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ABSTRACT 

HYDROLOGIC MODELING IN SEMI-ARID AGRICULTURAL REGION: AN 

INTEGRATED APPROACH TO STUDY WATER RESOURCES IN SOUTHERN  

SAN JOAQUIN VALLEY, CALIFORNIA 

by Sagarika Roy 

 

 Drought is one of the most severe natural hazards in the world. This research 

aims at assessing the limited water resources for better crop-water irrigation and 

conservation of a drought affected agricultural area in California. 

 Evapotranspiration (ET) is one of the most important parameter to study crop 

water use for irrigation scheduling and water management. The remote sensing based ET 

estimation using Surface Energy Balance Algorithm for Land (SEBAL) is the efficient 

way to understand crop water use. Crop Water Stress Index (CWSI) quantifies plant 

stress under different field conditions. The remote sensing approach allows efficient 

irrigation by applying water when symptoms of water stress appear. To avoid water stress 

and poor productivity, agriculture relies heavily on surface-water diversions and 

groundwater extraction. The flow of percolated irrigated water and identification of 

potential recharge area in the field can minimize the water stress. A thorough 

understanding of the ET processes and reliable estimates of ET as well as precipitation 

are required to obtain reliable estimates for water balance.  

Results show that the average actual evapotranspiration (ETa) estimated from 

SEBAL, and Penman-Monteith (PM) was 0.67 mm/h and 0.75 mm/h respectively, with a 

mean percent difference of 0.109%. The analysis shows that the CWSI when greater than 
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0.5 resulted in maximum stress whereas the well-irrigated almond crops have CWSI less 

than 0.24. The flow of groundwater can indirectly influence the status of water stress and 

ET. It was observed that the groundwater is flowing towards the east of the study area. 

Excess irrigated water contributes to groundwater recharge. The average Water Surface 

Elevation (WSE) in 1955 for the growing season (May to July) is 161.04 m. This value is 

low when compared to those of 2009, 2010, and 2011, which are 237.14 m, 236.28 m, 

and 235.74 m respectively. The result shows that the average WSE in the wells increased. 

The total annual deficit in the region is 135.66 ± 11.3 mm and the total annual surplus is 

291.47 ± 24.29 mm. Irrigation should apply when this region undergoes a period of 

moisture deficit in the months of May to July. From September to October are months of 

soil water recharge; from November to early February is the period of water surplus due 

to winter rainfall. It was observed that the growers should apply a depth of approximately 

79.37± 11.3 mm to replenish the soil moisture storage over the entire field in the growing 

season of almond orchards. 
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CHAPTER 1 

1. Introduction 

 The Central Valley in California is known to the world as a productive 

agricultural region. More than 250 different crops are grown there on 20,000 square acres 

(California Department of Food and Agriculture, 2009). According to U.S. Census 

Bureau (2002), the population of California is expected to increase nearly by 50 million 

people by 2025. The water demands in this region are used mainly for irrigation. 

Therefore, the increasing population and growing demand for water in the period of 

drought is expected to increase the reliance on groundwater and surface water (Burow, 

Karen R et al., 2004). Drought is one of the most severe natural hazards in the world. 

America’s most famous drought, the 1930’s Dust Bowl, undermined agricultural 

production throughout the Great Plains, and displaced as many as 2.5 million people 

(National Climatic Data Center, 2009. “Drought: A Paleo Perspective – 20thCentuary 

Drought”). The potential of drought in California is a matter of serious concern 

particularly when there is extensive agricultural production in the Central Valley. The 

water delivery for the Central Valley Project (CVP) reduced at 10 percent of contractor’s 

allocations to be used for irrigation in 2009 compared to 40 percent in 2008 and 50 

percent in 2007 (California Department of Water Resources, 2009). This is a very critical 

situation; farmers relied on the groundwater to accommodate the water shortage caused 

by CVP allowances. Moreover, the State does not have a record of how much water is 

pumped from an aquifer because the agricultural industry has prevented the State from 
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adopting regulations for pumping water from wells. The water years 2007-09 were the 

12th consecutive three-year drought-period in recorded climatic history based on 

precipitation index (California Department of Water Resources, 2010). In terms of 

hydrological perspective, the droughts in the late 1920s, 1970s, and 1980s were 

considered more severe; however, the drought in the year 2009 severely affected the 

agriculture, ecosystem health, and hydropower production sectors on a massive scale. It 

not only   increased the demands for freshwater, but also changed the operating rules at 

reservoirs for reduction in pumping of water from the Sacramento-San Joaquin Delta 

(DWR, 2010). 

The State experienced agricultural losses of $ 308 million in 2008 due to water 

scarcity (California Department of Food and Agriculture, 2009). As a result, crop prices 

remained high throughout the drought period from national and international markets. 

Consequently, unemployment almost doubled statewide from 5.4% to 11.3% during 2005 

to 2009 from agricultural loss. Michael et al. (2010) observed that agricultural support 

jobs declined by 1.5% (2,500 jobs) to 2.3 % (3,750 jobs) in the San Joaquin Valley by the 

end of 2009-drought period (Employment Development Department 2005-2010). These 

statistics highlighted the problem of severe and chronic poverty (Congressional Research 

Service, 2005). 

This project focuses on the Paramount Farm (35o30’N, 119o39’W) in San Joaquin 

Valley, California (Figure 1-1). This study area was selected because it is the world’s 

largest supplier of almonds. It has an extreme Mediterranean climate with an annual 

rainfall of 98.5 mm, which rains during the winter months (December to February), and 
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remains arid during the growing months (May to August).  The total annual rainfall of the 

farm was 98.5 mm in the 2009 study period, suggesting serious drought in the area. These 

orchards are a long-term investment and require specific irrigation scheduling. However, 

they can provide excellent returns to growers over a prolonged period. In addition, these 

crops are sensitive to over-irrigation, which can result in hull-rot disease. In view of the 

fact that only 10% of contractor’s total water was allocated by CVP for irrigation 

purposes, an optimum balance amount of water is required for irrigation as well as 

conservation. This research aims at assessing the limited water resources in semi-arid 

regions for irrigation and water conservations based on the following chapters (chapter 2 

to 5).   

Actual Evapotranspiration (ETa) is one of the most important parameters of water 

balance, irrigation scheduling, and in analyzing crop water stress. The remote sensing 

approach allows for  more complete understanding of ET over a large area using Surface 

Energy Balance Algorithms for Land (SEBAL) model originally developed by 

Bastiaanssen et al., (1998, 2005) (Chapter 2). In this chapter, an airborne image was 

obtained from MODIS/ASTER airborne simulator (MASTER) onboard the NASA DC-8 

aircraft. This   simulator has the characteristics of both the EOS Terra Advanced Space 

borne Thermal Emission Reflection Radiometer (ASTER) and Moderate Resolution 

Imaging Spectro-radiometer (MODIS) sensors (Hook et al., 2000). Meteorological data 

such as incoming solar radiation, relative humidity, air temperature, and wind speed are 

available from the California Irrigation Management Information System (CIMIS) 

located in Belridge, California (station no. 146).  
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Crop Water Stress Index (CWSI) is used to estimate the water requirement. The 

CWSI method suggested by Idso et al. (1981) quantifies plant stress associated with 

water deficit under field conditions. Due to scarcity of water, the crop depends on the soil 

moisture availability. Therefore, to avoid the water stress and poor productivity, the 

irrigated agriculture relies heavily on surface-water diversions, and groundwater 

extractions (Chapter 3).   

After the development of the ground-water basin and surface water diversions, the 

irrigation water from agriculture percolates to recharge the groundwater and irrigation 

pumpage is the main reason for groundwater discharge (Davis et al., 1959 and Burrow et 

al., 2004). Assessing the potential recharge areas in the field can inform management 

decisions that minimize the water stress. The primary source of recharge is through 

percolation of irrigation water. This chapter attempts to analyze the flow of groundwater 

in recharge areas and in water stressed areas (Chapter 4).  

The water regimes of the farm are well understood by water balance assessment. 

Water balance is the balance between incoming water (precipitation) and outgoing water 

(ET, groundwater recharge, and stream flow). A thorough understanding of the ET 

processes and reliable estimates of ET as well as precipitation (P) are required to obtain 

water balance computation of the area annually. The little difference between P and ET 

determines what is left for recharge and runoff (Chapter 5). This study also attempts to 

elucidate complete hydro-geologic characterization of the aquifer system and irrigation 

scheduling of a large farmland dominated by orchards that depends mostly on the rainfall 

assuming that the CVP deliveries could be nil during a drought year. 
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Contribution of chapter 2.  

 In this chapter, energy balance equations based on SEBAL method (Bastiaanssen 

et al., 1998) was coded in Interactive Data Language (IDL) programming in ENVI 4.0 

imaging software for estimating ET in each pixel of the almond orchards. The code was 

applied on the thermal imagery of MASTER data. This is an alternate approach used to 

estimate ET using SEBAL model originally developed by Bastiaanssen et al., (1995). The 

coded SEBAL based ET results were validated with ground based ET using Penman-

Monteith method computed by field based CIMIS data. 

Contribution in chapter 3. 

Aerial remote measurement using MASTER thermal band data was used to 

measure canopy temperature. The first calibration of MASTER imagery shows that the 

average canopy temperature is 5.02 °C greater than air temperature. This is a problem 

because the test field was well watered and the transpiration occurring should cause a 

canopy temperature lower than the air temperature.  Therefore, the differential value 

should be negative.  In addition, the in situ thermal IR Radiometer measurements of 

canopy temperature (Tc) were lower than ambient air temperature (Ta). Therefore 

another calibration was applied where the canopy temperatures measured by the thermal 

IR radiometer in the field was averaged for three different trees to get a representative 

temperature for the canopy for those almond trees.  The locations of these trees were 

known so the temperatures from the nine surrounding pixels were averaged from the 

aerial remote sensing MASTER image. The difference between the MASTER 

temperatures and the thermal IR radiometer temperatures were calculated and then 
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averaged.  The average difference of 7.87 °C was applied to the MASTER data.  

Therefore, the calibration of field with remote sensing temperatures was found to be 

appropriate such that Tc-Ta is negative which allowed for the calculation of CWSI. The 

thermal data obtained from MASTER was used for the canopy temperature of the almond 

trees. The air temperature, relative humidity, vapor pressure, wind speed, solar radiation 

was obtained from the CIMIS station located in Belridge (station number 143) at Lost 

Hills.  It was assumed that the almond orchards completely covered the soil surface, and 

there are no bare soils exposed in the MASTER image, and therefore the soil temperature 

was neglected from the image.  

Contribution in chapter 4. 

The contribution of this work was to analyze the water stress, low ET in the study 

area (objective 1 & 2), and study the groundwater flow in order to identify the recharge 

areas within the field. Identification of potential zones of recharge in the field can help 

the land manager, and farmers to minimize potential water stress. The excess water from 

well-irrigated crops percolates to groundwater recharge. Percolated recharge groundwater 

provides a farm with water conservation, as the recharged water is perhaps utilized for 

uptake by water stressed crops. 
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Figure 1-1. False color composite (Band 1,  Band 2 and Band 6) of  MASTER image 

showing Paramount farm in Southern San Joaquin Valley, California.  Blocks shows 

reflectances of various types of crops in dark tone. Bright tone shows reflectances of non-

vegetated/arid areas 
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Chapter 4 also attempts to analyze the flow of groundwater from the well-

irrigated farm. There are no previously research studies related to Paramount Farm 

groundwater flow. In this study, groundwater flow was simulated by three-dimensional 

finite-difference model using MODFLOW-2000 developed by United States Geological 

Survey (USGS) to study the irrigation water recharge and the flow direction of the 

infiltrated water. This study maps the potential zones for recharge and discharge of 

groundwater and changes in the water-table head in the study area. Such studies provide 

an opportunity to analyze the soil moisture surplus and deficit, which helped to quantify 

the water balance (objective 4). The hypothesis of the study was that the groundwater 

levels increased since 1955 because of the development of surface water diversion by 

CVP and percolation of excess irrigated water. 

Contribution in chapter 5. 

The land use/land cover classification map was generated from supervised 

maximum likelihood classification using remote sensing techniques. This was used to 

compute Available Water Capacity (AWC) for almond orchards class. The water balance 

using Thornthwaite and Mather (TM) method uses input data from precipitation to 

predict the water availability. This quantification assumed that the CVP deliveries could 

be less than 10% of contractor’s allocation, and perhaps zero in the future. Based on the 

precipitation as the only input, the study quantifies soil moisture storage, potential water 

loss, water deficit, and water surplus for the year. 
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The overarching goals of this research and study were to integrate remote sensing 

and hydrology to evaluate energy fluxes for estimation of ET and CWSI; study the 

movement of ground water; assess the change in water table from irrigation, and quantify 

the water balance of the farm. The spatial distribution of CWSI and ET in almond was 

determined through remote sensing using a high spatial resolution of multispectral 

MASTER image.  

The research questions were: 

(1) Will the crop evapotranspiration (ET) have any effect on the water budget or energy 

budget?  

(2) How the almond orchard will yield under the water stress condition with limited 

irrigation?   

(3) How do we address drought potential for better harvests? 

(4) How should irrigation timings be scheduled? 

(5) When is water essential for irrigation? 

(6) Are ET and water stress the best indicators? 

(7) Is the groundwater declining? Can irrigated water recharge the groundwater? 

Moreover, how is the percolated water flow useful for farm water conservation? 

Remote sensing data and hydrologic model output were used to answer questions 

about ET, aquifer flow dynamics, water budgets, and energy budgets in the study area.  
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Conclusions 

The remote sensing approach allows for a more complete understanding of ET 

over the large area of Paramount Farm. In this study, the energy balance equations based 

on SEBAL model was programmed using IDL code embedded in the ENVI image 

processing software originally developed by Bastiaanssen et al., (1998, 2005). The 

customized SEBAL model takes into account the value of sensible heat flux (H) for dry 

pixels, assuming there are no wet pixels (water bodies) in the study area. The value of ΔT 

is determined from the hot pixel in the MASTER image. Results show that the remote 

sensing estimate of ET is an alternative to the conventional method using PM method. 

