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ABSTRACT 

 

BENTHIC INVERTEBRATE COMMUNITIES OF BARNEGAT BAY NEW JERSEY: 

EFFECTS OF HARD-CLAM (Mercenaria mercenaria L.) AQUACULTURE GROW-OUTS 

ON BENTHIC COMMUNITIES 

by Rebecca Shell 

Plots of three treatment types (industry-standard screens with clams, screens without clams, and 

control) were installed at Sedge Island, Barnegat Bay, in 2012. 177 species from eight phyla 

were collected. Hard-clam plots had lower Shannon-Weiner Index values and higher sedimentary 

sorting coefficients as compared to both control treatments. ANOSIM identified benthic 

communities inside hard clam plots as statistically distinct from the two control treatments. 

There was no significant effect of treatment on functional groups assigned by burrowing depth. 

Seasonal peaks in May are clear for Polydora cornuta and Tritia obsoleta, as well as for 

suspension feeders and omnivores. All burrowing-depth guilds except deep-burrowing taxa also 

peak in May. Grazer density, and Microdeutopus gryllotalpa in particular, peak in October. 

Shannon-Weiner and species richness do not differ significantly by season, though evenness is 

higher in August than May, reflecting the peaks of certain species evening out during the 

summer. The trends seen suggest bottom-up controls of the benthic invertebrate community 

structure in the Sedge Island area, which therefore has the potential to be disrupted either by the 

overconsumption of available seston from increased aquaculture or increased phytoplankton 

from increased eutrophication. These data can serve as a baseline for environmental monitors 

given either of these scenarios. These results do not provide any immediate reason to limit hard 

clam aquaculture acreage in the region. However, the observed increase in maldanid polychaetes 

and decrease in mobile suspension feeders could prove problematic if leasing acreage is 
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increased. Full-scale within-industry research is recommended before increasing hard-clam 

aquaculture acreage, either as part of an environmental management strategy for eutrophication 

mitigation or for economic purposes. 

 Keywords: Mercenaria mercenaria, aquaculture, benthos, biodiversity, ecological effects 
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Chapter 1 

 

Introduction 

 

 

 

MERCENARIA MERCENARIA AS A MANAGEABLE RESOURCE 

Recreational and commercial harvesting of hard clams has been a Mid-Atlantic and New 

England tradition for centuries. However, in recent decades wild stocks of many hard clam 

species, including the commercially and recreationally important Mercenaria mercenaria, have 

shown marked declines. Atlantic Coast landings of M. mercenaria peaked in 1950 at 

approximately 20.8 million pounds, dropping to 9.1 million in 1992; New Jersey harvests peaked 

at over 5 million pounds in 1950, falling to 1.2 million pounds in 1992 (McHugh 2001). Between 

1986 and 2001, M. mercenaria stocks in Barnegat Bay fell 68% due to deteriorating water 

quality and overharvesting (Gastrich and Celestino 2003).  

Aquaculture can relieve pressure on wild stocks while reinvigorating local industry. 

Mercenaria mercenaria is particularly well suited for aquaculture as it has high value at small 

sizes, decreases in value with age, and has low start-up costs (mostly associated with procuring 

large amounts of seed for hatchery operations) and a biology appropriate to sustainable 

aquaculture with minimal environmental impact. Commercial hard clam aquaculture operations 

have been in business in the United States since the early 1970s. Production expanded during the 

1980s and farms can now be found all along the Atlantic Coast of the United States, British 

Columbia, Taiwan and Italy (FAO 1999). Local municipalities and community organizations, 

such as the Barnegat Bay Shell Restoration Program (BBSRP), have established small-scale hard 

clam aquaculture operations to revive this traditional local industry and improve water quality. 

The clams can filter out phytoplankton, transfer suspended sediments to the benthos, and provide 
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other ecosystem services (e.g. mitigation of harmful algal blooms (Hargraves & Sieburth, 1988, 

Hégaret et al. 2007) and eutrophication (Grizzle et al. 2001, Cerrato et al. 2004, Wall et al. 

2008), increasing oxygen penetration depth via bioturbation (Aller 1982, Diaz and Rosenberg 

1995). The small scale and low densities (relative to the aquaculture of other species) of these 

operations, and the biology of M. mercenaria, has been assumed to minimize any negative effect 

of waste nutrient inputs to the system, an impact that has been shown to negatively affect 

biomass and biodiversity in areas of intense aquaculture of other species (Bartoli et al. 2001). 

Excessive nutrient input is of particular concern to operations in New York and New Jersey, both 

densely populated states with coastal waters widely used for recreation purposes and that 

contribute greatly to local economies (Houston 2008). 

Much is known about the biology of M. mercenaria, however the literature pertaining to 

the high hard-clam densities such as would be seen in an aquacultural setting has been largely 

overshadowed by that on the blue mussel Mytilus edulis (L.) (and other Mytilus spp.) and, to a 

lesser extent, the oyster Crassostrea virginica (Gmelin 1791). Overall, any potential impacts of 

artificially large hard-clam populations on the environment remain speculative, and few overall 

impacts are consistently measured.  

 

INTRODUCTION TO MERCENARIA MERCENARIA  

Mercenaria mercenaria (Linnaeus, 1758), commonly known as the Northern quahog, hard 

clam, cherrystone, littleneck, and chowder clam, is a verenid clam native to the intertidal and 

subtidal sandy and sandy/muddy bottoms between the Gulf of St. Lawrence south to the Florida 

Keys and is patchy into the Gulf of Mexico (Figure 1-1). Wild introductions have been 
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confirmed in Europe and the Northwestern United States and aquaculture production has been 

established in Italy, Taiwan and British Columbia.  

The life cycle of Mercenaria mercenaria is typical of other venerid clams. Sexes are 

separate and fertilization is external. Fecundity is high, with females typically releasing between 

1-5 million eggs per spawn (Kraeuter 2004) though they are capable of releasing up to 24 million 

eggs per spawn (Davis and Chanley 1956). Larvae spend between 7-21 days in the plankton 

before settling to the benthos, generating byssal threads and calcified shells. Sexual maturity is 

reached between 1-2 yrs (Eversole 1987, MacKenzie et al. 2002). 

The species is tolerant of wide temperature and salinity ranges, with optimal growth 

occurring at 20°C. Adults can thrive in salinities as low as 24 ppt, and survive periods in 

salinities ranging from 4 to > 35 ppt (depending on the ambient temperature) with closed valves, 

though growth and reproduction greatly diminish (Eversole 1987). Egg and larval survival is 

more restricted (20 – 32.5 ppt, Eversole 1987). M. mercenaria is tolerant of low dissolved 

oxygen levels, surviving as long as three weeks at levels as low as 1 mg/L (Stanley and Dewitt 

1983), though growth is greatly reduced below 4.2 mg/L (Morrison 1971). Feeding rates have 

been shown to vary according to temperature, current velocity and algal density (Walne 1972). 

The clams can bury in a variety of soft sediment habitats (sand, mud, eelgrass beds) to depths up 

to 12 m (Kraeuter and Castagna 2001) though are typically found between 2-20 cm (Eversole 

1987). M. mercenaria are consumed by a variety of different predators at different sizes; newly 

recruited clams are particularly at risk. Blue swimmer crabs (Callinectes sapidus (Rathbun, 

1896)) are the major predator in New Jersey, though moon snails (family Naticidae), rays, 

whelks (family Muricidae, especially Busycon carica (Gmelin, 1791)) and mud crabs have all 

been recorded as major predators.  
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The object of this dissertation is to investigate effects of artificially high hard clam density 

on benthic invertebrate communities. It is therefore necessary to first highlight the role M. 

mercenaria plays at natural, ambient densities. This includes impacts on oxygen penetration 

depth via bioturbation and bioirrigation; the reduction of suspended sediment and the effects of 

eutrophication; changes in nutrient deposition and remineralization rates; and impacts to benthic 

invertebrate biodiversity and eel grass (Zostera marina, Linné 1753) cover. 

Bioturbation, the mixing of sediments by the burrowing of infaunal animals and rooting by 

infaunal plants, affects sediment size distributions, porosity and vertical profiles (e.g. of 

sediments oxygen, nutrients, etc). This can greatly affect the biota that can inhabit a given patch 

of benthic sediments, driving local benthic biodiversity and overall ecosystem functioning, 

furthering the overall potential for the gas and waste exchange/flushing known as bioirrigation, 

and increasing the potential for aerobic microbial activity (Norkko and Shumway 2011). This 

also serves to increase the overall oxygen penetration depth, or redox potential discontinuity 

layer (RPD), which is frequently used as a proxy for overall environmental health. Bioirrigation 

is the actual transport of solutes (oxygen, waste, etc.) between the water column and sediments, 

transport facilitated by the bioturbation process. These two functions are integral to healthy and 

functioning soft-sediment systems, and bivalves, due to their potentially large biomass and 

ability to filter large volumes of water, are especially valuable as both bioturbators and 

bioirrigators (Wall et al. 2008).  

Digestible material, transported to the mouth and expelled as feces, and non-digestible 

material (non-organic, sediments, overly large particles, etc.), which is expelled via the inhalant 

siphon, are sorted internally, allowing the clam to regulate both food composition, often favoring 

higher nutrient foods, and the total amount of food consumed. Selection efficiency (the ratio of 
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chlorophyll a to dry weight of pseudofeces and seston) is moderately high in M. mercenaria as 

compared to other suspension feeding bivalves (Grizzle et al. 2001).  Feces and pseudofeces both 

typically settle nearby, thus filter feeders can have a direct impact on the sediment composition 

(pseudofeces) and nutrient load (feces) of the immediate sediment, directly linking the water 

column and benthos. Much of the research on this effect has focused on aggregating bivalves 

such as oysters and mussels rather than hard clams. Indeed, studies specifically of carbon transfer 

found that M. mercenaria had lower biodeposition rates than both M. edulis and Crassostrea 

virginica (Tenore et al. 1973). Even so, Doering et al. (1986) found gross sedimentation rates 

over 14g C/m2 higher in mesocosms containing hard clams as compared to those without. This 

has been confirmed by many studies (e.g. Dame et al. 1980, Dame and Dankers 1988, Fréchette 

and Bourget 1985, Smaal 1991). Of course, the overall sedimentation rate from biodeposition is 

dependent on the concentration of both food and suspended sediments (Norkko et al. 2001), as 

well as on local currents (Coen et al. 2011). Aquacultural sites, located in shallow, calmer less 

exposed locations, could be expected to have higher potential for biodeposit build-up than areas 

in more exposed Barnegat Bay locations.   

Biodeposits are high in organic content. Areas with low resuspension rates can thus be 

expected to retain higher levels of nutrient input from the infaunal bivalve community, 

benefitting local deposit feeding organisms (Norkko et al. 2001). These benefits, however, are 

seen over only a narrow range of inputs before increasing nutrient loads begin to instead cause 

anoxic conditions and disruption of the benthic community (Pearson and Rosenberg 1978). If 

biodeposited material accumulates sufficiently, decomposition of such organics can increase 

oxygen consumption, shifting the benthic microbial community from aerobic to anaerobic. 

Under such conditions, nutrient fluxes are altered: phosphorous is released and denitrification is 
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inhibited (as nitrifying bacteria require well-oxygenated sediments), which in turn causes the 

release of ammonium from sediments (Newell et al. 2002). Bioturbation by bivalves can mitigate 

these effects. Doering et al. (1987) found M. mercenaria increased benthic flux of oxygen 

(increased the RPD) via bioturbation, helping to preserve aerobic conditions, thus preserving 

nitrification-denitrification coupling and minimizing phosphorous release. Thus we see that 

infaunal bivalves both release nutrients via feces and pseudofeces production, and stabilize them 

by facilitating remineralization, though typical clam densities do not produce sufficient 

biodeposits to incur the aforementioned effects (Norkko and Shumway 2011). Nizzoli et al. 

(2006) found that mussel farms impact oxygen and nutrients more strongly than clam farms due 

to the clams’ ameliorating bioturbating ability. This hints at the possibility that an increased 

effect of bioturbation could mitigate potential negative oxygen and nutrient-related impacts of 

bivalve aquaculture in hard clams. 

Though most (80%) of published studies find natural M. mercenaria densities to be 

between 1/m2 and 15/m2 (Fegley 2001), hard clam densities are variable. Rice (1989) measured 

non-fished natural densities in Narragansett Bay at 190/m2, and numbers as high as 500/m2 (over 

small scales) have been reported (e.g. Crane et al. 1975). Aquacultural hard clam densities can be 

several orders of magnitude higher, upwards of 3,000/m2 (Castagna and Kraeuter 1981), an 

increase that would certainly alter the total effect. One study of a hard clam farm in a well-

flushed Chesapeake Bay tributary (Luckenbach and Wang 2004) found that the clams (at 

densities between 550-1650/m2) filtered as much as 81.9% of the water per day. Such a huge 

volume of water being filtered every day is certain to remove a much larger fraction of the 

available seston from the water column than the aforementioned studies have shown. Few studies 

exist for M. mercenaria, or indeed any non-mussel bivalve species, at farmed densities.  
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It is well established that biodiversity is positively correlated with niche heterogeneity, 

which is in turn largely determined by habitat heterogeneity. Though the infaunal M. mercenaria 

does not compare to reefing bivalves in this regard (e.g. mussels and oysters), live clams as well 

as deceased but attenuated hard-clam shells, create shelter on a soft-sediment plain and hard 

substrata for epifaunal organisms. Additional habitat, including the interstitial habitat located 

between shells, is also created by both dead and living animals (Gutierrez et al. 2003). Under the 

bivalve-induced habitat classifications (ASMFC 2007, Coen et al. 2011), Mercenaria 

mercenaria has been classified as a ‘shell accumulation’ contributor due to the tendencies of 

empty hard clam valves to persist in the benthos long after the organism has died (Dumbauld et 

al. 1993, 2000; Steimle and Zetlin 2000; NRC 2010). A fourth category has been suggested, 

‘shellfish aquaculture,’ to which farmed hard clams would certainly contribute. Shells provides 

such valuable habitat that dead valve aggregations are often harvested for use in restoration 

projects, which in turn decreases the amount of available habitat in those harvested areas.1 The 

changes in microflow within the benthic boundary layer as created by siphonal currents as well 

as created by the clams’ physical structure will drive further microhabitat creation (Green et al. 

1998). Naturally, these effects are directly related to both sediment type as well as the size and 

density of the benthic bivalves in question. There is evidence that in particularly dense 

aggregations, competition for space is sufficient to limit increases in biodiversity (Whitlatch et 

al. 1997). 

                                                        
1 Reviews have inferred that existing shellfish populations are no longer generating sufficient empty 

shell-based habitat (e.g. Powell et al. 2006, NRC 2010). Bivalve aquaculture is currently being discussed 

as a solution to the shell shortage, though this will not be investigated in this dissertation. 
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Submerged aquatic vegetation (SAV) is yet another source of habitat heterogenetity, and 

one that has been positively correlated with increasing M. mercenaria density (e.g. Wall et al. 

2008). The physical removal of algae and suspended sediments from the water column clarifies 

the local water column, allowing for increased light penetration. The additional light and 

fertilized substratum can result in beneficial conditions for submerged and intertidal aquatic 

vegetation through fecal deposition. As early as 1984, Bertness found a positive relationship 

between the intertidal cordgrass Spartina alterniflora (Loisel) and the semi-infaunal intertidal 

mussel Geukensia demissa (Dilwin, 1817). More recently, several studies have shown higher 

SAV cover and primary production associated with high densities of hard clams and other 

suspension feeding bivalves (e.g. Reusch et al. 1994, Reusch and Williams 1998, Shumway and 

Kraeuter 2004, Wall et al. 2008). Peterson and Heck’s work (2001) suggests that biodeposits 

from infaunal bivalves are responsible for at least some of these effects. Increased SAV 

necessarily increases habitat heterogeneity and biodiversity as many species of finfish and 

invertebrates are found in association with SAV beds, and juveniles of many more have been 

shown to use such areas as nurseries (e.g. Nagelkerken et al. 2001, Heck et al. 2003, Bostrom et 

al. 2011).   

 

AQUACULTURE OF MERCENARIA MERCENARIA: METHODOLOGIES AND IMPACTS 

Hard clam aquaculture operations follow a common general plan: seed is grown to 2-5mm 

in commercial hatcheries, after which the juvenile clams are kept at high densities in nursery 

tanks known as ‘upwellers,’ or in seawater tables or raceways (Castagna 2011). Ambient 

seawater is pumped through the tanks, providing food and removing waste (Figure 1-4). Between 

8-15mm the clams are spread evenly across a sand/mud substratum at 550-1650 clams/m2 
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(Castagna 2011) (densities can range up to 3000-4000 clams per m2, Castagna and Kraeuter 

1981, Figure 1-4). A lightweight, UV-resistant, polyethylene screening (sold as “barrier” or 

“predator” screen, e.g. Tenax®) is affixed to a PVC frame with zipties or lead line. The frame is 

spread over the bed and secured along the edges, with either rebar or barrier-cloth tubes filled 

with shell, sand or gravel, in order to prevent predation during this ‘grow-out’ phase. Some 

managers dig trenches around the beds and cave the screens in around the beds for additional 

protection. Screens are routinely cleaned during the yearlong grow-out phase, as biofouling of 

the screens is guaranteed. During this period the clams grow to legal, harvestable size (>38 mm), 

before being manually retrieved for sale after approximately one-two years via handraking 

(mechanical harvesters are not permitted in New Jersey).  

Minimal environmental impact is expected during the first two stages of this process 

provided appropriate filtering precautions. The grow-out phase and subsequent harvest, however, 

do require direct interaction with the benthic community, though the impacts are as of yet largely 

unstudied. Though there is an extensive body of research on bivalve aquaculture, most of the 

studies have focused on mussel (esp. Mytilus spp.) and oyster culture. This is not surprising, as 

until recently 70% of global bivalve aquaculture was mussel culture (FAO 1999). There has been 

little research available on the potential effects specifically regarding culture of clams, and even 

less on hard clams including M. mercenaria. However, with clam and oyster aquaculture now 

dominating the global market (33% and 31.3% respectively in 2014, with mussels 12% and 

scallops at 11% (FAO 2014)), this is now starting to shift.  

The literature deals primarily with the physical extraction of full-size clams from the 

benthos: It has been shown (e.g. Brown and Wilson 1997, Badino et al. 2004) that harvest by 

hand clam-rake alters infaunal communities both in terms of reduced abundance and species 



 

10 

richness, due mainly to the mixing of sediment layers, though Brown and Wilson (1997) found 

that the frequency of hand-clam raking did not affect the severity of the raking impact. Studies 

have found the impacts from mechanical harvesting2 (dredging, mechanical raking) to be even 

more severe (e.g. Kaiser et al. 1996, Hall and Harding 1997, Spencer et al. 1997, Boese 2002). 

