
Montclair State University Montclair State University 

Montclair State University Digital Montclair State University Digital 

Commons Commons 

Department of Earth and Environmental Studies 
Faculty Scholarship and Creative Works Department of Earth and Environmental Studies 

8-1-2017 

Chasing Boundaries and Cascade Effects in a Coupled Barrier-Chasing Boundaries and Cascade Effects in a Coupled Barrier-

Marsh-Lagoon System Marsh-Lagoon System 

Jorge Lorenzo Trueba 
Montclair State University, lorenzotruej@mail.montclair.edu 

Giulio Mariotti 
Louisiana State University 

Follow this and additional works at: https://digitalcommons.montclair.edu/earth-environ-studies-facpubs 

 Part of the Earth Sciences Commons, and the Environmental Sciences Commons 

MSU Digital Commons Citation MSU Digital Commons Citation 
Lorenzo Trueba, Jorge and Mariotti, Giulio, "Chasing Boundaries and Cascade Effects in a Coupled Barrier-
Marsh-Lagoon System" (2017). Department of Earth and Environmental Studies Faculty Scholarship and 
Creative Works. 205. 
https://digitalcommons.montclair.edu/earth-environ-studies-facpubs/205 

This Article is brought to you for free and open access by the Department of Earth and Environmental Studies at 
Montclair State University Digital Commons. It has been accepted for inclusion in Department of Earth and 
Environmental Studies Faculty Scholarship and Creative Works by an authorized administrator of Montclair State 
University Digital Commons. For more information, please contact digitalcommons@montclair.edu. 

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/earth-environ-studies-facpubs
https://digitalcommons.montclair.edu/earth-environ-studies-facpubs
https://digitalcommons.montclair.edu/earth-environ-studies
https://digitalcommons.montclair.edu/earth-environ-studies-facpubs?utm_source=digitalcommons.montclair.edu%2Fearth-environ-studies-facpubs%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/153?utm_source=digitalcommons.montclair.edu%2Fearth-environ-studies-facpubs%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.montclair.edu%2Fearth-environ-studies-facpubs%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/earth-environ-studies-facpubs/205?utm_source=digitalcommons.montclair.edu%2Fearth-environ-studies-facpubs%2F205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu


Contents lists available at ScienceDirect

Geomorphology

journal homepage: www.elsevier.com/locate/geomorph

Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon
system

Jorge Lorenzo-Truebaa,⁎, Giulio Mariottib,c

a Department of Earth and Environmental Studies, Montclair State University, NJ 07043, USA
b Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
c Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA

A B S T R A C T

The long-term dynamic evolution of an idealized barrier-marsh-lagoon system experiencing sea-level rise is
studied by coupling two existing numerical models. The barrier model accounts for the interaction between
shoreface dynamics and overwash flux, which allows the occurrence of barrier drowning. The marsh-lagoon
model includes both a backbarrier marsh and an interior marsh, and accounts for the modification of the wave
regime associated with changes in lagoon width and depth. Overwash, the key process that connects the barrier
shoreface with the marsh-lagoon ecosystems, is formulated to account for the role of the backbarrier marsh.
Model results show that a number of factors that are not typically associated with the dynamics of coastal
barriers can enhance the rate of overwash-driven landward migration by increasing backbarrier accommodation
space. For instance, lagoon deepening could be triggered by marsh edge retreat and consequent export of fine
sediment via tidal dispersion, as well as by an expansion of inland marshes and consequent increase in
accommodation space to be filled in with sediment. A deeper lagoon results in a larger fraction of sediment
overwash being subaqueous, which coupled with a slow shoreface response sending sediment onshore can
trigger barrier drowning. We therefore conclude that the supply of fine sediments to the back-barrier and the
dynamics of both the interior and backbarrier marsh can be essential for maintaining the barrier system under
elevated rates of sea-level rise. Our results highlight the importance of considering barriers and their associated
backbarriers as part of an integrated system in which sediment is exchanged.

1. Introduction

Low-lying coasts are often characterized by barrier islands, km-wide
stretches of sand separated from the mainland by marshes and lagoons.
Barriers commonly serve as buffer zones between the coastal ocean and
mainland human population centers and infrastructure, protecting
these communities from the most devastating coastal impacts of climate
change. Barriers themselves are also some of the most popular tourist
and recreational destinations in the US, and constitute some of the most
valuable real estate in the country (Heinz-Center, 2000; Morton, 2008).
Furthermore, barriers support biodiversity (McLachlan, 1983), provide
a range of ecosystem services (Barbier et al., 2010), and protect
wetlands that, in turn, support their own diverse ecologies (Day
et al., 2008).