The average ETa estimated from customized SEBAL and PM are 0.67 mm/h and to 0.75 

mm/h respectively and the mean percent-difference between them is 0.10%. The remote 

sensing thermal infrared crop water stress provides a useful tool for understanding crop 

water requirements.  CWSI is based on the energy balance theory explained by Jackson et 

al. (1981) and Idso et al. (1981) and they suggested that the incoming net radiation is 

dissipated into sensible heat flux (H) and latent heat flux (LE). These outgoing fluxes H 

and LE are responsible for heating the air and evapotranspiration respectively  

(http://hydrology1.nmsu.edu/teaching/soil698/CWSI.html). This study attempts to use 

aerial remote sensing method to compute CWSI. Results show that the average CWSI for 

well-irrigated almond crop was 0.24, while the water stress crops has CSWI greater than 

0.5. The flow of groundwater can indirectly influence the status of water stress and ET. 

Results show that the groundwater flow can contribute to soil moisture availability. 

MODFLOW 2000 model was used to simulate the irrigation water recharge and flow of 
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groundwater. Result shows that the groundwater is flowing towards the east of the study 

area. The average Water Surface Elevation (WSE) in 1955 for the growing season (May 

to July) is 161.04 m compared with those of 2009, 2010, and 2011 that are 237.14 m, 

236.28 m, and 235.74 m respectively. Therefore, the result shows that the water-table has 

increased since 1955 due to infiltration of irrigated water and development of surface 

water diversions in the study area. This research was also useful to understand the soil 

moisture surplus and deficit for computing the water balance. The water balance study 

using the TM model is very helpful in finding out the periods of moisture deficit and 

moisture surplus for the region. Results show that the annual deficit in the field is 135.85 

± 11.3 mm and the annual surplus is 291.47 ± 24.29 mm. Hence, to prevent water stress, 

irrigation was required when the absolute value of Accumulated Potential Water Loss 

(APWL) is highest, typically in the months of May, June, and July. In addition, this 

region was subjected to a period of moisture deficit in the months of May to July. From 

the middle of September through October, soils benefit from recharge, whereas from 

November to early February there typically exists a period of water surplus from winter 

rainfall. The result shows that the area-weighted total runoff was 1086.56 ± 58.4 mm 

from total precipitation of 98.55 ± 8.2 mm annually. The water budget is used to 

determine the amount of water required to replenish the soil moisture loss for irrigation 

scheduling. Therefore, the amount of water required for irrigation in the month of July 

(either runoff or groundwater percolation) is 79.37 ± 11.3 mm. Furthermore, the field 

requires irrigation with at least 20 mm of water to ensure uniform and adequate soil water 

availability in the study area. Water balance approach using the TM model will be useful 
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for the local population to assess their crop calendar and irrigation requirements based 

upon the periods of deficit or surplus.   

 

Environmental Management Implications 

The environment and the water resource play a dual relationship. In this research, 

the environment in the agricultural sector requires sufficient quantity of water for 

irrigation and productivity for better socio-economic development. On the other hand, 

environment provides services and decision support to allocate water in every sector such 

as terrestrial ecosystem services, irrigation, urban, domestic, and industrial uses for 

judicial water rights. In addition, economic factor is also included when there is 

agricultural sector involved in large-scale irrigations. Managing limited water resources 

for large-scale agriculture is a critical component of sound environmental management to 

achieve sustainable and productive farm systems. The crop water requirement for 

irrigation scheduling depends on the ET. In this research, the ET was highest in the 

months of May to July, signifying that the irrigation water applied was satisfactory to 

meet the full crop water requirement. This is helpful in decision making for water 

allocation and management. Inadequate and irregular irrigation could affect the yield and 

thereby agricultural economics. Environmental management implications focus on the 

following issues: 

1. The impact of drought and increased arid lands resulting in rising greenhouse gases 

is important to study climate change and future prediction of global warming. 

2. Protection of watersheds and recharge areas. 
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3. Important role of decision-making regarding water allocation, water quantity 

management, source protection, and the protection of water dependent ecosystems 

This work used an integrated approach to study hydrologic modeling and water resource 

using hydro-geological methods and remote sensing. This research will be beneficial to 

water resources planner for managing and predicting supply and demand of groundwater 

for agricultural needs and  by analyzing the aquifer fluctuations, flows, soil moisture 

status and its implications including:  

 Effect  of land-use and land-cover changes on water resources. 

 The remotely sensed infrared crop water stress index (CWSI) provided a useful 

tool for the evaluation of crop water status especially in arid agricultural land. 

 Effects of climate change on water resources on the aspect of energy budget and 

its influence   in crop evapotranspiration. 

 Assessment of water balance is very helpful for the local population for decision 

making on irrigation scheduling and planning crop calendar especially for the 

drought prone region.  

This research can be extrapolated to pistachios farm adjacent to almond orchards (see 

MASTER land use/cover classification map shown in Figure 2-3a). Ground data such as 

thermal data of canopy, soil, and water are required in the pistachios orchards for 

calibration with the MASTER data. Vegetation characteristics (albedo, soil emissivity 

and canopy conductance) of pistachios crops are also required to estimate ET and CWSI. 

In addition, weather data (solar radiation, air temperature, humidity, wind speed) are 
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required to estimate vapor pressure deficit and crop baseline parameters for calculating 

water stress index. The hydrological modeling can be done by taking into account, the 

observation wells located in Paramount farm to simulate the groundwater flow. Water 

Budget analysis of the pistachios orchards requires rooting depth of pistachios as well as 

soil characteristics such as albedo, soil emissivity and soil moisture capacity. In addition, 

biophysical properties of pistachios crop such as length of growing period, growth stage, 

and chlorophyll content can be measured in field using SPAD meter to estimate 

greenness or plant health. This is helpful in delineating plants from soils in remote 

sensing image and, also  used for calibrating remotely sensed Normalized Difference 

Vegetation Index (NDVI). Therefore, it is possible to generalize the outcome by 

employing an integrated hydrologic modeling to compute water balance of pistachios 

farms executing the same techniques used for almond farm. The application of this 

dissertation study to other arid or semi-arid regions is more difficult due to extreme 

hydrological conditions along with spatial heterogeneity of soil, vegetation, and climatic 

characteristics. Such areas need new sets of variables from a high-resolution satellite 

image data along with weather data. However, scarcity of weather data for inaccessible 

regions can hinder the model output. Therefore, for such studies, a distributed 

hydrological model with remote sensing methods is perhaps recommended to study  

limited water resources.  

 

Future studies: 
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1. The SEBAL approach used in this study assumes a sensible heat (H) from dry 

pixel. A further modification may consist of cold pixel to compute the H 

values in well-irrigated areas.  

2. The soil moisture condition of the root zone can be determined from the 

evaporative fraction. This will be appended in the model for computing soil 

moisture surplus and storage for water balance study.  

3. Crop coefficient (Kc) corresponds to particular crop, growth stage and 

management, which is required to estimate actual ET possibly estimated real-

time throughout the season using NDVI (Choudhury et al., 1994) and Soil 

Adjusted Vegetation Index (SAVI) (Moran et al., 1994; Bauch, 1995; Ray & 

Dadhwal, 2001) will be considered in future studies.  

4. In CWSI method, the baseline parameters depend on the type of crop, soil, 

location, and weather parameters to calculate water stress index. Therefore, a 

further improvement of this method can perhaps be executed using sub-pixel 

analysis of remote sensing imagery using spectral un-mixing methods. 

Depending on the canopy cover, Water Deficit Index (WDI) (Moran et al., 

1994) or CWSI will be determined.  

5. An extension of the study will include snowmelt runoff from the snow-

covered mountain adding to the system. This contributes to groundwater and 

surface water runoffs resulting in recharge and discharge from the farm. 

The study has established the potential for using remote sensing data in hydrological 

modeling to derive various parameters to study farm water management in arid 
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regions. Integration of remote sensing data into other surface parameters (e.g. 

vegetation height or stomata resistance) may contribute to improvements of the 

hydrological simulations. Result obtained from this study will help the water 

managers to plan the irrigation scheduling, understand how water moves through the 

aquifer system, and predict water supply scenarios based on water balance 

computations. Singh et al., (2004) suggested that such water balance studies are 

useful for local population for dealing with water conservation techniques, deciding 

crop calendar and irrigation requirements by identifying the period of soil moisture 

deficit or surplus. This research work also aspires to educate agronomy workers, 

agricultural cooperative services and county water management agencies. The 

translation of the work  will be carried out using computerized coded interface in 

future studies for  easy accessibility and to communicate the scientific methods and 

field level understanding to farmers.  

1.1 Research Objectives 

The overall objectives of this research were to: 

1.  Apply remote sensing for land use land cover classification and estimate crop 

evapotranspiration (ETa); 

2.  Compute water stress index in the time of drought; 

3.  Develop three-dimensional (3-D), finite-difference numerical model of the 

Paramount Farm regional groundwater-flow system; 

4.  Quantify annual water balance using Thornthwaite and Mather model. 
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1.2 Organization of Thesis 

The thesis has been organized into five main chapters, the Introduction followed 

by chapters two through five, which have been prepared as distinct chapters. 

Chapter two, titled “Estimation of Actual Evapotranspiration using Surface Energy 

Balance Algorithms for Land Model : A Case study in San Joaquin Valley, California”, 

estimates ET of almond orchards over the large area of Paramount Farm using remote 

sensing with a customized SEBAL model.  

Chapter three, titled “Estimation of Crop Water Stress Index in Almond Orchards using 

Thermal Aerial Imagery”, quantifies crop stress associated with water deficit under field 

conditions. 

Chapter four, titled “Simulation of Regional Groundwater Flow using MODFLOW in 

southern San Joaquin Valley, California”, addresses the groundwater flow and potential 

area of recharge from percolation of irrigated water. This study also illustrates that the 

groundwater table has increased from percolation of irrigated water. 

Chapter five, titled “Assessment of water balance of the semi-arid region in Southern San 

Joaquin Valley California using Thornthwaite and Mather’s model”, examines the water 

budget of Paramount farm. It was used to study the period of moisture deficit, soil 

moisture recharge and soil moisture utilization in the farm. This chapter also investigates 

the monthly variation of precipitation, potential evapotranspiration, actual 

evapotranspiration, and runoff in the area for computing water balance. 
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CHAPER 2 

ESTIMATION OF ACTUAL EVAPOTRANSPIRATION USING SURFACE 

ENERGY BALANCE ALGORITHMS FOR LAND MODEL: A CASE 

STUDY IN KERN COUNTY, CALIFORNIA 

[This chapter was published in Journal of Environmental Hydrology (2013)] 

 

Abstract: 

 Almond is an important cash crop in semi-arid southern San Joaquin Valley, 

California. Estimating almond water use is an important research objective in the arid 

area of Paramount farm.  A Surface Energy Balance Algorithm for Land (SEBAL) model 

spatially estimates actual evapotranspiration (ETa) in the southern San Joaquin Valley in 

California from available MASTER airborne data. The objectives of the study are: (1) to 

study the spatial distribution property of canopy surface temperature (Tc), Normalized 

Difference Vegetation Index (NDVI), and ETa over the San Joaquin Valley, (2) estimate 

ETa of almond class on pixel-by-pixel basis in the Central Valley, California, and (3) to 

compare ETa obtained from SEBAL model with Penman- Monteith method. The results 

show that the regression between ETa, and Tc show negative (-) correlation. The 

correlation coefficient (R2) of ETa from remote sensing with Penman Monteith was 0.85 

with bias of 0.77 mm and mean percentage difference is 0.10%. These results indicate 

that a combination of MASTER data with surface meteorological data could provide an 

efficient tool for the estimation of regional actual ET used for water resources, irrigation 

scheduling and management. 
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2. Introduction  

Ground measurement of ET is very time consuming and cannot obtain accurate 

spatial ET estimation. Therefore, the complexity involved with the estimation of ET 

manually resulted in development of various spatial methods using remote sensing over 

the period of time (Allen et al., 1998).  Several studies shows the progress of estimating 

ETa using remote sensing techniques (Kustas and Norman, 1996, Bastiaanssen et al., 

1998 and Kustas et al., 2003, Courault et al, 2003, Engman & Gurney, 1992). Wang 

(2008) mentioned “there are two main methods for remote sensing ET estimations: direct 

and indirect. Direct methods use thermal infrared data (TIR) and energy budget 

equations. Whereas, an indirect method uses Soil-Atmosphere Transfer model”.  Both of 

these estimations requires albedo, emissivity and leaf area index under different 

wavelength (Courault et al., 2003). In this study, direct measurement of ET using the 

Surface Energy Balance Algorithm for Land (SEBAL) is applied in the agricultural land 

of southern San Joaquin Valley in California. Bastiaanssen et al. (1998) developed 

SEBAL method, which is one-layer energy balance model.   The model uses energy 

budget equations to estimate instant evapotraspiration for each pixel. Wang (2008) 

suggested that from the input data (incoming radiation , wind speed and spectral 

radiance), the output data such as NDVI (normalized difference vegetation index), 

albedo, roughness length, and soil heat flux (G) can be calculated. The study area was 

irrigated under CVP, which supplies water from the Sacramento-San Joaquin river 

system. Therefore, the quantification of ET is necessary to understand the crop water use. 
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The objective of this study is to (1) investigate the spatial distribution property of 

canopy surface temperature (Tc), Normalized Difference Vegetation Index (NDVI), and 

ETa over the San Joaquin Valley. (2) Estimate actual evapotranspiration of the almond 

class on a pixel-by-pixel basis in the study area using image classification and mask, (3) 

and to compare actual evapotranspiration obtained from SEBAL model with reference 

evapotranspiration (ETo) using Penman Monteith method (PM) obtained from California 

Irrigation Management Information System (CIMIS) station. 

2.1 Materials and Method 

     2.1.1 Study Area 

The 402 km2 Paramount Farm is located at the Lost Hill of Kern County in southern San 

Joaquin Valley, California (35o30’N, 119o39’W) (Figure 2-1). The total annual rainfall in 

2009 drought year of the farm was 98.5 mm. The valley occupies two-thirds of the 

southern Central Valley in California. San Joaquin River flows in the northern part of the 

San Joaquin Valley and drains to the San Francisco Bay. About 4 percent of the basin 

area is urban. Most of the basin’s population is focused on agricultural activities. 