Little research has focused on possible environmental repercussions of the grow-out stage itself 

rather than the mechanical harvest, and what studies have been done show contradictory results.  

Several studies have shown negative impacts beneath, and associated with, bivalve cultures 

from the over contribution of nutrients (e.g. Hartstein and Rowden 2004, Callier et al. 2006, 

Metzger et al. 2007) while other studies have seen no such effects (e.g. Mojica and Nelson 

1993). Hargrave et al. (2008) suggest that this variability is at least in part due to site-specific 

hydrologic variation, but this may be less relevant for infaunal hard clam aquaculture where 

water currents have less immediate access to waste nutrients as compared to long-line mussel 

culture (or bagged oyster culture). The negative effects nutrient effects documented in other 

shellfish aquaculture could be ameliorated in large M. mercenaria populations: Doering et al. 

(1987) showed in a mesocosm study that large M. mercenaria populations increased benthic 

oxygen flux, helping to preserve aerobic conditions, thus preserving nitrification-denitrification 

coupling and minimizing phosphorous release. Fewer in situ studies are available on nutrient 

profile shifts associated with clams, and those that are available (e.g. Bartoli et al. 2001 and 

Nizzoli et al. 2006 on Ruditapes philippinarum (Adams & Reeves 1850)) have generally found a 

slight net positive nutrient contribution being sequestered by the clams themselves, indicating 

that these effects are density dependent.  

                                                        
2 Mechanical harvesting is illegal in New Jersey. 
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Changes to sediment profiles in these studies resulting from the additional deposition of 

suspended sediments are also contradictory (e.g. Coen et al. 2000, Chamberlain et al. 2001, 

Crawford et al. 2003) as are changes in biological response variables. Whiteley and Bendell-

Young (2007) found decreases in total non-target bivalve biomass on farmed sites as compared 

to unfarmed plots, but this was offset on the farmed sites by an increase in the target bivalve 

biomass (R. philippinarum). This contrasts with findings that screening on commercial farms 

increased total bivalve biomass (Spencer et al. 1997, Smith and Langdon 1998), increasing target 

bivalve survival (R. philippinarum) but without decreasing non-target bivalve abundance, and 

still others (e.g. Mojica and Nelson 1993) that found no such effect. Little, however, is known 

about these factors in small-scale operations. The variety of responses is particularly interesting 

when considering the issue of space and overcrowding. Presumably, as the seed clams grow and 

increase in size, the amount of space available to other benthic organisms is decreased, yet only a 

few of these studies found decreases in benthic diversity or abundances of non-target benthic 

invertebrates. All of these studies are all on the Manila clam (Ruditapes philipaniarium), 

however the Manila clam is of similar harvestable size to M. mercenaria (FIGIS 2004) and the 

issue of size and overcrowding would therefore be expeted to impact M. mercenaria aquaculture 

plots similarly.   

The effects of in situ bivalve aquaculture on biodiversity and benthic infaunal assemblage 

in the literature are varied, and seemingly site-specific (Hargrave 2008). Some studies report 

positive impacts associated with mussel culture (e.g. predator abundance and diversity, Inglis 

and Gust 2003; epifaunal and total macroinvertebrate abundance, D’Amours et al. 2008), but 

there are also numerous studies that report minimal effect (e.g. Baudinet et al. 1990, Grant et al. 

1995, Kaiser et al. 1996, Chamberlain et al. 2001, Crawford et al. 2003) and studies that report 
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negative impacts to biodiversity (Hargrave et al. 2008, Cranford et al. 2009). Several studies 

have also found severely shifted benthic community structures beneath Mytilus spp. cultures (e.g. 

Beadman et al. 2004, Commito et al. 2005, Norling and Kautsky 2007 and Ysebaert et al. 2009) 

but again the presence and magnitude of any impacts are seemingly site-specific. In Sweden, 

Mattsson and Linden (1983) found that a community previously dominated by Nucula nitidosa 

(Winckworth, 1930), Ophiura spp. and Echinocardium cordatum (Pennant, 1777)) was 

dominated by three species of polychaetes (Capitella capitata (Fabricius 1780), Scolelepis 

fuliginosa (Claparede, 1870), and Microphthalmus sczelkowii (Metschnikow, 1865)) beneath and 

up to 20m away from the mussel lines after less than 18 months of mussel culture. Stenton-

Dozey et al. (1999) found initial evidence of recovery (in terms of benthic invertebrate 

biodiversity metrics) beginning four years after Mytilus galloprovincialis (Lamarck, 1819) 

culture had ceased. Whether the same variability and strength of effect also applies to hard clam 

aquaculture remains to be seen as there is no literature investigating the effects of the grow-out 

phase of aquaculture operations for the locally abundant hard clam Mercenaria mercenaria, or 

on any hard clam in the mid-Atlantic region.  

 

EFFECTS OF SCREENS ON BENTHIC COMMUNITIES 

In New Jersey hard clam farmers lay screening (6.3-13 mm Tenax ®) over in situ clams for 

protection from predatory blue crabs (Callinectes sapidus). Such structures can greatly affect the 

hydrodynamics and physical environment of the caged area and immediate surrounds (Virnstein 

1978), causing an overall slowing of currents and potentially generating eddies around structure 

depending on object size. Depending on structure and orientation, and on physical parameters 

such as grain size, current strength and sediment load, cages can cause scouring or locally 
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increased sedimentation (Virnstein 1978). Coen et al. (2000) found that shear velocity of benthic 

boundary water was slowed by as much as 50% in areas between M. mercenaria pens and by as 

much as 90% within the pens. This slowing has the potential to cause ‘fall-out’ of suspended 

particles from the water column to the sediment, including both sediment particles and food 

particles. As clams feed from moving water currents above the bottom surface, this can severely 

reduce total food availability to feeding hard clams (Coen et al. 2000). Coen et al. (2000) also 

found that sediments adjacent to cages were lower in silt and clay than sediments located away 

from cages, implying that the caged areas trapped a larger proportion of smaller (and lighter) 

particulate, likely a result of slower moving waters. These changes were not, however, 

accompanied by a change in total (non-target) infaunal biomass, and were seen only within the 

pens themselves.  

The screens also provide additional and novel habitat on what was a flat, sand/mud bottom, 

with potentially little habitat heterogeneity. Combined with the screening effects described 

earlier, which can create conditions inducing larval entrapment including a decrease in current 

velocity and changes in sediment composition within the cage as compared to nearby areas 

(Virnstein 1978), this can result in shifts to benthic community structure. The specific suggestion 

is that fouling of the netting apparatus itself can lead to increases in larval settlement and 

subsequent shifts in local community structure, as well as increases in overall biodiversity and 

biomass (Kaiser et al. 1996, Spencer et al. 1997, Whiteley and Bendell-Young 2007). 

The build-up of fouling organisms can increase the total shaded percentage of benthic 

surfaces and therefore benthic primary productivity within the caged area, which can have a 

direct impact on food availability, particularly to deposit feeding organisms. These organisms 

can themselves provide habitat to other sessile organisms, as well as to mobile species that prefer 
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habitats associated with particular sessile communities, such as amphipods, isopods and 

echinoderms. This creates, in effect, an artificial reef (Virnstein 1978), especially if screens are 

not maintained throughout the growing season.  

  

RESEARCH QUESTIONS AND DISSERTATION STRUCTURE 

The overall goal of this dissertation work was to understand the impact of small-scale hard 

clam aquacultural grow-out operations in New Jersey on benthic invertebrate communities, with 

aims to answer the following questions: 

1) How do the infaunal and benthic invertebrate communities beneath and adjacent to 

netting enclosures change over the course of the 12-month grow-out cycle (diversity, 

richness, dominance, evenness), and how do they compare to communities in 

associated non-grow-out areas?  

2) What portion, if any, of this change is caused by the increased density of clams in 

netted areas, and what by the screens, process and equipment themselves?  

3) Over what physical distances are these changes seen? 

4) What changes to biodiversity and/or total biomass are due to increased recruitment to 

the protective screen netting? 

The results of this work will be made available to the Barnegat Bay Shellfish Restoration 

Program and the collaborating private and public organizations, in the hopes of informing New 

Jersey and regional policies around bottom acreage leasing for shellfish aquaculture. This 

dissertation is written as a series of individual manuscripts and therefore includes some 

necessary repetition within the introductory and methods sections. The second chapter contains 
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results and analysis pertaining to the effects of the aquaculture itself on local benthic 

communities. The third chapter contains a discussion of data collected during the course of the 

experiment that describe the seasonal dynamics at play during the three-year time frame (2013-

2015).  
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FIGURES 

     

 

Figure 1-1. Typical M. mercenaria upweller and grow-out schematic (Kraeuter 2004). 
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Chapter 2 

 

Effects of hard-clam (Mercenaria mercenaria L.) aquaculture grow-outs on benthic 

invertebrate communities in Barnegat Bay, NJ 

 

ABSTRACT 

 

Hard-clam (Mercenaria mercenaria) aquaculture operations maintain densities many magnitudes 

higher than those found naturally during the 2-3 year “grow-out” phase. Though high densities of 

other farmed species have been shown to detrimentally impact local communities due to locally-

increased nutrient input, we hypothesize that hard-clam aquaculture will provide a net benefit to 

local communities (increased benthic invertebrate biodiversity and species richness) due to the 

increase in total filtering capacity. Plots of three treatment types (industry-standard screens with 

clams, screens without clams, and control) were installed at Sedge Island, Barnegat Bay, in 2012. 

177 species from eight phyla were collected. Hard-clam plots had lower Shannon-Weiner Index 

values as compared to both control treatments, a result opposing the initial hypothesis, and 

higher sedimentary sorting coefficients. ANOSIM showed significant change to invertebrate 

community inside hard clam plots (Global R=0.147, p=0.1%). There was no significant effect of 

treatment on functional groups assigned by burrowing depth, and no evidence of change was 

apparent one meter away. Results do not indicate any immediate reason to limit hard clam 

aquaculture acreage in the region, but the observed increase in maldanid polychaetes and 

decrease in mobile suspension feeders could prove problematic if leasing acreage is increased as 

part of a future environmental management strategy.
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INTRODUCTION 

The hard clam Mercenaria mercenaria (L.) is a common inhabitant of soft-bottom coastal 

habitats throughout the western Atlantic with a commercial fishery that has experienced severe 

and well-documented declines (McHugh 2001). As a filter-feeding benthic bivalve often found 

in high density populations, the species is important in benthic-pelagic carbon transfer, 

consumption of excessive primary production, transfer of suspended sediments to the benthos, 

and nutrient recycling (see Kraeuter and Castagna 2001, Grizzle et al. 2001, Nizzoli et al. 2006, 

Wall et al. 2008). These characteristics have made M. mercenaria, and filter-feeding bivalves in 

general, species of interest in both coastal remediation and mariculture, especially in scenarios of 

high nutrient and suspended sediment loads.  

Much is known about the biology of M. mercenaria (Bricelj and Malouf 1984, Bricelj et al. 

1984, Kraeuter and Castagna 2001). However, work on the ecological effects of high-density 

hard-clam mariculture has been largely overshadowed by studies of the blue mussel Mytilus 

edulis (L.) and a handful of other commercially farmed species including Crassostrea virginica 

(Gmelin 1791), Mya arenaria (L.) and Ruditapes philippinarum (Adams & Reeve 1850). 

Overall, the impacts of aquacultural densities of M. mercenaria on the environment remain 

largely speculative, and most study results are inconsistent, particularly during the ‘grow-out’ 

phase.  Hatcheries typically maintain broodstock and sell clam juveniles as “seed” to nurseries 

that then keep them in self-contained “upwellers” or “raceways,” systems designed to provide 

the juvenile hard clams with phytoplankton from ambient water sources until the clams reach 

plantable size (10-12mm). This third phase, known as the “grow out”, is the only part of the 

aquacultural process that involves in situ placement and ambient sediments, and as such interacts 

with local ecosystems directly. Harvesting by hand has been repeatedly shown to alter benthic 
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invertebrate abundance and community structure (Kaiser et al. 2001, Badino et al. 2004, Logan 

2005), reduce benthic macrofaunal biomass and diversity and affect sediment nutrient profiles 

(Pranovi et al. 2004), and to alter seagrass densities (Peterson et al. 1987). Mechanical harvesting 

has produced more severe, longer lasting impacts (Kaiser et al. 1996, Hall and Harding 1997, 

Spencer et al. 1997, Boese 2002). 

Regarding the effects of the grow-out phase itself, the literature is divided. Many studies 

have shown negative impacts beneath, and associated with, bivalve cultures from the 

overcontribution of nutrients (Hartstein and Rowden 2004, Callier et al. 2006, Metzger et al. 

2007) while other studies have reported no such effects (Mojica and Nelson 1993). Doering et al. 

(1987) showed in a mesocosm study that large M. mercenaria populations increased benthic 

oxygen flux, helping to preserve aerobic conditions in the sediments, thus preserving 

nitrification-denitrification coupling and minimizing phosphorous release. Hargrave et al. (2008) 

suggested that this variability was at least in part due to site-specific hydrologic variation, but 

this may be less relevant for infaunal hard clam aquaculture where water currents have less 

immediate access to waste nutrients as compared to long-line mussel culture (or bagged oyster 

culture). Fewer in situ studies are available on nutrient profile shifts associated with clams, and 

those that are available (e.g. Bartoli et al. 2001 and Nizzoli et al. 2006 on Ruditapes 

philippinarum (Adams & Reeves 1850)) have generally found a slight net positive nutrient 

contribution being sequestered by the clams themselves, indicating that these effects are density 

dependent. Other studies have also shown inconsistent results about sediment profile changes 

resulting from the additional deposition of suspended sediments (Coen et al. 2000, Chamberlain 

et al. 2001, Crawford et al. 2003).  
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Whiteley and Bendell-Young (2007) found decreases in total non-target bivalve biomass on 

farmed sites as compared to unfarmed plots, but this was offset on the farmed sites by an 

increase in target bivalve (Ruditapes philippinarum) biomass. This observation contrasts with 

findings that screening on commercial farms increased total bivalve biomass (Spencer et al. 

1997, Smith and Langdon 1998), increasing target bivalve survival (R. philippinarum) but 

without decreasing non-target bivalve abundance, and still others that found no such effect 

(Mojica and Nelson 1993). Little, however, is known about these factors in small-scale 

operations, or about any impacts of overcrowded and limitation of physical space. There is also 

speculation that fouling of the netting apparatus itself may increase larval settlement, 

subsequently shifting local community structure as well as increasing overall biodiversity and 

biomass (Kaiser et al. 1996, Spencer et al. 1997, Whiteley and Bendell-Young 2007). 

The effects of in situ bivalve aquaculture on biodiversity and benthic infaunal assemblage 

are reported to be varied and probably site-specific (Hargrave 2008). Some studies reported 

positive impacts associated with mussel culture (e.g. predator abundance and diversity, Inglis 

and Gust 2003; epifaunal and total macroinvertebrate abundance, D’Amours et al. 2008), but 

there are also numerous studies that report minimal effects (e.g. Baudinet et al. 1990, Grant et al. 

1995, Kaiser et al. 1996, Chamberlain et al. 2001, Crawford et al. 2003) and other studies that 

report significant negative impacts on biodiversity (Hargrave et al. 2008, Cranford et al. 2009). 

Several studies have also reported severely shifted benthic community structures beneath Mytilus 

spp. cultures (e.g. Beadman et al. 2004, Commito et al. 2005, Norling and Kautsky 2007 and 

Ysebaert et al. 2009) but again the presence and magnitude of any impacts are seemingly site-

specific. Stenton-Dozey et al. (1999) found initial evidence of recovery (in terms of benthic 

community biodiversity metrics) beginning four years after Mytilus galloprovincialis (Lamarck, 
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1819) culture had ceased. Whether the same variability and strength of effect also applies to hard 

clam aquaculture remains to be seen, as there are no studies investigating the effects of the grow-

out phase of aquaculture operations for the locally abundant hard clam Mercenaria mercenaria, 

or on any hard clam in the mid-Atlantic region. To better understand these issues, the present 

study examines the impacts of these grow-outs on local benthic communities. 

Hard clam harvests experienced severe declines in the mid 20th century in New Jersey, 

peaking in New Jersey at just over 5 million pounds in 1950 and falling to 1.2 million pounds in 

1992 (McHugh 2001). With declining harvests, industrial scale hard-clam aquaculture became 

profitable and was well established 1950s in New Jersey and the greater mid-Atlantic region 

(Castagna 2001, Calvo et al. 2013). More recently, municipalities and local community 

organizations have begun smaller-scale hard clam aquaculture operations. These efforts support 

this traditional local industry and utilize the biological capabilities of bivalves for both 

bioremediation and community outreach purposes. (ReClam the Bay, for example, a private 

environmental educational non-profit in Ocean County NJ, uses the hard clam as a tool to 

educate local residents about the ecology of Barnegat Bay and the impacts of residential and 

municipal fertilizer usage on eutrophication and general water quality, as well as other 

sustainability-related topics.) The small scale of these operations and the functional biology of 

M. mercenaria have been assumed to minimize any risk of excess nutrient contribution to the 

system, but the data for ecological impacts of hard clam aquaculture are too limited to support 

this conclusion. The present study therefore addresses the following questions: do hard clam 

grow-outs negatively impact local benthic invertebrate biodiversity or alter infaunal community 

structure? If so, do these impacts extend beyond the area of the grow-out plots? 

 



 

35 

METHODS 

Barnegat Bay is a back-barrier lagoon located in central New Jersey, averaging < 2m in 

depth (Taghon et al. 2017). Three inlets connect the bay to the Atlantic Ocean to the east, one of 

which, Barnegat Inlet, is located within 3 km of the study site at Sedge Island. Sedge Island itself 

is located within the Sedge Islands Wildlife Management Area (WMA), which prohibits 

commercial fishing and clamming.  The study site, off the southwestern edge of Sedge Island 

(Figure 2-1; 39º 47’ 48”N, 74 º 07’ 07”W) is a shallow cove (maximum depth 2m) enclosed on 

three sides, sparsely vegetated with Zostera marina (Linné 1753) and edged primarily with 

Spartina alterniflora (Loisel-Deslongchamps, 1807) salt marshes.  