Despite the economic and ecological importance of barriers, and
their extensive presence along the US East and Gulf coasts, there exists a
critical gap in understanding how barrier systems respond to coastal
change. In particular, there is a poor understanding of the complex

barrier-backbarrier interactions, which results in landward migration
rates unprecedented in thousands of years (FitzGerald et al., 2008). In
order to fill this gap we build an exploratory numerical model (Murray,
2003) to examine the morphological feedbacks within a barrier-marsh-
lagoon system and predict its evolution under projected rates of sea-
level rise and sediment supply to the backbarrier environment.

Our starting point is a recently developed morphodynamic model
(Lorenzo-Trueba and Ashton, 2014) that couples shoreface evolution
and overwash processes in a dynamic framework. As such, the model is
able to capture dynamics not reproduced by morphokinematic models,
which advect geometries without specific concern to processes. These
dynamics include periodic barrier retreat due to time lags in the
shoreface response to barrier overwash, height drowning due to
insufficient overwash flux as sea level rises, and width drowning,
which occurs when the shoreface response rate is insufficient to
maintain the barrier geometry during overwash-driven landward
migration. The model, however, does not incorporate dynamic pro-
cesses landward of the barrier, such as erosion and accumulation of
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peat and lagoonal sediments, which influence the space available for
sediment to accumulate behind the barrier and hence control the island
migration rate that is triggered by sea-level rise (Bruun, 1988).

The two-way interactions between backbarrier marsh and barrier
have been recently explored with GEOMBEST+ (Walters et al., 2014;
Brenner et al., 2015), a modified version of the GEOMBEST model
(Stolper et al., 2005; Moore et al., 2010). The study highlighted how the
backbarrier marsh can slow down the island migration rate by reducing
the space available for sediment to fill, and that overwash facilitates the
persistence of a stable backbarrier marsh. Additionally, coupling field
observations with GEOMBEST+ suggests that sediment overwash
allows a narrow marsh to be maintained in a long-lasting alternate
state within a range of conditions under which they would otherwise
disappear (Walters et al., 2014). Here we propose to further investigate
the evolution of barrier and backbarrier environments by coupling a
morphodynamic barrier model (Lorenzo-Trueba and Ashton, 2014)
with a dynamic model for the evolution of the marsh platform and the
marsh boundary with the adjacent lagoon. In particular, we have
extended a model developed by Mariotti and Carr (2014) to include
both a backbarrier and an interior marsh, and modified the barrier
overwash flux to account for the presence of a backbarrier marsh. The
resulting model represents a cross-section that spans from the toe of the
shoreface to the point where the marshes encroach the mainland, that
is, the upper limit of the marine influence (Fig. 1). This modeling
framework allows us to explore new feedbacks between barrier and
their backbarrier ecosystems that have not been tackled before.

2. Coupled model description

Our model approach assumes an idealized cross-section (Fig. 1) that

connects the shoreface, the barrier, and the backbarrier. The back-
barrier, defined here as the region between the barrier and the upper
limit of the marine influence, includes three units: a backbarrier marsh
(or rear fringing marsh), a lagoon, and an inland marsh. The barrier
model component accounts for the interaction between shoreface
dynamics and overwash flux, and the marsh-lagoon component ex-
plicitly describes marsh edge processes of both the backbarrier marsh
and the interior marsh, and accounts for the modification of the wave
regime associated with lagoon width, which coincides with the wave
fetch.

2.1. Barrier dynamics

Our model focuses on two primary barrier system components or
behavioral elements: the marine domain represented by the active
shoreface, and the backbarrier environment, where the infrequent
process of overwash controls landward mass fluxes. As described in
Lorenzo-Trueba and Ashton (2014), the evolution of the barrier system
can be fully determined with the rates of migration of the shoreface toe
x dx dṫ =T T , the shoreline x dx dṫ =S S , the landward end of the subaerial
portion of the barrier x dx dṫ =B B , and the change of the barrier height
H dH dṫ = (Fig. 1). These rates can be written in terms of the sediment
flux at the shoreface QSF, the sea-level rise rate z ,̇ the total overwash
flux QOW, the top-barrier overwash component QOW,H and the back-
barrier overwash component QOW,Bm (Figs. 1 and 3):

x Q H D
D H D

z
α

̇ = 4 +
(2 + )

+ 2 ̇
T SF

T

T T (1)

x Q
H D

Q H D
H D

̇ = 2
2 +

− 4 +
(2 + )S

OW

T
SF

T

T
2 (2)

