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Abstract: We discuss the mathematics behind the Pan’s flute. We analyze how the sound is created,
the relationship between the notes that the pipes produce, their frequencies and the length of the
pipes. We find an equation which models the curve that appears at the bottom of any Pan’s flute due
to the different pipe lengths.

Keywords: Pan’s flute; music; sound frequencies; wind instruments

1. Introduction

Fluids impact our everyday lives at any moment, from the air we breathe, to the blood circulating
in our bodies, to the rivers and oceans that we swim in and drink from. Most of the examples
concerning moving fluids are extremely complex with behavior governed by complicated equations
involving many parameters. Applications of fluid mechanics are extremely varied and this translates
in a plethora of methods and approaches to teach the subject. In this paper, we focus on the relation
between fluids and musical instruments and present a somewhat atypical way to introduce fluids to
undergraduate students.

Fluids, and in particular flowing air, are indispensable in the creation of sound in wind instruments
and human voicing. The interaction between flowing air and different structures, e.g., inside of a tube,
a reed or human vocal folds, produces air vibrations which are perceived as sounds by the human
ear. The study of these interactions are useful to understanding and perfecting musical instruments
or to identifying and curing vocal disorders. In this paper, we look at the geometry of Pan’s flutes
and the relation between fluid dynamics and equal temperament scales brought together by this
musical instrument.

Pan flutes are wind instruments consisting of multiple pipes which are gradually decreasing
in length (see Figure 1). The pipes are typically made from bamboo, maple or other wood varieties.
Other materials include plastic, metal or ivory. The tubes are stopped at one end, and are tuned to
correct pitch by placing small pieces of rubber inside. Very often, the pipes are positioned to form
a curved surface to allow quick and easy access to all pipes. The instrument featured in Figure 1 is
a maple tenor Pan’s flute tuned in the key of G-major. The longest pipe measures about 29 cm and
produces the lowest sound of the instrument, D4. Table 1 shows the notes produced by each pipe and
corresponding frequencies measured by any physical tuner or a tuner app.

Table 1. The notes and their corresponding frequencies (rounded to the nearest integer) produced by
the Pan’s flute.

Notes D4 E4 F#4 G4 A4 B4 C5 D5 E5 F#5 G5 A5 B5 C6 D6 E6 F#6 G6

Frequencies 294 330 370 392 440 494 523 587 659 740 784 880 988 1047 1175 1319 1480 1568
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Figure 1. An 18-pipe Pan’s flute tuned in G-major and a bar graph representing the lengths of individual
pipes in cm. The red bars show the root notes (in this case G’s), the gray bars show the location of
whole tone intervals, and the blue bars show the location of semitone intervals.

The goal of this research is to determine the relation between the length of the pipes and the notes
played by each pipe, therefore providing a functional formula for the curve created at the top of the
instrument in Figure 1. We will do this in two steps: first, determine a relation between the frequency
and the length (function f in Figure 2) and then a relation between the notes and corresponding
frequencies (function L in Figure 2). The composition between the two functions should provide the
desired relationship.

Figure 2. The relation between the notes played by a Pan’s flute, their corresponding frequency, and the
length of pipes as a composition of functions.

The benefits of this apparent simple problem are twofold. First, one can learn about several
math-physics areas and methods starting with fluid dynamics, wave equation, partial differential
equations and continuing with elements of algebra in particular frequency ratios, and logarithmic
and exponential functions. Second, the application of mathematics to a seemingly unrelated field like
music (and art in general) is extremely exciting, novel and attractive to students who otherwise would
not consider working on a mathematical research problem.

In this paper, we assume all pipes are ideal, i.e., the wavelength of the sound produced is
proportional to the length of the tube. This is equivalent to assuming a zero diameter for the pipes of
the Pan’s flute, which is an acceptable approximation for the current research. In reality, the diameter of
the pipes plays a role in the pitch produced by the musical instrument: a pipe with a non-zero diameter
appears to be acoustically longer than its physical length. When designing musical instruments
consisting of large diameter pipes (organ, boom-whacker, etc.), an end-correction of the pipes needs to
be applied. For an in-depth discussion of this effect, see [1].

2. The Relationship between the Frequency and the Length of a Pipe

Sound in pipes is produced by vibrating air pressure due to the air interaction with the walls of
the pipe. The partial differential equation that models this physics is the wave equation for the acoustic
pressure. The equation can be developed from the linearized one-dimensional continuity equation,
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the linearized one-dimensional force equation, and the equation of state (see for example [2]), and
takes the form

∂2 p
∂x2 =

1
c2

∂2 p
∂t2 , (1)

where p(x, t) is the air pressure due to air moving inside of the pipe, x is the coordinate along the
pipe, t is time, and c ≈ 340 m/s is the speed of sound in air. The boundary conditions associated with
this differential equation are based on the physics of the problem: at the open end, the moving air
has nothing to push against and therefore the pressure is zero; at the closed end, the air piles up and
increases the pressure to a maximum value. Therefore, for a Pan’s flute pipe of length L, open at x = L
and closed at the x = 0, the boundary conditions are

p(L, t) = 0, (2)

px(0, t) = 0.