Through 2015, the Sedge Island cove (Figure 2-2) was the site of an on-bottom shellfish 

lease managed by the Barnegat Bay Shellfish Restoration Program operated by the Rutgers 

Cooperative Extension of Ocean County. Recreational clamming is permitted within the WMA, 

but is prohibited directly on the lease itself. ReClam the Bay purchases larvae from hatcheries 

and produces their own clam seed, maintaining the juvenile clams in nearby upwellers until they 

reach plantable size (10-15mm, Castagna 2001). At that size the clams are moved to benthic 

plots and kept under screening of ¼ - ½” mesh made of light polyethylene for the ‘grow-out’ 

phase until they reach marketable weight (Flimlin 2000). In New Jersey, these screens are 

typically 4.6m x 6.1m (Flimlin 2000). Tubular bags of shell and gravel are also used to line the 

screens to prevent blue crabs from entering under gaps in the rebar. Screens are raked 

periodically to prevent algae settling onto the screens.  

Three experimental blocks of 15 x 7m were marked out in early October 2012 adjacent to 

screens being maintained concomitantly by ReClam the Bay and the BBP within the Sedge 

Island Cove. All blocks were fully subtidal and located more than 15 m from the edge of the 



 

36 

marsh. Three plots measuring 3 m by 4.6 m were marked out within each block and randomly 

assigned to one of three treatments: Control (untouched), Screen Control (Tenax® and PVC 

screen frame affixed to the sediment with rebar and shell bags), or Screened Clam (Tenax® and 

PVC screen frame installed over clam seed and affixed to the sediment with rebar and shell bags) 

(see Figure 2-3). 

Clams (~10mm) were hand-distributed (“planted”) in the randomly selected plots at 

1160/m2 (15000/plot). A three-meter buffer was left between adjacent plots. Screens were built 

with Tenax®, a black UV inhibiting lightweight polyethylene, and attached to PVC pipes on all 

four sides using zipties. The PVC was secured to the bottom with curved rebar. Plots were 

sampled three times per year (May, August and October) between October 2012 and October 

2015. Protocol for this study was designed to mimic the standard New Jersey hard clam 

aquaculture grow-out operation at 1:4 scale. Screens were therefore ‘raked’ biweekly during the 

season (May – October) just as is regularly done by farmers to prevent algal fouling.  (“Rakes” 

do not have tines, but instead are like large windshield-wipers, designed to glide over the tops of 

the screening, removing what lies atop without grabbing onto the screening itself). While many 

hard clam farmers in New Jersey do remove their screens over the winter to prevent damage 

from ice scouring, the screens in this study were left in place so as to minimize disturbance from 

foot traffic. Given that the entire study area remained subtidal in even the shallowest tides, ice 

scouring was not a concern. 

Three sediment cores (PVC corer, 3.8cm dia., 10 cm depth) were taken from within each of 

the nine plots on each sampling date. For all screened plots, screens were manually rolled back to 

provide access and then reaffixed to the bottom after sampling. Sediment samples were bagged 

and kept at 0˚C until processed, at which time they were dried at 80 °C and separated with 
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stacked sieves into >2mm, 1–2mm, 0.5–1mm, 0.25–0.5mm, 0.125– 0.25mm, and 0.063–

0.125mm fractions for 7 min on a shaker table before weighing. (These fractions are defined as 

“granule”, “very coarse sand”, “coarse sand”, “medium sand”, “fine sand”, “very fine sand” and 

“silt/clay” according to Wentworth (1922)).  

Benthic invertebrate communities were sampled with an Ekman grab (3.5L). In each plot, 

two benthic samples were randomly located within the plot itself (but at least 1 meter from the 

edge to minimize edge effects) and one sample was located 1 meter from the plot in each 

cardinal direction (Figure 2-3). The perimeter samples were taken before any within-plot 

samples so as to prevent any disturbance to sampling area. Benthic samples were sieved on site 

at 1mm, and fauna were preserved in 70% Ethanol for later identification.  

 

Statistical Methodology 

Sediment samples were analyzed individually using GRADISTAT v4.0 Blott and Pye 

(2001) that calculates mean grain size and sorting coefficient, and classifies them according to 

Folk and Ward (1957): very well sorted (σ < 1.27); well sorted (σ = 1.27-1.41); moderately well 

sorted (σ = 1.41-1.62); moderately sorted (σ = 1.62-2.00); poorly sorted (σ = 2.00-4.00); very 

poorly sorted (σ = 4.00-16.00); and extremely poorly sorted (σ >16.00). Sediment fractions 

remaining in the pan after sieving (<0.063mm) were not included in the analysis but were 

accounted for in percent data (as prescribed by Blott and Pye (2001)). Mean grain size and 

sorting coefficient, as well as biodiversity measures (Shannon-Wiener Index (H’), Pielou’s 

Evenness (J’) and species richness (Smith and Wilson 1996)) were then analyzed with factorial 

MANOVA using treatment and season as the independent variables with blocks ungrouped. 
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To determine differences in benthic invertebrate community structure between treatments, 

an analysis of similarities (ANOSIM) and a subsequent SIMPER analysis were performed on 

benthic grab density data using PRIMER v. 5.2 (Clarke and Gorley 2001). Untransformed 

density data for all taxa of sample size ≥100 over the course of the experiment (combined across 

blocks) were also grouped by feeding type and by maximum burrowing depth3 (infaunal 

position). The densities of these functional groups were converted with Principal Component 

Analysis (PCA). The resulting scores were analyzed with factorial ANOVA (independent 

variables: treatment and season) and with Tukey HSD post hoc analysis. Density data from the 

ten most dominant taxa were also analyzed individually using this same PCA plus factorial 

ANOVA technique using the same independent variables. All PCA and ANOVA/MANOVA 

analyses were performed in JMP Pro v. 13.2 (SAS Institute, Cary, North Carolina).  

 

RESULTS 

Sediment  

Sediment sorting coefficient (min σ = 1.902 – max σ = 3.062) and mean sediment size (min 

162.6 µm – max 246 µm) was consistent through the duration of the study (Table 2-1). The mean 

particle size remained fine sand (125-250 µm, Wentworth 1922) throughout, averaging 204.3 µm 

in 2013, 185 µm in 2014 and 212 µm in 2015. There was a significant main effect of treatment 

on sorting coefficient (ANOVA, F(2, 252) = 2.9071, p = 0.0565) but not on mean particle size 

(F(2, 252) = 2.0902, p = 0.1258). Post hoc Tukey HSD analysis indicated a significant difference 

                                                        
3 Burrowing depth maxima were obtained from an extensive literature survey, including Dauer et al. 

1979, Schaffner 1990, Schaffner et al. 2001. 
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in sorting coefficients between control plots and plots with screened clams suggesting a more 

even distribution across particulate size classes in screened clam plots.  

 

Biodiversity  

177 species from eight phyla were collected during the three-year study (Table 2-2). 

Shannon-Weiner index values (H’), Pielou’s Evenness values (J’) and species richness values 

were calculated for each sampling site. Factorial MANOVA (independent variables: treatment 

and season) was significant for Shannon-Weiner index (F(17,466)=3.0786, p < 0.0001), and 

Pielou’s evenness (F(17,466)=8.4610, p < 0.0001). The standard for significance was not met for 

species richness (F(17,466)=1.6061, p= 0.0587), and the main effect of treatment was not 

significant (F(5)=0.3541, p=0.8796). (Table 2-3) (The main effect of season was significantly 

different, and will be discussed in Chapter 3.) 

Results for Shannon-Weiner Index (H’) were significant only for the main effect of 

treatment (F(5)=8.1069, p < 0.0001), not season, with no significant interaction effect. Tukey 

HSD post hoc analysis indicated that samples inside screened clam plots had statistically lower 

H’ values than the rest of the treatments (Figure 2-4). Results for Pielou’s evenness (J’) were 

significant for the main effect of treatment (F(5)=15.9352, p < 0.0001) and season 

(F(2)=11.2703, p < 0.0001), with a significant interaction (F(10)=2.6554, p = 0.0037) (Table 2-

3). Post hoc analysis identified samples taken inside screened clam plots as having statistically 

lower J’ values than the other treatments (Figure 2-4, additional seasonality differences to be 

discussed in Chapter 3). Further analysis of the interaction effect indicated that control samples 

were statistically different from inside clam plots samples in August and October, but not in 
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May. Screened clam perimeter samples and all screen control samples (inside and perimeter) 

were not statistically different from control plots (Figure 2-5).   

Inside screen control samples were statistically different from inside screened clam plot 

samples in May but not in August or October, suggesting that the screen is having some effect on 

evenness distinct from the effect of the clam plots in May that was not statistically significant 

during August and October. All of the perimeter samples were placed in overlapping groups by 

the Tukey HSD pairwise comparisons, allowing for the assumption treatment does not effect 

evenness in perimeter samples differently according to season, or indeed at all (Figure 2-5).   

 

Community Structure 

Results from the ANOSIM showed a significant difference in invertebrate community 

between treatments (Global R=0.147, p=0.1%). The MDS plot (stress = 0.28) clearly shows 

samples from inside screened clam plots clustering strongly, with samples from other treatments 

grouping less tightly together (Figure 2-6). (The stress value is not low, however it is below the 

validity threshold posited by Sturrock and Rocha (2000).) The average similarities for each 

treatment are: Control Inside 19.63%; Control Perimeter 22.24%; Screen Control Inside 

27.42%%; Screen Control Perimeter 22.43%; Screened Clam Inside 27.32%; Screened Clam 

Perimeter 21.05%. These low similarity values indicate great variability within the dataset. 

Pairwise comparisons were significant for all treatments when compared with inside screened 

clam plot samples (Table 2-4), and those differences were larger than for any other treatment 

pair. All perimeter and control comparisons were non-significant.  

Dissimilarity results from the SIMPER analysis indicate moderate levels of dissimilarity 

among all treatments (Table 2-5). Among pairwise comparisons involving inside screen control 
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samples, the comparisons with inside clam plot treatment samples are least dissimilar. For all 

other comparisons the inside clam plots have the highest dissimilarity scores, indicating that 

aquacultural communities have the least overlap in community makeup with communities in 

other treatments. SIMPER also identified the species most critical to each treatment overall. All 

taxa with contributions over 5% are listed in Table 2-6. All but three of the most critical (non-

target) species were among the top ten most dominant taxa by overall abundance (Scoloplos sp. 

(Blainville, 1828), Lysianopsis alba (Holmes, 1905) and Solemya velum (Say, 1822)). These taxa 

were all among the taxa included in the functional group analysis to be discussed below.  

Ameritella agilis is one of two critical taxa significant to all six treatments (individual 

contribution >5% in all treatments), and the only one of the pair whose density differed 

significant between the treatments (ANOVA, F(17,466)=2.2594, p = 0.0029, main treatment 

effect F(5)=2.3230, p = 0.0449, Table 2-7). Post hoc analysis identified samples from inside 

screened clam plots as having statistically higher densities of A. agilis than perimeter screen 

control samples (Figure 2-7). The density of A. agilis also differed significantly by season 

(F(2)=14.0495, p < 0.0001) with no significant interaction effect (results to be discussed in 

Chapter 3). M. mercenaria was critical to the inside screened clam treatment as would be 

expected, but was also a statistically important member of the screened clam perimeter 

community and the screen control perimeter community. This is not surprising as M. mercenaria 

is also a naturally abundant species in the Sedge Island area. 

 

Dominant Taxa  

Densities of the ten most abundant taxa (Table 2-8) were grouped across blocks and 

converted with Principal Components Analysis (PCA) into linearly uncorrelated variables. The 
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choice to include only the ten most abundant taxa was arbitrary and pre-hoc, to permit sufficient 

statistical power to examine patterns among the most common animals in the study plots. (The 

SIMPER analysis confirms the validity of this pre-hoc selection as mentioned above).  

Three principal components were created with eigenvalues greater than 1.0. Again, 

treatment and season were the independent variables analyzed. The first (PC1, Eigenvalue 

2.6632) explained 26.6% of the variance. The second (PC2, Eigenvalue 1.7302) explained 17.3% 

of the variance, and the third (PC3, Eigenvalue 1.5304) explained an additional 15.3% of the 

variance. The remaining components (PC4-PC10) had eigenvalues below 1.0 and were not used 

in analysis (Table 2-9). 

Factorial ANOVA were then run on the scores of principal components 1 through 3 to 

isolate the effects of season and treatment. Results from the PC1 scores were not statistically 

significant (F(17,36)=.4929, p=0.9397), and neither were results from PC3 (F(17,36)=1.5446, 

p=0.1340). A Factorial ANOVA on PC2 scores (positive scores driven by densities of Tritia 

obsoleta (Say, 1822), Polydora cornuta (Bosc, 1802) and Clymenella torquata (Leidy, 1855) 

(see Figure 2-8) yielded an interesting but non-statistically significant trend F(17,36)=1.8117, 

p=0.0661) with a significant effect of treatment (F(5)=31982, p=0.0075) (Table 2-10) and a 

relevant but non-significant main effect of season (F(2)=3.1982, p=0.0527), to be discussed in 

Chapter 3. Post hoc analysis distinguishes samples taken from inside screened clam plots as 

having a PC2 score that is statistically different from samples taken at the perimeter of the 

screened clam plots and the screened control plots. Screened clam plots, with a mean PC2 score 

of -1.3215, can be linked to high densities of Clymenella torquata (Figure 2-9). No significant 

interaction effects were seen. 
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Functional Groups  

All taxa meeting a minimum abundance of N>100 were classified by feeding functional 

group and by maximum burrowing depth (infaunal position) (Table 2-8). Feeding groups were 

not equal in number of taxa (Suspension N=10, Deposit N=12, Grazers N=5, Omnivores N=4, 

Predators N=4; commensal N=1, not included in this analysis.) When a species was known to 

use multiple feeding methods, it was placed in the category with which it is principally aligned to 

avoid pseudoreplication. A principal component analysis on feeding group densities produced 

three components with eigenvalues greater than 1.0. The first (PC1, Eigenvalue 1.8458) 

explained 36.9% of the variance, with positive scores driven primarily by deposit feeder and 

predator densities. The second (PC2, Eigenvalue 1.3) explained 26% of the variance in the 

dataset. Positive scores were driven by omnivore and suspension feeder densities. The third 

(PC3, Eigenvalue 1.222) explained 24.4% of the variance, with positive scores driven primarily 

by grazer density and negative scores driven by suspension feeder density. (Figure 2-10) The 

remaining two components had eigenvalues well below 0.5 and were not used in analysis. 

Factorial ANOVA were then run on the scores of the principal components to investigate 

the effects of season and treatment. There were no significant effects of treatment or season on 

PC1 (F(17,36)=1.4170, p=0.1855) but a factorial ANOVA on PC2 scores (treatment and season 

as independent variables) was significant (F(17,36)=2.4818, p=0.0108) with significant effects of 

both treatment (F(5)=2.8143, p=0.0303) and season (F(2)=3.6903, p=0.0348) (Table 2-11; 

seasonality results to be discussed in Chapter 3). No significant interaction effects were found. 

Post hoc analysis indicates that samples taken from inside control plots had higher PC2 scores 

than inside screened clam plots (Figures 2-11 and 2-12), implying higher densities of 
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omnivorous and suspension feeding taxa inside control plots. Factorial ANOVA on PC3 scores 

was interesting but non-significant (F(17,36)=1.8124, p=.0660). 

Similar analyses were also run on the same taxa grouped by infaunal position. Taxa were 

divided into epifaunal (N=16), shallow-burrowers (max depth <5cm, N=10) medium-burrowers 

(max depth 5-15cm, N=5) and deep-burrowers (max depth >15cm, N=4). The principal 

components analysis produced two components with Eigenvalues greater than or approaching 

1.0. The first (PC1, Eigenvalue 2.6523) explained 66.3% of the variance. The second (PC2, 

Eigenvalue 0.9491) explained 23.7% of the variance in the dataset. The remaining two 

components had Eigenvalues well below 0.5 and were not used in analysis. ANOVA performed 

on the scores for components 1 and 2 both produced results that were not statistically significant. 

PC1: F(17,36)=1.0674, p=0.4185)  PC2: F(17,36)=1.6648, p=0.0978. 

 

DISCUSSION 

The ten most dominant taxa (as determined from overall abundance data across the entire 

experimental time frame) were Ameritella agilis, Capitella sp., Clymenella torqutata, 

Microdeutopus anomalus, M. gryllotalpa, Polydora cornuta, Prionospio heterobranchia, 

Scoletoma fragilis, Streblospio benedicti and Tritia obsoleta (Table 2-8). Six of the ten are 

polychaetes, a proportion supported both by recent studies of benthic macroinvertebrate 

communities associated with shellfish aquaculture (64% of critical taxa associated with mussel 

culture in Tasmania, Crawford et al. 2003) and by studies of benthic macroinverte communities 

in Barnegat Bay post-Hurricane Sandy (Taghon et al. 2017). These critical taxa as determined by 

the SIMPER analysis were highly redundant across treatments. Ameritella agilis and Scoloplos 

sp. were critical to all six treatments while Clymenella torquata, an abundant, deposit-feeding, 
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tube-dwelling, deep-burrowing species (maximum burrowing depth >20cm), was important to 

communities in five of the six treatments. This study found higher densities inside hard clam 

plots of the bamboo worm C. torquata (Figure 2-13) and smaller densities of omnivorous and 

suspension-feeding taxa as compared to control plots. These changes were not seen in the 

screened control plots, and can therefore be linked, directly or indirectly, to the presence of high 

densities of the planted hard clams. It appears that at the aquacultural densities used in this study 

(1160/m2), the rate at which fecal material and pseudofeces were being deposited was sufficient 

to increase the food supply for this deep-dwelling maldanid polychaete, especially given the 

increased sedimentary mixing indicated by the increased sorting coefficient inside these plots.  

Deeply-burrowing deposit feeders are connected to the surface by virtue of their burrowing 

and the irrigation action of their feeding. Though most maldanid polychaetes feed from below, 

effectively transporting subsurface sediments to the surface, C. torquata and other members of 

the subfamily Euclyminae are head-down conveyor-belt feeders, pulling surface material down 

into their tubes on which to feed (Dobbs and Whitlatch 1982), though they will also feed at the 

surface after the deposition of fresh detritus (Weinberg 1988). A study by Levin et al. (1997) 

supports this, having found that maldanid polychaetes can transport deposited carbon to depths 

of more than 10cm in only 1.5 days. This has been shown to subsidize microbial communities at 

the surface (Bianchi et al. 1998) and exert negative pressures on surface invertebrates such as 

burrowing amphipods (Flach 1992).  Weinberg (1988) that found that detritus added to surface 

sediments enhanced C. torquata growth after as little as one month. The additional feces and 

pseudofeces contributed to surface sediments by the stocked Mercenaria mercenaria would be 

expected to have the same effect found by Weinberg. This would likely also benefit Ameritella 

agilis, an infaunal deposit-feeding bivalve of small size that would be able to easily access 
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deposited feces and pseudofeces, and could potentially explain the increased density seen inside 

clam plots in this study (Figure 2-7). This is contrary to findings of population and growth-rate 

decreases in A. agilis under aquaculture scenarios (Callier et al. 2009). The relative rates of fecal 

production by the stocked M. mercenaria and the removal of said feces in the aquacultural plots 

at Sedge Island, either by benthic detritivores or by resuspension, appear to result in a net-

improvement to habitat quality for A. agilis, in spite of their intolerance to organic enrichment. 