Fig. 1. Cross-shore barrier-marsh-lagoon-marsh-mainland model set up, including (a) the different geomorphic domains and their moving boundaries, (b) key processes that drive the
evolution of the moving boundaries, (c) state variables. This is the general cross-section of the system, but note that the model can also account for scenarios in which backbarrier and/or
inland marshes completely disappear (i.e., bbm = 0 and/or bim = 0).
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ż = − ̇OW H,
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where H is the barrier height, W is the barrier width, α is the shoreface
depth, DT is the shoreface depth, zbm is the backbarrier marsh depth, r is
the tidal range, and z i̇s the sea-level rise rate (Fig. 1). We compute the
shoreface and overwash sediment fluxes following Lorenzo-Trueba and
Ashton (2014). Shoreface sediment fluxes are determined based upon
deviations from an equilibrium profile. When the shoreface slope is
shallower than its equilibrium slope, sediment flux at the shoreface is
directed onshore. In contrast, when the shoreface slope is steeper than
the equilibrium slope, sediment is directed offshore. Additionally, we
compute overwash flux using a simple formulation that relies upon the
critical length concept (Leatherman, 1983). This formulation assumes
the existence of a critical barrier width We and a critical barrier height
He beyond which overwash flux to the back and the top of the barrier
shuts down. When the barrier width W and height H are below their
critical values, the overwash rates QOW,H and QOW,B scale with their
associated deficit volumes, Vd,B and Vd,H (Fig. 2). Lorenzo-Trueba and
Ashton (2014) considered a lagoon in the backbarrier and defined the
backbarrier deficit volume as Vd ,B=max [0, (We−W) (H+zL− r/2)].
Here, in order to account for the presence of a backbarrier marsh, we
substitute the lagoon depth with a linear combination of the back-
barrier marsh depth zbm, and the lagoon depth zL:

V W W H φ z r φ z r= max[0, ( − ) ( + ( − 2) + (1 − )( − 2)]d B e bm L, (5)

where:

⎛
⎝⎜

⎞
⎠⎟φ b

b
= min 1, bm

bmc (6)

This formulation is clarified by considering its two end members.
When the backbarrier marsh width, bbm, is larger than the critical
barrier marsh width,bbmc, i.e., φ= 1, overwash sediment is unable to
reach the lagoon, and thus, only the backbarrier marsh depth zbm is
involved in the deficit volume calculation. In contrast, when the
backbarrier marsh disappears, i.e., φ = 0, only the lagoon depth zL
affects the deficit volume calculation, and the model recovers the
formulation introduced by Lorenzo-Trueba and Ashton (2014). Thus,
this formulation implies that the presence of marsh ecosystems reduces
backbarrier accommodation (Fig. 2), which in turn reduces the back-
barrier overwash flux (Bruun, 1988). Additionally, for intermediate
values of the backbarrier marsh width (i.e., 0 < φ < 1), the back-
barrier deficit volume depends on both the marsh and the lagoon
elevations (see Eq. (5)). In this intermediate case, sediment overwash
can reach both the backbarrier marsh and the lagoon. Consequently, we
extend the overwash formulation presented by Lorenzo-Trueba and
Ashton (2014) to account for two backbarrier overwash components: a
backbarrier marsh overwash flux QOW,Bm, which contributes to the
progradation of the barrier over the backbarrier marsh (Fig. 3), and a
lagoon overwash flux QOW,Bl, which contributes to the progradation of
the backbarrier marsh (Fig. 3). We compute these fluxes as follows:

Q φ Q= (1 − )OW Bl OW B, , (7)

Q φ Q=OW Bm OW B, , (8)

Hence, when the backbarrier marsh is very wide, the overwash flux
does not reach the lagoon and thus does not contribute to the
progradation of the backbarrier marsh (i.e., QOW,Bl = 0). In contrast,
when the backbarrier marsh disappears, the backbarrier overwash flux
QOW,B contributes to the landward migration of the barrier (Fig. 3).
Additionally, for intermediate values of the backbarrier marsh width,
overwash flux contributes to both the landward migration of the barrier
and the backbarrier marsh (Fig. 3). In particular, we note that a narrow
marsh will prograde faster than a wider marsh due to a larger overwash
sediment input (Eqs. (6) to (8)), which allows for the tendency of a
narrow backbarrier marsh to persist. In this way, under the right
conditions an equilibrium state for the backbarrier marshes can emerge
(see Section 3.2), a dynamic that has been previously described by
Walters et al. (2014).

We note that this formulation of overwash deposition is partly
constrained by the imposed geometry of the system (Fig. 1), and
therefore differs from the one implemented in GEOMBEST+ (Walters
et al., 2014), in which vertical accretion rates vary with distance from
the barrier. However, although this formulation oversimplifies the
complex process of barrier overwash, it is consistent with the ‘critical
barrier width’ concept introduced by Leatherman (1983), as well as
many subsequent numerical implementations to study the long-term
evolution of barriers and the shoreline (Jiménez and Sánchez-Arcilla,
2004; McNamara and Werner, 2008). Additionally, we note that the
general model framework is flexible such that it could also incorporate
different approaches to computing overwash flux.

