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ABSTRACT  

We study the data setting consisting of functional data sets repeatedly observed over time. The 

focus is on the dynamic prediction of the future trajectory for a subject. Regression methods 

based on dynamic functional models are used for dynamic prediction of individual trajectories. 

We propose strategies for the selection of the study sampling design in the context of 

longitudinal functional data. An application to simulated child growth data is presented. The 

height-for-age z-score (HAZ) was the response variable in the functional dynamic models for 

prediction. The intent was to recommend four months for removal in our initial historic data set. 

We quantify the effect on dynamic prediction performance when several data missing scenarios 

and methods of data imputation were considered.  The effectiveness of seven methods of data 

imputation in the setting of longitudinal functional data were examined. 
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List of Figures 

Figure 1: The graph shows fragment one HAZ data. This includes 16 data points for 197 subjects 

spanning their first fifteen months of life. Each line represents a subject, and each point 

represents the respective HAZ measurement taken at the indicated month. 

Figure 2: The graphs depicts the fragment one HAZ data for patients 23, 56, and  112 as well as a 

graphical comparison of the three subjects. 

Figure 3: This graph depicts the functional principal components fit for subjects 23, 56, and 112. 

The gray points show the observed values for the given subjects. The solid black lines display the 

fPCA fit. This is based upon the availability of the complete fragment 1 data set. 

Figure 4: The above graphs are two examples of B- splines similar to the ones we use in our first 

method of penalized smoothing PLS1.   

Figure 5: The above graphs are two examples of Fourier basis functions similar to the ones we use 

in our second method of penalized smoothing.  

Figure 6: The above graph depicts the fragment 1 and fragment 2 data for all 197 subjects. The 

model used was the DPFFR model. Highlighted are subjects 23, 56, and 112.   

Figure 7: Shown is the beta function employed in the DPFFR model for data generation. 

Figure 8: Shown is the HAZ data for 3 subjects post removal of months 4, 11, 12, and 13. The gray 

points show the location of suggested HAZ data that are suggested for removal in the sampling 

study.  
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Chapter 1. Introduction 

 
Functional data has been observed in many disciplines including medicine 

(Sorensen et al. 2013, Yao et al. 2005a, Yao et al. 2005b, Goldsmith et al. 2013, Xiao et al. 

2016), environmental studies (Ramsay and Silverman 2005, Kokoszka and Reimherr 

2017), biology and biomedical studies (Yao et al. 2005a, Ramsay and Silverman 2005, 

Leroux et al. 2018, Ieva and Paganoni 2016), and business (Goldberg et al. 2014, Shang 

2017, Fan et al. 2014). The most common examples of functional data include weather and 

stock data, where data points are densely collected across the domain. That is, there exists 

a full set of functional observations for each subject in the study. Functional data is 

observed in the form of a sample of curves, where measurements for each curve are taken 

at discrete points on a given domain.  

Longitudinal functional data arises when repeated functional data samples are 

observed. Longitudinal data tends to be more sparsely or irregularly spaced than functional 

data. In this work we study the data setting consisting of functional data samples repeatedly 

observed over time. This type of data is called longitudinal functional data (Park and Staicu 

2015, Islam et al. 2016, Goldsmith et al. 2012, Chen et al. 2016). The focus is on the 

dynamic prediction of the future trajectory of a subject and we use dynamic functional 

models (Ivanescu et al. 2017) for dynamic prediction. Dynamic prediction (Goldberg et al. 

2014, Chiou 2012, Ivanescu et al. 2017, Leroux et al. 2018) for functional data analysis is 

an active research area. We propose strategies for the selection of the sampling design for 

longitudinal functional data analysis from the point of view of dynamic prediction 

performance. 
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 There are specific data sampling problems due to missing data that can be exhibited 

in a variety of functional data sets. Such sampling problems arise due to the time intervals 

at which the data was recorded, either regular (or dense) or irregular appointments when 

recording data. It is costly to record and obtain biomedical data values monthly for large 

populations. We propose to discuss strategies for selecting a sample of observation points 

that can be considered as candidates for removal when researchers need to gain some 

financial relief associated with sampling design for studies involving functional data.  

 First, consider all examples of dense functional data, that is, data that is sampled 

for many points throughout each day for each subject (such as Microsoft’s stock prices that 

are recorded on a minute to minute basis, see, for example, Kokoszka and Reimherr 2017). 

Now, consider the case of sparsely sampled functional data, where, for example, growth 

data are sparsely sampled. That is, there are few sampling points that are spread differently 

across children (such as, one child’s height-for-age z-score HAZ is measured at month 3 

and 6 and another child’s HAZ is measured at birth and month 2). A standard approach is 

to estimate the trajectory of every subject i at all data points, such as {𝑌𝑖,𝑙; 𝑖 =

1,2, … , 𝑛;   𝑙 = 0,1, … ,15} based on the data available (Goldsmith et al. 2013). This 

approach considers functional principal components analysis (fPCA) for functional data. 

In addition to fPCA, we investigate several other methods for data imputation, including 

last observation carried forward, linear interpolation, and other methods discussed in 

Chapter 4, and apply these in several data scenarios and compare the different approaches 

with respect to prediction accuracy. 

The research we conduct involves the study of longitudinal functional data 

(Goldsmith et al. 2012, Park and Staicu 2015). We use a data set for Height-for-Age Z-
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scores (HAZ) (Ivanescu et al. 2017) that contains some simulated data for 197 patients for 

months 0-15, where month 0 corresponds to the month of birth. We employ methods of 

dynamic prediction to estimate the trajectory of the subject-specific HAZ curve for the 

future months 30-45. Our goal was to predict subject data for the second fragment of data 

(months 30-45) when using the first fragment of data (months 0-15) as predictive 

information. The objective is under the scope of dynamic prediction (Ivanescu et al. 2017) 

for functional data analysis. We also studied the effect of removal and imputing of the data 

of a specific month in the past. We study the effect of removing each of the inner data 

points (1-14) within our historic data set (0-15). The strategy we propose involves missing 

data imputation, followed by studying the effects of data imputation on dynamic prediction. 

Missing data was simulated at given months for historic data collected in fragment 1 

(months 0-15).  Missing historic data was dealt with by imputing a HAZ value where 

missing values occurred. Several methods were used for data imputation. Imputation 

methods carried out included linear interpolation and extrapolation (LIE), last observation 

carried forward (LOCF), functional principal components analysis (fPCA), linear mixed 

effects (LME), and penalized least squares (PLS). Imputation methods are presented in 

Chapter 4. After data was imputed for a specific month where data was simulated as 

missing, the future HAZ trajectory for months 30-45 was predicted using several dynamic 

prediction methods (Ivanescu et al. 2017). This process of studying data imputation for 

each month in the history of the HAZ process was undertaken at each specific inner month 

in the history of HAZ growth for months 1-14. We attempted to determine which months 

were the least problematic to remove when using the mean squared error for dynamic 

prediction as the metric. The month where data imputation yielded the smallest prediction 
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error was considered a signal that the month’s data may be considered for removal, 

compared to other months where prediction error was larger. We used methods of dynamic 

prediction for functional data, such as dynamic function-on-function regression (DPFFR) 

(Ivanescu et al. 2017). We intend to find several months (4 months) in the history of the 

HAZ process for months 0-15 that can be considered for removal in a strategy to develop 

a sampling schedule with a smaller number of patient visits or appointments based on 

performance of dynamic prediction for the future trajectory.  

Optimal sampling schedules is a recent area of research in functional data analysis. 

There are a number of different approaches that researchers have taken in developing these. 

Some propose a method of prediction to recover individual functions (Wu et al. 2018). 

Others focus on both predicting scalar outcomes and recovering individual functions (Ji 

and Muller 2017). Recently, Park et al. (2018) presented the concept of developing an 

optimal design strategy for both scalar outcomes and recovering individual functions 

simultaneously. While the above papers deal with optimizing sampling schedules for 

different functional data sets, they do not study the effects of differing methods of 

imputation. We propose an option for sampling a schedule design that incorporates the 

study of imputation methods for any missing data and the impact on dynamic prediction.  

We study the use of dynamic prediction in the context of longitudinal functional 

data. This research we conduct will be useful in the medical field, highlighting the most 

and least critical times for sampling, and their effects on the overall dynamic prediction for 

the future of the trajectories in the data studied. This research has the potential to conserve 

fiscal resources in terms of scheduling the data acquisition framework. This research will 

focus on implementations that use R Statistical Software (R Core Team 2019).  