It is worth mentioning that for other wind instruments, such as the flute, clarinet, etc., the partial
differential equation given in Equation (1) is the same while the boundary conditions in Equation (2)
change to reflect different constructions. The solutions of the boundary value problem described by
Equations (1) and (2) are linear combinations of the normal modes [3]

pn(x, t) = cos
(

2n − 1
2

π
x
L

)(
bn cos

(
2n − 1

2L
πct

)
+ cn sin

(
2n − 1

2L
πct

))
, (3)

where n = 1, 2, 3 . . . and bn and cn are constants. It is easy to see now that the frequency of the nth
mode is

fn =
(2n − 1)c

4L
. (4)

These frequencies have a simple explanation related to musical instruments. Notes played on
conventional instruments (wind, string, etc.) produce one main frequency, the fundamental, and a
series of lower amplitude frequencies, partials, which are integer multiples of the fundamental
frequency. For example, when blowing air into the largest pipe of the Pan’s flute in Figure 1, you will
only hear the fundamental frequency of f1 (the note D4) even though an infinite series of partials,
having frequencies 3 f1, 5 f1, etc., are produced.

The 1st mode, the fundamental, is described by the frequency

f1 =
340
4L

, (5)

which is our first desired equation relating the frequency of the musical note produced by a pipe
and the length of that pipe. For example, the longest pipe in our instrument produces a frequency of
approximately 294 Hz, which means that its length is approximately

L =
340

4 × 294
= 0.29 m, (6)

which agrees with the measurements in Figure 1.

3. The Relationship between the Musical Notes and the Frequencies

It was long postulated that different notes whose frequency ratios are expressible as ratios of small
integers are consonant (for a more in depth discussion see [4]). For example, f1 and 2 f1 attain the ratio
of the smallest possible integers, namely 2:1, the interval (the distance between them) being designated
as an octave. Another example of a consonant interval is the perfect fifth, which is represented by
two notes whose frequencies achieve a 3:2 ratio. Based on this condition of consonance, it was natural
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to build scales using the most consonant intervals possible, namely the octave and the perfect fifth.
This produced the Pythagorean scale (see Table 2).

Table 2. One octave of the Pythagorean scale of G major.

Note G4 A4 B4 C5 D5 E5 F#5 G5

Ratio 1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

The scale in Table 2 is obtained by choosing an octave (say G4–G5), then adding to the fist note
(G4) a perfect fifth interval, thus obtaining the second note (D5). Adding another perfect fifth interval
to D5, we obtain a frequency ratio of 9:4 (with respect to G4) that is outside of our octave. Reducing this
interval by an octave (by dividing this frequency ratio by 2), we obtain a ratio of 9:8, which is our third
note in the scale (A4). We continue the process until we discover all the notes in the scale (for more
details, refer to [4]). In this system, adding/subtracting intervals amounts to multiplying/dividing
frequency ratios, which is why it is commonly referred to as a logarithmic scale. One important
observation is that the Pythagorean scale is based on the assumption that going up 12 fifths and
coming down 7 octaves will return you exactly to the same starting note, or, in other words, that

219 ≈ 312. (7)

While these numbers are close, they are not exactly equal, which gives rise to certain problems
in the Pythagorean scale. Among the issues are other musical intervals, like the third, which are
perceived as dissonant in this scale. Other scales were later developed to alleviate some of these
problems—for example, just intonation, meantone and the equal temperament scale.

The equal temperament scale makes all the semitones equally distant (see Table 3). It is designed to
‘fix’ all the problems associated with other scales by distributing the dissonance occurring in different
intervals throughout the entire scale. This implies that, while classical intervals like the perfect fifth
or the third are no longer going to have frequency ratios represented by small integer ratios, they are
going to sound the same (relatively consonant) in any key and any pitch.

Table 3. One octave of the equal temperaments scale of G major.

Note G4 A4 B4 C5 D5 E5 F#5 G5

Ratios 1:1 2
1
6 : 1 2

1
3 : 1 2

5
12 : 1 2

7
12 : 1 2

3
4 : 1 2

11
12 : 1 2:1

All the modern musical instruments, our Pan’s flute included, are tuned in the equal temperament
scale. In this scale, the frequency f of any note can be obtained from the frequency f1 of any reference
note (we chose D4 as our reference note as it corresponds to the note produced by the first pipe of the
Pan’s flute) from the formula

f = 2
x

12 f1, (8)

where x represents the number of semitones that separates the note with the frequency f from the first
note: x = 0 represents the first note, D4, x = 2 represents the second note, E4, x = 4 represents the
third note, F#4, x = 5 represents the fourth note, G4, and so on. Note that x does not cover all the
positive integer values since the scale contains only the main notes in the G-major scale and does not
include the sharps. This is consistent with the construction of the Pan’s flute that we use in this paper.
Because of this, when plotting the lengths of the pipes as a function of x, we will need to adjust for
these apparent irregular values taken by the variable x.
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4. Putting It All Together

Combining Equations (5) and (8), we find

L =
340

4 × 2
x

12 × f1
, (9)

which is the desired relation between the length of a pipe and the note played by that pipe. Plotting this
curve on the same coordinate system with the model of the musical instrument, we obtain Figure 3,
which shows a perfect match with our initial model of the Pan’s flute.

Figure 3. The curve in Equation (9) superimposed on the model of the Pan’s flute. The semitones,
represented in blue, were adjusted to indicate the correct musical intervals.

5. Conclusions

In this paper, we discuss a mathematical model of Pan’s flutes. The interaction of mathematics
and music makes it an interesting application for undergraduate students as they find refuge from the
mathematical rigor into the flexibility and creativity of arts. The study of wind instruments provides a
rich environment for teaching fluid mechanics and other areas of applied mathematics in a fun and
relaxed way.
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