2.2. Marsh-lagoon dynamics

The dynamics of the backbarrier environment can be fully described
with the rates of change of the depth of the lagoon z dz dṫ =L L ,
backbarrier marsh z dz dṫ =bm bm , and interior marsh z dz dṫ =im im , and
the rates of change of the backbarrier marsh edge x dx dṫ =bm bm , interior
marsh edge x dx dṫ =im im , and the boundary between the interior marsh
and mainland x dx dṫ =mm mm .

The horizontal migration of the two marsh boundaries is controlled
by the competition by wave erosion and sediment accretion (Mariotti
and Fagherazzi, 2013; Mariotti and Carr, 2014). Thus, both erosion
rates Ebm and Eim, and progradation rates Pbm and Pim, on each side of
the lagoon, depend on the reference wind speed, the width and depth of
the lagoon, the depth of the marsh, and the sediment concentration in
the lagoon. In addition, the backbarrier marsh receives the overwash
flux Qow,Bl, and hence the equations read:

x P E
Q

z z
̇ = − +

−bm bm bm
OW Bl

L bm

,

(9)

x E Ṗ = −im im im (10)

The variations in height of the two marshes are controlled by the
sea-level rise rate, the organic accretion rates Obm and Oim, and the
inorganic sediment flux from the lagoon to the backbarrier marsh Ibm

Fig. 2. Schematic of the critical barrier island width concept and the top-barrier Vd,H and back-barrier Vd,B deficit volumes. Note that when backbarrier accommodation is filled by
marshes, Vd,B is reduced.
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and the inland marsh Iim. Ibm and Iim are computed through the tidal
dispersion mechanism as a function of the reference sediment concen-
trations in the lagoon and each of the marshes (Mariotti and Carr,
2014):

z I O ż = − − + ̇bm bm bm (11)

z I O ż = − − + ̇im im im (12)

Both Obm and Oim are assumed to be proportional to refractory
component of the annual below ground organic matter production
(Mudd et al., 2009; Mariotti and Carr, 2014). Additionally, following
Morris et al. (2002), both Obm and Oim are computed as a quadratic
function of the depth of inundation respect to mean high tide (Morris
et al., 2002).

The migration of the inland marsh towards mainland is simply
controlled by the height of the interior marsh and the slope of the
underlying landscape (Fig. 1):

x z z
β

̇ = ̇ − ̇
mm

im

(13)

Finally, the variations of the lagoon depth depend on the balance
between the horizontal flux at the marsh boundary, the sediment flux
from the lagoon to the marsh platform, and the exchange between open
ocean and lagoon, Iol (Mariotti and Fagherazzi, 2013; Mariotti and Carr,
2014):

z I b
b

I b
b

I E P z z
b

E P z z
b

z

̇ = + + − ( − ) − − ( − ) −

+ ̇

L bm
bm

L
im

im

L
ol bm bm

L bm

L
im im

L im

L

(14)

The exchange between lagoon and the open ocean is a key driver of
the dynamics of the lagoon, and depends on the balance between
sediment export and import. Sediment export is set proportional to the
reference sediment concentration in the lagoon Cr, which is determined
by wave resuspension. Sediment import is set proportional to the
external sediment concentration C0, (Mariotti and Carr, 2014), which
simulates the availability of fine sediment in the nearshore region
(Bartholdy and Anthony, 1998; Bartholdy, 2000).

2.3. Model solution

The evolution of the coupled barrier-marsh-lagoon-marsh system is
fully determined by the rates of change of the shoreface toe position xṪ ,
the shoreline position xṠ, the landward end of the subaerial portion of
the barrier xḂ, the barrier height Ḣ , the depth of the lagoon zL̇,
backbarrier marsh elevation zḃm, interior marsh elevation zi̇m, the

backbarrier marsh edge xḃm, the interior marsh edge position xi̇m, and
upland marsh edge position xṁm. Combining the barrier and backbarrier
processes described in previous section, the evolution of these ten state
variables over time is described by Eqs. (1) to (4) and Eqs. (9) to (14).

We numerically solve these equations using a simple Eulerian scheme
ξ ξ ξ t= + Δ̇old , where ξ=xT ,xS ,xB ,H ,xbm ,xim ,xmm ,zbm ,zim ,zL. Key input
parameter values are listed in Tables 1 and 3; a detailed description of all
barrier parameters is included in Lorenzo-Trueba and Ashton (2014), and
parameters related to the marsh-lagoon system are included in Mariotti and
Carr (2014). As initial barrier geometry (see Fig. 1) we choose:

α t α W t W H t H Z t D( = 0) = , ( = 0) = , ( = 0) = , and ( = 0) =e e e T (15)

This initial geometry is at static equilibrium (i.e.,
x x x Ḣ = ̇ = ̇ = ̇ = 0T S B ) for a constant sea level (with corresponding
zero shoreface and overwash flux). As initial lagoon, backbarrier marsh
and inland marsh widths (see Fig. 1) we choose:

b t b b t b b t b( = 0) = , ( = 0) = , ( = 0) =L L bm bm im im,0 ,0 ,0 (16)

The values for bL , 0,bbm , 0, and bim , 0 vary between model runs. Their
specific values in each figure are included in Table 2. As initial lagoon,
backbarrier marsh and inland marsh depths respect to Mean High
Water (see Fig. 1) level we choose:

z t z z t z z t z( = 0) = , ( = 0) = and ( = 0) =bm bm im im L L,0 ,0 ,0 (17)

where zbm , 0=zim , 0=0.26m, and zL , 0 = 2 m, which are typical values
along the Atlantic and Gulf Coasts.