 

 5 

In summary, our strategy includes simulating missing data, imputing values for the 

missing data, and employing a method of dynamic prediction. For our first step, we will 

simulate missingness in our data set one month at a time, starting with month 1 and ending 

with month 14.  Secondly, we will impute a value for each missing data point using each 

of our imputation methods. Lastly, we will employ our methods of dynamic prediction to 

predict the future curve and compare the prediction performance across methods and data 

sampling designs.  
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Chapter 2. Literature Review 

 In this chapter, we provide an introductory presentation on several types of data 

sets discussed in the literature and related to longitudinal functional data.  

2.1 Longitudinal Data  

 Data is longitudinal if it tracks the same information on a set of subjects over a 

period of time. The analysis of longitudinal data studies associations that change 

dynamically (Hedeker et al. 2006).  

There are several types of longitudinal data observed in biology and biomedical 

studies. For example, in Yao et al. (2005a), a dataset from the Multicenter AIDS Cohort 

Study was examined. This dataset recorded the repeated measurements of physical exams, 

laboratory results, and CD4+ percentages for 283 subjects. CD4+ is a type of white blood 

cell that fights infection. Each subject had on average 8 observations between years 1984 

and 1991.   

Methods of working efficiently with longitudinal data are discussed in Wu et al. 

(2018) as they study two different data sets in order to derive an ideal sampling schedule 

for each dataset. They examine data for salivary cortisol, a stress biomarker that follows a 

non-linear profile. They also study urinary progesterone. The goal was to identify times 

during the day to collect salivary cortisol, and identify which days during the menstrual 

cycle to measure the urinary progesterone. They selected several sampling schedules.  

In Diggle et al. (2002), a number of additional applications of longitudinal data 

analysis in the field of health sciences are discussed. A study examines the CD4+ cell count 

in a group of 369 men who tested HIV+. This study included a total of 2,376 measured 

against time since seroconversion (the time at which HIV was detected in the patient). 
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There was an average of 6 observations per patient over the course of 10 years.  Another 

application shows how Sitka spruce trees grow against time. This study includes 27 

subjects (trees), and the response variable is log (tree height * tree diameter squared). In 

this case, the study is done over 522 days, and each tree has exactly 13 observations.   Two 

additional data sets referenced display seizure counts for epileptic patients and protein 

content in a cow’s milk. Data is collected on a similar weekly schedule for both of these 

studies.  

In Hedeker et al. (2006), a longitudinal study that exhibits incomplete data is 

discussed. The study includes 66 depressed inpatients. The response variable depression 

severity is measured using the Hamilton Depression Rating Scale. These measurements are 

taken weekly for six weeks. Only 46 patients had complete data for all time points. They 

had a total of 375 data points.  Hedeker discusses mixed-effects regression models which 

make use of all available data points by allowing the intercept and time trends to vary for 

each subject.  

All of the above examples reflect real world instances of longitudinal data analysis. 

Methods to address longitudinal data include mixed effects models. The methods of 

analysis referenced in these studies are similar to those we will examine later in the study.  

Methods used for longitudinal data analysis include mixed effects models (Ruppert 

et al. 2003) and principal components analysis (Yao et al. 2005a). Some functional data 

methods can also be applied to longitudinal data (Ramsay et al. 2005).  

2.2 Functional Data 

 Functional data is any data that is seen to vary over a continuum. Typically, this 

data is densely collected over a condensed time period, but the domain is not restricted to 
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time alone. These measurements typically follow highly volatile variables. That is, 

variables that can exhibit extreme changes over short periods of time. This is why we often 

see densely collected measurements over condensed time domains. A common example of 

this includes stock prices, and weather data, such as in Ramsay and Silverman (2005).  In 

Sorensen et al. (2013), the similarities and differences between functional and longitudinal 

data are discussed. They are alike in that the data consist of repeated measurements for 

each subject. A difference is that longitudinal data often models expected value as 

polynomials or simple non-linear functions, whereas there is heightened flexibility in 

functional approaches. Moreover, functional data is considered to have a larger number of 

observed values for each subject. 

 Ramsay et al. (2005) presents a number of functional data examples. In one 

biomechanical example, force exerted by the thumb and forefinger is studied. Force was 

sampled at a rate of 500 times per second, but limited to a time interval that ranges from 

0.0 to 0.30 seconds. The data set included 20 different recordings or curves.  

 Leroux et al. (2018) depicts a functional child growth data set. The data consists of 

215 children, and 547 unique observations occurring between months 0 and 24 where 

month 0 represents birth. Each child had on average 34 measurements, where a majority of 

measurements took place during the first few months of the study.  The study used length 

for age z-scores, weight for length z-scores, and weight for age z-scores to study the impact 

of Helicobacter pylori, bacterial infection, on child growth. These z-scores are metrics 

commonly used to model child growth on a scale relative to the World Health 

Organization’s defined standard. Ieva and Paganoni (2016) present another example of a 
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functional data set that consists of ECG signals (noisy signals that describe the heart 

dynamics of each patient) for 149 subjects.   

 An application of functional data analysis is presented (Shang 2017) where the 

study is centered around the expected value of stock return. This is a particularly interesting 

problem as predictions were to be made based on dense data that spans very short time 

periods, for example, intraday returns. Using functional principal components analysis, the 

work in Shang (2017) attempts to forecast this functional time series. 

  Some popular methods for analyzing functional data include: functional principal 

components analysis, fPCA (Yao et al. 2005a, Goldsmith et al. 2013, Wrobel et al. 2016) 

and functional regression (Ramsay and Silverman 2005, Kokoszka and Reimherr 2017).  

2.3 Longitudinal Functional Data 

 Data sets which consist of functional data that follow a longitudinal design are 

considered longitudinal functional data. While longitudinal responses used to solely follow 

scalar observations, new technologies allow the collection of functional observations 

(Goldsmith et al. 2012). Moving away from scalar responses, longitudinal functional data 

is of the form where functional data sets are now collected at multiple times over a 

longitudinal continuum. In recent studies (Park and Staicu 2015, Islam et al. 2016, 

Goldsmith et al. 2012), there has been an increased focus on prediction methods within 

longitudinal functional data studies.  

  In one paper, CCA-FA profiles, which reflect the fractional anisotropy (FA) along 

the corpous collosum (CCA), are collected using diffusion tensor imagining (DTI) from 

multiple sclerosis (MS) patients amongst multiple hospital visits giving rise to longitudinal 

functional data (Park and Staicu 2015). CCA relates to corpus callosum, a band of nerve 



 

 10 

fibers that enables communication between the right and left hemispheres of the brain. 

They monitored the change in the CCA-FA profile to track the progression of the MS in 

the respective patients. The purpose of their work was to develop a model for predicting 

the full CCA-FA trajectory for any future visit that accounts for all of the dependence 

sources in the data. This paper also presents an example where physical activity count 

profiles are observed for a number of subjects over several consecutive days, and a 

secondary example where modality profiles are observed for MS patients across several 

hospital visits. The data examined is considered longitudinal functional data because it 

consists of functional observations of many subjects observed across multiple hospital 

visits over a period of time.  

Islam et al. (2016) tracks the association between feed intake of lactating sows, and 

minute-by-minute relative humidity throughout the first 21 days of their lactating period. 

They use the data collected to study the efficiency of their longitudinal dynamic functional 

regression (LDFR) prediction model. This data is considered longitudinal functional data 

because the feed intake changes with respect to relative humidity, and this functional data 

is tracked for many lactating sows over a 21 day longitudinal period of time.  

Chen et. al (2016) presents a longitudinal functional data study that makes use of 

imputation methods. The study includes subjects between the ages of 60 and 90 and aims 

to reveal daily activity patterns associated with human aging. Each subject was fitted with 

an Actiheart activity monitor that measured accelerometry (a measure of acceleration) 

counts every minute for a period of 7 days following a clinical visit. This data was collected  

over a number of clinical visits. For cases of missing values, data was imputed with the 

average measurement across all available days. Missingness arose during instances where 
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the subject was unable to wear the activity monitor. The study does not explore the effects 

of differing imputation methods on prediction.  