Certainly the decreasing available physical space left by the growing M. mercenaria over time 

hasn’t proved an obstacle to these small infaunal bivalves. 

The four omnivores in the group include three mobile taxa (Alitta succinea (Leuckart, 

1847), Elasmopus levis (S.I Smith, 1873) and Rhithropanopeus harrisi (Gould, 1841) and the 

suspension-feeder functional group includes many motile fauna such as Ampelisca verrilli (Mills, 

1967), Crepidula convexa (Say, 1822), Microdeutopus anomalus (Rathke, 1843) and Polydora 

cornuta, the latter two in such abundance that they were among the top ten most dominant taxa 

throughout the experimental timeframe. Decreases in plankton-feeding taxa in hard clam plots 

hint at potential food resource competition. This study maintained grow-outs in place for three 

years, one year beyond which most aquacultural grow-outs remain since the clams are 

harvestable at littleneck size (15-22 clams/kg, 47.6 – 54mm) inside a two-year timeframe. The 

growth rate of the stocked clams anecdotally seemed to be slowing during year 3, and a post hoc 

growth curve seems to generally support this observation (Figure 2-14). When compared with 

published M. mercenaria growth curves it is clear that the growth rate seen inside the hard clam 

plots in this study tails off well before the natural growth rate, which continues unchanged in all 

three studies cited here to at least four years (Figure 2-15 a-c). The growth chart from 

Carmichael et al. (2004) highlighting the extremely high growth rates seen in eutrophic coastal 
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estuaries is particularly relevant given the well documented eutrophic conditions in the northern 

sections of Barnegat Bay (Kennish et al. 2001). While admittedly circumstantial, if the decrease 

in clam growth is in fact a response to an increasingly limited seston resource within the clam 

screens, it is unsurprising that this overcrowding would also increase local competition with 

other suspension-feeding taxa.  

This would not necessarily have environmental management implications for hard clam 

farming since grow-outs do not usually remain in place for three years, and especially not for 

New Jersey where screens are removed each winter. However, if decreases in suspension feeders 

are causally linked with increased clam densities as they appear to be from this study, an increase 

in clam leasing acreage could contribute to an overall decrease in potential mitigation of 

suspended algae, leading to an increase in eutrophication in an estuary that already suffers from 

high nutrient loads and suspended seston. This is unlikely, however, as the increase in overall 

algae and seston removal by the clams themselves would more than compensate. 

As wild stocks become more heavily depleted (Ricard et al. 2012), aquaculture’s recent 

ascendancy over the global seafood market will continue to increase. As with terrestrial farming, 

the monoculture is the most efficient use of farming resources, but these economic and logistical 

gains can come at an ecological cost (e.g. Guo and Gifford 2002, Cardinale et al. 2006, Worm et 

al. 2006, Piotto 2008, McDaniel et al. 2014). Recent meta-analysis by Gamfeldt et al. (2014) 

suggests a connection between species richness and ecosystem functioning relevant to 

proponents of on-bottom shellfish aquaculture. Though more species-rich communities were 

found to have generally higher levels of functioning (higher productivity, higher consumption 

and similar levels of biogeochemical flux) than species-poor communities, the same species-rich 

assemblages had lower rates of productivity and consumption, and similar biogeochemical flux 
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levels as compared to monocultures of the most ecologically beneficial member species 

(Gamfeldt et al. 2014). Though the work performed at Sedge in this study did not manipulate 

community structure directly, the block/control design did in effect create an aquatic effective 

monoculture in triplicate. Surprisingly, and defying the study’s initial hypothesis, species 

richness did not differ between treatments. (This was also the case in a study by Beadman et al. 

of on-bottom Mytilus edulis aquaculture from 2004.) Regardless, given that the ecological 

functioning of Mercenaria mercenaria is well documented as essential to soft-bottom estuarine 

communities, the results from this study, in concert with the conclusions by Beadman et al. and 

Gamfeldt et al., effectively advocate for the effective monoculture that is infaunal hard-clam 

aquaculture. 

Overall, non-target infaunal biodiversity within the screened clam treatment plots is lower 

than in either of the two control treatments, or in any of the perimeter samples. Mean Shannon-

Weiner (H’) inside screened clam treatment plots is 2.239 and the highest mean value across all 

treatments is 2.90 (screen control perimeter). H’ values between 0.5-2.5 are common in estuarine 

and benthic invertebrate communities, so potential shifts of this magnitude are not minor. 

Evenness (J’) and species richness are both components of the Shannon-Weiner index 

calculation, and though species richness did not change significant at all throughout the 

experimental period, shifts in Pielou’s evenness are clearly visible in both screened treatments 

(Figure 2-4, 2-5). This shift in the screen controls is particularly interesting as no functional 

group or taxon differed significantly between screen control treatments. May sees a significant 

difference in evenness between the screen control and screened clam treatments that disappears 

for August and October, though it is not until October that the screen control is indistinguishable 

from the unscreened control. The volatility in this statistic, without the corresponding shifts in 
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abundance data or species richness, is likely a result of background instability, small sample size, 

or the inherent patchiness in soft-sediment marine systems (Barry and Dayton 1991). 

A study by Orth (1973) found that Zostera marina coverage was positively correlated with 

differences in sorting coefficient of as little as 0.5: areas with sorting coefficients of σ = 1.12 and 

1.31 had higher Z. marina coverage, while areas with coefficients of σ = 0.63 and 0.74 had less 

Z. marina. Eelgrass shoot density and ambient M. mercenaria density and growth rate are 

positively correlated (Peterson 1982, Peterson et al. 1984) and have both been shown to slow 

wave action at the benthic boundary in a similar way (Wall et al. 2008), as have the protective 

screens (Virstein 1978) so it is unsurprising that higher abundances of M. mercenaria inside 

screened clam treatment plots would have a similar effect on sorting coefficient as was seen by 

Orth. However, this is still a difference in sorting coefficient of only 0.5, larger than the effect 

seen in this study. On a scale of 0-16, an increase of 0.156 over three years is small in proportion 

to the scale on which it is measured, and though statistically significant is not likely to have 

practical consequences. 

Hurricane Sandy caused record flooding in the study area from 28-30 October 2012, three 

weeks after the plots in this study were installed. The hurricane, though downgraded to a tropical 

storm before reaching New Jersey, approached the coast at an angle that was “closer to 

perpendicular than any previous hurricane in the historic record” (Hall and Sobel 2013). This, 

combined with the full moon, contributed to the abnormally high water levels during the storm, 

as high as 3.5 meters above normal spring high tide in some locations (Blake et al. 2013). More 

than 305 mm of rain fell in New Jersey, with wind gusts to 60 knots, and reports of hurricane 

force winds in New Jersey in the latter half of the storm as verified by the National Hurricane 

Center (Blake et al. 2013). The storm resulted in two breaches of the barrier island at 
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Mantoloking, New Jersey, 28 km north of the Sedge Island site. During the five months 

immediately following the hurricane, winter storms caused anomalously high water levels 

several times (Aretxabaleta et al. 2014) but this was unrelated to the geomorphological changes 

caused by Hurricane Sandy (Aretxabaleta et al. 2014) as the breach was closed by November 4, 

2012.  

The destruction left by the storm prevented the ReClam the Bay team from accessing the 

site until May 2013 before the originally scheduled 2013 sampling dates. Sediments in shallow 

sandy and muddy habitats are frequently scoured and resuspended during strong storm events 

like Hurricane Sandy. Fortunately, all of the screens and plot markers were still in place after the 

storm, though a few of the tubular bags had become detached from the screened clam plot in 

Block 1, and one corner of that screen was drifting a few inches above the bottom. There was no 

substantial decrease in M. mercenaria abundance in subsequent benthic samples from that plot 

(effect=date, F(8)= 0.3885, p=0.9252) or as compared to other blocks (effect=block, 

F(2)=0.8819, p=0.4165) (Figure 2-16). We can therefore infer that there was no significant 

increase in predation in that plot as compared to the two other screened clam plots resulting from 

this breach in the predator screening. 

Strong storm-related winds and wave-action can stochastically suspend and transport 

benthic sediments across large distances (Miles et al. 2015) as well as individual Mercenaria 

mercenaria (Prezant et al. 2010). Screening installed over hard-clam beds should in theory 

decrease the water velocity at the water-sediment boundary, mitigating the resuspension effect of 

both sediment and clams (e.g. McCall 1977, Virnstein 1978). In South Carolina, Coen et al. 

(2000) found that shear velocity of benthic boundary water was slowed by as much as 50% in 

areas between M. mercenaria cages and by as much as 90% within them. Sediments under cages 
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were higher in silt and clay than sediments located even short distances away from cages (Coen 

et al. 2000), indicating that the caged areas trap a larger proportion of smaller (and lighter) 

particulate. Results from the current study on Sedge Island do not replicate any effect of this 

screening apparatus on mean particle size, and sediment samples from within the screened clam 

plots were only slightly greater in sorting coefficient from 2.13 to 2.29, a slight shift towards a 

more evenly sorted regime, with no differences in mean particle size between treatments. Non-

impacted estuary sediments tended to remain within the σ = 0.5-2.5 range, so even in this altered 

state remains within the natural range. Given the lack of changes to mean sediment size 

predicted, the increased hard-clam densities inside the treatment plots appear to have sufficiently 

increased the overall mixing of the sediments without altering the grain size itself via increased 

bioturbation. Surprisingly, there were no treatment specific effects for any of the infaunal 

burrowing depth classes indicating any protective effect of the screening in either screened 

treatment. This may be due to the aforementioned high water levels associated with Hurricane 

Sandy. M. mercenaria abundance also did not spike in perimeter samples in this study’s initial 

post-storm samples, so if the impact of the hurricane is indeed responsible for the lack of screen 

effect on particle size, the predator screening did at least prevent storm-caused relocation of M. 

mercenaria as described by Prezant et al. (2010).  

The objective of this study was to evaluate any negative impacts that intensive hard clam 

aquacultural grow-outs might be having on local benthic communities, both from the cultivation-

appropriate densities and the predation screening itself. And yet what is perhaps most 

conspicuous about the results revealed here is the lack of serious impact overall, and the lack of 

any significant impacts at even 1 meter’s distance from the treatment plots. This is consistent 

with the one similar study on M. mercenaria culture (Luckenbach et al. 2016). Of the 39 
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response variables tested in that study on benthic invertebrates, finfish and other mobile taxa on 

hard clam aquaculture sites in NJ and VA, values for 26 variables did not differ between 

cultivated and uncultivated reference sites during any of the sampling seasons (Luckenbach et al. 

2016). The suggestion in the literature (e.g. Whiteley and Bendell-Young 2007) that the predator 

screening would contribute to overall increases in biodiversity and species richness through 

increased diversity in larval settlement and subsequent changes to community structure is also 

not borne out by this study.  

This study found limited negative impacts to benthic infaunal biodiversity associated with 

small-scale grow-out plots in New Jersey over a three-year period.  Statistically significant 

decreases in biodiversity directly beneath hard clam aquacultural plots, as well as shifts in 

community structure and a slight shift towards a more evenly sorted sediment profile all 

disappeared within one meter of the plots. Still missing is information on longer-term redundant 

use of grow-out plots and possible changes that might occur in the much larger commercial plots. 

Also missing is information on larger-scale operations, particularly in the more extensive areas in 

which these commercial farms generally operate in New Jersey and in the mid-Atlantic region. 

An increase in maldanid polychaete density and decrease in mobile suspension feeders would 

require monitoring should leasing acreage vastly increase with future changes to New Jersey 

State aquacultural policies. 
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TABLES 

Table 2-1    Sediment granulometric data pooled for all sampling dates and all treatments. Mean particle size (min 162.6 µm – 

max 246 µm) remained within the fine sand category for the duration of the experiment in all treatments (125-250 µm, Wentworth 

1922). Sorting coefficient was significantly higher inside screened clam treatment plots.  

Year  Sample 

Mean 

particle 

size µm 
Sorting 

Coef. Sorting Regime 

Sand % (avg) 

Silt/Clay 

% (avg) 

 

Total 

wgt. (g) 
 

Granule 

Very 

Coarse Coarse Medium Fine 

Very 

Fine 

2012 Oct Control 

Screen Control 

Screened Clams 

167.8 

170.6 

194.3 

1.977 

2.101 

1.962 

Moderately Sorted 

Poorly Sorted 

Moderately Sorted 

0.32 

0.32 

0.77 

3.63 

4.96 

5.44 

7.87 

7.72 

8.98 

22.6 

23.05 

23.62 

45.45 

45.06 

42.79 

16.8 

15.87 

15.27 

3.33 

3.00 

3.13 

1008.35 

1059.49 

1193.19 

2013 May Control 

Screen Control 

Screened Clams 

232.6 

188.4 

191.5 

2.160 

1.935 

1.927 

Poorly Sorted 

Moderately sorted 

Moderately sorted 

1.18 

0.93 

1.17 

4.62 

5.46 

5.38 

13.57 

4.96 

5.30 

26.97 

21.44 

23.65 

38.93 

48.26 

48.93 

11.88 

15.04 

12.51 

2.86 

3.90 

3.04 

1204.04 

1261.08 

993.03 

 Aug Control 

Screen Control 

Screened Clams 

191.9 

184.1 

192.9 

1.943 

1.930 

1.945 

Moderately sorted 

Moderately sorted 

Moderately sorted 

`3 

2.37 

1.08 

4.99 

4.45 

6.84 

5.36 

3.82 

5.82 

21.14 

15.46 

19.98 

51.40 

55.12 

51.63 

11.58 

14.69 

11.55 

3.19 

4.09 

3.10 

958.06 

1072.66 

881.89 

 Oct Control 

Screen Control 

Screened Clams 

226.9 

196.7 

233.3 

2.254 

1.953 

2.280 

Poorly sorted 

Moderately sorted 

Poorly sorted 

2.45 

1.21 

2.17 

8.79 

7.59 

10.94 

6.71 

6.22 

5.21 

16.44 

22.29 

17.74 

48.64 

49.09 

48.54 

13.70 

10.10 

12.28 

3.26 

3.51 

3.12 

774.30 

1325.75 

934.97 

2014 May Control 

Screen Control 

Screened Clams 

164.7 

167.2 

162.6 

2.110 

2.157 

2.162 

Poorly sorted 

Poorly sorted 

Poorly sorted 

1.20 

2.48 

3.00 

5.22 

5.41 

4.41 

4.84 

4.40 

4.51 

13.62 

19.58 

14.23 

51.48 

47.44 

51.34 

16.36 

16.67 

18.02 

4.58 

4.02 

4.49 

879.48 

972.55 

634.50 

 Aug Control 

Screen Control 

Screened Clams 

166.1 

190.7 

189.0 

2.165 

1.927 

1.966 

Poorly sorted 

Moderately sorted 

Moderately sorted 

3.98 

1.61 

2.74 

3.86 

4.45 

4.35 

4.55 

5.72 

5.73 

15.62 

23.06 

18.97 

52.31 

48.53 

49.89 

16.18 

13.28 

15.08 

3.51 

3.36 

3.23 

865.46 

1100.55 

1637.66 

 Oct Control 

Screen Control 

Screened Clams 

189.3 

194.0 

241.0 

1.948 

2.422 

2.373 

Moderately sorted 

Poorly sorted 

Poorly sorted 

2.15 

4.18 

4.38 

4.83 

5.50 

9.57 

5.87 

5.59 

8.38 

17.53 

16.86 

15.62 

52.79 

45.99 

44.66 

13.55 

15.29 

13.81 

3.27 

6.59 

3.57 

730.27 

803.14 

674.25 

2015 May Control 

Screen Control 

Screened Clams 

193.5 

198.9 

224.8 

1.902 

1.928 

2.131 

Moderately sorted 

Moderately sorted 

Poorly sorted 

1.40 

1.03 

3.15 

6.53 

8.35 

7.54 

5.08 

4.83 

5.43 

18.84 

25.35 

20.51 

57.80 

47.51 

54.58 

7.15 

7.57 

6.50 

3.19 

5.35 

2.30 

1087.34 

1247.58 

1051.33 

2015 Aug Control 

Screen Control 

Screened Clams 

193.7 

194.3 

199.6 

1.988 

2.403 

2.524 

Moderately sorted 

Poorly sorted 

Poorly sorted 

1.96 

4.12 

4.53 

6.99 

5.22 

4.93 

6.07 

5.98 

8.65 

18.02 

21.14 

17.60 

48.36 

43.75 

40.66 

13.16 

15.51 

17.22 

5.44 

4.28 

6.41 

1038.44 

1344.62 

699.58 

 Oct Control 

Screen Control 

Screened Clams 

226.6 

231.4 

246.0 

2.239 

2.314 

3.062 

Poorly sorted 

Poorly sorted 

Poorly sorted 

2.45 

2.97 

5.28 

8.23 

8.75 

10.23 

7.07 

6.86 

8.56 

18.16 

14.99 

15.53 

47.51 

43.76 

40.41 

13.35 

14.53 

15.99 

3.23 

8.14 

4.01 

1247.10 

1290.06 

1063.20 
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Table 2-2  177 taxa were recorded in benthic samples between October 2012 and October 2015 

across eight phyla. 