3. Results

Given that the model has nine dynamic variables (Table 1), explor-

Fig. 3. Schematic of the backbarrier overwash partitioning between the backbarrier face and the marsh.

Table 1
Description of key barrier input parameters. A more detailed description of all the
parameters related to the barrier system is included in Lorenzo-Trueba and Ashton
(2014).

Symbol Meaning Units

DT Depth of the shoreface toe L
z ̇ Relative sea-level rise rate L/T
We Critical barrier width L
He Critical barrier height L
αe Shoreface slope at static equilibrium –
K Shoreface response rate L3/L/T
QOW ,max Maximum overwash sediment flux L3/L/T
Vd ,max Maximum deficit volume L3/L
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ing all the possible combination of parameters and initial conditions is
not feasible or useful. In this work, we instead focus on two major
aspects that the model is able to capture: the effect of the backbarrier
environment (marshes, lagoon, and mainland) on barrier evolution, and
the detailed evolution of the backbarrier marsh.

3.1. Effect of marsh-lagoon dynamics on barrier evolution

We first analyze changes in barrier evolution under different lagoon
geometries, supply of fine sediment to the backbarrier, as well as
different rates of inland marsh expansion towards the mainland. Unless
otherwise specified, the parameters for these simulations are given in
Table 1.

3.1.1. Lagoon geometry
In order to analyze the effect of lagoon geometry on barrier

response, we present two different model runs that only differ in their
initial lagoon width (Fig. 4). Additionally, we limit the rate of inland
marsh migration towards mainland by imposing a vertical slope at the
landward boundary of the basin. In the next section, we relax this
condition and explore its effect on the overall behavior.

We first consider the scenario in which bL , 0 = 5 km. As sea level
rises and overwash flux activates, the barrier narrows and migrates
landwards. The backbarrier marsh shrinks as the rate of barrier
migration exceeds the rate of backbarrier marsh expansion on the
lagoon side. Both the lagoon width and depth initially increase,
indicating that a width of 5 km is above the critical value required
for marsh erosion to exceed marsh progradation, and sediment

resuspension in the lagoon to exceed sedimentation (Mariotti and
Fagherazzi, 2013). This trend eventually reverses as barrier migration
reduces lagoon fetch, which in turn weakens the wind-wave regime,
and favors settling of lagoon sediment over resuspension. In this case
the import of sediment from the open ocean to the lagoon (the term Iol
in Eq. (14)) overwhelms the tendency to export sediment. Additionally,
after a response time lag in which shoreface sediment fluxes are
directed offshore, onshore sediment fluxes result in barrier widening
on the ocean side, which reduces overwash flux and allows even more
barrier widening. Despite the changes in the barrier and lagoon
geometries, the backbarrier marsh eventually attains a fixed width,
which is consistent with the stable narrow state for the backbarrier
marsh introduced by Walters et al. (2014).

A larger lagoon width (bL , 0 = 30 km) is associated with larger
waves, which cause faster retreat of the inland marsh boundary and
larger sediment resuspension in the lagoon. As the concentration of
sediment in suspension in the lagoon increases with respect to the
sediment concentration in the open sea, sediment export via tidal
dispersion is enhanced. Such sediment loss results in more lagoon
deepening (increasing accommodation), which increases the fraction of
sediment overwash being subaqueous instead of subaerial (Fig. 3). Such
a reduction in overwash sediment to the subaerial portion of the
barrier, together with shoreface fluxes that are not able to maintain
the barrier geometry during such rapid migration, results in barrier
drowning. Due to the high supply of overwash sediment, however, the
backbarrier marsh is able to keep up with sea-level rise and the fast
migration of the barrier before the barrier drowns.

3.1.2. Sediment supply to the lagoon
In this section, we explore how changes in external supply,

simulated through the sediment concentration in the open ocean, C0,
can affect barrier response to sea-level rise. To this end, in Fig. 5 we
present three different model runs that only differ in their sediment
concentration in the open ocean: C0 = 0,30, and 200 mg/l. These
values are in range with field measurements from the Danish Wadden
Sea (Bartholdy and Anthony, 1998; Pedersen and Bartholdy, 2006), and
with model estimates from Cape May (NJ, USA) (0–20 mg/l) and the
Virginia Coastal Reserve (VA, USA) (25–300 mg/l) (Mariotti and
Fagherazzi, 2013).