Another study explores the relationship between cerebral white matter tracks in MS 

patients and their cognitive impairment over time (Goldsmith et al. 2012).  MS results in 

lesions in white matter tracts, and thus leads to severe disabilities in patients. This study 

aims to develop a greater understanding of the relationship between MS and the resulting 

disabilities. The data set studies approximately 100 patients across a number of visits. Each 

patient has between 3 and 8 visits recorded. The density of the data in conjunction with the 

longitudinal observations result in its classification as longitudinal functional data. 
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Chapter 3 Analysis of Functional Data 

3.1 Observed functional data 

 The most often used notation to depict a functional data sample is of the form 𝑌𝑖  , 

where i denotes the sample curve index, where i = 1, 2, …, n and n is the total number of 

curves. For functional data observed at discrete time points we use the notation 𝑌𝑖,𝑙 to 

represent the value of the HAZ curve for child i at month l. In this chapter, we will 

represent our functional data observed for fragment one data at the time interval from 

month 0 to month 15 with l={0, 1, …, 15}. Thus, the HAZ data for fragment 1 for n=197 

subjects is denoted by   𝑌𝑖,𝑙  where l= {0, 1,…, 15}, i = 1,2,…,197. 

The functional dataset may consist of n sampled curves observed at equally spaced 

time points over the interval [0,15]. It is typically not feasible that the values of Y will be 

known at all points in the continuous domain [0,15]. In a typical experiment or study, they 

will only be available at some selected points, and the points can vary for each curve 𝑌𝑖 

(Kokoszka and Reimherr 2017). Functional data examples exist where the number of points 

observed are seen to range from small to large, and even instances where the number of 

points observed differs for each subject.  

In terms of the HAZ data set, we use notation 𝑌𝑖,𝑙  to denote data for child i at month 

l. We can refer to our HAZ data set as densely sampled at each month. For each child the 

HAZ score exists for all points, however, for the data collection study the HAZ score was 

observed at selected times. In this particular study, HAZ scores are measured monthly for 

each subject.  
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3.2 Sample Mean, Standard Deviation, and Covariance  

 Once the data has been collected and imported into software, we can apply simple 

summary statistics using the raw functional data. Some metrics used to summarize 

functional data include the pointwise mean, pointwise standard deviation, and sample 

covariance function. The pointwise mean provides an initial estimate for the true functional 

mean and is computed as the average across the observed Y values (HAZ score values) 

over all subjects n. The computation for the sample mean is executed pointwise (Ramsay 

and Silverman 2005, Chapter 2, page 22) using the formula  

  𝑌𝑙 =  
1

𝑛
∑ 𝑌𝑖,𝑙     

𝑛

𝑖=1
 (1) 

In addition to a measure of center, a measure of variability can also be computed. The 

pointwise standard deviation provides us with an estimate for the level of variability 

between the curves at any point l, such as using the formula below.  

 𝑆𝐷𝑙 = { 1

𝑛 − 1
∑ (𝑌𝑖,𝑙 −

𝑛

𝑖=1
𝑌𝑙 )

2}
1/2

 (2) 

In relation to our data setting, the pointwise standard deviation quantifies variability of 

HAZ growth curves in relation to the pointwise mean calculated for all subjects.  

The sample covariance function shows us the variability between all curves at two 

different time points l and s (Ramsay and Silverman 2005, Kokoszka and Reimherr 2017). 

The calculation (Ramsay and Silverman 2005, Chapter 2, page 22) is provided as follows. 

 

 �̂�𝑙,𝑠 =
1

𝑛 − 1
∑ (𝑌𝑖,𝑙 − 𝑌𝑙)(𝑌𝑖,𝑠 − 𝑌𝑠)

𝑛

𝑖=1
 (3) 
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There are some functional versions available for estimation of the true population 

parameters. For example, Bunea et al. (2011) presents a functional mean estimation 

technique for functional data.  For the covariance estimation, several additional algorithms 

(Yao et al. 2005a, Xiao et al. 2016) are available.  

 

3.3 Functional Principal Component Analysis (fPCA) 

 Estimated Functional Principal Components (fPC) are used to estimate deviations 

from the mean in a functional dataset. The goal is to find eigenfunctions 𝜐𝑗 that reflect the 

most pertinent patterns of deviation from the mean function of the sample of curves. The 

eigenfunctions are computed from the estimated covariance matrix �̂�. We use existing 

implementations for computing the fPCA eigenfunctions (Goldsmith et al. 2013, 

Goldsmith et al. 2019). The term 𝜉𝑖,𝑗 is known as the score of sampled curve i, and 

represents how much of its shape can be attributed to the function 𝜐𝑗 using the expression 

 𝑌𝑖,𝑙 − 𝑌�̅� ≈ ∑ 𝜉𝑖,𝑗�̂�𝑗(𝑙)

𝑃

𝑗=1

. (4) 

 The functional principal components have the property that �̂�1 represents the most 

important deviation from the mean, �̂�2 represents the second most important deviation. The 

total variability of a number of curves can be explained by the sum of explained variance 

attributed to the fPC’s, �̂�𝑗. The percentage of variability that each function explains is 

related to the scores 𝜉𝑖,𝑗 (Kokoszka and Reimherr 2017, pg. 41). The larger the variance of 

the score, the larger the percentage, and thus the greater importance. In many cases, the 

first few functions account for the vast majority of the data variability. The computing of 

the functional principal components is derived from the covariance matrix, such as given 
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by equation (3), or other covariance surface estimation algorithms (Goldsmith et al. 2013, 

Xiao et al. 2016). We apply fPCA using the fpca.sc function within the refund 

(Goldsmith et al. 2019) R package.  

 

3.4 Fragment 1 HAZ Data Set 

We discuss in this section details about the functional dataset we work with in our 

analyses. Figure 1 is an illustration for HAZ data for fragment 1, ranging from month 0 to 

month 15. In the numerical study of Chapter 6, we discuss the HAZ data for fragment 2 

which we simulate from fragment 1 data.  

From this depiction, it is clear that we are dealing with a noisy data set. We are able 

to observe from Figure 1 that all of the children have observed HAZ scores between -4 and 

3. The scores are seen to fluctuate between visits. 
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Figure 1: The graph shows fragment one HAZ data. This includes 16 data points for 197 

subjects spanning their first fifteen months of life. Each line represents a subject, and 

each point represents the respective HAZ measurement taken at the indicated month. 

  

Figure 2 shows HAZ data trajectories for three children. When visualizing the data 

based on individual subjects, we can see a more clear image of how the HAZ scores vary 

across time, in this case, months (0-15). Two of these subjects, (patient 23 and patient 112) 

are shown to follow similar trends in variation, with a steep increase, and then decline 

between months 13-15.  
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Figure 2: The graphs depicts the fragment one HAZ data for patients 23, 56, and 112 as 

well as a graphical comparison of the three subjects.
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Chapter 4.  Methods for Imputation 

 The datasets we analyze display missing data. The missing data we observe occurs 

within each curve. For example, a child’s HAZ curve may have some missing HAZ value 

for month 3. For such cases we study the imputation of HAZ data at month 3. There are 

several methods of data imputation in the literature of longitudinal and functional data 

analysis. Prior to applying dynamic functional models we require methods of imputation 

that will empirically provide calculated values to fill these unobserved data. We use seven 

different methods of imputation that are discussed below. The analysis would also enable 

us to compare which imputation method to use for missing historic data that would provide 

a better prediction accuracy for the future HAZ data we study.  

There are two different categories of imputation methods which we study, curve-

by-curve and pooled curves methods. Pooled curves methods impute for all 197 subjects 

at the same time. Conversely, curve-by-curve methods do the data imputation at the subject 

level, that is subject by subject.  Methods based on pooled curves might perform better, as 

they make use of more available data information when doing the imputations. The 

methods for data imputation we implement are: a) Subject Specific Regression, b) Linear 

Interpolation and Extrapolation, c) Last Observation Carried Forward, d) Linear Mixed 

Effects Model, e) Functional Principal Components Analysis, f) Penalized Smoothing with 

Fourier Bases, and g) Penalized smoothing with Basis functions. Missing data only occurs 

for fragment one data; that is, HAZ data  𝑌𝑖,𝑙  for months l =0, 1, 2, … , 15, for each subject 

i, i=1,2,…,197. Table 1 contains brief descriptions of each method. We also present each 

method in detail. 
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Table 1: This table displays an explanation for each of the seven data imputation methods 

we use for our study. Curve-by-curve methods can be seen highlighted in light gray, while 

pooled curves methods are highlighted in dark gray. Each method is also presented 

separately in the next sections where more details are included. 