Southern San Joaquin is the world’s largest supplier of almonds with more than 4,000 

acres of almond orchards. Geographically, the southern part of the San Joaquin Valley is 

the Tulare Basin, bordered by the Sierra Nevada on the east, the Tehachapi Mountains on 

the south, and the Coast Ranges on the west. The northern extent corresponds to the 

Kings River. Significant geographic features include the Tulare Lake Basin and the 

Kettleman Hills. The main land use is agriculture.         
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         2.1.2 Data 

 An airborne image was obtained from MODIS/ASTER airborne simulator 

(MASTER). This   simulator has the characteristics of both the EOS Terra Advanced 

Space borne Thermal Emission Reflection Radiometer (ASTER) and Moderate 

Resolution Imaging Spectro-radiometer (MODIS) sensors (Hook et al., 2000). This 

sensor has 50 spectral bands over the spectral range 0.4 to 12 μm (visible through thermal 

infrared) at a variety of spatial resolutions. An image was taken on July 24, 2009. Field 

data was also available for calibrating land surface heat fluxes in the study area. SEBAL 

model was applied to MASTER level 1-B dataset of visible, near infrared and thermal 

infrared radiation channels of airborne MASTER instrument onboard the NASA DC-8 

aircraft. Meteorological data such as incoming solar radiation, relative humidity, air 

temperature, and wind speed are available from the California Irrigation Management 

Information System (CIMIS) located in Belridge, California (station no. 146). CIMIS is a 

program governed by the Department of Water Resources (DWR) in California. DWR 

manages a network of 120 weather stations to collect, store and process weather data. 

These data are useful for irrigator to manage water resources efficiently 

(www.cimis.water.ca.gov). 
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Figure 2-1.   Remotely sensed false color composite (Band 1,  Band 2 and Band 6) of  

MASTER image showing Paramount farm in Southern San Joaquin Valley, California.  

Blocks shows reflectances of various types of crops in dark tone. Bright tone shows 

reflectances of non-vegetated/arid areas (Land cover classification of this image shown in 

Figure 2-3a). 
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2.1.3 SEBAL Model Description 

 The SEBAL model does not only calculate an entire radiation and energy 

balance, but also computes resistances for momentum, heat, and water vapor for each 

pixel (Bastiaanssen et al., 1998 and Bastiaanssen et al., 2000). SEBAL model requires 

inputs such as weather parameters (wind speed, humidity, incoming solar radiation, and 

temperature), remote sensing images, and spectral radiance (visible, near infrared and 

thermal infrared) of electromagnetic spectrum (Allen et al., 1998, Gamage et al., 2009). 

When considering instantaneous conditions, the energy balance for a land surface is 

given as: 

  Rn = G0 + H + LE   (W m-2)                          (2-1) 

Where Rn is the net radiation [W m−2], G0 is the soil heat flux [W m-2], H is the sensible 

heat flux [W m-2] and LE is the latent heat flux [W m-2], which is equal to AET. Other 

factors affecting the energy balance such as heat stored by the vegetation and 

photosynthesis are usually neglected, because they are considered a small fraction of net 

radiation when compared with the other four components (Allen et al., 1998). Equation 

(2-1) can also be expressed in terms of latent heat flux. 

  LE = EF (Rn24 – G0)   (W m-2)                  (2-2) 

Where EF is the evaporative fraction. The instantaneous evaporative fraction (EF), and 

the daily averaged net radiation, Rn24 is used to calculate evaporation. The EF is defined 

as the ratio of evapotranspiration to the available energy.   
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  (W m-2)      (2-3) 

The EF is supposed to be constant during daytime hours, even though H and LE differ 

considerably (Crago, 1996). When the atmospheric moisture and soil moisture are in 

equilibrium, then the EF expresses the ratio of the actual to the crop evaporative demand. 

The incoming solar radiation is measured using a pyranometer. The instantaneous net 

radiation (Rn) was calculated between () and outgoing fluxes () of shortwave RS and 

long wave RL radiation. Negative fluxes are considered those leaving the surface and 

positive for those incoming to the surface. Further, to solve for equation 2-2, the values of 

Rn, EF and G0 are computed using the surface radiation balance equations:   

 

         Rn = RS↓ - aRS↓ + RL↓ - RL↑ - (1 – εo) RL↓    (W m-2)                       (2-4)   

Where RS↓ is the incoming short-wave radiation (W/m2),  

a is the surface albedo (dimensionless),  

RL↓ is the incoming long wave radiation (W/m2),  

RL↑ is the outgoing long wave radiation (W/m2), and 

 εo is the surface thermal emissivity (dimensionless) 

The amount of energy absorbed to sustain crop evaporation rate describes the latent heat 

flux. The surface temperature, vegetation index and surface albedo are derived from 

remote sensing measurements, and used together to solve for Rn, G0 and H. Surface 

emissivity is obtained according to the relationship proposed by Van de Griend y Owe, 

(1993) 
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ln(NDVI)047.00094.1 s  
 

(2-5) 

 

where s the surface emissivity and NDVI is is Normalized Difference Vegetation Index. 

Sensible heat flux (H) is computed in an alternate way in SEBAL.  It is called “self 

calibration” procedure. It was based on the manual identification of wet (well irrigated) 

and dry (dry ground) pixels in the image. H can be calculated as follows (Bastiaanssen et 

al., 2005). 

 

             H = ρa Cp T * u *  (Wm-2 )                                         (2-6) 

 

ρa is density of air (Kgm-3), Cp is Specific heat at constant pressure (J. kg-1.K-1), T* (K) 

is the temperature scale and u* (m.s-1) the friction velocity. The temperature scale can be 

formulated as 

 

T* = ΔT/ [ln (z2/z1) – γh (z2, L) + γh (z1, L)]       (K)                   (2-7) 

 

Where ΔT = the vertical air temperature difference between the heights z1 and z2; L is the 

Monin-Obukhov length; and γh is the stability correction for heat transport which is 

affected by wind speed, atmospheric stability, and surface roughness. Heights z1 and z2 

are considered predetermined in SEBAL at 0.1 and 200 m elevation respectively because 

it is considered that wind speed is spatially constant at height 200 m above the ground. 

By model inversion method, ΔT, which is required to match between wet & dry pixel 
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under turbulence condition, follows the standard Monin-Obukhov theorem for turbulence 

exchange processes and thermal convection (Brutsaert 1982). A significant feature of 

SEBAL is that ΔT or T (z1)-T (z2) at z1 and z2 is determined from hot and cold pixel 

where H = zero for wet pixel and H= Rn-G0 for dry pixel. The friction velocity u* is 

determined from a single-layer wind speed. The sensor buried in the soil usually 

measures the soil heat flux, although the remote sensing of G is possible by taking the 

daytime ratio of G/Rn with canopy temperature (Tc), albedo, and Normalized Difference 

Vegetation Index (NDVI). Soil heat flux perhaps estimated from Rn, albedo, temperature.  

The equation for soil heat flux (Singh et al., 2008): 

 

G0= [0.3811 exp (-2.3187NDVI)] Rn  (W m-2)                                 (2-8) 

 

NDVI is calculated as following: 

redNIR

redNIR

rr

rr




NDVI                     (2-9) 

Where NIRr  and redr  are the reflectance data of near infrared (band 7) and red (band 5) 

respectively in MASTER image.  

 The ETa in 24 hours is estimated using instantaneous EF and the daily averaged 

net radiation Rn24.  For the time scales of 1 day or longer, G0 was ignored and net 

available energy (Rn – G0) reduced to net radiation (Rn). The daily timescales, ET24 

(mm/day) can be computed as: 

 (Bastiaanssen et al., 2005, Singh et al., 2008, Mutiga 2010): 
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           ET24 = 86400 x 103 x EF x Rn24 / λρw   (mm/day)    (2-10) 

 

Where: Rn24 (W/m2) is the 24-h averaged net radiation, λ (J/kg) is the latent heat of 

vaporization, and ρw (kg/m3) is the density of water, EF is the evaporative fraction. 

 

       2.1.4 Program Model and Flowchart 

The SEBAL equations were coded instead of procuring the original software 

developed by Bastiaanssen et al (1995). It follows the energy balance equations given in 

Bastiaanssen et al. (1995, 1998).  The SEBAL model was coded in Interactive Data 

Language (IDL) programming language incorporated in ENVI 4.0 version with some 

assumptions going into the model. The model estimated ETa in 90 m  90 m resolution 

using MASTER image. This program uses imported data from MASTER images (112 x 

455 pixels) of four blocks of the almond orchards. The flowcharts representing the steps 

for estimation of ETa are shown in Figure 2-2. This model inputs MASTER airborne data 

(ground surface reflectance and temperature) and local weather data (solar radiation and 

wind speed) to calculate the soil heat flux (G) and sensible heat flux (H). Finally, it 

outputs the spatial ETa (mm/day). 

Inputs 

The inputs include wind speed, humidity and solar radiation data at the local 

weather station and airborne data from MASTER including ground surface reflectance 

and temperature. The reflectance has a resolution of 15 m  15 m for the bands 1 to 3 

(Visible and Near-infrared bands) and 30 m  30 m for the bands 4 to 9 (Shortwave 
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Infrared bands). The MASTER thermal IR bands have a resolution 90 m  90 m. The 

reflectance data were averaged over 90 m  90 m to fit the temperature data resolution. 

This model does not calculate solar radiation, ground surface temperature and 

reflectance. Instead, those data are obtained from CIMIS weather station located at 

Belridge, California. This simplified the model complexity, which reduced the program 

work and time. 

Output 

The spatial ETa (mm/day) of almond orchards is the output from the model. The 

resolution is 30 m  30 m. 

 Assumptions in the Model:  

1. The most major simplification involved prescribing the temperature gradient between     

0.1 and 200 meters above the surface to be 1.96 K. 

2. The albedo value of almonds obtained from Guo et al., (1995), using spectral data on 

an airplane flight over California’s Central Valley. 

3. Evaporative fraction remains constant during daytime. 

4. All raster cells/pixels are pure and can be assigned to a unique land cover/use class. 
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Figure 2-2. Flow chart  representing the steps included in the ENVI+IDL programming 

for coding SEBAL algorthim in IDL. 
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       2.1.5 Image Classification and Masking 

2.1.5.1 Land Use Land Cover Classification 

With supervised classification using Maximum Likelihood criterion, the training 

sites were selected for the region of interest (ROI) of each land cover class. Different 

ROIs such as almonds, urban, water soil, pistachios, non-photosynthesis plants (NPV) 

and other green vegetations are selected to analyze statistics for classification, and 

masking (Figure 2-3a). Supervised classifications are required to select training areas to 

define each class. Pixels are compared to the training data for calibration. Based on 

spectral reflectance, they are assigned to the most appropriate class. The statistical 

characterization of the spectral reflectance for each information class is developed from 

ENVI image processing software system. According to Singh et al., (2012) “Maximum 

Likelihood Classification is a statistical decision criterion to assist in the classification of 

overlapping signatures; pixels are assigned to the class of highest probability”. After 

achieving the statistical characterization for each information class, the classification is 

made based on the reflectance of each pixel image. The maximum likelihood classifier 

gave more accurate results than Spectral Angle Mapper; however, it is much slower due 

to extra computations. Classification accuracy assessment are prepared by selecting 

testing sites in the image for all the corresponding land cover classes, and confusion 

matrix was built using ground truth ROIs. A statistical test was performed using the 

kappa index of agreement for classification accuracy of the image or individual cells 

(Table 2-1). 
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2.1.5.2. Masking  

Post-processing of classified image was required to estimate accuracy to 

generalize classes by exporting image-maps and vector GIS. Masking reduces the spatial 

extent of the analysis by masking out areas of the image that do not contain data of 

interest. The almond class map is obtained by masking all other land cover classes, which 

do not have same spectral reflectance characteristics of an almond pixel. This is required 

for the estimation of evapotranspiration of almond orchards (Figure 2-3b). Confusion 

matrix function in ENVI imaging allows comparison between the classified image and 

the ground-based image or with ROIs (www.ltid.inpe.br/tutorial/tut2.htm). The truth 

image can be another classified image, or an image created from actual ground based 

measurements.  Since there were no ground reference data for this scene, it was achieved 

by comparing two of the classifications to each other, and there was comparison between 

classifications of testing ROIs with training ROIs, although this will not provide an 

unbiased measure of accuracy (Table 2-1). 
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Figure 2-3a: Supervised classification using maximum likelihood for almond orchards, 

non-photosynthetic plant (NPV), urban, water, soil, pistachio orchards, and other green 

vegetations. 
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Figure 2-3b. Post classification: Building Mask. White scale shows the almond class 

pixel. Other land cover classes are assigned black color using Masking technique. 
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Table 2-1. A confusion matrix generated from the classification between training data 

and testing data. 

Classified 

Category 

(Training 

data) 

Testing data Total User's 

Accur

acy 

Almond NPV Urban Soil Water Pistachi

os 

Green 

Veg 

Almond 387 0 0 0 0 1 0 389 99.4% 

NPV 0 252 0 1 1 0 1 253 99.6% 

Urban 0 0 69 0 1 1 0 70 98.5% 

Soil 0 1 0 221 0 0 0 221 100% 

Water 0 0 0 0 267 543 0 267 100% 

Pistachios 0 0 0 0 0 7 0 543 100% 

Green Veg 0 0 0 0 0 0 71 71 100% 

Total 387 252 69 222 267 545 72 1814   

Producer’s 

Accuracy 

100.00% 100% 100.00% 99.50% 100% 99.63% 98% 

Overall accuracy = 99.77 %. Overall Kappa = 0.9973 
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2. 2 Results and Discussion 

                  2.2.1 ET estimation result 

Actual evapotranspiration (ETa) in mm/h for July 24, 2009 was computed by solving the 

surface energy balance using eq. 2-1, eq. 2-3, and eq. 2-6. The spatial variation of ET for 

the almond class was shown in the Figure 2-4. It ranges from 0.63 mm/h to 0.70 mm/h 

for the almond canopy. The average reference evapotranspiration (ETo) on July 24, 2009 

was calculated based on Penmen-Monteith equation as 0.73 mm/h using CIMIS data. The 

almond crop coefficient Kc at this time of the year was calculated at 1.05-1.15 in the 

field. Therefore, the mean empirical estimation of actual evapotranspiration of almond 

was 0.7519 mm/h. Real time crop evapotranspiration was calculated from the MASTER 

images. The ETa distribution was plotted pixel by pixel in Figure 2-4. The daily time-

scale of ET24 was estimated from SEBAL using eq. 2-10 as 16.19 mm/day, whereas 

CIMIS-PM estimation of ET24 is 17.76 mm/day. 