C0 directly affects the net sediment exchange between the lagoon
and the open sea, Iol, which is computed through the tidal dispersion
mechanism. With a low external sediment supply (C0 = 0), the export
of fine sediment from the lagoon to the open ocean increases, leading to
a decline in lagoon sedimentation and lagoon deepening. This increase
in backbarrier accommodation results in a larger subaqueous fraction of
the storm overwash, which leads to barrier narrowing and faster barrier
migration, and an enhancement of the wind-wave regime. The combi-
nation of these two factors results in the collapse of both the back-
barrier and inland marsh. As the barrier continues its landward
migration, however, lagoon fetch and wave energy are reduced.
Additionally, as the barrier narrows, overwash flux from the shoreface
start to reach the lagoon. This supply of overwash sediment to the
backbarrier together with the reduction in wave erosion allow the
backbarrier marsh to develop again. Despite the expansion of the
backbarrier marsh, however, the shoreface response is not fast enough

Table 2
Barrier input parameter values used in Figs. 4 to 8.

Figure D
(m)

T z ̇
(mm y)

W
(m)

e H
(m)

e α
( − )

e K
(m m y)3

Q

(m m y)
OW ,max

3
V

(m m)
d,max

3

4 10 5 800 2 0.02 2000 100 He ⋅We

5 10 5 800 2 0.02 2000 100 He ⋅We

6 10 5 800 2 0.02 2000 100 He ⋅We

8 10 Varies 800 2 0.02 2000 Varies He ⋅We

Table 3
Description of key backbarrier parameters used in Figs. 4 to 8. A more detailed
description of all parameters related to the marsh-lagoon system are included in
Mariotti and Carr (2014).

Symbol Meaning Units

β Mainland slope –
C0 Sediment concentration in open ocean L3/L
r Tidal range L
P Tidal period T
ws Settling velocity of lagoon sediment L/T
U Wind speed L/T
Bpeak Peak biomass M/L2

bbm , 0 Initial backbarrier marsh width L
bim , 0 Initial inland marsh width L
bL , 0 Initial lagoon width L
bbmc Critical backbarrier marsh width L

Table 4
Barrier input parameter values used in Figs. 6 to 8.

Figure b
(km)

bm,0 b
(km)

im,0 b
(km)

L,0 b
(km)

bmc β
( − )

C
(mg l)

0 r
(m)

P
(h)

w
(mm s)

s U
(m s)

B

(kg m )

peak
2

4 1 2 Varies 1 Vertical 30 1.4 12.5 0.5 10 2.5
5 1 2 10 1 Vertical Varies 1.4 12.5 0.5 10 2.5
6 1 2 20 1 Varies 20 2 12.5 0.5 10 2.5
8 1 2 10 1 Vertical Varies 1.4 12.5 0.5 10 2.5

J. Lorenzo-Trueba, G. Mariotti Geomorphology 290 (2017) 153–163

157



to maintain the barrier width and drowning takes place.
An increase in sediment import (e.g., C0=30mg/l) reduces lagoon

deepening, and allows the barrier system to keep up with sea-level rise.
During its migration the barrier experiences width oscillations due to
time lags in the shoreface response, as previously identified in the
barrier model (Lorenzo-Trueba and Ashton, 2014). The backbarrier
marsh width also fluctuates due to the associated oscillations in
overwash flux.

A very large import of sediment to the lagoon (e.g., C0=200mg/l)
drastically changes the barrier-backbarrier dynamics. The lagoon depth
initially increases, which indicates that the initial lagoon geometry
allows sediment resuspension in the lagoon to exceed sedimentation
(Mariotti and Fagherazzi, 2013). This trend, however, soon reverses as
lagoon sedimentation is favored and lagoon depth starts to decrease.
Backbarrier and inland marsh progradation towards the lagoon is also
favored, and leads to a reduction in the lagoon width. This reduction in
lagoon width weakens the wind-wave regime, which in turn reduces
marsh edge erosion. This feedback causes the lagoon to fill in and the
barrier to migrate more slowly. These results suggest that processes
controlling the dynamics of lagoons, such as external mud supply, play

a strong role on the fate of the barrier island: marsh ecosystems that
experience export rather than import of muddy sediments from the
open sea are more prone to retreat and drowning.