 

 

4.1 Subject Specific Regression  

Subject Specific Regression (SSR) obtains the predicted value from the model fit 

of nonlinear regression with multiple scalar covariates as discussed in Green and Silverman 

(1994). In this example, we use each month l from l=0,1, …, 15 as our scalar covariates. 

This method is applied for each curve separately. For each individual subject, there exists 

a regression equation 𝑌𝑙 =f(l) where 0<l<15 represents our time variable.  

To implement this method, we used the smooth.spline function in R to fit a 

cubic smoothing spline to the data (Green and Silverman 1994).  

 

Method Description 

Subject Specific Regression (SSR) We obtain the predicted value from the model 

of smooth spline regression.  

Linear Inter and Extrapolation (LIE) Uses the surrounding two data points to 

approximate a value to fill the gap. 

Last Observation Carried Forward (LOCF) Carries the value of the previous point to fill the 

gap. 

Linear Mixed Effects Model (LME) Models the between and within observed 

responses. 

Functional Principal Components Analysis 

(fPCA) 

Uses an estimate of the covariance for 

calculating the prediction of the value for the 

missing point.  

Penalized Smoothing Method I, II (PLS1, 

PLS2) 

Two methods which use basis function 

expansions (splines for PLS1 and Fourier for 

PLS2) for each curve and penalized least 

squares functional regression.  
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4.2 Linear Inter and Extrapolation  

Linear inter and extrapolation (LIE) uses both the data value of the (l-1)th and (l+1)th 

months to approximate the middle value. To do this, we used the R linear interpolation 

function approx. The approx function uses the surrounding two data points to return 

an interpolated value for the missing point. The function has the ability to return a constant 

or a function interpolation. We implemented a linear function interpolation approach. 

4.3 Last Observation Carried Forward 

Last Observation Carried Forward (LOCF) uses the HAZ data vale of the (l-1)th 

month to impute the missing value at month l. In other words, it carries the value of the 

previous data point to fill the gap: 𝑌𝑖,𝑙 = 𝑌𝑖,𝑙−1 . By implementing this method of 

imputation, researches are able to retain the number of subjects, eliminate missingness, and 

produce a complete data matrix (Overall et al. 2009). A fault in this method of imputation 

is that it requires that unrealistic assumptions must sometimes be made. This imputation 

method is often used to compensate for patient drop offs in clinical trials (Overall et al. 

2009, Verbeke et al. 2000, Diggle et al. 2002, Hedeker et al. 2006). In this setting, LOCF 

is used to retain the subject data despite the missingness that comes from the incomplete 

trial.   

4.4 Linear Mixed Effects Model  

The linear mixed effects (LME) model is used for modelling longitudinal data 

(Cnaan et al. 1997, Zhang et al. 2001, Verbeke et al. 2009). LME models the between and 

within observed responses. This data modeling allows for non-independence and within-

subject clustering (Grajeda et al. 2016). The work in Grajeda et al. 2016 proposed the use 

of LME to approximate a functional line using truncated polynomial splines (cubic) in the 
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context of child growth data. The splines are comprised of basis functions. The number of 

basis functions used to approximate the line are based upon the number of knots, or anchor 

points, used. In our numerical study, we use 3 knots located at months 3, 7, and 11. Based 

on the anchor points, the basis functions come together to form our approximated function. 

LME performs these approximations for curves for all 197 subjects in one step for model 

fitting. Imputation is based on the resulting model fit. 

To implement this method of imputation, we used the lme function in R. This 

function is used to fit a linear mixed-effects model. 

4.5 Functional Principal Components Analysis 

Functional Principal Components Analysis is a very popular method in the 

functional data analysis arena. It has been used in different contexts, but in our context we 

are using it as an imputation method. Functional Principal Components Analysis (fPCA) 

uses an estimate of the variance and covariance functions for generating the prediction of 

the missing point. The idea of fPCA is that the entire data variability can be reduced to 

approximately three components. We used the fPCA method from Goldsmith et al. (2013) 

and the fpca.sc R function (Goldsmith et al. 2019). Chapter 3 contains a discussion 

about fPCA.  
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Figure 3: This graph depicts the functional principal components fit for subjects 23, 56, 

and 112. The gray points show the observed values for the given subjects. The solid black 

lines display the fPCA fit. This is based upon the availability of the complete fragment 1 

data set. 

 

In our experiment, we found that the three components explain 90.14%, 6.80%, and 

3.04% of the variability respectively when using the complete data for fragment 1 for 

months 0-15. Using this method, an estimated fPCA line is fitted for each subject for each 

of the data scenarios considered, and a value is imputed from the estimated line to 

compensate for the missingness. 

 We applied fPCA as an imputation method. In our study data context where 

missingness was observed, we generated the smoothing trajectories using the available data 

0 5 10 15

-3
-2

-1
0

1
2

3

month

H
A

Z

HAZ data for the 3 patients



 

 23 

points given that one or more points have been removed. This differs from the method we 

see in the graph of Figure 3 as we had a complete fragment one available.  

4.6 Penalized Smoothing Method 1  

Penalized smoothing (PLS) is a method used on data whose observed values show 

a substantial amount of noise. This noise causes the functional objects related to the basis 

functions to inherit variability and appear “wiggly”. To combat these road blocks, 

penalized smoothing typically uses a large number of basis functions. There is a flexibility 

about the type of basis used. Besides splines, a popular type is Fourier. Fourier basis 

functions assume that the underlying function of the data is periodic. We use penalized 

smoothing that makes use of B-splines and Fourier basis functions. This is a point of 

variation between this method and LME, which we discussed earlier. Penalized smoothing 

typically uses a larger number of splines. PLS1 is a method related to basis function 

expansions. The term 𝑌𝑖,𝑙 is expressed using b-spline basis functions.  

It is important to be able to express functional data using basis expansion. This 

method of basis expansion is depicted below where Φ𝑚  are the collection of basis 

functions i.e (splines, wavelets, sine/cosine functions). These are evaluated at some grid of 

points 𝑙 ∈ [0,15] the same grid for all curves 𝑌𝑖,𝑙. 

 𝑌𝑖,𝑙 ≈ ∑ 𝑐𝑖,𝑚Φ𝑚(𝑙),   1 ≤ 𝑖 ≤ 𝑛
𝑀

𝑚=1
 (5) 

 This expansion assumes that the data can be approximated as a linear combination 

of M basic shapes Φ𝑚. M is smaller than the number of observed points per curve. This 

puts the curves on a common domain given by the basis functions, making them more 
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readily comparable. Each curve 𝑌𝑖,𝑙 is associated with the model coefficients 𝑐𝑖,𝑚 , 

m=1,2,…,M.  

The goal is to find the values of the coefficients which will minimize the penalized 

sum of squares (𝑃𝑆𝑆𝜆(c1,c2….cm)). In summary, this method uses basis function expansion 

for each curve and regularized regression. This method employs a penalized least squares 

functional regression approach to estimation: 

 𝑃𝑆𝑆𝜆(c1,c2….cm)=∑ (𝑌𝑖,𝑙 − �̂�𝑖,𝑙)2 +  𝜆 × 𝑃𝐸𝑁2(𝑌)𝑖,𝑙  (6) 

where 𝜆 is the value for the penalty and 𝑃𝐸𝑁2(𝑌) = ∫[𝐷2𝑌𝑙]2𝑑𝑙. The penalty is related to 

the integrated squared second derivative (Ramsay and Silverman 2005, Ch. 5). In method 

PLS1, the basis functions Φ𝑚(𝑙)  employed are B-splines. In our study, we use 10 basis 

functions, where 𝜆 = 0.09. We employed the R function Data2fd from the fda library 

(Ramsay et al. 2019). We selected our lambda value based on related implementations 

where 𝜆 values ranged from 0 to 1 (Ramsay et al. 2019).  
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Figure 4: The above graphs are two examples of B- splines similar to the ones we use in 

our first method of penalized smoothing PLS1.   