 There are two types of ETo data use for irrigation scheduling: 1) historic ETo 2) 

real time ETo. Historic ETo represents long-term daily average for 30 years of data.  

Table 2-3 illustrates the historical ET from 2000-09 with estimated ET for the month of 

July.  The average of estimated ET for July from 2000 to 2009 is 17.36 mm/day; 

consequently, the maximum ET had occurred in the year 2003 of 19.5 mm/day. This 

implied that in the non-drought event, water supply exceeds the crop water use and 

resulted in ET loss. Real time ETo is updated daily for scheduling irrigation. Real Time 

ETo has advantage over historical ETo-based approach because it accounts for daily 

variations of weather conditions.  
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 Figure 2-4.  The actual evapotranspiration map of almond crop distribution  
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The ETa obtained from SEBAL was estimated by multiplying crop coefficient with 

reference evapotranspiration (ETo). Figure 2-9 shows the comparison between estimated 

ET with previous year ET and historical ET. CIMIS-PM estimated ET value that was 

higher in 2000, 2001 and 2003 when compared with historical ET data. However, 

historical ET value is high in the year 2007 when compared to estimated ET. This 

suggests that the water loss to the atmosphere is less because of stringent supply of CVP 

deliveries.  

 

2.2.2 Spatial analysis of ETa, NDVI and Tc       

   

Figures 2-5 and 2-6 show a positive relationship of evapotranspiration with vegetation 

indices (y = 0.25x + 0.52; R2 =0.96), and a negative relationship of ETa with canopy 

temperature (y = −0.0049x + 2.22; R2 = 0.86) in the study area. This relationship related 

to the surface moisture conditions in the arid and semi-arid region. There is a negative 

relationship of canopy temperature with vegetation Indices (y = -47.1x + 343.17; R2 

=0.93) in Figure 2-7. That explains why with increase in NDVI, the canopy temperature 

decreases. 
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Figure 2-5. Curve of relationship of hourly evapotranspiration (ETa) with vegetation 

Index (NDVI) for almond orchards. 

 

 

Figure 2-6. Curve of relationship of hourly actual evapotranspiration (ETa) with canopy 

temperature (Tc) for almond orchards. 
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Figure 2-7. Curve of relationship between Vegetation Index (NDVI) canopy 

temperatures (Tc) 
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2.2.3 Validation of SEBAL model with Penman-Monteith 

The validation of these remotely sensed actual ETa estimates of almond crop from 

SEBAL compared with the actual ETa obtained from the Penman-Monteith method.  

The measured and simulated ET was compared to establish correlation relationship 

(Figure 2-8). The relative error (mean percent difference) was calculated as:  

 

nobservatio

nobservatiosimulation
veError

||
(%)Relati


    (2-11) 

 

The absolute error (mean difference) is calculated as (mm/h): 
 

 

|| nobservatiosimulationrorAbsoluteEr     (2-12) 

 

 

The average of daily ETa of remote sensing image is compared with ETa from CIMIS 

website located at the study area. Figure 2-8 shows a positive correlation of ETa from 

Penman-Monteith with SEBAL estimated ETa. The correlation coefficient of ETa 

estimates from remote sensing with PM was 0.93. The mean difference between actual 

ETa from SEBAL in almond and  Penman-Monteith for over all observations associated 

with ETa was 0.77 mm/h. Table 2-2 compares ET between the field data used by CIMIS 

and remote sensing method. The mean percent difference for ETa from SEBAL and 

CIMIS Penman-Monteith (PM) is calculated as (PM - SEBAL) / SEBAL was 0.109%. 
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Figure 2-8. Comparison of remotely sensed ETa (SEBAL) with Penman-Monteith (PM) 

method (p < 0.0001) 

 

Table 2-2. Comparison of ETa among SEBAL, PM and Field data 

ET Estimation 

Approach (mm/h) 

Crop 

Coefficient  

Average  

actual 

ET(mm/h) 

SEBAL (ETa)  2.29 0.6745 

PM-CIMIS (ETa)  1.02 0.7519 

Field  (ETa) 1.15 1.26 

 

y = -2.5x + 2.46 

R2 = 0.93 
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Figure 2-9. Histogram show ET (mm/day) estimates from 2000 to 2009 

 

Table 2-3. ET (mm/day) estimates for current year, previous year and historic data for 

the month of July. 

ET (mm/day) 

Year 

Estimated 

Year 

Previous 

year Historic 

2009 17.6 16.4592 17.0688 

2008 16.4592 15.8496 16.4592 

2007 15.8496 15.8496 17.0688 

2006 15.8496 17.0688 17.0688 

2005 17.0688 17.6784 17.0688 

2004 17.6784 18.8976 16.4592 

2003 18.8976 15.8496 17.0688 

2002 15.8496 19.5072 17.0688 

2001 19.5072 18.8976 17.0688 

2000 18.8976 15.24 16.4592 
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2.3 Conclusion 

Cloud free aerial MASTER image obtained during the almond pre-harvesting 

season on July 24, 2009 is processed for Paramount farm in California using a remote 

sensing based SEBAL model. The modified SEBAL is capable of computing the spatial 

almond hourly water use with resolution of 30 m x 30 m. The average actual 

evapotranspiration (ETa) estimated from SEBAL is 0.67 mm/h. The simulated ET is 

compared with that from ground measured PM method. The mean percent difference 

(relative error) was 0.10% and the mean difference (absolute error) was 0.77mm/h. 

The result shows a positive relationship of ETa with vegetation indices (y = 0.25x 

+ 0.52; R2 =0.96), and a negative relationship of ETa with canopy temperature (y = 

−0.0049x + 2.22; R2 = 0.86) in the study area. This relationship is related to the surface 

moisture conditions in the arid and semi-arid region. There is a negative relationship of 

canopy temperature with vegetation Indices (y = -47.1x + 343.17; R2 =0.93) which 

explains with increase in NDVI, the canopy temperature decreases. 
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CHAPTER 3 

ESTIMATION OF CROP WATER STRESS INDEX IN ALMOND 

ORCHARDS USING THERMAL AERIAL IMAGERY 

[This chapter was accepted in Journal of Spatial Hydrology (2013)] 

 

Abstract 

An important method for estimating Crop Water Stress Index (CWSI) is by measuring 

surface temperature of the canopy. A remote sensing method was used to estimate CWSI 

of an almond orchard in Paramount farm, California. An aerial remote measurement 

using MASTER (MODIS/ASTER) thermal band data is used to measure canopy 

temperature (Tc). The empirical relationship for canopy - air temperatures difference (Tc-

Ta) versus Vapor Pressure Deficit (VPD) represents the crop water stress quantitatively. 

The results implied that the average value of CWSI for well-irrigated (non-stressed) 

almonds is 0.24 while the almond yield is affected when the average CSWI values for 

stressed crop is greater than 0.5. The difference in crop canopy to air temperature (Tc-Ta) 

was negatively related to the VPD [R2=0.96 and p<0.0001]. However, the relationship 

between (Tc-Ta) and VPD was used to develop a non-stressed baseline equation for 

almonds, which estimates CWSI. Determination of CSWI is useful for irrigation 

scheduling and water management. 

 

Keywords: Crop Water Stress Index, MASTER, canopy, vapor pressure deficit, almond 
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3. Introduction 

Traditional method for monitoring water stressed crop carried out by calculating plant 

biomass that gives plant water content. This method fails to gives spatial and temporal 

estimation of crop water stress. The widely used method developed by Idso et al. (1981) 

and Jackson et al. (1981), suggested that the energy balance isolates net radiation from 

the sun into sensible heat (that heats the air) and latent heat (used for transpiration). These 

widely used methodologies are analyzed for detecting crop water requirement, which is 

important part to study spatial and temporal extent of crop health, crop water stress. The 

canopy-air temperatures difference was explained by the energy balance method on the 

plant surface (Jackson, 1982, Guyot, 1998, Alves et al., 1998 and Al-Faraj et al., 2001). 

This is important for estimating Crop Water Stress Index (CWSI) by measuring canopy 

temperature (Tc) and air temperature (Ta). Factors such as water stress, stomata 

conductivity, heat flux, transpiration and the cooling causes plants to close their stomata, 

as a result, evaporation decreases and the canopy temperature increases, when compared 

to non-stressed plants (Stokcle and Dugas, 1992).  

The surface temperature and crop water stress are associated for the reason that as a 

crop transpires, the evaporated water cools the canopy below the air temperature.  

Moreover, as a crop becomes water stressed, the transpiration will decrease and the crop 

surface temperatures will then increase sometimes more than the air temperature (Jackson 

1982). In water stressed conditions, the plants close their stomata as a result, evaporation 

decreases, and the canopy temperature increases when compared to non-stressed plants. 

Therefore, the concept of canopy temperature was implemented to determine plant water 
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status (Stokcle and Dugas, 1992). The empirical relationship for canopy- air temperatures 

difference (Tc-Ta) versus vapor pressure deficit (VPD) represented to quantify the crop 

water stress. Reginato and Howe (1985) found that cotton yield was declined when the 

average CWSI during the season was greater than 0.2.  A model was developed by 

Kjelgaard et al. (1996) for evaluating daily ET rates and CWSI measurement to plan 

irrigation scheduling such as how much to irrigate and when to irrigate. Both ET and 

CWSI  techniques use much of the same data. 

Jackson et al. (1981) and Idso et al. (1981) used  soil moisture content,  bio-physical 

properties of plants or meteorological  data to detect water stress in plants. Such Ground 

measurements are difficult and time consuming for each point scale and cannot obtain 

accurate spatial estimation. Indirect measurement of canopy temperature radiance using 

thermal band of the MODIS/ASTER simulator (MASTER) sensor is related to crop water 

stress because under non-stressed condition the transpiration cools the leaves, therefore, 

Tc-Ta is negative. For partial canopy cover, Water Deficit Index (WDI) is applied 

(Moran et.al., 1994). WDI employs the combination of spectral vegetation indices and 

surface temperature based on the same theory as CWSI. Albeit, CWSI is applied for full 

canopy cover. In this study, it is assumed that the almond orchards have full canopy 

cover and soil heat flux is negligible (Figure 3-1b) To understand crop water use and 

irrigation requirement, the analysis of CWSI are based on three main environmental 

variables: plant canopy temperature (Tc), air temperature (Ta) and atmospheric vapor 

pressure deficiency (VPD). 
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The objective of this study is to integrate meteorological data and remote sensing to 

obtain spatial water stress using the baseline parameters of almond for calculating CWSI. 

 

3.1. Materials and Method 

 Study area and Data 

This study focused on calculating the CWSI for an almond field in Paramount Farm 

(35o30’N, 119o39’W), California (Figure 3-1a). The valley occupies two-thirds of the 

southern Central Valley in California. San Joaquin River flows in the northern part of the 

San Joaquin Valley and drains to the San Francisco Bay. Southern San Joaquin Valley is 

the world’s largest supplier of almonds with more the 4,000 acres of almond orchards 

which is over a 4-billion dollar industry. Geographically, the southern part of the San 

Joaquin Valley is the Tulare Basin, bordered by the Sierra Nevada on the east, the 

Tehachapi Mountains on the south, and the Coast Ranges on the west. The northern 

extent corresponds to the Kings River. The main land-use is agriculture. 

The remote sensing data was obtained from the airborne MODIS/ASTER simulator 

(MASTER) at an altitude of 11,500 m on July 24, 2009 with a spatial resolution of 7.2 m. 

This sensor has 50 spectral bands over the spectral range 0.4 to 12 μm (visible through 

thermal infrared) at a variety of spatial resolutions. The platform was NASA’s DC-8 

aircraft and the images were acquired at 12:00 PM PST. Canopy surface temperature was 

measured with Infrared Thermometer (IRT) and calibrated using thermal infrared band of 

MASTER image. The thermal data obtained from MASTER was used for computing 

canopy temperature of the almonds. Meteorological data such as air temperature, relative 
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humidity, vapor pressure, wind speed, and solar radiation were obtained from the 

California Irrigation Management Information System (CIMIS) station in Belridge 

(station number 143) at Kern County, California.  Figure 3-2 shows the experimental 

design to estimate Tc, Ta, Tc-Ta, VPD and CWSI for the almond orchards in the study 

area.  

. 
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Figure 3-1a.  Remotely sensed false color composite (Band 1, Band 2 and Band 6) of 

MASTER image showing Paramount farm in Southern San Joaquin Valley, California.  

Blocks show reflectance of various types of crops in dark tone. Bright tone shows 

reflectance of non-vegetated/arid areas.   



57 

 

 

 

 

 

Figure 3-1b. Aerial photograph of the almond orchards in Paramount farm taken from 

the flight NASA DC 8 (Above). Field photograph of the almond orchard in Paramount 

farm in California (Below)  
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Figure 3-2. Experimental design to compute CWSI 
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Idso et al. (1981) developed empirical linear relationships between canopy and air 

temperature difference dT (Tc-Ta) and Vapor Pressure Deficit (VPD). The lower limit of 

dT versus VPD represents that the crop is well-watered (minimum stress). Upper limit of 

dT versus VPD means the crop is not transpiring and dry (maximum stress) (Reginato, 

1983; Stegman and Soderlund, 1992; Stockle and Dugas, 1992). Since CWSI is applied 

to full-canopy cover for remote sensing based measurements of surface temperature. 

Such measurement consider the land surface temperature equal to canopy temperature.  