3.1.3. Rate of inland marsh expansion
The mainland slope β controls the rate at which the inland marsh

expands landward. In pristine systems, β is generally very mild, and
allows inland marsh migration into the adjacent uplands as sea level
rises (Kirwan et al., 2016). However, in many cases marsh migration is
constrained by human structures such as seawalls, dykes or revetments
(Feagin et al., 2010; Kirwan et al., 2016; Raabe and Stumpf, 2016). To
better understand the effect of such constraints on barrier response, we
focus on two scenarios. In the first scenario, we prevent marsh
expansion towards land by assuming a vertical mainland slope (i.e.,
β > > >), which is the same condition that we have used in the
previous model runs. In the second scenario, we relax this constraint by
assuming a gentle mainland slope (i.e., β = 10−4).

If marsh expansion towards land is prevented (i.e., β > > >), the
barrier response to sea-level rise and overwash is to narrow and migrate
landward. The high rates of marsh erosion initially lead to lagoon

Fig. 4. Profile evolution of modelled barrier-backbarrier systems demonstrating the effect of the initial lagoon width bL,0 on barrier response: bL,0 = 5 km (top), and bL,0 = 30 km
(bottom). Key input parameter values are included in Tables 2 and 4 in the appendix.
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Fig. 5. Profile evolution of modelled barrier-backbarrier systems under different rates of sediment exchange with the open sea: net export of sediments with C0 = 0 mg/l (top), mid-
scenario with C0 = 30 mg/l (center), net import of sediments from the open sea with C0 = 200 mg/l (bottom). Key input parameter values are included in Tables 2 and 4 in the appendix.
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expansion, which enhances wave activity and triggers lagoon deepen-
ing. Eventually, however, marsh erosion diminishes as overwash flux
triggers backbarrier marsh progradation. As the landward migration of
the barrier continues, this trend reverses and allows onshore sediment
fluxes to restore the barrier width.

The dynamics of the lagoon and the barrier changes when the inland
marsh is allowed to expand landward (i.e., β = 10−4). As the inland
marsh expands and covers a larger area, it requires a higher supply of
sediment from the lagoon, even if the rate of sea-level rise remains
constant. The inland marsh effectively becomes a sink of lagoon
sediment, the consequence of which is a deepening of the lagoon.
Under these conditions, a larger overwash flux is required to fill an
increasing backbarrier accommodation space, which leads to fast
barrier migration and eventually barrier drowning if the onshore
directed fluxes are insufficient. The landward migration of the inland
marsh could therefore, through a cascade of effects, trigger barrier
drowning.

3.2. Backbarrier marsh dynamics

Changes in the width and height of the backbarrier marsh are driven
by processes from both the ocean and the lagoon sides (Fig. 7). Storm-
driven overwash from the ocean side typically results in backbarrier
marsh expansion towards the lagoon (Eq. (9)) (Walters et al., 2014;
Walters and Kirwan, 2016), but it can also bury the portion of the marsh
closer to the island, which results in the migration of the landward end
of the barrier onto the marsh (Eq. (3)). Wind waves in the lagoon are
important drivers of marsh retreat, whereas accumulation of lagoon
sediments in front of the marsh leads to marsh progradation towards
the lagoon (Mariotti and Fagherazzi, 2013). In this section, we explore
the different parameters that control these processes and therefore
determine the evolution of the backbarrier marsh.

Sea-level rise rate and external sediment concentration are key
factors determining whether the backbarrier marsh drowns, expands,
contracts, attains a constant width, or squeezes (Fig. 8a). Marsh

Fig. 6. Profile evolution of modelled barrier-backbarrier systems under two different mainland slopes: β= 10−4 (top), and β > > >(bottom). Key input parameter values are included
in Tables 2 and 4 in the appendix.
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drowning occurs under high rates of sea-level rise and low lagoon
sediment concentrations. Under these conditions, the feedback between
flooding duration and reduced organic matter accumulation eventually
results in marsh being unable to vertically keep up with sea-level rise
(Morris et al., 2002). Marsh expansion often occurs under low sea-level
rise rates and high lagoon sediment concentrations, although sediment
input from rivers can also be an important contributor (Vogel et al.,
1996). In these circumstances, the backbarrier marsh tends to prograde
into the lagoon, which reduces backbarrier accommodation space and
lowers the rate of barrier migration (Fig. 3). When the rate of marsh
progradation exceeds the rate of barrier migration, the width of the
marsh increases (Fig. 8c). In contrast, when the barrier retreats faster
than the rate of marsh progradation towards the lagoon, the marsh
undergoes width contraction. Because the overwash flux to the marsh
edge increases as the marsh width decreases (Fig. 3), marsh contraction
could halt when the marsh becomes very narrow, and an equilibrium
condition in which marsh edge progradation balances barrier migration
is attained (Fig. 8c). If the marsh progradation rate, even with the aid of
the overwash flux, is smaller than the barrier migration rate, then the
marsh contracts and eventually disappears. If the marsh edge retreats
instead of prograding, then the marsh is squeezed from both ends: the
barrier side and the lagoon side. This condition, which we define as
“barrier squeeze” (Fig. 8b, d), is the most deleterious, and leads to the
fastest rate of marsh loss.