 

 

4.7 Penalized Smoothing Method 2  

The difference between this and PLS1 is that the basis functions Φ𝑚(𝑙)  employed 

are Fourier. 
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Figure 5: The above graphs are two examples of Fourier basis functions similar to the ones 

we use in our second method of penalized smoothing.  
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Chapter 5: Methods of Dynamic Prediction 

In order to obtain the full prediction of the future HAZ trajectory, there are several 

different methods of dynamic prediction that can be applied. Here we focus on functional 

models for dynamic prediction (Ivanescu et al. 2017). We describe these methods as they 

relate to the prediction methods used for this project. We employ dynamic methods of 

prediction due to the complexities of our data set. Some recent applications of dynamic 

prediction include: using call center data from the beginning of the day to predict call 

volume for the end of the day (Goldberg et al. 2014), using length-for-age, weight-for-

length, and weight-for-age z scores to identify children at risk of delayed growth (Leroux 

et al. 2018), and using real time traffic flow data to predict an up-to-date traffic flow 

trajectory (Chiou 2012).  It is considered dynamic because the unobserved curve data for 

future months is being predicted from data that occurred in this history of the curve. It is 

our interest to look dynamically at our historic data to predict and analyze our future data.  

We examine a number of methods of Dynamic Prediction including the Benchmark 

Dynamic (BENDY) method, the Dynamic Linear Model, Dynamic Penalized Functional 

Regression, and Dynamic Penalized Function-on-Function Regression (Ivanescu et al. 

2017). Chapter 7 contains some numerical analyses that compares the performance of these 

methods for dynamic prediction. In Chapter 6 we apply these methods to a simulation 

study. The observed historic HAZ data is denoted by Y𝒊,𝒍 for months l=0,…,15 for fragment 

1 data. For fragment 2 data, the data is denoted by Y𝒊,�̃� for months �̃� = 30,…,45. We will 

refer to fragment 1 as historic data, and fragment 2 as future data. For example, as described 

in Table 2, HAZ data for child i at month 0 will be depicted as Y𝒊,𝟎 and HAZ data for child 
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i at month 15 will be depicted as Y𝒊,𝟏𝟓 . Similarly, for fragment 2,  Y𝒊,𝟑𝟎 represents HAZ 

data for child i at month 30.  

Fragment 1 data 

(months 0-15) 

Fragment 2 data 

(months 30-45) 

𝒀𝒊,𝒍 𝒀𝒊,�̃� 

HAZ value at month l for child i, where 

l=0,…,15 and i=1,2,…, 197. 

HAZ value at month �̃� for child i, where 

�̃� = 30,…,45 and i=1,2,…, 197. 

 

Table 2: This table depicts the notation that will be used throughout this paper to denote 

subjects across different times within fragment one and fragment two.  

 

5.1 Benchmark Dynamic Method (BENDY) 

The first dynamic model we use is the BENDY model. The Benchmark Dynamic 

(BENDY) method uses the first and last point in the historic data set. The historic data is 

then used to predict the data point for each future month �̃�, where there is some distance 

between the historic and future data. We use notation 𝑌𝑖,0 to reflect the HAZ value for 

subject i at the start of fragment one, that is at month 0, and 𝑌𝑖,15 to reflect the HAZ value 

within fragment one at month 15. For future HAZ data we denote by 𝑌𝑖,�̃� the HAZ value 

within fragment 2 at month �̃�.  For our purpose 𝑌𝑖,𝑙 = 𝐻𝐴𝑍𝑖,𝑙, but this provides the generic 

BENDY model notation 

𝑌𝑖,�̃� = 𝑌𝑖,0𝛽0,15,�̃� + 𝑌𝑖,15𝛽15,15,�̃� + 𝜖𝑖,�̃�. (7) 

 

 

The BENDY model listed above is based upon prediction for one future data point for 

HAZ, specifically at month �̃�. In our case, we are using historic HAZ data to predict the 
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HAZ score for future months. In our context 𝑌𝑖,�̃� denotes 𝐻𝐴𝑍𝑖,�̃� , 𝑌𝑖,0 denotes 𝐻𝐴𝑍𝑖,0, and 

𝑌𝑖,15 denotes 𝐻𝐴𝑍𝑖,15.  

 

If we were to consider a secondary historic data source for prediction, our model would be 

adjusted to include 𝑍𝑖,0 and 𝑍𝑖,15. 

𝑌𝑖,�̃� =  𝑌𝑖,0𝛽0,15,�̃� + 𝑌𝑖,15𝛽15,15,�̃� + 𝑍𝑖,0𝛾0,15,�̃� + 𝑍𝑖,15𝛾15,15,�̃� + 𝜖𝑖,�̃� (8) 

 

An example of a potential historic data source Z we could consider would be a Weight for 

Age Z-score (WAZ) data set. In this instance, we would be using a combination of HAZ 

and WAZ data to predict the future HAZ data. Model parameters are indexed based on the 

time coordinates of the historic data and future data where prediction is done. 

 

 

5.2 Dynamic Linear Model (DLM) 

 The Dynamic Linear Model uses historic data to predict future scalar responses 

similar to the BENDY Model (Ivanescu et al. 2017). The primary difference between the 

two is that the DLM uses all available data points within the historic data in addition to the 

first and last historic data points. Below is the DLM model that further expands on the 

BENDY model to the context of our historic data setting. This is reflected in the formula 

for the DLM model  

𝑌𝑖,�̃� = ∑ 𝑌𝑖,𝑙𝛽𝑙,15,�̃�
15
𝑙=0 + 𝜖𝑖,�̃�. (9) 

 

DPFR and DPFFR are some other models that make use of the entire historical data set 

from months 0 to l5. The DLM model takes the sum of the covariates while the DPFR 

and DPFFR integrate the functional covariates across all the months in fragment 1.   
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5.3 Dynamic Penalized Function Regression (DPFR) 

 Dynamic Penalized Function Regression is a modified version of DLM in that it 

imposes penalized smoothing onto the model coefficients. Dynamic Penalized Function 

Regression (DPFR) is represented by the same model as DPFFR which will be discussed 

in the following section. The model is depicted below 

𝑌𝑖,�̃� = ∫ 𝑌𝑖,𝑙𝛽𝑙,15,�̃� 𝑑𝑙
15

𝑙=0
+ 𝜖𝑖,�̃�. (10) 

 

 A difference between the two is that in DPFR, the response variable 𝑌𝑖,�̃� is considered as a 

scalar response, not a functional response like in DPFFR. This is due to differences in the 

smoothing components of these two models. The penalized smoothing in DPFR consists 

of smoothing for the regression coefficient in the direction of only historical data whereas, 

DPFFR is able to perform smoothing for the functional regression model coefficients in 

multiple dimensions.  

 

5.4 Dynamic Penalized Function-on-Function Regression (DPFFR) 

 Throughout this paper’s numerical study in Chapter 6, we employ Dynamic 

Penalized Function-on-Function Regression (DPFFR) as a method of predicting the 

functional response 𝑌𝑖,�̃� of subject i over fragment two. This differs from the methods of 

BENDY, DLM, and DPFR in that is predicts functional responses rather than targeting 

scalar outcomes. We use historic data to obtain predictions for the estimates of future 

values 𝑌𝑖,�̃�. The model for DPFFR is  

𝑌𝑖,�̃� = ∫ 𝑌𝑖,𝑙𝛽𝑙,15,�̃� 𝑑𝑙
15

𝑙=0
+ 𝜖𝑖,�̃�. (11) 
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When reviewing the DLM, DPFR, and DPFFR models of prediction, it is presumed that 

the DPFFR model will provide the most accurate predictions, while DPFR and DLM might 

follow behind respectively.  

 

All methods of prediction will employ the technique of leave one-curve out cross-

validation (Ivanescu et al. 2017), forming a test set of 1 subject, and a training set of 196. 

We will use this technique in order to align with the method of model prediction validation 

(Ivanescu et al. 2016). 
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Chapter 6. Numerical Study 

 Our empirical study features a simulation of fully observed (dense) data for 

fragment 2 (HAZ data for months 30-45). Data for months 0-15 was available (Ivanescu et 

al. 2017) for fragment 1 data. For this simulation we used the data for fragment 1 (HAZ 

data for months 0-15) as input data in the data generation model. We simulated 100 

different datasets for HAZ at months 30-45. Figure 6 depicts an example of simulated 

dataset where fragment 2 data was simulated using fragment 1 data.  