Kustas et al., (2003). Decreased water uptake closes stomata of the leaves resulting in 

reduction of transpiration. The leaf or canopy temperature is used to quantify plant water 

stress. 

The Crop Water Stress Index is calculated using the procedure of Idso et al. (1981) 

       (3-1) 

 is the difference between air temperature (Ta) and canopy temperature (Tc) 

which is Tc-Ta. is the upper limit of the air temperature and canopy temperature 

difference (non-transpiring, dry), and maximum stress baseline.  is the lower limit of 

the air temperature and canopy temperature difference (transpiring, well watered).  The 

values for the CWSI are within zero and one. Value of zero indicates minimum stress 

while a value of one indicates maximum stress. The thermal data from IR radiometer was 

used to calibrate thermal IR band (band 42) of MASTER image. This was used to 

measure the surface canopy temperature of the almonds in the MASTER image using the 

algorithm obtained from Vicente et al., 1992.  
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                                                                             (3-2) 

 

Where Tc is surface temperature of canopy (K), λ is wavelength of band 42 (m), h is the 

plank constant (6.626068 x10-3 m2kg/s), c is the speed of light, k is the Boltzmann’s 

constant (1.3806503x10-23 m2kg/s2/K), LBB is the radiance of blackbody at same 

temperature as surface (W/m2/sr/m). 

The main computation of CWSI is the measurement of upper and lower limit equations. 

Idso et al., (1981) and Jackson et al., (1982) suggested that the changes in the upper limit 

and lower limit are due to variation in Vapor Pressure Deficit (VPD). Therefore, VPD is 

calculated as 

  VPD = VP sat – VP       (3-3) 

where VPsat is the maximum vapor pressure at the given temperature and pressure  and 

VP is the actual vapor pressure. 

Thermal IR radiometer was used to measure surface temperature of bare land, 

water, and the canopy. This is required to calibrate MASTER data in the thermal infrared 

band. The air temperature and RH measurements are used to calculate the VPD of the air 

as (Allen et al. 1998): 

es = 0.6108 × exp [17.27 Ta / (Ta + 237.3)]       (3-4) 

ea = es × (RH/100)           (3-5) 

VPD = es – ea           (3-6)  

Where es is the saturation vapor pressure  at the given temperature (kPa), ea is the actual 

vapor pressure (kPa), Ta is the  air temperature (K), RH is the relative humidity (%) and 



61 

 

 

 

VPD is the vapor pressure deficient (kPa). The key input for CWSI measurement are 

humidity, air temperature, and canopy temperature. The canopy-air temperature 

difference for a well-watered crop (lower limit) and severely stressed crop (upper limit) is 

calculated using equation 3-1 as outline by Idso et al., (1981) Jackson et al., (1982): 

  = Intercept + Slope (VPD)       (3-7) 

 = Intercept + Slope [es (Ta) – es (Ta + Intercept)]    (3-8) 

Where es (Ta) is the saturation vapor pressure at air temperature (kPa), and 

es (Ta + Intercept) are the saturation vapor pressure at air temperature plus the Intercept 

value for the crop. Thus, with a measure of humidity, air temperature, and canopy 

temperature, it is now possible to determine CWSI. Figure 3-3 illustrates an example of a 

VPD baseline for alfalfa (Idso and Jackson, 1981). Jackson et al., (1982) studied that the 

upper line represents maximum water stress. All measurements should lie between these 

two lines. The position of baseline parameters assumed between these two lines for 

computing crop water stress. CWSI value is allocated between zero and one, where zero 

is on the baseline and one is on the upper line. The blue line is the baseline of lower limit 

of Tc-Ta (i.e., non water-stressed baseline or ). The red line is the canopy-air 

temperature difference for a non-transpiring crop or . Figure 3-3 illustrates slopes 

and intercept values for alfalfa that is -1.92 and 0.51 respectively. Slope and intercept 

values have been determined for a number of crops as shown in the Table 3-1. Although, 

the slope and intercept values for almond are not calculated. Consequently for a given 

vapor pressure deficit, the CWSI can be calculated if the slope and intercept values are 

known. 
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Figure 3-3. Figure 3-3. The red line shows the maximum water stress baseline where the 

CWSI of point A is approximately  1. The blue line is non water-stress shows the crop is 

well- watered with CWSI is 0 at point C. Whereas at Point B, the crop is moderately 

stressed with CWSI 0.5. Figure adapted from Idso and Jackson et al., 1981.  
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Table 3-1. Baseline parameters for various crops – sunlit conditions (Idso, 1982) 

Crop  Intercept Slope 

Alfalfa 0.51 -1.92 

Barley (pre-heading) 2.01 -2.25 

Barley (post-heading) 1.72 -1.23 

Bean 2.91 -2.35 

Beet 5.16 -2.3 

Corn (no tassels) 3.11 -1.97 

Cowpea 1.32 -1.84 

Cucumber 4.88 -2.52 

Lettuce, leaf 4.18 -2.96 

Potato 1.77 -1.83 

Soybean 1.44 1.34 

Tomato 2.86 -1.96 

Wheat (pre-heading) 3.38 -3.25 

Wheat (post-heading) 2.88 -2.11 
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3.2 Results and Discussions 

The canopy-air temperature difference for lower limit (well irrigated) and upper 

limit (stressed crop) is calculated using intercept and slope values. These values are used 

to calculate the CWSI that is often referred to as the “empirical” CWSI. In the first 

calibration, Tc-Ta of MASTER imagery was positive, and the average temperature 

difference is ±5.02 °C.  This is a problem because the test field was well watered and the 

transpiration occurring should cause a canopy temperature lower than the air temperature.     

On the contrary, the ground based thermal IR radiometer measurements of Tc-Ta was 

negative. Therefore, another calibration was applied. In this calibration, the canopy 

temperatures measured by the thermal IR radiometer were averaged for three different 

trees to get representative temperature for those almond trees.  The locations of these 

trees are identified in the MASTER image, so the temperatures from the nine surrounding 

pixels were averaged in the MASTER data (Figure 3-4).  The difference between the 

MASTER temperatures and the thermal IR radiometer temperatures were calculated and 

then averaged.  The average difference of 7.87 °C applied to the MASTER data.  This 

sufficiently reduced the canopy temperatures to allow for the calculation of CWSI. 

  There are no studies on baseline parameters for almond crop. Therefore, in this 

study, slope and intercept parameters are computed using thermal remote sensing. A 

linear regression was executed to determine the relationship between Tc-Ta and VPD. 

The baseline equation was developed for almond orchards. The upper and lower 

baselines required to compute CWSI are depicted in Figure 3-5. The value for the upper 

line is created above the plot that appeared to be in the most water stressed areas. The 
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upper limit is = (Tc − Ta) u, was 274 °K (~1°C) when the air temperature at solar 

noon was 298 °K. .  In a similar study, Throssell et al. (1987) determined that the upper 

limit for Kentucky bluegrass, cool season grass was 12.71 °C. The equation that defines 

the lower baseline is: d = (Tc – Ta)= −1.16 VPD + 31.6 (R2 = 0.96, p < 0.0001) as 

shown in Figure 3-5. The slope and intercept values of almond is -1.16 and 31.6 

respectively.  

The average value of CWSI for well-irrigated (non-stressed) almonds is 0.24 

while the average CSWI values for water-stressed crops is greater than 0.5. Bare land 

shows white color in the image, illustrating the absence of vegetation and hence it is 

maximum dry with CWSI appearing between 0.8 to 1 as shown in Figure 3-6. 
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Figure 3-4. The image shows the location of the thermal IR radiometer measurements 

represented in white color, which is used for Tc-Ta calibration.  
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Figure 3-5. Non-stressed baselines for CWSI calculation of almond orchards 

(p < 0.0001).  
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Figure 3-6. CWSI value of almond orchards. The darker color represents well-irrigated 

crops with CWSI < 0.5  whereas lighter tone represents high water stress crops with 

CWSI > 0.5. 
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3.3 Conclusion 

Remote sensing thermal infrared crop water stress provides a useful tool for 

understanding crop water requirements. Jackson et al. (1981) suggested that the incoming 

net radiation is dissipated into sensible heat flux (H) and latent heat flux (LE). These 

outgoing fluxes H and LE are responsible for heating the air and evapotranspiration 

respectively. They used classical methods to study situ measurement of soil water 

content, plant properties or meteorological variables to estimate water lost from the plant-

soil system during a given period.  In this study, calibration of in-situ thermal data was 

done by taking the difference between the temperature of MASTER image and the 

ground based thermal IR radiometer for each tree. The difference was to be 7.87 degrees. 

It was found that the upper limit of  = (Tc − Ta) u, was 274 °K (~1°C) when the air 

temperature at solar noon was 298 °K.  The analysis shows that the average value of 

CWSI for well-irrigated (non-stressed) almond crop was 0.24 while the almond yield is 

affected when the average CSWI values was greater than 0.5, indicating a major water 

stress.  

             CWSI helps in detecting crop water stress for arid agricultural land for guiding 

the farmers when to irrigate and where to irrigate 
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CHAPTER 4 

SIMULATION OF REGIONAL GROUNDWATER FLOW IN SOUTHERN SAN 

JOAQUIN VALLEY, CALIFORNIA. 

[This chapter was accepted in Journal of Environmental Geology (2013)] 

 

ABSTRACT 

A mathematical groundwater flow model is developed for Paramount Farm located in 

southern San Joaquin Valley in California. The groundwater flow model was constructed 

using available hydro-geological data. The objective was to simulate the flow direction 

and assess the potential recharge areas for water stressed areas. A finite difference grid of 

20 rows and 35 columns was spaced with 700 active cells in X and Y directions and five 

layers in Z direction.ted. The boundary conditions were selected from the USGS 

topographic map. MODFLOW- 2000 integrated in Groundwater Modeling Software 

(GMS) was used to simulate 3-D flow. There are five observational wells in the study 

area monitored by U.S.G.S California Water Science Center (CAWSC) and California 

Department of Water Resources (DWR). Available meteorological, geological and 

hydro-geological data were used to characterize the existing groundwater conditions and 

to simulate the equi-potential surface. The model was calibrated using groundwater 

elevation data against the historical water level data in 1955 under steady state 

conditions. A transient simulation was carried out from the year 2006 to 2011 for 5 stress 

periods. Results showed that the groundwater flows from west to east of the study area. 

The average water surface elevation (WSE) in 1955 for the growing season (May to July) 
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was 161.04 m. This value is low when compared to those of 2009, 2010, and 2011, which 

are 237.14 m, 236.28 m, and 235.74 m respectively. 

 

Keywords: MODFLOW, GMS, finite difference, equi-potential, modeling, Paramount 

Farm. 
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4. Introduction 

Understanding groundwater dynamics is of primary importance in water resources 

planning and management in extensively irrigated fields. Mining groundwater for 

agriculture and domestic purposes has lead to the depletion of natural resources for years. 

In southern San Joaquin Valley, California, an intensive exploitation of groundwater for 

domestic and irrigation supply exists to provide abundant irrigation to one of the most 

productive agricultural districts. The surface water diverted from San Joaquin River 

provides enough water for irrigation in the southern San Joaquin Valley. The State and 

Central Valley Projects diverted it mainly from the Sacramento-San Joaquin Delta, San 

Joaquin, Kings, Kern and Feather Rivers (Devin Galloway and Francis S. Riley, USGS). 

About one-fifth of the state’s groundwater discharge is from the Central Valley aquifer 

system, and as a result, the groundwater in southern San Joaquin Valley is below drought 

period water level. It has Mediterranean climate, with hot and dry summer and wet 

winter. It rains in winter months (December to February) with an annual rainfall of 98.5 

mm and remains arid during the growing season of orchards. Therefore, the optimal use 

of limited groundwater resources in the region is of primary importance and hence proper 

water management is of extreme economic importance.  

 The study area is located in the Central Valley aquifer system in California. The 

groundwater abstraction in California is known to be the second largest withdrawal in 

United States (Maupin and Barber, 2005). Under pre-development condition (prior to 

development of surface water diversions), the total recharge and discharge was observed 

to be under steady state. Due to the population growth in late 1900, and massive 
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agricultural water demand, the estimated recharge and discharge observed was 13300000 

and 14600000 acre-ft/yr respectively. Therefore, the change in the storage is -1300000 

acre-ft/yr (Williamson.et al., 1989). The natural pattern of groundwater flow and the rate 

of recharge-discharge were significantly altered by pumping, and by surface water 

diversion for irrigation especially during drought periods.  

Recharge from irrigation water and discharge from wells averaged about 9200 

000 and 9300000 acre-ft/yr from 1962 to 2003 respectively (Flaunt, Belitz, and Hanson, 

2009). Groundwater withdrawal from wells has lowered the water table and altered the 

flow direction, causing land subsidence (Williamson et al., 1989). On the contrary, 

increase in surface water delivery and excess irrigation loss as infiltration caused the 

water table to rise (Flaunt, Belitz and Hanson, 2009). Williamson (1989) computed the 

groundwater flow and storage from pre-developed conditions to 1977 using a numerical 

model. 

 The hypothesis is that the groundwater level increased since 1955, as there is 

more dependency on surface water diversion from the San Joaquin River. The objective 

is to simulate three dimensional groundwater flows to calculate the hydraulic head 

distribution in the entire study area. This research also focused on mapping the potential 

zones of recharge and discharge in the field.  
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4.1 Materials and Methods 

4.1.1. Study area 

The 402 km2 Paramount Farm is located at the Lost Hill of Kern County in 

southern San Joaquin Valley of   Central Valley, California (35o30’N, 119o39’W) (Figure 

4-1). The valley occupies two-thirds of the southern Central Valley in California. San 

Joaquin River flows in the northern part of the San Joaquin Valley and drains to the San 

Francisco Bay. Majority of the basin’s population focuses on agricultural activities. 