These results emphasize how overwash flux can be essential to
explain changes in the width of the backbarrier marsh. In particular,
overwash flux plays a dominant role under low lagoon sediment
concentrations, when barrier migration rates and erosion by locally-
generated waves are typically high. Under these conditions, a reduction
in the maximum overwash flux results in the squeeze of the backbarrier
marsh until its eventual disappearance (Fig. 8d). These results support
recent work suggesting that overwash flux provides an essential supply
of inorganic sediment, which allows a minimum backbarrier marsh
width to be maintained under high rates of sea-level rise (Rodriguez
et al., 2013; Walters et al., 2014).

4. Discussion and implications

Model results presented in this manuscript are not intended to
specifically reproduce the evolution of any particular coastal system but
to reveal the coupling between the barrier and its backbarrier environ-
ments. This approach implies that processes that could affect the
response of the coupled system are purposely omitted from this version
of the model. For instance, the model presented here assumes that the
barrier is composed of uniform grain-size and non-cohesive sediment.
The effect of non-sandy lithology outcrops at the shoreface, however,
can also alter the response of the coupled system (Brenner et al., 2015).
In particular, muddy sediments deposited in the backbarrier environ-
ment that will later outcrop on the shoreface do not contribute to the
sand volume as the barrier migrates landwards. As discussed by Brenner
et al. (2015), such reduction in coarse sediment maintaining the barrier
could significantly enhance barrier drowning.

The model does not account for changes in backbarrier hypsometry,
which can affect the sediment dispersal along the barrier complex
(Georgiou et al., 2005). Additionally, inland and backbarrier marsh
environments are characterized with an average elevation with respect
to mean sea level, which does not allow for the presence of different
plant species. Future modeling efforts will aim to dynamically account
for the long-term evolution of both low and high marshes in the
backbarrier environment.

Furthermore, the model does not incorporate the effect of along-
shore gradients, spit formation, barrier breaching and inlet closure, or
ebb and flood tidal delta sediment dynamics. Current modeling efforts,
however, aim at incorporating these effects. In particular, the barrier
model component has recently been extended to account for both the
alongshore and cross-shore transport directions (Ashton and Lorenzo-
Trueba, 2015).

Leaving out many of the processes operating in a complex system
such as a barrier-marsh-lagoon environment can potentially increase
the clarity and insights the model facilitates (Murray, 2003), and
therefore highlight the importance of considering barriers and their
associated backbarriers as part of an integrated system in which
sediment is exchanged. In particular, model results demonstrate that
factors such as lagoon geometry, export of fine sediments from the
lagoon to the open ocean, and the slope of mainland, which are
typically not directly related to barrier evolution, could play a major
effect on the long-term barrier response to sea-level rise. Moreover,
model results presented here suggest that the supply of sediments
(particularly muddy sediment) to the lagoon can not only help repair
marsh environments, but also slow down the rate of barrier migration
and potentially reduce the risk of future barrier drowning. Future
modeling efforts will span a wider range of scenarios and parameter
values to explore whether an increase in sediment supply in the
backbarrier has always the same effect.

This coupled system approach is particularly important when
seeking to maximize the resilience of coastal communities to predicted
increases in storm intensity (Emanuel, 2013), and a rising mean sea
level (IPCC, 2014), which increases the impact of storm events (Tebaldi
et al., 2012). Yet, restoration activities often follow a compartmental
approach, where the focus is limited to a very small part of a large
system. For example, marsh restoration activities, such as de-embank-
ment of previously reclaimed salt-marsh land, opening anthropogenic
dikes, (re)creating tidal channels, vegetating intertidal dredge disposal,
nutrient flux modifications, and hardening marsh shorelines to prevent
marsh edge erosion (Weinstein et al., 2001; Teal and Weishar, 2005;
Wolters et al., 2005), generally do not account for their consequences
on barrier islands. Additionally, billions of dollars are spent on barrier
stabilization efforts such as beach nourishment practices, jetties, groins,
or sea walls (Titus et al., 1991; NAP, 1995; Trembanis et al., 1999).
Such barrier stabilization efforts may serve to protect vulnerable barrier
communities, but are commonly undertaken without full understanding
of the potential impacts on associated backbarrier ecosystems. For

Fig. 7. The top schematic includes the key processes that control the dynamics of
backbarrier marshes. Processes that drive marsh contraction are in red, and those that
drive marsh expansion in blue. The bottom photograph of Assateague island, Virginia,
illustrate the different environments included in the sketch above. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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instance, anthropogenic structures on barrier islands can limit the
landward extent and volume of overwash deposition relative to a
nearby natural area (Rogers et al., 2015). This reduction of inorganic
sediment supply to the backbarrier marsh can, in turn, diminish
backbarrier marsh resilience to wave erosion (Fig. 8).
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