 
Figure 6: The above graph depicts the fragment 1 and fragment 2 data for all 197 subjects. 

The model used was the DPFFR model. Highlighted are subjects 23, 56, and 112.   

 

Simulations make use of the DPFFR statistical model (Ivanescu et al. 2017) that 

was described in Section 5.4. The functional parameters chosen are similar to the work in 

Goldsmith et al. (2012) and Ivanescu et al. (2015).  Specifically, we employed a functional 
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bivariate slope of the form  𝛽𝑙,15,�̃� =
1

2.5
 (cos (

2𝜋𝑡

16
) × √

�̃�

�̃� .4) . We represent our DPFFR 

model as 𝑌𝑖,�̃�
 = 𝜁(�̃�) + ∫ 𝑌𝑖,𝑙𝛽𝑙,15,�̃�𝑑𝑙 + 𝜀𝑖,�̃�

15

𝑙=0
, where our errors were assumed to be 

normally distributed  as     𝜀𝑖,�̃�~𝑁(0, 0.102) and 𝜁(�̃�) = 𝑒−10(�̃�−34.5)2
  was the intercept 

function. There were 100 simulated datasets for fragment 2 data. The bivariate model 

parameter is displayed in Figure 7. Other values for the composition of the 𝛽𝑙,15,�̃�  parameter 

would yield different datasets 𝑌𝑖,�̃�
 . 

 

Figure 7: Illustrated above is the beta function employed in the DPFFR model for data 

generation. 

 

 

6.1 Data Generation 

Our initial HAZ data set provides the height-for-age Z scores (HAZ) for 197 patients across 

months 0-15 (fragment 1). We will use the data from months (0-15) in order to predict the 

data in months 30-45 (fragment 2). We examine the use of a dynamic prediction model. 
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We use the DPFFR (Dynamic Penalized Function-on-Function Regression) model of 

dynamic prediction.  We employ the technique of leave one curve-out cross validation 

(Ivanescu et al 2017) in order to obtain prediction for each curve i at month �̃�: �̂�𝑖,�̃� . 

6.2 Simulation of Missing Data 

For months 1-14 we simulate missingness. We only simulate missing data for one month 

at a time. Table 1 Column I1 contains MSEP metric for prediction of 𝑌𝑖,�̃� when month 1 

was simulated as missing and then imputed using imputation methods employed, such as 

LOCF. 

In the numerical study we simulate missing values for data at months 1-14. Data 

from only one month is removed in each iteration. Data for the first and last month (month 

0 and month 15) are considered observed. To begin with, we remove HAZ data at month 

1 for all subjects. Imputation methods can provide a plug in or calculated value for month 

1 data for all subjects. Then, dynamic prediction model DPFFR is employed to obtain 

predicted HAZ data at months 30-45 using data from months 0-15 as predictive 

information. Overall, we consider removal of each month separately in the history of HAZ 

data, starting with month 1 through month 14, where only one month is removed for all 

subjects each time. In doing this, we will examine which month removal provides a 

prediction performance that suggests that the missing HAZ data and subsequent imputation 

will have the least effect on the overall dynamic prediction. The goal is to suggest four 

months where HAZ data points are planned for removal from the months 0-15 HAZ 

trajectory. After studying the removal of one month, we compare the prediction 

performance across months to decide on the candidate month for removal. In the next step, 

the strategy we follow is to remove the second HAZ data for a given HAZ curve given the 
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first point has already been removed. This will keep the first missing data uniform amongst 

all subjects, and the second missing data will be systematically generated to be the same 

among all subjects.  

6.3 Metrics 

 Several metrics were used in this study to compare the different methods applied.  

We used the Mean Squared Error for Prediction (MSEP), Mean Squared Error for 

Estimation (MSEE), and Akaike Information Criterion (AIC). 

Mean Squared Error: MSEP is calculated for each dataset as the average of the 

squared of errors between the actual value Y and the predicted value, �̂�. The metric is used 

to track how great of an impact the data point removal and imputation has on our predicted 

values for moths 30-45. An equation representing this function for a given dataset is:  

MSE= 
1

𝑛
∑

1

15
∑ (𝑌𝑖,�̃� − �̂�𝑖,�̃�)

245
�̃�=30

𝑛
𝑖=1  (12) 

where �̂� represents our predicted value and Y represents the value for the response Y at 

month �̃� in fragment 2. We calculate the MSEP for each dataset and we report MSEP as 

the average across 100 datasets. MSE of Estimation (MSEE) is used as metric for 

estimation of 𝛽. AIC is used to estimate the quality of a set of statistical models relative to 

one another for a given set of data.  We provide AIC metrics (Wood 2006) derived from R 

implementations corresponding to the functional models (Ivanescu et al. 2017) for dynamic 

prediction.  

6.4 Results for Dynamic Prediction 

 We compare several data imputation mechanisms for longitudinal functional data. 

Using the data generated in the numerical study, imputation is performed for the seven 
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imputation methods SSR, LIE, LOCF, LME, fPCA, PLS1 and PLS2. These techniques 

were described in Chapter 4. 

Imputation Step 1  

Imputation Step 1 contains an analysis for the study of imputation for one month 

among all historic HAZ data (months 0-15). Because we only simulate missingness for the 

inner data points, months 1-14 are considered candidates for removal of HAZ data and 

subsequent imputation.  

Below is a table tracking the Mean Squared Error (MSEP) for DPFFR prediction 

after removing each of the 14 inner data points. Table 1 Column Im1 (Imputation for month 

1) contains MSEP for DPFFR prediction for future HAZ 𝑌𝑖,�̃� when historic month 1 HAZ 

data was simulated as missing and then imputed using methods SSR, LIE, LOCF, LME, 

fPCA, PLS1 and PLS2. Columns Im2 (Imputation for month 2) through Im14 (Imputation 

for month 14) contain similar quantities when HAZ at each of months 2-14 was considered 

as a candidate for removal. It is our goal to repeat this process until we find several months 

to consider for removal from the historic HAZ data from months 1-14. The step of dynamic 

prediction is done after the imputation of historic data. We employ DPFFR for dynamic 

prediction of HAZ data at months 30-45. This study considers data generated from the 

numerical study where we simulated 100 different HAZ datasets for fragment 2 data 

(months 30-45). The prediction is then compared with the true value to determine the 

MSEP metric across months 30-45, across all subjects, and across all 100 simulated HAZ 

datasets. Numbers in Table 3 contain average MSEP values across 100 simulated datasets. 

We will also be measuring the procedures in terms of the Akaike Information Criterion 

(AIC), and the Mean Squared Error for Estimation (MSEE) where we compare our 
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estimated β with our true β value. Tables in the Appendix show the results for these metrics. 

After we find the initial least problematic point to remove, we will remove another point 

given the first is already out of the sampling design. We will create  

another set of tables for each point removed to develop the sampling schedule.  

Summarized Results for Imputation Step 1 

The Mean Squared Error for Prediction (MSEP) ranged from 10.08 to 12.97, where 

10.08 was an optimal prediction that considered all available data fully observed. 

Considering that a smaller MSEP is desired, months 4 and 12 are shown to be candidate 

months for HAZ data removal as their imputation yields the smallest MSEP across all 

months 1-14 considered as candidates for removal. Columns Im4 and Im12 had the 

smallest MSEP among all columns Im1-Im14. These results are confirmed by further 

analysis of the additional metrics.  

The imputation methods that appear to be the most effective overall for 

approximation of the missing HAZ data value are seen to be Functional Principal 

Component Analysis (fPCA) and the Linear Mixed Effect Model (LME), as these exhibit 

smaller MSEP values. These are both pooled curves methods, meaning that for their 

implementation the entire set of curves are needed for application of the data imputation 

method.  
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Table 3. Results for MSEP for the case of one-month data that is missing. Results are 

displayed as MSEP x 100. 