Southern San Joaquin is the world’s largest supplier of almonds with more than 4,000 

acres of almond orchards. Geographically, the southern part of the San Joaquin Valley is 

the Tulare Basin, bordered by the Sierra Nevada on the east, the Tehachapi Mountains on 

the south, and the Coast Ranges on the west. The northern extent corresponds to the 

Kings River. Significant geographic features include the Tulare Lake Basin and the 

Kettleman Hills.  
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Figure 4-1. Remotely sensed false color composite (Band 1, Band 2 and Band 6) of 

MASTER image showing Paramount farm in Southern San Joaquin Valley, California.  

Blocks show reflectance of various types of crops in dark tone. Bright tone shows 

reflectance of non-vegetated/arid areas (Land cover classification of this image shown in 

Figure 2-3a). 
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4.1.2. Hydrogeology 

The hydrogeology of the study area is derived from the large, northwest trending 

asymmetric structural trough which comprises marine and continental sediments up to 10 

km thick (Gronberg et al.,1998). These sediments are significantly deposited largely by 

streams draining from the mountains from time to time. The alluvial fan in this area is 

derived from the glaciated portion of the Sierra Nevada (Faunt, Hanson, and Belitz, 

2009). Fine-grained sediments (clay, sandy clay, sandy silt, and silt) are distributed 

throughout the San Joaquin Valley (Faunt, Hanson, and Belitz, 2009).  

 The Corcoran Clay forms a separation in the basin-fill deposits into an upper 

unconfined to semi-confined zone and a lower confined zone in southern San Joaquin 

Valley (Williamson and others, 1989, Burow et al., 2004). The Sierra Nevada rises to an 

elevation of more than 4200 m in the east of the valley; whereas, west of the valley area 

is bounded by the Coast Ranges which are a series of parallel ridges with moderate 

elevations (Mendenhall et al., 1916). Development of the groundwater basin initiated the 

irrigation water to percolate, which became the primary form of groundwater recharge, 

and irrigation drawdown became the primary form of groundwater discharge in the 

southern San Joaquin Valley (Davis et al., 1959).   
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Available Data 

The distribution of upper Miocene sand (Webb, 1977), known as Stevens Sand 

(Bazeley, 1972) in late Miocene occurring in Bolivina vaughni zone of southern San 

Joaquin Valley comprises of discontinuous sand bodies separated by thin shale interbeds. 

The base map of the study area was developed from a topographic map of scale 1: 

250000 acquired from the United States Geological Survey (USGS) website. Soil texture 

and soil moisture capacity of the Paramount Farm is shown in the Table 4-1. Figure 4-2 

shows the elevation model constructed from the USGS topographic map. The land-

use/land cover map is produced from the remote sensing image acquired from MASTER 

(MODIS/ASTER) sensor onboard the aircraft NASA-DC-8. It shows that about 80% of 

the land is under agriculture and less than 10 % is urban (Figure 4-3). 

The litho-stratigraphic data was acquired from geophysical electric log in 1978. 

Five monitoring wells record the dynamics of the water table. California Department of 

Water Resources monitors these wells. Meteorological data is available from California 

Irrigation Management Information System located in Belridge. Meteorological and 

hydrological data are used as input data to characterize the groundwater conditions in this 

aquifer and to simulate potential recharge and discharge scenario. 
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Table 4-1. Soil moisture capacity of the Paramount Farm (Ratliff et al. 1983) 

Soil texture Available water 

capacity (mm per 

meter of 

thickness) 

Maximum 

soil water 

capacity 

(mm) 

Sand 14400 182.88 

Loamy Sand 22800 289.56 

Sandy Loam 30000 381 

Loam 38400 487.68 

Silt loam 43200 548.64 

Sandy clay Loam 42000 533.4 

Sandy clay 40800 518.16 

Clay loam 45600 579.12 

Silty clay loam 51600 655.32 

Silty clay 57600 731.52 

Clay 4.8 28.8 
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Figure 4-2. Map showing elevation derived from U.S.G.S topographic base map 
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Figure 4-3. Supervised classification using maximum likelihood for almond orchards, 

non-photosynthetic plant (NPV), urban, water, soil, pistachio orchards, and other green 

vegetations. 
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4.1.3 Hydrologic framework and conceptualization 

The conceptual model of the study area was done by selecting a domain of 17000 

m by 24000 m in X and Y directions respectively (Figure 4-4). The Z dimension 

comprises of five litho-stratigraphic layers derived from borehole log data. Based on well 

logs data the aquifer parameters were specified accordingly (Table 4-2).  The borehole 

log data obtained by Shell oil Co. at the location in Elk Hills were used to know the 

aquifer properties. The available data show that the hydraulic conductivity ranges 

between 0.0008 to 100 m/day. The aquifer is divided into 5 layers based on sub-surface 

lithology. The first layer is unconfined, 200 m thick and comprises of sand followed by 

sandy loam, silt loam, sandy clay and clay in layers 2, 3, 4, and 5 respectively. The 

second, third and fourth layers were assumed to be 100 m, 50 m, 25 m thick respectively.   

The top boundary was assigned by specifying a hydraulic head value, which is equal to 

the surface elevation at each node denoted as constant head. The bottom boundary is a 

confining boundary represented by the Corcoran clay. The California Aqueduct bounds 

the eastern side of the study area that was considered a no-flow boundary. On the west of 

the study area is another highway running between Antelope Valley and Elk hills, which 

is assumed to be  no-flow boundary. The north and south of the area bounded by 

Emigrant Hill and West Elk Hill respectively are considered to be a no-flow boundary. 

There are five observation wells in the study area monitored by USGS California Water 

Science Center (CAWSC) and California Department of Water Resources (DWR). The 

water surface elevation in the observation wells are shown in Table 4-3.  
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Table 4-2.  Aquifer parameters 

Model 

Layer 

Top 

Elevation 

(m) 

Bottom 

Elevation 

(m)  

Litho-

stratigraphic of 

layers 

Hydraulic 

Conductivity 

(m/day) 

Vertical 

Anisotrophy 

(m/day) 

1 600 200 Top soil: Stevens 

Sand 

100 6 

2 200 100 Sandy Loam  0.15 3 

3 100 50 Silt Loam  0.018 3 

4 50 25 Sandy clay 0.001 3 

5 25 0 Clay 0.0008 3 
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Table 4-3. Description of observational wells in the locations monitored by DWR 

Wells Well site number Location of the wells XY 

grid 

cell 

Ground 

Surface 

Elevation 

(m) 

Water 

surface 

Elevation 

(m) msl 

Depth 

to the 

water 

(m) 

(coordinates) 

1 28S22E18C002M 35.49N, 119.64W 14,29 302 268.1 28.7 

2 28S22E08D002M 35.51N, 119.63W 15,30 258.29 249.16 15.9 

3 26S21E27P061 35.63N, 119.66W 7,28 233.8 221.6 13.1 

4 26S21E27R061 35.63N, 119.69W 5,27 242.5 231.2 11.6 

5 28S22E05F002M 35.52N, 119.63W 6,28  235.7 222.4 15.3 
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Figure 4-4. Conceptual framework of hydrostratigraphic units in the study area  
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4.1.4 Numerical Model: 

The next step in modeling is converting the conceptual design into a numerical 

model. The finite difference method uses a numerical solution for the following 

groundwater flow equation for three-dimensional saturated flow in saturated porous 

media: 

 

                               (4-1) 

Where Kxx, Kyy, Kzz are hydraulic conductivity along the x, y, z axes which are assumed 

to be parallel to the major axes of hydraulic conductivity; 

h = hydraulic head; 

Q =  discharge flux per unit volume 

Ss = specific storage coefficient in which the volume of water released from storage per 

unit change in head per unit volume of porous material. 

 The equation that describes three dimensional steady-state groundwater movements 

through porous earth material under equilibrium condition is given by the partial 

differential equation (Don et al., 2006): 

      (4-2) 

Where Kxx, Kyy, and Kzz are the hydraulic conductivities (LT−1) in the x, y and z 

directions respectively, h is the piezometric head (L). In this study, three dimensional 

finite difference numerical model called MODFLOW 2000 (McDonald and Harbaugh, 

1988) was used to solves Eq. (4-1) and (4-2) for computing hydraulic heads in the study 
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area.  The conceptual model was numerically converted into grids. The MODFLOW code 

is a three dimensional, cell-centered, finite difference, saturated flow model developed by 

the United States Geological Survey (McDonald and Harbaugh, 1996). The finite 

difference grid consists of 20 rows and 35 columns uniformly spaced with 700 active 

cells in X and Y directions respectively. The cell size is 1 by 1 m representing an area of 

1 m2. The model was divided vertically into 5 layers of variable thickness that extend 

from the top soil to the basement. 

 

4.2. Result and Discussion 

Initially, homogeneous and isotropic conditions were assumed throughout the 

basin. The numerical model was developed from the piezometric data. With the hydraulic 

head distributed in the first layer, the mathematical finite difference model was generated 

in each node to determine the equipotential lines in the surface and study the flow 

distribution of groundwater in the area. The flow vectors are tangential to the 

equipotential lines, and thus indicate the direction of groundwater flow at every point in 

the flow domain. The flow arrows indicate that the groundwater flow direction is from 

west to east where the Paramount Farm is located. It is moving towards the California 

Aqueduct. Figure 4-5a shows groundwater contours from the steady-state simulation 

model. It was observed that the highest hydraulic head in the entire model area is located 

in the southwest side of the area. Aquifer recharge mainly occurs from canal seepage, 

irrigation, precipitation, and percolation from surface water bodies whereas discharge 
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occurs from pumping of wells, evapotranspiration, outflows to the canals and subsurface 

flows from one zone to another. 

The computed recharge-discharge shown in Figure 4-5b indicate a series of 

alternating recharge and discharge areas. The discharge in Figure 4-8b shown with 

upward arrows are those nodes where there is massive drawdown of groundwater. The 

downward arrows show the recharge of water from the agricultural areas. Therefore, the 

irrigated water, which is mostly percolated from the well-irrigated region of the farm, is 

flowing towards the California Aqueduct. Hence, in future studies, the subsurface 

artificial recharge structure such as percolation tank, infiltration gallery, and subsurface 

barriers will be proposed in recharge areas particularly where the CWSI of almond 

orchard is less than 0.5. 
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Figure 4-5a. Showing horizontal cross section of piezometric surface map (K axis) based 

on the steady state simulation model. 
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Figure 4-5b. Groundwater flowing in vertical cross-section in I and J axis to analyze the 

recharge and discharge nodes. 
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In order to assess the potential zone of recharge (Figure 4-6), the domain is characterized 

by various infiltration rates of different soil type with variation in groundwater pumpage 

in the study area. Recharge and discharge can be analyzed quantatively in order to 

determine the total groundwater discharge through the system. The models estimated a 

total discharge that is equal to recharge assuming steady state of 1.58 x 10 -6 m3/s. Steady 

state conditions were calibrated using water levels in 5 wells in the area in the year 1955. 

Calibration was achieved by changing the hydraulic conductivities of each layer shown in 

Figure 4- 4. The transient simulation was carried out from the year 2006 to 2011 for 5 

stress periods. Extraction levels were calculated in such a way that the extraction levels 

do not exceed original steady state hydraulic head.  

Figure 4-7 shows the distribution of hydraulic heads and its drawdown at the end 

of first stress period. It is observed that due to overdraft of groundwater, the water table is 

declining and it is flowing away from the wells. Under such conditions, where the 

groundwater was heavily pumped, the groundwater flows beneath the surface water 

(rivers/streams) instead of discharging into the surface bodies (Bartoldi et al., 1991) 

resulting in less contamination of groundwater from surface water. The relation between 

observed and simulated water levels in wells (Figure 4-8) suggested that the hydraulic 

conductivity was changed constantly to obtain the good regression analysis. 
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Figure 4-6. A horizontal view of bottom layer showing the potential areas of recharge in 

red. 

 

 



94 

 

 

 

 

 

Figure 4-7. Horizontal cross-section view of the map showing groundwater drawdown 

from the wells w1, w2, w3, w4 and w5 after the first stress period 

 

Figure 4-8. A plot showing the simulated head and Observed head in 5 wells in the study 

area 
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The yearly groundwater demand shown in Figure 4-9 suggests that the demand for 

groundwater increases in drought period. Therefore, groundwater resources are depleted 

in order to supply the deficit water for irrigation purposes. Two irrigation periods were 

observed. The first month begins in March and ends in May, and the other begins in July 

and ends in September. These are the months where the groundwater is extracted more 

for irrigation purpose because the crops reach their development stage as shown in Figure 

4-9. Orchards are harvested in the month of October. It rains in winter months and the 

groundwater is replenished. Since irrigation depends on the surface water diversion 

through California’s Central Valley project (CVP) (California Department of Water 

Resources, 2010). From 1955, the groundwater level had been increasing because of CVP 

and surface water diversions. As illustrated in Figure 4-10, the average water surface 

elevation (WSE) in 1955 for the growing season (May to July) is 161.04 m when 

compared with 2009, 2010, and 2011 are 237.14 m, 236.28 m, and 235.74 m respectively.  
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Figure 4-9. Yearly groundwater demand from 2006 through 2012. 

 

 

Figure 4-10. A comparison between the groundwater level between 1955 with 2009, 

2010 and 2011 
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4.3. Conclusion 

San Joaquin Valley is characterized by frequent droughts for the last the few years. There 

is no accountability on groundwater discharge in San Joaquin Valley and this led to 

indiscriminate exploitation of aquifer quantity. Hence, aquifer parameters were used to 

construct hydrologic model to ascertain groundwater flow and its directions. Calibration 

of the hydraulic head obtained from the model was performed against the observed water 

level data (hydraulic head) for five wells in the study area. It was observed that the 

demand of groundwater increased to an average of 255 m3 for the growing season in 

summer months. The simulation shows that the irrigated water mostly percolated from 

the recharge area, and moved towards the California Aqueduct. Hence, in future studies, 

the subsurface artificial recharge structures (such as such as check dams, subsurface 

dykes) should perhaps be proposed such that the groundwater is diverted to water 

stressed crops. This will also prevent the groundwater from flowing away from the farm, 

which is also necessary for sustainable water conservation. It is observed that the average 

water surface elevation (WSE) in 1955 for the growing season (May to July) is 161.04 m. 