 

 

PHYLUM 

 

 

CLASS 

 

FAMILY 

 

TAXA 

 

 

 

Bryozoa Gymnolaemata Electridae 2 

  Membraniporidae 1 

Nemertea Anopla Lineidae 1 

Cnidaria Anthozoa Campanulariidae 2 

  Diadumeidae 1 

Arthropoda Malacostraca (Amphipoda) Caprellidae 5 

  Gammariidae 32 

 Malacostraca (Anomura) Paguroidea 2 

 Malacostraca (Brachyura) Cancridae 2 

  Carcinidae 1 

  Panopeidae 4 

  Pinnotheridae 2 

  Portunidae 1 

 Malacostraca (Caridea) Crangonidae 1 

  Hippolytidae 1 

  Palaemonidae 3 

 Malacostraca (Cumacea) Diastylidae 2 

 Malacostraca (Isopoda) Anthuridae 1 

  Idoteidae 3 

 Malacostraca (Mysida) Mysidae 1 

 Ostracoda Halocyprididae 1 

  Other (unidentified) 1 

 Pycnogonida Phoxichilidiidae 1 

Annelida Polychaeta Amnicolidae 1 

  Capitellidae 4 

  Cirratulidae 2 

  Flabelligeridae 1 

  Glyceridae 1 

  Goniadidae 2 

  Lumbrineridae 2 

  Magelonidae 1 

  Maldanidae 5 

  Nephtidae 1 

  Nereididae 4* 

  Onuphidae 1 

  Orbiniidae 2 

  Oweniidae 1 

  Pectinariidae 1 
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PHYLUM 

 

 

CLASS 

 

FAMILY 

 

TAXA 

 

 

 

Annelida Polychaeta Phyllodocidae 6 

  Polynoidae 3 

  Sabellidae 2* 

  Serpulidae 3 

  Spionidae 12 

  Syllidae 6* 

  Terebellidae 3 

  Unknown 4 

 Clitellata (Oligochaeta)  1 

Mollusca Bivalvia Arcidae 1 

  Astartidae 1 

  Hiatellidae 1 

  Lasaeidae 1 

  Lyonsiidae 1 

  Mactridae 2 

  Myidae 1 

  Mytilidae 2 

  Nuculanidae 

Nucul 

1 

  Nuculidae 1 

  Pharidae 1 

  Pholadidae 1 

  Semelidae 1 

  Solecuritdae 1 

  Solemyidae 1 

  Tellinidae 1 

  Veneridae 2 

 Gastropoda Acteonidae 1 

  Calyptraeidae 3 

  Cerithiidae 2 

  Cerithiopsidae 1 

  Columbellidae 1 

  Hydrobiidae 1 

  Nassariidae 2 

  Pyramidellidae 2 

  Tornatinidae 1 

Echinodermata Holothuroidea Sclerodactylidae 1 

  Synaptidae 1 

Chordata Ascidiacea Styelidae 1 

* One species unconfirmed, but identified confirmed to family level. 
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Table 2-3 Factorial MANOVA table for biodiversity measures. Significant results in bold, 

interesting but non-significant results underlined. 

ANOVA Shannon-Weiner Index (H’)    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 17 14.69906 0.864650 3.0786 < 0.0001 

Error 466 130.88191 0.280862   

C. Total 483 145.58096    

Effect Tests        

Source Nparm DF Sum of Squares F Ratio Prob > F 

Treatment 5 5 11.384569 8.1069 <0.0001 

Season 2 2 0.258436 0.4601 0.6315 

Treatment * Season 10 10 2.942981 1.0478 0.5019 

ANOVA Pielou’s J’ (Evenness)    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 17 3.551051 0.208885 8.4610 <0.0001 

Error 466 11.504585 0.024688   

C. Total 483 15.055625    

Effect Tests        

Source Nparm DF Sum of Squares F Ratio Prob > F 

Treatment 5 5 1.9670415 15.9352 <0.0001 

Season 2 2 0.5564808 11.2703 <0.0001 

Treatment * Season 10 10 0.65556000 2.6554 0.0037 

ANOVA Species Richness    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 17 2274.331 133.784 1.6061 0.0587 

Error 466 38816.669 83.298   

C. Total 483 41091.000    

Effect Tests        

Source Nparm DF Sum of Squares F Ratio Prob > F 

Treatment 5 5 274.24507 0.6585 0.6552 

Season 2 2 928.13593 5.5712 0.0041 

Treatment * Season 10 10 625.31842 0.7507 0.6765 
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Table 2-4    ANOSIM R statistic pairwise comparisons for all treatments. All R-values for 

comparisons involving samples from inside clam plots are larger than any other treatment pairs. 

 

Clams 

Inside 

Clams 

Perimeter 

Screen 

Inside 

Screen 

Perimeter 

Control 

Inside 

Clams Perimeter 0.432     

Screen Control Inside 0.312 0.269    

Screen Control Perimeter 0.424 NS 0.173   

Control Inside 0.441 NS 0.183 NS  

Control Perimeter 0.386 NS 0.198 NS NS 

 

 

Table 2-5    SIMPER dissimilarity pairwise comparisons for all treatments. Comparisons 

involving samples from inside screened clam treatment plots in bold. 

  Dissimilarity 

Control Inside 

 

 

 

 

Control Outside 

Screen Control Inside 

Screen Control Perimeter 

Screened Clams Inside 

Screened Clams Perimeter 

78.98 

78.67 

78.86 

82.51 

79.63 

Control Perimeter 

 

 

 

Screen Control Inside 

Screen Control Perimeter 

Screened Clams Inside 

Screened Clams Perimeter 

77.69 

77.53 

81.84 

78.32 

Screen Control Inside 

 

 

Screen Control Perimeter 

Screened Clams Inside 

Screened Clams Perimeter 

78.27 

77.33 

78.84 

Screen Control Perimeter 

 
Screened Clams Inside 

Screened Clams Perimeter 
82.26 

78.37 

Screened Clams Inside Screened Clams Perimeter 82.53 
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Table 2-6 Percentage contributions (SIMPER analysis) for critical species for all treatments. Contributions from twenty or more taxa 

were required to meet the 90% threshold for cumulative SIMPER contribution in all treatments except inside screened clams, which 

only required 16 taxa to meet the threshold. 

Control Inside  

(25 critical taxa) 

% ind. 

contribution 

% cum. 

contribution 

Control Perimeter 

(24 critical taxa) 

% ind. 

contribution 

% cum. 

contribution 

Tritia obsoleta 16.05 16.05 Tritia obsoleta 18.99 18.99 

Ameritella agilis 11.86 27.9 Ameritella agilis 16.34 35.33 

Clymenella torquata 8.35 36.26 Scoloplos sp. 9.9 45.23 

Scoloplos sp. 8.28 44.54 Capitella sp. 6.15 51.38 

Scoletoma fragilis 5.47 50.01 Clymenella torquata 5.19 56.57 

Polydora cornuta 5.13 55.14    

Screen Control Inside 

(20 critical taxa) 

% ind. 

contribution 

% cum. 

contribution 

Screen Control Perimeter 

(23 critical taxa) 

% ind. 

contribution 

% cum. 

contribution 

Clymenella torquata 15.4 15.4 Tritia obsoleta 23.61 23.61 

Ameritella agilis 13.7 29.09 Ameritella agilis 13.6 37.22 

Scoloplos sp. 9.58 38.68 Scoloplos sp. 9.23 46.44 

Lysianopsis alba 7.96 46.64 Clymenella torquata 7.1  53.55  

Capitella sp. 7.19 53.82    

Solemya velum 7.13 60.96    

Prionospio 

heterobranchia 

6.11 67.07       

Scoletoma fragilis 5.71 72.78       

Screened Clams Inside 

(16 critical taxa) 

% ind. 

contribution 

% cum. 

contribution 

Screened Clams Perimeter 

(24 critical taxa) 

% ind. 

contribution 

% cum. 

contribution 

Mercenaria mercenaria 34.84 34.84 Tritia obsoleta 17.89 17.89 

Clymenella torquata 16.73 51.57 Ameritella agilis 17.09 34.98 

Ameritella agilis 6.25 57.82 Capitella sp. 8.07 43.04 

Scoletoma fragilis 6.06  63.88  Scoloplos sp. 6.13 49.17 

Scoloplos sp. 5.24 69.12 Scoletoma fragilis 5.94 55.11 

    Polydora cornuta 5.85 60.96 
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Table 2-7 Factorial ANOVA table for density of Ameritella agilis. Significant results in bold, 

interesting but non-significant results underlined. 

ANOVA     

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 17 1854240 109073 2.2594  0.0029 

Error 466 22496276 48275   

C. Total 483 24350516    

Effect Tests        

Source Nparm DF Sum of Squares F Ratio Prob > F 

Treatment 5 5 552648.7 2.2896 0.0449 

Season 2 2 1356482.7 14.0495 <0.0001 

Treatment * Season 10 10 472733.2 0.9792 0.4606 

 

 

Table 2-8  All taxa with abundance of N≥100 between 2012-2015 were used in feeding and 

infaunal functional group analysis. When a species was known to use multiple feeding methods, 

it was placed in the category with which it is principally aligned to avoid pseudoreplication. Taxa 

in bold are the ten most dominant taxa. 

Group Taxa N 1˚ feeding Position 
Gastropoda Acteocina canaliculata 188 predator Epifaunal 

Polychaeta Alitta succinea 222 omnivore Medium (>5-20cm) 

Amphipoda Ampelisca abdita 184 deposit Epifaunal 

Amphipoda Ampelisca verrilli 291 suspension Epifaunal 

Amphipoda Ampithoe longimana 110 herbivore Epifaunal 

Amphipoda Ampithoe valida 276 suspension Epifaunal 

Polychaeta *Capitella sp. 1636 deposit Shallow (<5cm) 

Polychaeta *Clymenella torquata 2230 deposit Deep (>20cm) 

Gastropoda Crepidula convexa 226 suspension Epifaunal 

Amphipoda Cymedusa compta  225 herbivore Epifaunal 

Amphipoda Elasmopus levis 382 omnivore Epifaunal 

Amphipoda Erichsonella filiformis 217 suspension Epifaunal 

Amphipoda Ericthonius sp. 109 omnivore Epifaunal 

Polychaeta Exogone naidina 273 deposit Medium (>5-20cm) 

Amphipoda Gammarus mucronatus 150 grazer Epifaunal 

Bivalvia Gemma gemma 120 suspension Shallow (<5cm) 

Polychaeta Glycera dibranchiata 207 predator Medium (>5-20cm) 

Polychaeta Glycinde solitaria 143 predator Deep (>20cm) 

Polychaeta Heteromastus filiformis 138 deposit Deep (>20cm) 

Amphipoda Lysianopsis alba 404 herbivore Epifaunal 

Amphipoda *Microdeutopus anomalus 626 suspension Epifaunal 

Amphipoda *Microdeutopus gryllotalpa 777 herbivore Epifaunal 

Bivalvia Nucula proxima 159 deposit Deep (>20cm) 

Polychaeta *Polydora cornuta 862 suspension Shallow (<5cm) 

Polychaeta *Prionospio heterobranchia 629 deposit Shallow (<5cm) 
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Group Taxa N 1˚ feeding Position 
Polychaeta Prionospio pygmaeus 283 deposit Shallow (<5cm) 

Decapoda Rhithropanopeus harrisii 157 omnivore Epifaunal 

Polychaeta *Scoletoma fragilis 595 predator Shallow (<5cm) 

Polychaeta Scoloplos sp. 505 deposit Medium (>5-20cm) 

Bivalvia Solemya velum 252 commensal Shallow (<5cm) 

Polychaeta Spio setosa 128 suspension Shallow (<5cm) 

Polychaeta Spiochaetopterus costarum 
oculatus 

151 suspension Shallow (<5cm) 

Polychaeta *Streblospio benedicti 1521 deposit Medium (>5-20cm) 

Bivalvia *Ameritella agilis 1512 deposit Shallow (<5cm) 

Gastropoda *Tritia obsoleta 2191 deposit Epifaunal 

 

 

Table 2-9  Eigenvector scores and loading values for dominant taxa principal component 

analysis. ANOVA analyses were NS, though PC2 showed an interesting trend at p=00.0661.  

 Eigenvectors Loading Matrix 

 PC1 PC2 PC3 PC1 PC2 PC3 

Ameritella agilis 0.46863 -0.24781 -0.13789 0.77183 -0.34694 -0.16653 

Tritia obsoleta 0.09322 0.61117 0.0264 0.15353 0.85563 0.03188 

Streblospio benedicti 0.47887 -0.15114 -0.34013 0.7887 -0.21159 -0.41079 

Capitella sp. 0.45357 0.30999 -0.12997 0.74703 0.43398 -0.15696 

Microdeutopus 

anomalus 

-0.11214 0.31614 -0.03195 -0.18469 0.44259 -0.03859 

Microdeutopus 

gryllotalpa 

-0.11243 0.05448 -0.47091 -0.18518 0.07627 -0.56873 

Clymenella torquata -0.10591 -0.3331 0.51144 -0.17443 -0.46634 0.61769 

Scoletoma fragilis 0.42416 -0.16607 0.33574 0.69859 -0.2325 0.40549 

Polydora cornuta 0.19624 0.44696 0.47382 0.32321 0.62573 0.57224 

Prionospio 

heterobranchia 

0.28598 -0.07005 0.16166 0.47101 -0.09807 0.19524 
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Table 2-10 ANOVA table for dominant taxa principal component 2 across treatments and 

months. Significant results in bold, interesting but non-significant results underlined. 

ANOVA      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 17 46.70953 2.7462 1.8117 0.0661 

Error 36 54.59625 1.51656   

C. Total 53 101.30578    

Effect Tests        

Source Nparm DF Sum of Squares F Ratio Prob > F 

Treatment 5 5 28.604399 3.7723 0.0075 

Month 2 2 9.700464 3.1982 0.0527 

Treatment * Month 10 10 8.404663 0.5542 0.8393 

 

 

Table 2-11 ANOVA table for feeding functional group principal component 2 across treatments 

and months. Significant results in bold, interesting but non-significant results underlined. 

ANOVA      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 17 39.192009 2.30541 2.4818 0.0108 

Error 36 33.441506 0.92893   

C. Total 53 72.633515    

Effect Tests        

Source Nparm DF Sum of Squares F Ratio Prob > F 

Treatment 5 5 13.071496 2.8143 0.0303 

Month 2 2 6.856069 3.6903 0.0348 

Treatment * Month 10 10 19.264445 2.0738 0.0536 
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FIGURES 

Figure 2-1  The Sedge Island Wildlife Management Area is located within the central portion of 

Barnegat Bay, just north of the Barnegat Inlet. Sedge Island is boxed in red. (39º 47’ 48”N, 74 º 

07’ 07”W) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2-2 Photographs of the Sedge Island Cove. The photo on the left shows the full array of 

plots across the cove. The photo on the right shows the margins of one screen clearly marked 

with PVC poles. The poles behind show the outlines of an additional incomplete experimental 

block. 

     

www.nps.gov 
http://www.state.nj.us/dep/fgw 
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Figure 2-3  Diagram of individual treatment plots arranged within the larger experimental block. 

Individual sampling locations are marked in black. Block placement shown in image at bottom. 

Within plot samples were randomly placed, but were kept 1 meter from plot edges. Buffer zones 

shown in red dotted lines.  
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Figure 2-4  Mean Shannon-Weiner Index value (H’) and Pielou’s evenness (J’) for all 

treatments. Levels not connected by the same letter are significantly different. (Error bars equal 

±1 SE of the mean.) Samples from inside screened clam plots are statistically lower in both 

measures. 

 

 
 

Figure 2-5  Treatment-specific Pielou’s evenness (J’) values interact significantly with season . 

Levels not connected by the same letter are significantly different. (Error bars equal ±1 SE of the 

mean.) The inside screen control samples straddle the difference between the clam plots and the 

controls/perimeter samples, while the inside clam plot samples are consistently grouped together. 

Controls from August and October are statistically different from clam plot samples, while inside 

screen control samples differ significantly only in May. 
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Figure 2-6  Non-parametric Multidimensional Scaling Plot of the six treatments based on 

benthic macroinvertebrate density data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7  Ameritella agilis density across treatments. Levels not connected by the same letter 

are significantly different. (Error bars equal ±1 SE of the mean.) 
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Figure 2-8 Plot showing the contribution of the ten dominant taxa variables into the three 

principal components. 

  

 
 

 

Figure 2-9  Tukey HSD post hoc comparisons of dominant taxa Principal Component 2 scores 

(least squared mean) between treatment sites. Levels not connected by the same letter are 

significantly different. PCs 1 and 2 together explain 43.9% of the data variability. (Error bars 

equal ±1 SE of the mean.) 
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Figure 2-10  Plot showing the contribution of the five feeding group variables into the principal 

components.  

 

 
 

 

Figure 2-11    Tukey HSD post hoc comparisons of feeding group Principal Component 2 scores 

(least squared mean) between treatment sites. Levels not connected by the same letter are 

significantly different. (Error bars equal ±1 SE of the mean.) 
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Figure 2-12 a&b  Principal Components Vector plot for feeding group data. PCs 1-3 together 

explain 88.1% of the data variability. Figure 2-9a shows PC 1&2; Figure 2-9b shows PC 1 & 3.  

 

Figure 2-12a        Figure 2-12b 

       

 

Figure 2-13  Changes in density of Clymenella torquata with different treatments. Levels not 

connected by the same letter are significantly different. (Error bars equal ±1 SE of the mean.) 
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Figure 2-14  Planted M. mercenaria growth appears to tail off as of October 2014. Average 

length taken post-hoc from benthic samples. All clams in the sample were roughly divided into 

five size classes and sub-samples of 20 individuals (when available) were taken equally from the 

five groups. (August 2014 data was not available for this analysis.) 

 

 
 

 

 

Figure 2-15a-c  Growth curves of M. mercenaria published as cited. All three figures show 

growth rates continuing unchanged for at least four years. 

 

Figure 2-15a      Figure 2-15b 

Ridgway et al. 2011     Henry and Nixon 2008 
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Figure 2-15c  

Carmichael et al. 2004 

 
 

 

Figure 2-16 M. mercenaria abundance for all blocks across all sampling dates. The screened 

clam plot in block 1 was slightly lifted off the bottom on one corner by Hurricane Sandy, but 

predation doesn’t seem to have increased compared to other blocks. M. mercenaria abundance 

was not significantly different between blocks or between sampling dates, and there was no 

interaction between date and block . 
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Chapter 3 

 

 

 

Benthic Invertebrate Community Structure in Northern Barnegat Bay:  

Seasonal Variability in a Highly Impacted Coastal Lagoon  

 

 

ABSTRACT 

Barnegat Bay is a highly eutrophic lagoon with naturally poor connectivity with the Atlantic 

Ocean to the east. As part of a larger study of the effects of hard-clam aquaculture on benthic 

invertebrate communities, benthic invertebrate and sediment data were collected from control 

plots between 2012 and 2015. Seasonal peaks in May are clear for Polydora cornuta and Tritia 

obsoleta, as well as for suspension feeders and omnivores. All burrowing-depth guilds except 

deep-burrowing taxa also peak in May. Grazer density, and Microdeutopus gryllotalpa in 

particular, peak in October. Shannon-Weiner and species richness do not differ significantly by 

season, though evenness is higher in August than May, reflecting the peaks of certain species 

evening out during the summer. These trends suggest bottom-up controls of benthic invertebrate 

community structure in the Sedge Island area. Given the ongoing eutrophication trend in 

Barnegat Bay and the potential for increased aquaculture in the region, a community controlled 

by phytoplankton and seasonally available suspended food sources has the potential to be 

disrupted either by the overconsumption of available seston from increased aquaculture or 

increased phytoplankton from increased eutrophication. These data can serve as a baseline for 

environmental monitors given either of these scenarios. 
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INTRODUCTION 

The Barnegat Bay-Little Egg Harbor Estuary (BB-LEH) is a shallow lagoon in central New 

Jersey (Figure 3-1) at naturally high risk of eutrophication from low freshwater inflow and poor 

connectivity with the Atlantic Ocean to the east. In concert with New Jersey’s dense population 

and highly developed coastline, these natural limitations have inevitably led to water quality 

degradation. Kennish et al. (2001) summarized increased eutrophication signals through the 

1990s and 2000s, including estimated inputs of total suspended solids to BB-LEH at 74 kg/yr, 

total nitrogen loads at 1.19 Gg/yr, and total phosphorous loads at 0.17 Gg/yr. The highest 

nitrogen levels and turbidity consistently occurred in the same region at issue in this dissertation. 