 

The Mean Squared Error for Estimation (MSEE) results shown in the tables in the 

Appendix range from .0215 to .5218, where .0215 is an optimal estimation of β model 

parameter. Given this metric of estimation we conclude that months 4 and 12 are indicated 

as candidates for removal because MSEE is smallest for columns Im4 and Im12. The 

imputation method that is seen to be the most effective for estimation of β is Functional 

  SSR LIE  LOCF  LME  fPCA  PLS1  PLS2  

Im1 12.5 11.97 11.83 11.81 11.82 11.88 11.99 

Im2 11.52 11.46 11.89 11.3 11.32 11.38 11.42 

Im3 10.66 10.57 10.63 10.53 10.54 10.55 10.57 

Im4 10.08 10.08 10.08 10.08 10.08 10.08 10.08 

Im5 10.46 10.43 10.53 10.36 10.37 10.41 10.44 

Im6 11.58 11.42 11.72 11.17 11.17 11.3 11.38 

Im7 12.02 11.88 12.35 11.73 11.73 11.8 11.86 

Im8 12.35 12.39 12.97 11.91 11.9 12.1 12.23 

Im9 11.86 11.86 12.33 11.57 11.56 11.71 11.8 

Im10 11.13 11.15 11.54 10.85 10.84 11.01 11.13 

Im11 10.32 10.33 10.45 10.31 10.31 10.32 10.33 

Im12 10.08 10.08 10.08 10.08 10.08 10.08 10.08 

Im13 10.4 10.37 10.44 10.36 10.36 10.36 10.37 

Im14 11.19 11.17 11.54 11.11 11.11 11.12 11.17 
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Principal Component Analysis because the row labeled fPCA contains the smallest MSEE 

across all imputation methods. 

The Akaike Information Criterion (AIC) results posted in the Appendix range from 

.1704 to .2460, where .1704 is an optimal value for this metric. Based on this metric, 

months 4 and 12 are rated equally, because AIC was smallest among all results in the table. 

Based on this metric alone, it appears that either one could be removed relatively 

unproblematically.  

Based upon the results highlighted by the above metrics, month 4 is unanimously 

the least problematic month to remove when studying the DPPFR model. It appears that its 

removal would have negligible effect if considered missing. Although, is also apparent that 

month 12 is very similarly unproblematic. In terms of imputation method, fPCA is the most 

effective across the board. We have determined that we will remove both months 4 and 

months 12 before going on to further this sampling study design.  When looking at the least 

problematic months to remove, it appears our results were cohesive regardless of 

imputation method. To continue, we ran the next step of the sampling design study given 

that HAZ data at months 4 and 12 has already been removed.  

Imputation Step 2   

Imputation Step 2 contains an analysis for the study of imputation for one month 

among historic HAZ data, given that HAZ data at months 4 and 12 were assumed removed 

from the HAZ historic data sampling design. Months 1-3, 5-11, 13-14 are considered 

candidates for removal of HAZ data and subsequent imputation. Table 4 contains MSEP 

results for imputation step 2 and additional metrics were placed in the Appendix. 
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Summarized Results for Imputation Step 2 

The MSEP results ranged from 10.08 to 13.10. A value of 10.08 was calculated to be the 

MSEP corresponding to a fully observed historic HAZ dataset. This is a slightly larger 

range than that of the previous simulation. Based upon the results, it appears month 11 and 

13 are the least problematic to remove. It is also important to note that months 3 and 5 

appear relatively unproblematic as well. Recall that the above-mentioned months border 

the months which we removed in the previous step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Results for MSEP for Imputation Step 2. Results are displayed as MSEP x 100. 

 

 

  SSR LIE  LOFC  LME  fPCA PLS1  PLS2 

Im1 12.5 12.00 11.94 11.89 11.89 11.91 11.99 

Im2 11.6 11.44 11.91 11.34 11.34 11.39 11.43 

Im3 10.74 10.58 10.63 10.55 10.56 10.57 10.59 

Im4               

Im5 10.57 10.50 10.58 10.39 10.39 10.47 10.54 

Im6 11.74 11.42 11.66 11.19 11.2 11.34 11.42 

Im7 12.11 11.92 12.39 11.77 11.77 11.81 11.86 

Im8 12.44 12.45 13.1 11.96 11.97 12.14 12.29 

Im9 11.99 11.90 12.45 11.63 11.64 11.74 11.83 

Im10 11.22 11.12 11.53 10.86 10.85 11.01 11.12 

Im11 10.41 10.36 10.42 10.32 10.32 10.34 10.35 

Im12               

Im13 10.44 10.38 10.45 10.37 10.37 10.37 10.37 

Im14 11.32 11.21 11.43 11.18 11.18 11.19 11.25 
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The imputation methods that appear to be the most effective for DPFFR prediction 

performance are seen to be Functional Principal Component Analysis and the Linear Mixed 

Effect Model.   

The Mean Squared Error for Estimation (MSEE) results posted in the Appendix 

range from .023 to .697. Similar to MSEP, this range is slightly wider than that from the 

previous step. After examining this table, it is confirmed that months 3, 5, 11, and 13 are 

least problematic to remove. The imputation method that is seen to be the most effective 

for estimation results of β model parameter is Functional Principal Component Analysis.  

The Akaike Information Criterion (AIC) results posted in the Appendix ranged 

from .170 to .249. Based on this metric, month 11 is a candidate and month 13 falls close 

behind.  

Based upon the results highlighted by the above metrics, months 11 and 13 are 

equally unproblematic to remove. The removal of these points will have the least impact 

on MSEP, MSEE, and model accuracy. We have determined that we could remove both 

months 11 and 13 at the conclusion of the Imputation Step 2. Our results are cohesive 

amongst all the metrics, but we also think it is important to note the results of months 3 and 

5 as well. They were slightly more problematic to remove, but at this stage, we do not have 

sufficient evidence to suggest anything else for removal in addition to months 11 and 13.  

Figure 8 depicts the conclusion of our sampling study. The future curves are 

suggested to be predicted using the remaining historic data points illustrated in black while 

acknowledging a corresponding change in prediction performance. 
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Upon successfully suggesting the removal of HAZ data at months 4, 11, 12, and 13 

based on our numerical study conducted in this chapter we completed our goals for our 

sampling design study.   

 

Figure 8: Illustrated above is the HAZ data for 3 subjects post removal of months 4, 11, 

12, and 13. The gray points show the location of suggested HAZ data that are suggested 

for removal in the sampling study.  
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Chapter 7. Dynamic Prediction for Longitudinal 

Functional Data 

In this chapter we conduct an additional numerical study for comparing several dynamic 

prediction methods in the context of longitudinal functional data.  

7.1 HAZ Data  

We now examine the historic HAZ data set (months 0-15) as two distinct fragments. 

Recall that we have 15 months of data for 197 subjects. We intend to further study 

additional methods of dynamic prediction for longitudinal functional data using the 

different fragments of this longitudinal data. We take months 0 to 5 as our historic data. It 

is our intent to measure the accuracy of nine different methods of dynamic prediction by 

using historic HAZ data at months 0 to 5 to predict HAZ data at future months 10 to 15. 

We will use the notation Y𝒊,𝒍 for months l=0,..,5 (historic data). To denote future HAZ data, 

we will use Y𝒊,�̃� for months �̃� = 10,..,15.  

7.2 Methods of Dynamic Prediction  

We investigate several dynamic prediction methods presented in Chapter 5 

(BENDY, DLM, DPFR, DPFFR) for our HAZ data setting in this chapter. The BENDY, 

DLM, DPFR, and DPFFR dynamic models have been discussed earlier and use the method 

of leave one-curve out CV (Ivanescu et al. 2017). However, these methods have not been 

investigated in the context of longitudinal functional data. Several additional methods 

based on Nearest Neighbors (NN) denoted by NN1, NN2, NN3, NN4, NN5 are methods 

based on the principles of nearest neighbors and were applied here for dynamic prediction 

of longitudinal functional data. We discuss these methods next. 
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NN1: This method of dynamic prediction calculates n-1 distances between curves where n 

is equal to 197. Given historic data for a given subject, 196 distances are computed for 

historic data. Each distance is computed between the HAZ curve for a given subject i and 

all the remaining curves consisting of n-1 curves. Each subject serves as subject i for the 

calculation of these distances. This procedure is similar to the method of leave one-curve 

out validation. The purpose of this method is to determine which subject behaves the 

closest to the subject we aim to predict. When the subject within the closest distance 

(smallest distance) is identified, we use that subject’s future HAZ data as an estimate for 

the points we wish to predict.  