This value is low when compared to those of 2009, 2010, and 2011, which are 237.14, 

236.28, and 235.74 m respectively. 
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CHAPTER 5 

ASSESSMENT OF WATER BALANCE OF THE SEMI-ARID REGION IN 

SOUTHERN SAN JOAQUIN VALLEY CALIFORNIA USING 

THORNTHWAITE AND MATHER’S MODEL. 

[This chapter was published in Journal of Environmental Hydrology (2012)] 

Abstract 

The demand for water is increasing with growing population and irrigation. Judicious 

application of limited fresh water resources is a prime focus. Sufficient measures require 

immediate consideration to avert detrimental crisis to humankind, as agriculture and 

water resources are one of the most important factors for human survival. The Paramount 

Farm in southern San Joaquin Valley is known for its largest supplier of almond, albeit 

water deficit problem. The water resources in this study area is estimated using water-

balance assessment approach based on Thornthwaite and Mather (TM) model. The result 

shows that the total annual precipitation of the farm is 98.5 mm. The month of February 

received the highest precipitation of 39.6 mm. The potential evapotranspiration (PET) in 

this region appeared high in July with zero precipitation of 124.3 mm. The actual 

evapotranspiration (AET) ranges from 36 to 195 mm/month. High soil moisture storage 

is observed from November to February in the range of 25 to 36 mm, whereas it is low in 

the months of May to August, as the evapotranspiration process is maximum in May-

July. This study also illustrates that there is highest recharge of soil moisture in 

November to January. To avoid crop water stress, irrigation should apply when the 

absolute value of Accumulated Potential Water Loss (APWL) is high in the months of 
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May to July. Further, the water balance calculation in this study implied that the 

maximum annual runoff is observed from January to March and October to December. 

There is an annual water deficit of 135.68 ± 11.3 mm and an annual surplus of 291.47 ± 

24.29 mm in the farm. It was observed that growers should apply a depth of 

approximately 79.37 ± 11.3 mm to replenish the soil moisture storage used by the plants 

over the entire field. Additionally, the field should be irrigated with at least 20 mm of 

water at each irrigation period to ensure uniform irrigation in the field. This area has a 

period of moisture surplus from November to February and the remaining months are a 

period of deficit. This approach is very helpful in finding out the period of moisture 

deficit and moisture surplus for Paramount Farm.  

 

Keywords: Water balance, moisture surplus, TM model, moisture deficit, Paramount 

Farm. 
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5. Introduction 

In semi-arid regions, water resources are limited, and available groundwater for 

irrigation and other water uses are severely constrained. Southern San Joaquin Valley is 

located in a semi-arid climatic region, characterized by limited water resources due to 

expanding urban, industrial and agricultural water demands. In semi-arid regions, the 

actual evapotranspiration (AET) plays a key role of the hydrological cycle. AET may 

account for more than 90 % of the precipitation (P) in semi-arid areas (Pilgrim et al., 

1988; Huxman et al., 2005). Drought in California is a matter of serious concern 

particularly when there are extensive agricultural productions in Central Valley. The state 

experienced massive agricultural loss of $ 308 million in 2008 due to water scarcity 

(California Dept. of Food and Agriculture, 2009). The Central Valley Project (CVP) 

allowed only 10% of water allowance to farmers in 2009 compared to 40% in 2008 and 

50% in 2007. Farmers relied on the groundwater to accommodate the water shortage 

provided by CVP.  

The water system especially in agricultural areas requires an understanding through 

the water balance method for irrigation scheduling. Water balance refers to the balance 

between incoming water (precipitation) and outgoing water (evapotranspiration, 

groundwater discharge and stream flow). Therefore, a budgeting exercise is used to 

evaluate the amount of precipitation that becomes stream flow (or runoff), 

evapotranspiration, and drainage (or groundwater discharge). Among the several methods 

for calculating water balance, Thornthwaite and Mather (TM) in 1955 and 1957 

introduced one of the most prominent methods that are used widely. The water balance 
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approach is very helpful in finding out the annual periods of moisture deficit and 

moisture surplus for an entire area. The long-term average monthly rainfall, long-term 

average PET, and soil-vegetation characteristics are required to compute the water 

balance. LaBaugh et al. (1997) used isotopes and hydro-chemical tracers to study the 

water balance of a lake in North America. Mandal et al. (1999) used the TM model for 

estimating soil-climatic water balance throughout India for analyzing climatic indices, 

length of growing period of crops, and their applications in agricultural research. Boulet 

et al. (2000) estimated simple water and energy balance with a bulk mixed vegetation and 

bare soil  using soil “bucket”  and Soil-Vegetaion Atmosphere Transfer (SVAT) model. 

However, the depth of the “bucket” or hydrologically active depth was established to be 

critical when the water balance was translated to soil moisture (Boulet et al., 2000).  

The objective of this study is to investigate the water balance of a region using the 

TM model and to record the periods of moisture deficit and moisture surplus in the study 

area. 

 

5.1 Materials and Method 

      5.1.1 Study Area  

The 402 km2 Paramount Farm is located at the Lost Hill of Kern County in southern San 

Joaquin valley of   Central Valley, California (35o30’N, 119o39’W) (Figure 5-1). The 

total annual precipitation of the farm is 98.5 mm. The valley occupies two-thirds of the 

southern Central Valley in California. San Joaquin River flows in the northern part of the 

San Joaquin Valley and drains to the San Francisco Bay. About 4 percent of the basin 
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area is urban. Majority of the basin’s population focuses on agricultural activities. 

Geographically, the southern part of the San Joaquin Valley is the Tulare Basin, bordered 

by the Sierra Nevada on the east, the Tehachapi Mountains on the south, and Coast 

Ranges on the west. The northern extent corresponds to the Kings River. Significant 

geographic features include the Tulare Lake Basin and the Kettleman Hills.   
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Figure 5-1. Remotely sensed false color composite (Band 1, Band 2 and Band 6) of 

MASTER image showing Paramount farm in Southern San Joaquin Valley, California.  

Blocks show reflectance of various types of crops in dark tone. Bright tone shows 

reflectance of non-vegetated/arid areas (Land cover classification of this image shown in 

Figure 5-2).  
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5.1.2 Hydrogeology 

The hydrogeology of the study area is derived from the large, northwest trending 

asymmetric structural trough which comprises marine and continental sediments up to 10 

km thick (Gronberg and others, 1998). The trough is filled with marine sediments that are 

overlain by continental sediments in some places. These sediments are significantly 

deposited largely by streams draining from the mountains from time to time. The alluvial 

fans in this area are derived from the glaciated portion of the Sierra Nevada (Faunt, 

Hanson, and Belitz, 2009). Fine-grained sediments (clay, sandy clay, sandy silt, and silt) 

are distributed throughout the San Joaquin Valley. The Corcoran Clay forms a separation 

in the basin-fill deposits into an upper unconfined to semi-confined zone and a lower 

confined zone in southern San Joaquin Valley (Williamson et al., 1989, Burow et al., 

2004). The Sierra Nevada Mountains rise to an elevation of more than 4200 m in the east 

of the valley; whereas, west of the valley area is bounded by the Coast Ranges which are 

a series of parallel ridges with moderate elevations (Mendenhall et al., 1916).  Before the 

development of surface water diversion, ground water generally moved toward the center 

of the valley and northward to the San Francisco Bay.  A prolong period of surface 

waters diversions altered the natural flow of groundwater. Development of the 

groundwater basin initiated the irrigation water to percolate, which became the primary 

form of groundwater recharge and irrigation drawdown became the primary form of 

groundwater discharge in the southern San Joaquin Valley (Davis et al., 1959).  The soil 

texture in southern San Joaquin valley comprises alluvial fans that are derived from the 

glaciated parts of the Sierra Nevada. They are coarser grained than the alluvial fans to the 
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north (Faunt, Hanson, and Belitz, 2009). Generally, thin, discontinuous lenses of fine-

grained sediments (clay, sandy clay, sandy silt, and silt) are distributed throughout the 

San Joaquin Valley (Table 5-1).   
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Table 5-1. Estimated available water capacities for various soil-texture group (Ratliff et 

al., 1983) 

Soil texture Available water 

capacity (mm per 

meter of 

thickness) 

Maximum 

soil water 

capacity 

(mm) 

Sand 14400 182.88 

Loamy Sand 22800 289.56 

Sandy Laom 30000 381 

Loam 38400 487.68 

Silt loam 43200 548.64 

Sandy clay Loam 42000 533.4 

Sandy clay 40800 518.16 

Clay loam 45600 579.12 

Silty clay loam 51600 655.32 

Silty clay 57600 731.52 

Clay 4.8 28.8 
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The available water capacity of a soil was typically given as inches of water holding 

capacity per foot of soil thickness. Ratliff et al., (1983) computed the field measurement 

of soil water availability for each soil type shown in the Table 5-1. The rooting depth of 

the orchards was 1.8 m. The maximum soil water capacity was calculated as available 

water capacity multiplied by the rooting depth. If the infiltrated water exceeds the 

maximum soil water capacity then the water contributes as recharge to groundwater. 

 

5.1.3 Available data 

Within the study area, California Irrigation Management System (CIMIS) station 

is located in Belridge. The climatic stations contain daily measurements of wind speed, 

global radiation, and daily minimum and maximum values of both air temperature and 

relative humidity. These data are used to calculate the daily PET by the Penman-Monteith 

method. There are 70 different types of topsoil identified in the catchment. However 

many of the soil types are similar in description, therefore the 70 soils types were 

reclassified into eleven major soil types (Table 5-1). A land use map is shown in Figure 

5-2 (see Chapter 2). The vegetation is classified into almond orchards, pistachio crops, 

and other photosynthesis vegetation.  The classification also includes urban land, non-

photosynthesis vegetation, soil, and water. 
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Figure 5-2.  Supervised classification using maximum likelihood for almond orchards, 

non-photosynthetic plant (NPV), urban, water, soil, pistachio orchards, and other green 

vegetations. 
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5.1.4 The Thornthwaite and Mather’s (TM ) Model 

The TM model is one of the simplest models to determine water balance of a region from 

individual fields to small watersheds. Monthly water balance is used to examine the 

various components of the hydrologic cycle (for example, precipitation, 

evapotranspiration and runoff). The monthly potential evapotranspiration is computed 

using the following equation (Singh et al., 2004)   

                          (5-1) 

Where PET is the potential evapotranspiration (mm month-1); T is the mean monthly 

temperature (°C); I is the annual heat index for the 12 months in a year (I = Σi); 

 i is the monthly heat index (i = [T/5]1.514); a = 6.75 × 10-7 × I3 – 7.71 × 10-5 × I2 + 1.792 

× 10-2 × I + 0.49239; and C is a correction factor for each month (C = [m/30] × [d/12]),  

Where m is the number of days in the month and d is the monthly mean daily duration 

(number of hours between sunrise and sunset, expressed as the average for the month).   

P – PET, is a quantitative estimation of the water excess (+) or deficit (–). Accumulated 

potential water loss (APWL) is the potential deficiency of soil moisture associated with 

low moisture contents of soil below its water holding capacity. Accumulated potential 

water loss is 1) increased  during dry seasons to meet the demands of PET when there is 

insufficient supply of water, 2) reduced during wet seasons from soil moisture recharge, 

and 3) equals zero when soil moisture equal to the available water holding capacity of the 

soil. The accumulated values APWL for each months, were calculated by running the 

sum of the daily P-PET values during the periods when (P – PET) is a negative value as 

given in Table 5-2. APWL will be zero for the months having positive (P – PET). 
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Therefore, the actual storage of soil moisture (STOR) for each month was calculated as 

follows: 

  STOR = AWC       (5-2) 

Where, AWC is the moisture storage capacity, also known as available water capacity of 

the soil, which is based upon the land use, soil texture and rooting depth as suggested by 

Thornthwaite  and Mather (1955, 1957). The results are summarized in Table 5-2. 

Change of actual storage was calculated as     

                     (5-3) 

A negative value of ΔSM means discharge of water from the storage because of 

evapotranspiration, whereas a positive value of ΔSM implies infiltration of water into the 

soil that contributes to the soil moisture storage. 

The actual evapotranspiration (AET) was computed for all the months, as given in 

equations (5-4) and (5-5): 

     (5-4) 

     (5-5) 

Where PET is the potential evapotranspiration. 

The water deficit (DEF) was calculated for those months having negative value of P-PET 

as follows: 

 DEF = PET – AET        (5-6) 

Moisture surplus (SUR) is defined as the excess water that cannot be stored when soil 

moisture storage attains its saturation; SUR is calculated using equation (5-7): 

 SUR = P  PET        (5-7) 
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No surplus exists if soil storage is not at its capacity. If moisture storage capacity of the 

soil is just satisfied, then, SUR is obtained using equation (5-8) 

 SUR =        (5-8) 

Where  is the change in actual soil moisture storage. Previous studies show that 

actual runoff should be equal to the available annual surplus (Singh et al., 2004). 

Considering the study area was classified as homogeneous land use /land cover 

occupying only almond orchards; the total amount of annual ET and runoff is calculated 

from the monthly water balance. Thus, the monthly runoff and the monthly AET from the 

farm are area-weighted values (Table 5-3). 
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Table 5-2. Calculation of Accumulated Potential Water Loss (APWL) in mm 

 

 P PET P-PET APWL 

Jan 13.72 39.88 -26.16 -36.06 

Feb 39.62 56.90 -17.27 -51.62 

Mar 3.56 115.32 -111.76 -111.50 

Apr 5.84 154.43 -148.59 -155.70 

May 0.25 197.87 -197.61 -197.86 

Jun 0.00 197.10 -197.10 -204.21 

Jul 0.00 214.12 -214.12 -213.10 

Aug 0.00 181.61 -181.61 -181.61 

Sep 0.00 146.56 -146.55 -151.89 

Oct 3.30 98.30 -94.99 -94.99 

Nov 5.84 55.88 -50.03 -53.08 

Dec 26.42 34.54 -8.13 -29.97 

Total 98.50 1492.50 1393.95 1481.59 
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5.2 Result and Discussion 

         5.2.1 Water Balance Computations 

The accumulated potential water loss (APWL) for the Paramount Farm was 

calculated from monthly rainfall and temperature data using TM model. In Table 5-2, 

monthly APWL for almond farm was calculated. The available soil moisture capacity for 

different types of soil texture shown in Table 5-1 was considered for computation of 

actual storage of soil moisture.  The top soil of the study area is dominated by sandy loam 

with AWC of root zone of 63.5 mm. The monthly water balance in the farm was 

calculated as shown in Table 5-3. Paramount Farm has the annual deficit of 135.68 mm 

and annual surplus of 1.77 mm. The total annual runoff from the farm is calculated as 

1086.56 mm.  