The same study recorded summertime phytoplankton production levels of 500g C/m2/yr, 

exceeding levels in the Gulf of Mexico at Barataria Bay, LA and Apalachicola Bay, FL (Styles et 

al. 1999, from Kennish et al. 2001).  

Harmful algal blooms, a long recognized product of eutrophication (Heisler et al. 2008), 

have also been well documented in BB-LEH. Blooms of Aureococcus anophagefferens 

(Hargraves and Sieburth) in the bay were reported in 1995, 1997, 1999, 2000, 2001 and 2002 

(Barnegat Bay Partnership ((BBP). These events have likely continued, however the program 

monitoring for A. anophagefferens bloom events was ended in 2004 (BBP, 2018). Eutrophication 

is also clearly linked to decreased submerged aquatic vegetation (SAV) cover (Larkum et al. 

2006, Ralph et al. 2007), which in turn is correlated with decreased ambient densities of 

Mercenaria mercenaria (L.) (Peterson 1982, Peterson et al. 1984, Kennish et al. 2011). Indeed, 

natural densities of M. mercenaria have been steadily declining in New Jersey since the early 

20th century (McHugh 2001).  
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In October 2012, a series of experimental treatments were installed in the Sedge Island 

Wildlife Management Area to investigate the effects of hard clam aquaculture on local benthic 

invertebrate biodiversity and community structure. While results pertaining to the treatments 

have been discussed previously, the data can also provide specific insights into background 

seasonal distribution patterns, continuing in the tradition of early 20th century observational 

studies but on an ecosystem heavily influenced by 21st century anthropogenic impacts including 

eutrophication and aquaculture.  

Recent reviews of the seasonal population dynamics of temperate suspension-feeders find 

patterns of increased activity and abundance during spring and summer and decreasing 

abundance in autumn and winter (Coma et al. 2000).  Seasonal patterns in deposit-feeders are 

generally similar, with spring increases in growth and reproduction due to a late-winter/early-

spring surge in detritus deposition (Marsh and Tenore 1990, Cheng et al. 1993, Levinton and 

Kelaher 2004) and increased availability of phytodetritus (Thompson and Nichols 1988, Marsh 

et al. 1989, Marsh and Tenore 1990). Higher temperatures, as would be seen in the shallower 

waters in Barnegat Bay, have been shown to interact with food supply and cause population 

crashes resulting from increased metabolic costs (Levinton and Stewart 1988, Cheng et al. 1993). 

This chapter will summarize the specific seasonal patterns contained within the dataset collected 

at Sedge Island between 2012-2015, as well as changes to benthic community structure during 

the full experimental timeline.  

 

 

METHODS 

The study site, off the southwestern edge of Sedge Island (Figure 2-1; 39º 47’ 48”N, 74 º 

07’ 07”W) is a shallow cove enclosed on three sides, sparsely vegetated with Zostera marina 
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(Linné 1753) and edged primarily with Spartina alterniflora (Loisel-Deslongchamps, 1807). The 

cove is shallow, with a maximum depth of 2 m.    

Three experimental blocks of 15 x 7m were marked out in early October 2012 within the 

Sedge Island Cove. All blocks were fully subtidal and located more than 15 m from the edge of 

the nearest marsh. Three plots measuring 3 m by 4.6 m were marked out within each block 

(Figure 2-2) and randomly assigned to one of three treatments: Control (untouched); Screen 

Control (Tenax® and PVC screen frame affixed to the sediment with rebar and shell bags); or 

Screened Clam (Tenax® and PVC screen frame installed over clam seed and affixed to the 

sediment with rebar and shell bags) (see Figure 2-2). A three-meter buffer was left between each 

plot.  

Benthic invertebrate communities were sampled with an Ekman grab (3.5L) three times per 

year, in May, August and October. In each plot, two benthic samples were randomly located 

within the plot itself (but at least 1 meter from the edge to minimize edge effects) and one sample 

was located 1 meter from the plot in each cardinal direction (Figure 2-2). The perimeter samples 

were taken before any within-plot samples so as to prevent any disturbance to sampling area. 

Benthic samples were sieved on site at 1mm, and preserved in 70% ethanol for later 

identification.  

Three sediment cores (PVC corer, 3.8cm dia., 10 cm depth) were taken from inside each of 

the nine plots on each sampling date. Sediment samples were bagged and kept at 0˚C until 

processed, at which time they were dried at 80 °C and separated with stacked sieves into >2mm, 

1-2mm, 0.5–1mm, 0.25–0.5mm, 0.125– 0.25mm, and 0.063–0.125mm fractions for 7 min on a 

shaker table before weighing. (These fractions are defined as “granule”, “very coarse sand”, 



86  

 

“coarse sand”, “medium sand”, “fine sand”, “very fine sand” and “silt/clay” according to 

Wentworth (1922)).  

This study design was intended to isolate and quantify the effects of aquacultural hard clam 

densities and the predator screening apparatus on macrobenthic community structure and 

biodiversity, results that were discussed in Chapter 2. Additional results from the study regarding 

seasonality and background trends will be discussed here concerning the data collected from the 

control plots only. 

Statistical Methodology 

Sediment data from control samples were analyzed using GRADISTAT v4.0, a statistical 

program designed for sedimentary analysis by Blott and Pye (2001) that calculates mean grain 

size and sorting coefficient, and classifies them according to Folk and Ward (1957): very well 

sorted (σ < 1.27); well sorted (σ = 1.27-1.41); moderately well sorted (σ = 1.41-1.62); 

moderately sorted (σ = 1.62-2.00); poorly sorted (σ = 2.00-4.00); very poorly sorted (σ = 4.00-

16.00); and extremely poorly sorted (σ >16.00). Sediment fractions remaining in the pan after 

sieving (<0.063mm) were not included in the analysis as prescribed by Blott and Pye (2000) but 

were accounted for in percent data. Sediment data and biodiversity measures (Shannon-Wiener 

Index (H’), Pielou’s Evenness (J’) and species richness (Smith and Wilson 1996)) were analyzed 

with MANOVA using season as the independent variable with blocks ungrouped. 

Untransformed density data for all taxa of sample size ≥ 100 were also grouped by feeding 

type and by maximum burrowing depth (infaunal position). The control plot densities of these 

functional groups were converted with Principal Component Analysis (PCA). The resulting 

scores were analyzed with ANOVA and Tukey HSD post hoc procedures, again using season as 

the independent variable. Densities of the ten most dominant taxa from the three control plots 
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were also analyzed individually using this same PCA plus ANOVA technique. Non-parametric 

correlation analyses (Spearman’s ρ) were also conducted on dominant taxa and functional group 

densities. All statistical analyses were performed in JMP Pro v. 13.2 (SAS Institute, Cary, North 

Carolina).  

 

RESULTS 

Sediment 
 

In the control plots as in the greater experimental sediment data, mean sediment size 

distribution and sorting coefficient remained reasonably constant through the duration of the 

study (Table 2-1). There are eight outlier samples containing larger pieces of shell (Figure 3-1). 

Mean sediment size within the control plots ranged between 123.4 µm – 868.2 µm, while sorting 

coefficient ranged from σ = 1.54 – 3.993, with an average of σ = 2.138 ± SE 0.046 (summary 

statistics calculated in GRADISTAT, Blott and Pye (2000)). MANOVA did not indicate any 

significant effects of season on control plot sediment data.  

 

Biodiversity  

MANOVA was run on Shannon-Weiner (H’) index values, Pielou’s Evenness (J’) values, 

and species richness on control plot data with season as the independent variable. Results were 

interesting if non-significant for Shannon-Weiner Index (F(2,176)=2.7326, p=0.0678). Species 

richness was not significant (F(2,176)=2.1727, p=0.1169), but evenness (Pielou’s J’) was 

significantly different among seasons (F(2,176)=4.6921, p=o.0103, Table 3-1).  Given that both 

evenness and richness are components of the biodiversity index, the lack of significance in the 

Shannon-Weiner results at α = 0.05 likely reflects this split in significance amongst the 
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constituent factors. Tukey HSD analysis of mean H’ values did not have sufficient statistical 

power to significantly differentiate between seasons, however post hoc analysis of J’ indicated 

that May had significantly lower J’ value than August (Figure 3-2).  

 

Dominant Taxa 

PCA was conducted on the ten most dominant taxa (by relative abundance) (Table 2-5). 

The choice to include only the ten most abundant taxa was arbitrary and pre-hoc, to permit 

sufficient statistical power to examine patterns among the most common animals in the study 

plots. Density data for these taxa from all control samples were converted into three linearly 

uncorrelated components with eigenvalues greater than 1.0. (The remaining components (PC4-

PC10) had eigenvalues below 1.0 and were not used in analysis.)  

Principal component 1 (Eigenvalue 3.0817, with positive scores driven primarily by the 

abundances of Streblospio benedicti (Webster, 1879) and Prionospio heterobranchia (Reish, 

1959)) explained 30.82% of the variance. The second (PC2, Eigenvalue 1.5367) explained 

15.37% of the variance, with positive scores primarily driven by abundances of Polydora 

cornuta (Bosc, 1802) and Tritia obsoleta (Say, 1822). The third component (PC3, Eigenvalue 

1.3487, negative scores driven by Microdeutopus gryllotalpa abundance) explained an additional 

13.5% of the variance (Figure 3-3).  

ANOVA did not indicate any significant effects of season on PC1, but there were 

significant effects of season on PC2 (F(2,55)=6.8004, p=0.0023) and PC3 scores 

(F(2,55)=5.2745, p=0.0080) (Table 3-2). Tukey HSD post hoc analysis indicates that May had 

significantly higher PC2 scores than August or October, likely related to high Polydora cornuta 

and Tritia obsoleta densities (Figure 3-4). Post hoc analysis also indicates that PC3 scores in 
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October are significantly lower than May or August. This is likely associated with high sample 

densities of Microdeutopus gryllotalpa (Costa, 1853) (Figure 3-5), but may also be linked with a 

spike in M. gryllotalpa in October 2014 (Figure 3-6). 

Several taxa were significantly correlated and are bolded in the correlation table (Table 3-

3). Streblospio benedicti and Ameritella agilis (Stimpson, 1857) are significantly positively 

correlated (ρ = 0.3605, p = 0.0054), as are S. benedicti and Capitella spp. (Blainville, 1828) (ρ = 

0.4363, p = 0.0006), S. benedicti and Scoletoma fragilis (O.F. Müller, 1776) (ρ = 0.3380, p = 

0.0095) and S. benedicti and Prionospio heterobranchia (ρ = 0.6417, p < 0.0001). S. benedicti is 

only significantly negatively correlated with one taxa, Microdeutopus gryllotalpa (ρ = -0.3126, p 

= 0.0169). A. agilis is also significantly correlated with S. fragilis (ρ = 0.2693, p = 0.0409) and 

P. heterobranchia (ρ = 0.4632, p = 0.0003) both positive correlations. The other significant 

correlations involving Capitella spp. are mixed: in addition to the aforementioned positive 

correlation with S. benedicti, Capitella spp. are positively correlated with Polydora cornuta (ρ = 

0.2659, p = 0.0436) and P. heterobranchia (ρ = 0.3670, p = 0.0046) and negatively correlated 

with Clymenella torquata (ρ = -0.3681, p = 0.0045). 

Tritia obsoleta is significantly positively correlated with two taxa, Microdeutopus 

anomalus (Rathke, 1843) (ρ = 0.2615, p = 0.0474) and Polydora cornuta (ρ = 0.2905, p = 

0.0269). M. anomalus, in addition to T. obsoleta, is positively correlated with P. cornuta (ρ = 

0.3278, p = 0.0120) and negatively correlated with Prionospio heterobranchia (ρ = -0.3036, p = 

0.0205). Microdeutopus gryllotalpa is significantly negatively correlated with several species, 

including S. benedicti as mentioned above, Ameritella agilis (ρ = -0.4984, p < 0.0001), 

Clymenella torquata (ρ = -0.4203, p = 0.0010), Scoletoma fragilis (ρ = -0.3169, p = 0.0154) and 
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P. heterobranchia (ρ = -0.3005, p = 0.0219). P. heterobranchia is also significantly positively 

correlated with S. fragilis (ρ = 0.2744, p = 0.0371). 

 

Functional Groups  

All taxa meeting a minimum abundance of N>100 in the larger study were classified by 

feeding functional group and by maximum burrowing depth (infaunal position). (As mentioned 

previously, only density data from control plots were analyzed for this chapter though the taxa 

were chosen based on abundances from the larger experiment.) The number of taxa in each 

functional group was uneven (Suspension N=10, Deposit N=12, Grazers N=5, Omnivores N=4, 

Predators N=4; commensal N=1, not included in the analysis.) (Table 2-8) When a species was 

known to use multiple feeding methods, it was placed in the category with which it is principally 

aligned in order to avoid pseudoreplication.  

A principal component analysis of feeding group densities produced three components that 

collectively explained over 80% of the variance in the dataset. The first (PC1, Eigenvalue 

1.6624) explained 33.25% of the variance. Positive PC1 scores were driven primarily by 

omnivore density and suspension feeder density, and, to a lesser extent, deposit feeder density. 

The second (PC2, Eigenvalue 1.4803) explained 29.6% of the variance. Positive PC2 scores 

were influenced by omnivore, suspension feeder and grazer density, but not dominated by the 

influence of any one group.  The third (PC3, Eigenvalue 0.8855) explained 17.7% of the 

variance. Positive PC3 scores were also influenced by grazer density, with a secondary influence 

of predator density (Figure 3-7).  

There was a significant main effect of season on PC1 score (F(2,57)=11.4044, p<0.0001) 

and on PC3 score (F(2,57)=7.7637, p=0.0010) (Table 3-4). Tukey HSD post hoc analysis 
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indicates that samples from May have significantly higher PC1 scores than either August or 

October (Figure 3-8) likely associated with higher densities of suspension feeders or omnivorous 

taxa. It also indicates that October samples have significantly higher PC3 scores than August 

samples (Figure 3-9), associated with higher grazer densities. Results of ANOVA on PC2 scores 

were not significant (F(2,57)=.1432, p=.8669). 

Significant feeding group correlations are bolded in the correlation table (Table 3-5). 

Suspension feeder density and omnivore density are strongly and significantly positively 

correlated (ρ = 0.6599, p < 0.0001) as are predator and deposit feeder density (ρ = 0.2648, p = 

0.0409). Predator and grazer density are significantly negatively correlated (ρ = -0.2589, p = 

0.0458), as are deposit feeder and grazer density (ρ = -0.3932, p = 0.0019).  

Similar analyses were also conducted on the same taxa (minimum overall abundance 

N>100) grouped by burrowing depth (infaunal position). Groups were again unevenly distributed 

amongst epifaunal taxa (N=16), shallow-burrowers (max depth <5cm, N=10), medium-

burrowers (max depth 5-15cm, N=5), and deep-burrowers (max depth >15cm, N=4) (Table 2-8). 

Principal components analysis produced two components with eigenvalues greater than or 

approaching 1.0. The first (PC1, Eigenvalue 2.0059) explained 50.15% of the variance. Positive 

scores were driven by shallow- and medium-burrowing taxa densities. The second (PC2, 

Eigenvalue 0.9040) explained an additional 22.599%, for a cumulative total of 72.746% of 

variance explained. Positive scores were driven primarily by epifaunal density (Figure 3-10). 

There were significant main effects of season on PC1 scores (F(2,57)=4.9594, p<0.0103) 

and on PC2 scores (F(2,57)=4.5557, p=0.0146) (Table 3-6). Post hoc analysis indicates that May 

samples have significantly higher PC1 scores than August, likely driven by higher densities of 
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shallow and medium burrowing taxa (Figure 3-11) and also higher PC2 scores than either August 

or October, likely associated with increased epifaunal densities (Figure 3-12). 

 

Aquacultural Plot Comparison  

As a comparison point to the background control dataset, MANOVA was run on Shannon-

Weiner (H’) index values, Pielou’s Evenness  (J’) values, and species richness on clam plot data, 

again with season as the independent variable. As in the dataset from the control plots, Shannon-

Weiner Index value (H’) was not significant (F(2,176)=1.4874, p=0.2288) while Pielou’s 

evenness (J’) was significant (F(2,176)=7.1010, p=0.0011) with the same specific seasonal 

pattern (lowest in May, Figure 3-13a) seen in J’. Species richness, however, was significantly 

different between months (F(2,176)=6.7856, p=0.0014), a different result from that of the control 

dataset.  Tukey HSD post hoc analysis identifies species richness in clam plots as higher in May 

than August (Figure 3-13b).  

PCA was conducted on the ten most dominant taxa (by relative abundance) for the clam 

plot data (Table 2-5). Density data for these taxa from all clam plot samples were converted into 

four linearly uncorrelated components with eigenvalues greater than 1.0. (The remaining 

components (PC5-PC10) had eigenvalues below 1.0 and were not used in analysis.) Principal 

component 1 (Eigenvalue 2.0773) explained 20.77% of the variance. Positive scores were driven 

primarily by the abundances of Streblospio benedicti, Prionospio heterobranchia, just as in the 

control dataset, with the addition of Capitella sp. The second (PC2, Eigenvalue 1.4700) 

explained 14.70% of the variance. As with the control data, positive scores were driven by 

abundances of Polydora cornuta and Tritia obsoleta. The third component (PC3, Eigenvalue 

1.1748) explained an additional 11.75% of the variance, with negative scores driven by 
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Microdeutopus gryllotalpa abundance just as with the control plot data, and the fourth (PC4, 

Eigenvalue 1.0344, positive scores driven by Ameritella agilis and Microdeutopus anomalus 

density) explained an additional 10.34% of the variance (Figure 3-14).  

Factorial MANOVA indicated significant effects of season on all four principal 

components (Table 3-7). The results from PC2 and PC3 indicate patterns identical to those 

detailed in the control plots, specifically increased P. cornuta and T. obsoleta density in May as 

compared to August (as inferred from significantly higher PC2 scores in May) and higher M. 

gryllotalpa density in October (as inferred from significantly lower PC3 scores during May).  

