Excavation, hydraulic digger/RER U 1 cu.yd 

Coir Log 
Loading Bails U 1 p  
Bailing U 1 p  
Husked nut harvesting, at farm/PH S 2.59 lb 
Coconuts - Raw materials 2.59 lb 
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Chapter 5 – Survey Documentation      
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Appendix A: Approval letter for the research study (survey) from IRB 
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Appendix B: Consent form for adults for the survey (page 1) 
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Appendix B: Consent form for adults for the survey (page 2)  
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Appendix C: Survey Questionnaire for the research study (page 1) 
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Appendix C: Survey Questionnaire for the research study (page 2) 
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Appendix C: Survey Questionnaire for the research study (page 3) 
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Appendix C: Survey Questionnaire for the research study (page 4) 
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