Table 5-4 gives us information regarding the water balance of the farm. The 

monthly variation of P, PET, AET and runoff in the area indicates the periods of soil 

moisture deficit, recharge and utilization. The moisture deficit from May to August 

suggests maximum crop water stress where CWSI is approximately 1. This indicates that 

the crop is dried up and the yield is affected. Therefore, irrigation is necessary in that 

area. Soil moisture recharge occurs from late October. The period from November to 

early February was the period of water surplus as the area was subjected to rainfall during 

winter months. The amount of AET and runoff from the farm was calculated as the area-

weighted values.  

 



117 

 

 

 

Table 5-3. Average monthly water balance computation for almond orchard in mm 

(AWC= 63.5 mm for sandy loam) 

 

 P PET P-PET Store ΔSM AET Deficit Surplus Runoff 

Jan  13.71 39.87 -26.16 35.98 -314.01 36.25 3.62 291.47 53.85 

Feb 39.62 56.89 -17.27 28.16 -7.82 51.72 5.17 0 120.07 

Mar 3.55 115.31 -111.76 10.96 -17.19 104.83 10.48 0 212.73 

Apr 5.84 154.43 -148.59 5.46 -5.50 140.39 14.039 0 0 

May 0.25 197.86 -197.61 2.81 -2.65 179.87 17.98 0 0 

Jun 0 197.10 -197.10 2.54 -0.26 179.18 17.91 0 0 

Jul 0 214.12 -214.12 2.21 -0.382 194.65 19.46 0 0 

Aug 0 181.61 -181.61 3.63 1.42 165.1 16.51 0 0 

Sep 0 146.55 -146.55 5.80 2.170 133.23 13.32 0 0 

Oct 3.30 98.29 -94.99 14.22 8.41 89.36 8.93 0 176.73 

Nov 5.84 55.88 -50.03 27.52 13.29 50.8 5.08 0 84.99 

Dec 26.41 34.54 -8.12 39.60 12.08 31.40 3.14 0 52.75 

Total 98.55 1492.50 -1393.95 178.97 -310.39 1356.82 135.68 291.48 701.15 
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Table 5-4. Summary of P, PET, AET, and Runoff in mm 

 

 P PET AET Runoff 

Jan 13.72 39.88 36.25 256.75 

Feb 39.62 56.9 51.72 184.48 

Mar 3.56 115.32 104.83 60.63 

Apr 5.84 154.43 140.39 0 

May 0.25 197.87 179.88 0 

Jun 0 197.1 179.19 0 

Jul 0 214.12 194.66 0 

Aug 0 181.61 165.1 0 

Sep 0 146.56 133.23 0 

Oct 3.3 98.3 89.36 105.96 

Nov 5.84 55.88 50.8 218.93 

Dec 26.42 34.54 31.4 259.81 
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The output was compiled by collating the data into long-term averages. This is useful to 

track soil moisture status throughout the year in order to determine periods of soil water 

deficit, soil water recharge, soil water utilization, and soil water surplus. Figure 5-3 

demonstrated the different status of soil moisture throughout the year with AWC of 63.5 

mm at 1.8 m rooting depth. It was observed that the area-weighted average annual deficit 

in the farm was 11.30 mm and the annual surplus was 24.29 mm. To avoid crop water 

stress, irrigation should apply when the absolute value of APWL is above 200. APWL 

was maximum in the month of May, June, and July. 

  Table 5-3 shows that in the month of July 2009, there was 19.46 mm of deficit 

when irrigation efficiency was 80 percent.  Therefore, the amount of water required for 

effective irrigation was obtained by dividing the amount of water required to replenish 

the soil moisture storage (or AWC) by the efficiency of irrigation system (CIMIS drought 

tips 90-20). In this study, the total amount of water required is calculated as (63.5 / 0.80) 

= 79.37 ± 11.3 mm for effective irrigation. Hence, the grower should apply a minimum 

depth of 79.3 ± 11.3 mm of water to replenish the soil moisture loss over the entire field 

for the month of July. 

The water is applied unevenly, therefore, at each irrigation; the total water applied 

should be more than the soil water deficit. This is to assure that the part of the field 

receiving least amount of water or water stressed (CWSI > 5) is adequately irrigated. The 

total water to apply at each irrigation (CIMIS drought tip 90-20) is calculated as deficit + 

irrigation efficiency (19.46 + 0.8 = 20.26 mm). Therefore, the field should be irrigated 

with at least 20 mm of water at each irrigation.  
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Figure 5-3. Water balance status of the study area 
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5.3 Conclusion 

This study uses TM water balance model to evaluate various components of water 

balance in the Paramount Farm region. Such estimation of water balance components is 

useful in agricultural areas that account for all water addition and subtraction from the 

soil root zone for planning irrigation scheduling. Water balance study is also helpful in 

finding out the periods of moisture deficit and moisture surplus for the region. The model 

computes evapotranspiration, runoff, soil moisture, and recharge separately on monthly 

basis. The TM model uses rainfall data, temperature data, soils, land-use and rooting 

depth of almond orchard vegetation for calculating the soil moisture deficit, soil moisture 

surplus, evapotranspiration, and surface runoff. The average annual precipitation of the 

farm is 8.21 mm. February receives the highest precipitation of 39.6 mm. Average PET 

of this region was 124.3 mm. The range of AET is 45 to 246 mm/month. These AET 

estimates can be used to determine day-to-day soil water depletion from available water 

capacity and thus can be used to schedule irrigation. High soil moisture storage was 

observed from November to February in the range of 25 to 36 mm, but least in May to 

August as the ET was high. This shows that there was highest recharge of soil moisture in 

November to January. To avoid crop water stress, irrigation should be applied when the 

absolute value of APWL is maximum in the months of May to July. The water balance 

calculation shows that the maximum annual runoff was observed from January to March 

and October to December. The total runoff was calculated as 1086.56 mm. Runoff 

exceeds rainfall, suggesting the melting snow from snow-covered mountain in Sierra 

Nevada that contributes to most of the surface and groundwater runoff in this region. The 
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total annual deficit in the watershed is 135.66 ± 11.3 mm and the annual surplus is 291.47 

± 24.29 mm. This region undergoes a period of moisture deficit in the months of May to 

July. September to October are months of soil water recharge; from November to early 

February is the period of water surplus as the area is subjected to winter rainfall. Winter 

months are subjected to surplus, whereas deficit in the remaining time of the year shows 

strong exchange phenomenon among atmosphere, surface water, groundwater, energy 

balance and water balance in the farm. Result shows that for efficient irrigation, water 

balance studies are important to estimate the quantity of water required for irrigation 

without much loss. It was observed that growers should apply a depth of approximately 

79.37 ± 11.3 mm to replenish the soil moisture storage over the entire field for the month 

of July. At least 20 mm of total water should be applied in each irrigation period to 

ensure that most of the field is evenly irrigated to avoid crop water stress. This study 

helps the farmers to decide their crop calendar, irrigation requirements, and water 

conservation, based upon the periods of deficit or surplus. 
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Summary 

 Water resources are limited in semi-arid regions and thereby the available water 

for irrigation and other purposes are constrained. However, there is always need for 

optimum use and planning of limited water resources. The Central Valley in California is 

one of the most productive agricultural regions in the world. This project focused on the 

Paramount Farm (35o30’N, 119o39’W) in Central Valley, California with an annual 

rainfall of 98.5 mm. An optimum amount of water is required for irrigation as well as 

conservation.  The objective was to integrate remote sensing and hydrologies to (1) 

evaluate energy fluxes for estimation of crop evapotranspiration (ET). (2) Compute water 

stress of crop using Crop Water Stress Index (CWSI). (3) Analyze the movement of the 

groundwater table. (4) Compute the water balance of the farm. 

The crop water requirement is studied by estimating the ET. ET is one of the most 

important parameters of water balance, which is used for irrigation scheduling, and 

analyzing crop water stress. The remote sensing approach allows for a more complete 

understanding of ET over large area. Bastiaanssen et al. (1998, 2005) developed a 

Surface Energy Balance Algorithm for Land (SEBAL) model. For this study, airborne 

images were obtained from NASA DC-8 aircraft by MASTER (MODIS/ASTER) 

simulator. This sensor has 50 spectral bands in four spectral regions (visible through 

thermal infrared) with greater than 10m spatial resolution. Results show that the remote 

sensing estimate of ET is an alternative to conventional methods using Penman-Monteith. 

Average actual evapotranspiration (ETa) estimated from SEBAL, and Penman-Monteith 

(PM) was 0.67 mm/h and 0.75 mm/h respectively, with a mean percent difference of 
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0.109%. The average ETa estimated from SEBAL is 0.65 mm/h. The amount of water 

required to reimburse evapotranspiration loss from the farm is defined as crop water 

requirement. Therefore, Crop Water Stress Index (CWSI) was used to quantify the water 

requirement. The estimation of water stress in crop is not only used to monitor vegetative 

activity and predict productivity, but it also assesses the efficient use of water in arid 

agricultural areas.  This method is suggested by Idso et al. (1981), to quantify plant stress 

associated with water deficit under field conditions. Remote Sensing allows efficient 

irrigation by applying water when symptom of water stress appears. The empirical 

relationship for canopy- air temperatures difference (Tc-Ta) versus Vapor Pressure 

Deficit (VPD) will represent water status of the vegetation.  The average value of CWSI 

for well-irrigated (non-stressed) almonds was 0.24 while the yield would decline when 

the average CSWI values for water stress crop are greater than 0.5.  Therefore, to avoid 

the water stress and poor productivity, the irrigated agriculture relies heavily on surface-

water diversions, and groundwater. Identification of potential recharge area in the field 

was required to study soil-water moisture status. The source of recharge is through 

percolation of irrigation water and thereby, the groundwater flow direction was studied to 

analyze the fluctuation of the groundwater table. A mathematical groundwater flow 

model was developed in the study. For this purpose, Groundwater Modeling Software 

(GMS) was used which supports MODFLOW- 2000 code. The model was calibrated 

using groundwater elevation data against the historical water level data in 1955 under 

steady-state conditions. Transient simulation of groundwater flow was carried out from 

the year 2006 to 2011 for 5 stress periods. It was observed that the groundwater is 
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flowing from west to east in the study area. The average water surface elevation (WSE) 

in 1955 for the growing season (May to July) is 161.04 m in comparison with 2009, 

2010, and 2011 elevations of 237.14 m, 236.28 m, and 235.74 m respectively. Therefore, 

the irrigated water is mostly percolating and moving towards the California Aquaduct. In 

future studies, the subsurface artificial recharge structure (such as check dams, 

percolation tank, and infiltration gallery) will be proposed such that the percolating water 

can be conserved to be used by water stressed crops. In addition, a thorough 

understanding of the ET processes as well as precipitation is required to obtain water 

balance computations of the farm annually. It was observed that the annual deficit in the 

watershed is 135.66 ± 11.3 mm and the annual surplus is 291.47 ± 24.29 mm. This region 

undergoes a period of moisture deficit in the months of May to July. From September to 

October are months of soil water recharge; from November to early February is the 

period of water surplus from winter rainfall. To avoid crop water stress, irrigation should 

be done when the APWL observed is maximum in the months of May, June, and July. 

Considering that Central Valley Project (CVP) allowed only 10% of water allowance to 

farmers in 2009 compared to 40% in 2008 and 50% in 2007. Growers should apply a 

depth of approximately 79.37 ± 11.3 mm to replenish the soil moisture storage over the 

entire field for the orchard growing season. At least 20 mm of total water should be 

applied in each irrigation period to ensure that most of the field is evenly irrigated to 

avoid crop water stress. 

Results obtained from this study will help the water managers to predict the 

irrigation scheduling, understand how water moves through the aquifer system, and to 
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predict water supply scenarios based on the water balance. Such studies can be very 

beneficial for the local population who can decide their crop calendar and irrigation 

requirements based upon the periods of deficit or surplus. Water conservation measures 

are also planned based upon the duration of deficit and surplus for drought affected 

agricultural regions in the farm. This research can also applicable to other arid to semi-

arid agricultural areas of the world (for example India, northern China, Israel, West 

Africa, Mexico, Australia) for water conservation and management in the farms. 

Therefore, high-resolution satellite image, field data (thermal measurement of water, 

canopy, soil), and weather data are required to compute energy balance for estimating 

ET, water balance, and water stress indices (CWSI or WDI depending upon the canopy 

cover). However, the applicability of this study can also be difficult in extreme spatial 

heterogeneity of soil, vegetation, and climatic characteristics in semi-arid agricultural 

areas of the world. Scarcity of weather and field data at inaccessible regions can hinder 

the model output. Therefore, for such areas, distributed hydrological model can be 

proposed. 

Climate change is largely determined by an increase in the area of arid land driven 

by global warming, and rising green house gases. In southwest US, diminishing snow 

pack and reduction of soil moisture affects groundwater recharge rates, less surface water 

runoff and low groundwater table. Long-term study of climate change from this study 

requires regional historical data on precipitation, temperature, evapotranspiration, soil 

moisture, and evaporative demand, which is determined by net radiation at surface, 

humidity, vapor pressure, wind speed, and air temperature for computation of projected 
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water balance of the farm in drought years. However, there are uncertainties in projected 

changes in hydrological system due to variability of weather parameters, anthropogenic 

changes in land cover/use, uncertainty of future greenhouse gases, and declining 

availability of moisture in the summer from snowmelt as the snowpack is melting earlier, 

in the spring. The study has demonstrated the potential reason for using remote sensing 

data for deriving important variables for studying hydrologic modeling in semi-arid 

agricultural regions. 
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