Seasonal patterns specific to the aquacultural plots are indicated by statistically significant 

ANOVA results from PC1 (F(2,176)=6.1373, p=0.0027) and PC4 (F(2,176)=10.2885, 

p<0.0001). Tukey HSD post hoc analysis indicates that May and October had significantly 

higher PC1 scores than August, indicating higher densities of Polydora cornuta, Tritia obsoleta 

and Capitella sp. While the first two species were also higher in control plots, Capitella sp. is not 

statistically higher in control plots. Post hoc analysis also identifies PC4 scores in May as 

significantly higher than scores in August or October, which suggests higher densities of both 

Ameritella agilis and M. anomalus (Figure 3-15) during the spring. This supports results 

previously discussed in Chapter 2, in which A. agilis was found to have significantly higher 

densities inside aquacultural plots with a statistically significant main effect of season, but no 

interaction effect.  
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DISCUSSION 

In marine systems, near-surface phytoplankton is the primary food for suspension-feeding 

organisms (Cloern et al. 2002), however in estuarine systems this link is more complex. 

Additional food sources, including riverine particulate organic matter (RPOM), 

microphytobenthos (benthic phytoplankton, diatoms), macroalgal detritus, and bacteria 

contribute to this first consumptive linkage (Langdon and Newell 1990, Kang et al. 1999, 

Herman et al. 2000, Riera 2007, Lefebvre et al. 2009). Though these foods are primarily 

consumed by deposit-feeders, omnivores, and detritivores, many suspension-feeders have also 

adapted to the seasonal availability of these additional food sources by modifying their feeding 

modes to include these foods when available. The overlapping consumption of these food 

resources helps to explain the positive correlation between omnivore and suspension-feeding 

taxa (Table 3-5). Numerous studies have, however, shown repeatedly that phytoplankton 

constitutes the bulk of the diets of coastal benthic invertebrates even with these additional 

seasonally available food sources (Kaehler et al. 2000, Yokoyama et al. 2005).  

While always available to deposit-feeders, macroalgal detritus, microphytobenthos and 

benthic bacteria are likely to be more available to suspension-feeders during months of higher 

turbidity and resuspension activity. In estuaries this generally translates to spring (or other 

periods of seasonally heavy rainfall). As growth, reproduction and development are all highly 

dependent on food supply (Kang et al. 2006), and as food supply in estuaries is strongly tied to 

inputs that are themselves seasonally variable, it is unsurprising that this seasonal volatility 

would be reflected in community structure. Though overall biodiversity indices may not have 

shown seasonal patterns in this particular study, changes in species richness and densities of the 

highly abundant Polydora cornuta (shallow-burrowing suspension-feeder) and Tritia obsoleta 
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(epifaunal detritivore and deposit-feeder) hint at a natural background volatility. This is also true 

for densities of epifaunal taxa and classes burrowing to less than 20 cm in depth (i.e. those taxa 

with better access to these additional food sources). It is likely that the seasonal availability of 

RPOM and other food sources helps to explain the positive correlations between omnivores and 

suspension feeders and between predators and deposit feeders. The increased turbidity during 

spring would create an influx of additional food resources previously unavailable to both groups, 

while predators and deposit feeders would be equally unaffected.  

Macroalgal detritus makes up a particularly small part of bivalve diets in estuarine systems, 

(Wiedemeyer and Schwamborn 1996). Lefebvre et al. (2009) contend this is largely due to the 

bivalve’s ability to selectively sort food before ingestion, adding that suspension- and deposit-

feeding polychaetes source more carbon from macroalgae and microphytobenthos than 

suspension feeders in general. If food availability is primarily responsible for these seasonal 

patterns, a stronger seasonal signal would be expected for deposit-feeding and suspension-

feeding polychaetes than with bivalves or other suspension-feeders. In the control data there is a 

strong seasonal signal of an effect on a suspension-feeding polychaete (Polydora cornuta), 

however there is a shift in suspension-feeders in general as well, providing initial support for 

bottom-up control. Unsurprisingly, given that the aquacultural plots are covered with screening 

designed to limit predation, the trends seen in the aquacultural dataset also suggest bottom-up 

controls. The aforementioned effect on P. cornuta is also seen in the aquacultural plots, as is a 

seasonal effect of Microdeutopus anomalus density, a suspension-feeding benthic amphipod. 

(Clam plots were also statistically higher in suspension-feeders than control treatments overall, 

for more see Chapter 2.) 
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Trophic control, long under investigation, has proved difficult to directly quantify (Boyce 

et al. 2015.) One indirect method that has emerged depends on correlations between trophic 

groups.  Strong negative correlations imply top-down control, while strong positive correlations 

imply bottom-up control, as both groups are likely responding to the same productivity-related 

stimuli (Boyce et al. 2015). The functional group correlations from Sedge Island are split, not 

particular strong, and are likely based on too little data to draw conclusions from. Drilling down 

to individually dominant taxa, the only documented predator involved in statistically significant 

correlations is Scoletoma fragilis, which has been shown to consume small polychaetes and 

benthic amphipods, (as well as detritus, copepods and nematodes (Valderhaug 1985)). S. 

benedicti, maximum length 20 mm but often only growing to 6mm, (Gosner 1978, Bridges and 

Heppel 1996)) and P. heterobranchia (also small at 16.5mm for a 70 setiger specimen (Maciolek 

1985)), would fit this description, but the correlations between these species are positive, further 

supporting bottom-up control. (The weak positive correlation between S. fragilis and A. agilis is 

further support, though the deposit feeding infaunal clam is likely too large for the predator to 

consume anyway.) The spionid predator is however negatively correlated with the benthic 

grazing amphipod M. gryllotalpa, also potential prey, and not particularly strongly (though 

significantly).  

With one exception, the statistically significant correlations between Prionospio 

heterobranchia and S. benedicti density (both non-epifaunal deposit feeders) and all non-deposit-

feeding taxa are negative, while both taxa are positively correlated with at least three deposit 

feeding taxa. These relationships in sum further support the earlier assertion that bottom-up 

controls, specifically food availability and in particular macroalgal and microphytobenthic food 
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sources, are driving much of the seasonal pattern seen in this data set. Even so, this is just 

circumstantial without nutrient data.   

The density of Clymenella torquata, a deep-burrowing deposit feeder highlighted in 

Chapter 2, is negatively correlated with the densities of two taxa (the deposit feeding Capitella 

spp. and the grazer Microdeutopus gryllotalpa) and positively correlated with the suspension 

feeding Microdeutopus anomalus, the opposite relationship found between C. torquata and 

suspension-feeding taxa in hard clam plots in Chapter 2. The negative correlation between C. 

torquata and Capitella spp. is particularly interesting as the two are the only polychaete taxa 

represented here with non-planktonic larval stages. (C. torquata has a heavy, bottom-dwelling 

larva (Newell 1951) while New York populations of Capitella spp. have been shown to be 

largely direct-developing, with some larvae settling in as little as 30 minutes (Dubilier 1988, 

Méndez et al. 2000.) Though it is possible that this is a function of competition for food, C. 

torquata is a deep-dwelling polychaete while Capitella spp. remains within the top 5 cm, so it is 

more likely that there is another dynamic driving this relationship.  

While much of the seasonal variation mimics the control dataset, deposit feeders are one of 

the primary differences between the two datasets: spring peaks of two deposit feeders Ameritella 

agilis and Capitella sp. were seen only in aquacultural plots, perhaps due to an influx of feces 

from the stocked M. mercenaria. The spring influxes of primary productivity described earlier 

would necessarily result in a concurrent spring influx of fecal nutrients deposited to shallow 

sediments. Capitella sp. and A. agilis, as shallow-burrowing deposit feeders, would have 

immediate access to the wealth of newly deposited material, potentially driving population 

increases. For Capitella sp. this is supported by research showing positive responses of the 

infaunal polychaete to organic enrichment in aquacultural and other pollution scenarios, in both 
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mesocosm and in situ studies (Webb 1996, Callier et al. 2007, Callier et al. 2009). But for A. 

agilis these results are at odds with studies finding that the bivalve has a poor tolerance for 

organic enrichment (Callier et al. 2009). A. agilis is also statistically higher in clam plots overall, 

Figure 2-7. Generally speaking, the relative rates of fecal production and removal at Sedge Island 

appear to be sufficiently balanced to result in a net-increase in habitat quality for the deposit-

feeding bivalve. Perhaps the concurrent spike in the organic-tolerant Capitella sp. is responsible 

for an overall increase in the rate of removal of organic material. 

In the control dataset, deposit feeders as a group were positively correlated with predators 

and negatively correlated with grazers. The particles cast-off during the act of predation 

contributes to the very detritus that makes up a major portion of the deposit feeder’s carbon 

budget (Levinton et al. 1984), making the immediate sediments more suitable for deposit feeding 

organisms and contributing to the positive correlation seen in this study. Deposit feeders, whose 

carbon needs are divided between microorganisms and detritus (Levinton 1985), and grazers 

each require very different food sources from different microhabitats (fine, muddy sediments vs. 

vegetated sediments or suitable structure). This separation is likely partly responsible for the 

negative correlations between the two groups. An additional signal is seen in the seasonality of 

Tritia obsoleta, classified in this study as a deposit feeder, and Microdeutopus gryllotalpa. PCA 

clearly indicates, in both control and aquacultural plots, that the T. obsoleta density signal is 

significantly higher in May than in summer or autumn while the M. gryllotalpa signal is 

significantly higher in October. Though the correlation between the two species is not 

statistically significant, this temporal separation supports results from DeWitt and Levinton 

(1985) indicating a causational negative relationship. M. gryllotalpa emigrates to snail-free 

sediments due to bioturbation-caused disturbance, not due to competition for food. There is no 
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evidence that, as has also been shown with other burrowing amphipods (Coffin et al. 2012) that 

the amphipods are also consumed by the snail, or that they become trapped by the snail’s mucus 

trail, however the possibility remains that the phenomenon has just not yet been documented. 

Further study is required to ascertain exactly what is driving this temporal resource division in 

the Sedge cove. 

October samples have statistically higher densities of Microdeutopus gryllotalpa, an 

epifaunal grazer, but a closer look reveals that this is largely driven by a population spike in 

October 2014. October is also statistically higher in grazer density than August, but this pattern 

cannot be attributed merely to the October 2014 M. gryllotalpa spike. Removing October 2014 

from the analysis proves the validity of this seasonal pattern: even though M. gryllotalpa is the 

most abundant herbivore in the functional group analysis, the main effect of season is still 

statistically significant, with October significantly higher than August. There is a dramatic 

increase in the amount of irradiance during the summer months due to an increased photoperiod 

and increased sun angle, as well as an overall increase in average temperature. As phytoplankton 

density increases, this can serve to decrease the total amount of light received by submerged 

plants and algae during the summer as compared to spring and fall. This generally translates to 

increased grazer populations at the end of summer/early fall (Nelson et al. 1997, Lee et al. 2007, 

Amundrud et al. 2015), and current results concur with these general findings.  

Other environmental parameters besides riverine input and its effects on food availability 

can drive seasonal fluctuations in estuarine benthic community structure and biodiversity, 

including temperature, salinity and sediment hypoxia/anoxia (not generally an issue in Barnegat 

Bay due to its well-mixed water column (Kennish et al. 2007)). These gradients drive local-scale 

species distributions (Seitz 1998), selectively permitting only those species with intrinsic 
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attributes to persist in specific locations. For example, salinity changes are often more drastic in 

upper-estuary locations, restricting organisms that cannot tolerate the higher energy demand of 

osmotic regulation at lower salinities (Seitz 1998), while filter-feeding organisms including M. 

mercenaria avoid areas with high proportions of small particulate where feeding efficiency is 

lowered (Anderson et al. 1978, Stanley and Dewitt 1983). These environmental parameters often 

vary seasonally and as such can control seasonal variation in benthic biodiversity both directly 

and indirectly. Direct influences can be seen in the case of seasonal temperature flux influencing 

water and sediment temperature gradients, while indirect influences can be seen in the case of 

seasonal temperature flux driving larval dispersal and settlement timing (not quantified in this 

study). With the exception of Microdeutopus gryllotalpa density, May samples are generally 

different from samples taken during the other two seasons. It is likely that consistency is due to 

the direct environmental changes in temperature, salinity and their effects on overall food 

availability.  

The experiental block design necessarily placed the control plots within a few meters of 

experimental treatment plots, presenting the possibility of spill-over or other interaction effects. 

Over the three-year experimental time-frame, only nine control samples (5%) contained a 

specimen of Mercenaria mercenaria notata, the strain planted in the neighboring experimental 

aquaculture plots. The direct impact of these treatment plots is therefore likely minimal, if in fact 

these clams did even come from one of the experimental treatment plots used in this study.4 This 

                                                        
4 M. mercenaria notata is also the strain used by ReClam the Bay in cultivation plots located 

approximately 20-30 meters away from the study blocks, selected mainly for ease of recognition. 

The clams found in control samples may have migrated from the plots maintained by ReClam 

the Bay, or could have been dropped by error during the more than five years the cove was used 

for cultivation. 
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is further supported by the overall lack of impact seen in experimental perimeter samples (see 

Chapter 2). Even so, the possibility that neighboring experimental treatment plots have affected 

the control plot sampling data cannot be fully eliminated. 

The general season patterns predicted (spring peaks and summer crashes for deposit-

feeding polychaetes, and spring maximums for suspension-feeding taxa) are not clear in the 

dataset from Sedge Island. Seasonal signals are strong for Polydora cornuta but also for 

suspension-feeders as a group, while grazer density increases over the summer months. In 

concert these results imply that food-resources are driving seasonal shifts in community 

structure, however nutrient and primary production data would be necessary to confirm the direct 

relationship. 

Eutrophication is closely linked to decreased submerged aquatic vegetation (SAV) cover 

(Larkum et al. 2006, Ralph et al. 2007), which is correlated with decreased hard clam 

(Mercenaria mercenaria) density (Peterson and Heck 2001, Kennish et al. 2011) as discussed in 

Chapter 1. Mercenaria mercenaria, as an ecosystem engineer, both enhances habitat quality for 

deposit feeders via fecal and pseudofecal deposition and provides shell surface appropriate for 

certain grazers. In an ecosystem with increasing eutrophication and decreasing SAV density, the 

predictable subsequent decreases in ambient M. mercenaria density could result in net decreases 

in grazer and deposit feeder density.  

If current eutrophication trends continue, further declines in SAV would likely lead to 

increased Ulva spp. cover and macroalgal-associated invertebrate communities, with increased 

grazer and omnivore densities. However, evidence that hard clam aquaculture enhances seagrass 

density (Grizzle et al. 2006, Coen et al. 2007) suggests that changes in policy leading to 
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increased hard clam aquaculture could result in increased SAV cover. Data from this study can 

be seen as a baseline for use in evaluating future environmental policy.  
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TABLES 

 

Table 3-1 MANOVA table for biodiversity measures, control plot data only. Significant results 

in bold, interesting but non-significant results underlined. 

 

Shannon-Weiner Index     

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 1.347437 0.673719 2.7326 0.0678 

Error 176 43.393146 0.246552   

C. Total 178 44.740583    

Species Richness        

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 770.109 385.054 2.1727 0.1169 

Error 176 31191.466 177.224   

C. Total 178 31961.575    

Pielou’s Evenness        

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 0.1680118 0.084006 4.6921 0.0103 

Error 176 3.1510475 0.017904   

C. Total 178 3.3190592    

 

 

Table 3-2 ANOVA table for dominant taxa principal component scores, control plot data only. 

Significant results in bold, interesting but non-significant results underlined. 

 

Principal Component 2 Score    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 17.366417 8.68321 6.8004 0.0023 

Error 55 70.228048 1.27687   

C. Total 57 87.594466    

Principal Component 3 Score      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 12.371653 6.18583 5.2745 0.0080 

Error 55 64.502820 1.17278   

C. Total 57 76.874474    
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Table 3-3   Dominant taxa correlation table (control plot data only). Significant correlations (Spearman’s ρ) in bold. 

 

 

 

 

 

 

 

 

Table 3-4 ANOVA table for feeding group principal component scores, control plot data only.  

Significant results in bold. 

 

Principal Component 1 Score    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 28.030791 14.0154 11.4044 <0.0001 

Error 57 70.049711 1.2289   

C. Total 59 98.080502    

Principal Component 3 Score      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 11.184703 5.59235 7.7637 0.0010 

Error 57 41.058510 0.72032   

C. Total 59 52.243213    

 

 

 A. agilis 

T. 

obsoleta 

S. 

benedicti 

Capitella 

spp. 

M. 

anomalous 

M. 

gryllotalpa 

C. 

torquata 

S. 

fragilis 

P. 

cornuta 

P. 

heterobranchia 

A. agilis 1 -0.0209 0.3605 0.2368 -0.1249 -0.4984 0.0946 0.2693 0.0422 0.4632 

T. obsoleta -0.0209 1 -0.0249 0.0721 0.2615 -0.0392 0.2235 -0.0457 0.2905 -0.0377 

S. benedicti 0.3605 -0.0249 1 0.4363 -0.1001 -0.3126 -0.1614 0.3380 -0.0266 0.6417 

Capitella spp. 0.2368 0.0721 0.4363 1 -0.0034 -0.0155 -0.3681 0.1389 0.2659 0.3670 

M. anomalous -0.1249 0.2615 -0.1001 0.0034 1 -0.0875 0.2594 -0.0263 0.3278 -0.3036 

M. gryllotalpa -0.4984 -0.0392 -0.3126 -0.0155 -0.0875 1 -0.4203 -0.3169 -0.1496 -0.3005 

C. torquata 0.0946 0.2235 -0.1614 -0.3681 0.2594 -0.4203 1 -0.0090 0.0190 -0.2413 

S. fragilis 0.2693 -0.0457 0.3380 0.1389 -0.0263 -0.3169 -0.0090 1 -.1724 0.2744 

P. cornuta 0.0422 0.2905 -0.0266 0.2659 0.3278 -0.1496 0.0190 -0.1724 1 0.0653 

P. heterobranchia 0.4632 -0.0377 0.6417 0.3670 -0.3036 -0.3005 -0.2413 0.2744 0.0653 1 
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Table 3-5   Feeding group correlation table (control plot data only). Significant correlations 

(Spearman’s ρ) in bold. 

 

 Omnivores/m2 Grazers/m2 Suspension/m2 Predators/m2 Deposit/m2 

Omnivores/m2 -- 0.1632 0.6599 0.0634 0.1006 

Grazers/m2 0.1632 -- -0.1560 -0.2589 -0.3932 

Suspension/m2 0.6599 -0.1560 -- 0.1892 0.2157 

Predators/m2 0.0634 -0.2589 0.1892 -- 0.2648 

Deposit/m2 0.1006 -0.3932 0.2157 0.2648 -- 

 

 

Table 3-6 ANOVA table for infaunal group principal component scores, control plot data only. 

Significant results in bold, interesting but non-significant results underlined. 

 

Principal Component 1 Score    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 17.54148 8.77074 4.9594 0.0103 

Error 57 100.80457 1.76850   

C. Total 59 118.34604    

Principal Component 2 Score      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 7.350348 3.67517 4.5557 0.0146 

Error 57 45.983031 1.80672   

C. Total 59 53.333379    
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Table 3-7 ANOVA table for dominant taxa principal component scores, clam plot data only. 

Significant results in bold, interesting but non-significant results underlined. 

Principal Component 1 Score    

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 24.10658 12.0533 6.1373 0.0027 

Error 176 345.65136 1.9639   

C. Total 178 369.75794    

Principal Component 2 Score      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 9.07663 4.53831 3.1623 0.0447 

Error 176 252.58190 1.43512   

C. Total 178 261.65853    

Principal Component 3 Score      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 13.35362 6.67681 6.0028 0.0030 

Error 176 195.76269 1.11229   

C. Total 178 209.11632    

Principal Component 4 Score      

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Model 2 19.27361 9.63680 5.2745 <0.0001 

Error 176 164.85152 0.93666   

C. Total 178 184.12513    
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FIGURES 

Figure 3-1 Mean sediment grain size data for control plots only (3-1a), for all sampling dates, 

Oct 2012-October 2015, clearly showing outlying samples. These are caused by larger pieces of 

shell, and are also reflected in the sorting coefficient data (3-1b). 

 

Figure 3-1a          Figure 3-1b 

 
 

 

Figure 3-2 Tukey HSD post hoc comparisons of Pielou’s Evenness (J’) values (least squared 

mean) between seasons (control samples only). Levels not connected by the same letter are 

significantly different. (Error bars equal ±1 SE of the mean.) 
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Figure 3-3    Plot showing the contribution of the independent dominant taxa variables into the three principal components. 

 
 

 

Figure 3-4    Tukey HSD post hoc comparisons of dominant taxa Principal Component 2 scores (least squared mean) between seasons 

(control samples only). Levels not connected by the same letter are significantly different. Error bars equal ±1 SE of the mean. 
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Figure 3-5    Tukey HSD post hoc comparisons of dominant taxa Principal Component 3 scores (least squared mean) between 

seasons (control samples only). Levels not connected by the same letter are significantly different. October 2014 is significantly 

different from all months except May 2015 and October 2015. Error bars equal ±1 SE of the mean.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6   Density of Microdeutopus gryllotalpa during individual sampling dates, clearly showing the spike during October of 

2014, possibly beginning in 2013. 
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Figure 3-7  Plot showing the contribution of the five independent feeding group variables into the three principal components. 

  
 

 

Figure 3-8   Tukey HSD post hoc comparisons of feeding group Principal Component 1 scores (least squared mean) between seasons 

(control samples only). Levels not connected by the same letter are significantly different. (Error bars equal ±1 SE of the mean.)  
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Figure 3-9   Tukey HSD post hoc comparisons of feeding group Principal Component 3 scores (least squared mean) between seasons 

(control samples only). Levels not connected by the same letter are significantly different. (Error bars equal ±1 SE of the mean.)  

 
 

Figure 3-10  Plot showing the contribution of the four independent burrowing group variables into the principal components. 
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Figure 3-11    Tukey post hoc comparisons of infaunal group Principal Component 1 scores (least squared mean) between seasons 

(control samples only). Levels not connected by the same letter are significantly different. (Error bars equal ±1 SE of the mean.)  

 

Figure 3-12    Tukey post hoc comparisons of infaunal group Principal Component 2 scores (least squared mean) between seasons 

(control samples only). Levels not connected by the same letter are significantly different. (Error bars equal ±1 SE of the mean.)  
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Figure 3-13a&b    Tukey HSD post hoc comparisons of Pielou’s Evenness (J’) values (least squared mean) between season (control 

samples only). Levels not connected by the same letter are significantly different. (Error bars equal ±1 SE of the mean.) 

Figure 3-13a             Figure 3-13b 
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Figure 3-14    Plot showing the contribution of the independent dominant taxa variables (clam plot data only) into the principal 

components, as well as vector plots for all four components.
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Figure 3-15a&b    Tukey HSD post hoc comparisons of dominant taxa group Principal Component 1 (3-15a) and Principal 

Component 4 (3-15b) scores (least squared mean) between seasons (clam plot samples only). Levels not connected by the same letter 

are significantly different. (Error bars equal ±1 SE of the mean.)  

Figure 3-15a             Figure 3-15b 
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Dissertation Summary 

Hard clam (Mercenaria mercenaria) aquaculture operations during the 3 year “grow-out” 

phase maintain densities many magnitudes higher than those found naturally in surrounding 

sediments. Aquacultural densities of other bivalve species have inconsistently been shown to 

detrimentally impact benthic invertebrate communities. This study sought to quantify the impacts 

of hard clam grow-outs to benthic invertebrate biodiversity and community structure.  

Three experimental blocks of 15 x 7m were marked out in early October 2012. Each block 

contained 3 plots measuring 3 m by 4.6 m, one each of the following three treatments: Control 

(untouched), Screen Control (Tenax® and PVC screen frame affixed to the sediment with rebar 

and shell bags), or Screened Clam (Tenax® and PVC screen frame affixed to the sediment with 

rebar and shell bags). Sediment cores (3.8cm dia., 10 cm depth) and benthic Ekman grab samples 

(3.5L) were taken from inside the plots (under screens) and 1 meter in each direction from the 

plot edge three times each year (May, August, October) for three years (2012-2015).  

Mean sediment grain size did not statistically differ between treatments, however sorting 

coefficient was significantly higher inside screened clam plots, indicating a more evenly 

distributed sediment profile. There was no significant effect of season on sediment profile.  

177 species were collected from across eight phyla. Shannon-Weiner Index values were 

statistically lower inside screened clam plots than in any other sampling location, with no effect 

of season. Pielou’s evenness was also significantly lower inside of screened clam plots, and also 

in May than in August or October.  There was a significant effect of season on species richness  

in aquacultural plots only, not in control plots, peaking in May.  

The ten most dominant taxa (as determined from overall abundance data) were six 

polychaetes (Capitella sp., Clymenella torquata, Polydora cornuta, Prionospio heterobranchia, 
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Scoletoma fragilis, Streblospio benedicti), two gammarid amphipods (Microdeutopus anomalus, 

M. gryllotalpa) one bivalve (Ameritella agilis) and one gastropod (Tritia obsoleta). Density data 

from these taxa were converted with Principal Components Analysis into linearly uncorrelated 

variables. Factorial MANOVA was then run on the resulting variables to determine the effects of 

treatment and season. The results suggest that samples from inside clam plots have component 

scores indicating higher densities of Clymenella torquata, a deep-dwelling deposit-feeding 

polychaete. Results also show that samples from May have component scores indicating higher 

Polydora cornuta (a shallow-burrowing suspension-feeder) and Tritia obsoleta (an epifaunal 

detritivore and deposit-feeder) densities. Samples from October have scores indicating higher 

densities of Microdeutopus gryllotalpa (a grazing amphipod). Clam plots were also shown to 

have higher densities of Capitella sp. in May and October as compared to August, and higher 

densities of A. agilis and M. anomalus (a suspension-feeding amphipod) in May. 

All taxa meeting a minimum abundance of N=100 were also classified into functional 

groups according to primary feeding type and maximum burrowing depth. The same PCA plus 

Factorial MANOVA analysis was run on the resulting data. Results show that control plot 

samples have component scores indicating higher densities of omnivorous and suspension-

feeding taxa as compared to aquacultural plots, and that samples from May have component 

scores indicating significantly higher densities of the same groups than later months. Scores also 

indicate that October samples have higher densities of grazing taxa than August samples, likely 

linked to the aforementioned M. gryllotalpa peak. Analyses of burrowing depth groups show 

only a significant effect of season, with May component scores indicating higher densities of 

epifaunal, shallow-burrowing and medium-burrowing taxa in spring than in later months.  
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Results from an ANOSIM run on the full dataset showed a significant difference in 

invertebrate community between treatments. The average similarities ranged between 19.6% and 

27.4%, the low values indicating both the great variability within the data set and likely also the 

low number of replicates. Pairwise comparisons involving inside-screened clam plot samples 

were all significant, and larger than any other pairwise comparisons. All comparisons involving 

only perimeter and control plots were non-significant. Dissimilarity results from the SIMPER 

analysis indicate moderate levels of dissimilarity among all treatments, with particularly low 

levels between inside screen control samples and inside clam plot treatment samples. For all 

other comparisons the inside clam plots have the highest dissimilarity scores, indicating that 

aquacultural communities have the least overlap in community makeup with communities in 

other treatments. All but three taxa designated as critical by SIMPER analysis were all amongst 

the dominant taxa considered in earlier analysis, verifying that pre hoc decision. Ameritella 

agilis, the diminutive deposit-feeding clam, was the only taxa significant to all treatments 

(individual contribution >5%) to have a significant effect of treatment. Post hoc analysis 

determined inside clam plot samples to be higher in A. agilis density than all other treatments. A. 

agilis density also differs significantly by season, peaking in May. 

This study found limited negative impacts to benthic infaunal biodiversity associated with 

small-scale grow-out plots in New Jersey over a three-year period.  The suggestion that 

screening would contribute to overall increases in biodiversity and species richness is not borne 

out here. Control and aquacultural plots are controlled by bottom-up processes, with suspension 

and omnivorous taxa peaking in the spring and grazers peaking in fall. Additional research is still 

required before any changes to leasing policy should be considered. The plots in this study were 

constructed at 1:4 the scale of industrial screens. And, at nine plots in size (only six of which 
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were screened), the installation studied in this dissertation is much smaller and less dense than a 

typical industrial aquacultural grow-out facility. Edge effects could be minimizing the impacts of 

the aquacultural plots, especially as the plots are effectively situated within a wide field of 

unfarmed reference area themselves to further confound the data.  

This study also provides no data on the use of redundant use plots across time. 

Aquacultural grow-outs necessarily re-use acreage on a yearly basis, while this study newly 

installed plots. There is a wealth of data showing quick recovery to baseline from the physical 

harvesting (Kaiser et al. 1996, Hall and Harding 1997, Spencer et al. 1997, Boese 2002), both by 

manual raking and mechanical dredging. Though this study does not directly address the issue, it 

is unlikely that the grow-out phase requires longer recovery time than such a directly destructive 

process.  

The decrease in biodiversity seen inside the aquacultural plots is linked almost entirely to 

changes in evenness, not in overall species richness. This provides some reason to think that the 

overall shift in community make up might be minimal, but this requires confirmation before 

expanding the overall acreage made available to industry. Decreasing biodiversity and species 

richness in coastal systems is clearly causally linked with decreased productivity and filtering 

capacity, decreased effectiveness as a nursery habitat and decreased number of uncollapsed 

fisheries (Worm et al. 2006). Systems with lower biodiversity also are increasingly susceptible to 

ecological destabilization and catastrophic events including invasion by non-native species 

(Worm et al. 2006). Interestingly, increases to species richness as caused by these invasive 

species do not seem replace the aforementioned services (Worm et al. 2006). But these effects 

are linked to decreases in biodiversity and species richness. The decrease in biodiversity of 0.5 

inside aquacultural plots seen in this work is caused by decreases in evenness, not in species 
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richness. Other studies, though few in number, have seen similarly weak effects, including one 

study on hard clam aquaculture facilities in NJ and VA, in which 26 variables did not vary 

between aquacultural and reference sites during any single sampling date (Luckenbach et al. 

2016). The New Jersey data from this study also showed no significant differences in benthic 

species richness between M. mercenaria grow-out plots and reference sites. (The Virginia data 

similarly showed no differences between grow-out plots and reference sites, though both were 

significantly higher in species richness than buffer zones between plots. This effect was not 

apparent in NJ (Luckenbach et al. 2016.) This study, conducted as it was on a full-scale 

industrial operation, suggests that there may be minimal decreases in species richness and 

biodiversity at industrial scales, though the total amount of sampling of benthic infauna in the 

Luckenbach et al. project was limited in scope. 

Other results from this dissertation, including changes to Clymenella torquata density and 

signals suggesting decreases in suspension feeder densities, also indicate a need for close 

monitoring should changes to New Jersey State aquacultural policies increase overall leasing 

acreage in the future. This dissertation should be seen as sufficient to consider a full-size follow-

up study in a New Jersey grow-out operation, and as an encouraging first step towards bolstering 

the New Jersey hard clam aquacultural industry. 
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Appendix: Full Species List 

 

PHYLUM CLASS SPECIES 

Bryozoa Gymnolaemata Electra sp. 

  Membranipora tenuis 

Nemertea Anopla Cerebratulus lacteus 

Cnidaria Anthozoa Clytia hemisphaerica 

  Diadumene leucolena 

  unknown hydroid sp. 

Arthropoda Malacostraca (Amphipoda) Acanthohaustorius millsi 

  Aeginina longicornis 

  Americulodes edwardsi 

  Ampelisca abdita 

  Ampelisca vadorum 

  Ampelisca verrilli 

  Ampithoe longimana 

  Ampithoe valida 

  Apocorophium (Corophium) acutum 

  Batea catharinensis 

  Caprella carina 

  Caprella penantis 

  Cerapus tubularis 

  Corophium volutator 

  Crassicorophium (Corophium) bonelli 

  Cymedusa compta 

  Elasmopus levis 

  Eobrolgus spinosus 

  Ericthonius sp. 

  Gammarus mucronatus 

  Idunella (Listriella) barnardi 

  Idunella (Listriella) clymenellae 
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  Lembos websteri 

  Leptocheirus plumulosus 

  Lysianopsis alba 

  Microdeutopus anomalus 

  Microdeutopus gryllotalpa 

  Microprotopus raneyi 

  Monocorophium ascherusicum 

  Monocorophium insidiosum 

  Monocorophium tuberculatum 

  Orchomenella pinguis 

  Paracaprella tenuis 

  Pseudosymtes glaber 

  Uhlorchestia uhleri 

  Unciola irrorata 

  unknown Caprellidae sp. 

  unknown Gammariidae sp. 

 Malacostraca (Anomura) Pagurus longicarpus 

  Pagurus pollicarpus 

 Malacostraca (Brachyura) Callinectes sapidus 

  Cancer borealis 

  Cancer irroratus 

  Carcinus maenas 

  Crangon septemspinosa 

  Dyspanopeus sayi 

  Eurypanopeus depressus 

  Neopanope texana 

  Pinnixa chaetopterana 

  Pinnixa sayana 

  Rhithropanopeus harrisii 

 Malacostraca (Caridea) Hippolyte zostericola 

  Palaemon (Palaemonetes) intermedius 

  Palaemon (Palaemonetes) pugio 

  Palaemon (Palaemonetes) vulgaris 
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 Malacostraca (Cumacea) Diastylis sculpta 

  Oxyurostylis smithi 

 Malacostraca (Isopoda) Cyathura polita 

  Edotia triloba 

  Erichsonella filiformis 

  Idotea balthica 

 Malacostraca (Mysida) Americamysis bigelowi 

 Ostracoda Halocyprididae spp. 

 Ostracoda non-Halocypridid ostracod spp. 

 Pycnogonida Anoplodactylus lentus 

Annelida Clitellata  unknown Oligochaete sp. 

 Polychaeta Alitta succinea 

  Alitta virens 

  Amastigos caperatus 

  Amnicola brasiliensis 

  Amphitrite sp. 

  Aonidella (Prionospio) cirrobranchiata 

  Bushiella (Spirorbis) granulata 

  Capitella spp. 

  Circeis spirillum 

  Cirratulus grandis 

  Clymenella torquata 

  Clymenella zonalis 

  Diopatra cuprea 

  Eulalia sp. 

  Eumida sanguinea 

  Eusyllis lamelligera 

  Exogone naidina 

  Glycera dibranchiata 

  Glycinde solitaria 

  Goniada sp. 

  Harmothoe sp. 

  Heteromastus filiformis 
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  Hiatella sp. 

  Hobsonia florida 

  Hypereteone lactea 

  Lepidonotus squamatus 

  Lepidonotus sublevis 

  Lumbrinerides acuta 

  Magelona rosea 

  Maldane sarsi 

  Maldanidae sp. 

  Neanthes arenaceodentata 

  Nephtys sp. 

  Notomastus latericeus 

  Orbiniidae sp. 

  Owenia fusiformis 

  Paradexiospira violacea 

  Paranaitis speciosa 

  Parapionosyllis longicirrata 

  Paraprionospio pinnata 

  Parasabella (Sabella) microphthalma 

  Pectinaria goulidii 

  Pherusa plumosa 

  Phyllodoce mucosa 

  Polydora cornuta 

  Prionospio heterobranchia 

  Prionospio pygmaeus 

  Prionospio steenstrupi 

  Prionspio sp. 

  Sabaco elongata 

  Salvatoria clavata 

  Scoletoma (Lumbrineris) fragilis 

  Scoloplos sp. 

  Spio setosa 

  Spiochaetopterus costarum oculatus 
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  Spiophanes bombyx 

  Spiophanes wigleyi 

  Spirorbid spp. 

  Streblospio benedictii 

  Syllides longocirratus 

  Terebellides stroemi (unconfirmed) 

  Tharyx acutus 

  Nereis sp. 

  unknown Sabellid sp. 

  unknown Syllidae sp. 

  unknown species A 

  unknown species B 

  unknown species C 

  unknown species D 

Mollusca Bivalvia Ameritella (Tellina) agilis  

  Anadara transversa 

  Astarte undata 

  Astyris lunata 

  Ensis directus 

  Gemma gemma 

  Geukensia demissa 

  Lyonsia hyalina 

  Mercenaria mercenaria 

  Mulinia lateralis 

  Mya arenaria 

  Mysella planulata 

  Mytilus edulis 

  Nucula proxima 

  Nuculana tenuisulcata 

  Pholas sp.  

  Semele proficua 

  Solemya velum 

  Spisula solidissima 
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  Tagelus divisus 

 Gastropoda Acteocina (Retusa) canaliculata 

  Bittiolum alternatum 

  Boonea bisuturalis 

  Cerithiopsis sp. 

  Crepidula convexa 

  Crepidula fornicata 

  Crepidula plana 

  Ecrobia truncata 

  Ittibitium oryza 

  Japonacteon punctostriatus 

  Tritia (Ilyanassa) trivittata 

  Tritia (Ilyanassa) obsoleta 

  Turbonilla interrupta 

Echinoderamata Holothuroidea Leptosynapta tenuis 

  Sclerodactyla briareus 

Chordata Ascidiacea Botryllus schlosseri 
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