NN2: This method is similar to NN1, but it incorporates the 2 subjects that behave the 

closest to the subject we aim to predict. It uses a pointwise average to calculate the 

estimation for the points we wish to predict. We examine several similar methods where 

we incorporate the 2nd, 3rd, 4th, and 5th closest subjects for estimations. We will refer to 

these methods as NN2, NN3, NN4, and NN5 respectively.  

7.3 Results  

 Results are displayed in Table 5. Using mean squared error of prediction (MSEP) 

as the metric, we discovered that DPFFR is the most efficient method and has the smallest 

MSEP. This method is closely followed by DLM and DPFR. Amongst the nearest 

neighbors methods, it can be seen that prediction accuracy increases as additional subjects 

are incorporated in the calculations.  
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Method of Dynamic Prediction  Mean Squared Error of Prediction 

(MSEP)  

BENDY  22.799 

DLM 19.253 

DPFR 19.296 

DPFFR 19.066 

NN1 45.802 

NN2 33.542 

NN3 30.965 

NN4 28.865 

NN5 27.164 

 

Table 5: The table above reflects the Mean Squared Error for Prediction (MSEP) values 

across our 9 methods of dynamic prediction. Results are displayed as MSEP x 100. 
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Chapter 8: Conclusion  

The work proposed considered the data setting of longitudinal functional data. We 

discussed a setting where sampling studies can be designed when using dynamic models 

for prediction. The methods deal with data imputation methods. The imputation methods 

that use pooled curves performed better than imputation methods performed only at the 

curve level. Implementations used the method of dynamic prediction DPFFR (dynamic 

function-on-function regression). There are several other methods of dynamic prediction 

that can be studied in the context of longitudinal functional data, such as BENDY, DLM, 

DPFR, or other methods based on nearest neighbors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 47 

References 

Bunea, F., Ivanescu, A. E., and Wegkamp, M. H. (2011). Adaptive inference for the 

mean of a Gaussian process in functional data. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology), 73(4), 531-558. 

 

Chén, O. Y., Xiao, L., Caffo, B. S., Lindquist, M. A., Schrack, J. A., Ferrucci, L., and 

Crainiceanu, C. M. (2016). A marginal approach to longitudinal functional data for 

analyzing daily physical activity patterns. Accessed on March 22, 2019 at 

http://oliverychen.github.io/files/doc/LFDA.pdf 

 

Chiou, J. M. (2012). Dynamical functional prediction and classification, with application 

to traffic flow prediction. The Annals of Applied Statistics, 6(4), 1588-1614. 

 

Cnaan, A., Laird, N. M., and Slasor, P. (1997). Using the general linear mixed model to 

analyse unbalanced repeated measures and longitudinal data. Statistics in 

medicine, 16(20), 2349-2380. 

 

Diggle, P., J., Heagerty, P., Heagerty, P. J., Liang, K. Y., and Zeger, S. (2002). Analysis 

of longitudinal data. Oxford University Press. Oxford. 

 

Fan, Y., Foutz, N., James, G. and Jank, W. (2014) Functional response additive model 

estimation with online virtual stock markets. The Annals of Applied Statistics, 8, 2435-

2460. 

http://oliverychen.github.io/files/doc/LFDA.pdf


 

 48 

 

Goldberg, Y., Ritov, Y. A., and Mandelbaum, A. (2014). Predicting the continuation of a 

function with applications to call center data. Journal of Statistical Planning and 

Inference, 147, 53-65. 

 

Goldsmith, J., Crainiceanu, C. M., Caffo, B., and Reich, D. (2012). Longitudinal 

penalized functional regression for cognitive outcomes on neuronal tract measurements. 

Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(3), 453-469. 

 

Goldsmith, J., Greven, S., and Crainiceanu, C. (2013). Corrected confidence bands for 

functional data using principal components. Biometrics, 69(1), 41-51. 

 

Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., McLean, M. W., 

Swihart, L., Xiao, L., Crainiceanu, C., and Reiss, P. T. (2019). refund: Regression with 

Functional Data. R package version 0.1-17. https://CRAN.R-project.org/package=refund 

 

Grajeda, L. M., Ivanescu, A. E., Saito, M., Crainiceanu, C. M., Jaganath, D., Gilman, R. 

H., Crabtree, J. E., Kelleher, D., Cabrera, L., Cama, V., and Checkley, W. (2016). 

Modelling subject-specific childhood growth using linear mixed-effect models with cubic 

regression splines. Emerging Themes in Epidemiology, 13, 1-13. 

 

Green, P. J., and Silverman, B. W. (1994). Nonparametric regression and generalized 

linear models. Chapman & Hall New York. 

https://cran.r-project.org/package=refund


 

 49 

 

Hedeker, D. R., and Gibbons, R. D. (2006). Longitudinal data analysis. Hoboken, NJ: 

Wiley-Interscience.  

 

Ieva, F., and Paganoni, A. M. (2016). Risk prediction for myocardial infarction via 

generalized functional regression models. Statistical Methods in Medical Research, 25(4), 

1648-1660. 

 

Islam, M. N., Staicu, A. M., and van Heugten, E. (2016). Longitudinal dynamic 

functional regression. Accessed on March 22, 2019 at https://arxiv.org/abs/1611.01831  

 

Ivanescu, A. E., Staicu, A. M., Scheipl, F., and Greven, S. (2015). Penalized function-on-

function regression. Computational Statistics, 30(2), 539-568. 

 

Ivanescu, A. E., Li, P., George, B., Brown, A. W., Keith, S. W., Raju, D., and Allison, D. 

B. (2016). The importance of prediction model validation and assessment in obesity and 

nutrition research. International Journal of Obesity, 40(6), 887. 

 

Ivanescu, A. E., Crainiceanu, C. M., and Checkley, W. (2017). Dynamic child growth 

prediction: A comparative methods approach. Statistical Modelling, 17(6), 468-493. 

 

https://arxiv.org/abs/1611.01831


 

 50 

Ji, H., and Müller, H. G. (2017). Optimal designs for longitudinal and functional data. 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 859-

876. 

 

Kokoszka, P., and Reimherr, M. (2017). Introduction to functional data analysis. CRC 

Press, Boca Raton, FL. 

 

Leroux, A., Xiao, L., Crainiceanu, C., and Checkley, W. (2018). Dynamic prediction in 

functional concurrent regression with an application to child growth. Statistics in 

Medicine, 37(8), 1376-1388. 

 

Overall, J. E., Tonidandel, S., and Starbuck, R. R. (2009). Last-observation-carried-

forward (LOCF) and tests for difference in mean rates of change in controlled repeated 

measurements designs with dropouts. Social Science Research, 38(2), 492-503. 

 

Park, S. Y., and Staicu, A-M. (2015). Longitudinal functional data analysis. STAT, 4, 

212-226. 

 

Park, S. Y., Xiao, L., Willbur, J. D., Staicu, A. M., and Jumbe, N. N. (2018). A joint 

design for functional data with application to scheduling ultrasound scans. Computational 

Statistics and Data Analysis, 122, 101-114. 

 



 

 51 

R Development Core Team (2019), R: A Language and Environment for Statistical 

Computing, R Core Team. R Foundation for Statistical Computing, Vienna, Austria, 

http://www.R-project.org. 

 

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. 2nd ed. Springer 

Series in Statistics, Springer, New York. 

 

Ramsay, J. O., Wickham, H., Graves, S., and Hooker, G.  (2019). fda: Functional Data 

Analysis. R package version 2.4.8.  https://CRAN.R-project.org/package=fda.  

 

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric regression. 

Cambridge: Cambridge University Press. 

 

Shang, H. L. (2017). Forecasting intraday S&P 500 index returns: A functional time 

series approach. Journal of Forecasting, 36(7), 741-755. 

 

Sørensen, H., Goldsmith, J., and Sangalli, L. M. (2013). An introduction with medical 

applications to functional data analysis. Statistics in Medicine, 32(30), 5222-5240. 

 

Verbeke, G., and Molenberghs, G. (2009). Linear mixed models for longitudinal data. 

Springer Science and Business Media. New York. 

 

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R, Chapman & 

Hall/CRC, New York. 

http://www.r-project.org/
https://cran.r-project.org/package=fda


 

 52 

 

Wrobel, J., Park, S. Y., Staicu, A. M., and Goldsmith, J. (2016). Interactive graphics for 

functional data analyses. Stat, 5(1), 108-118.  

 

Wu, M., Diez‐Roux, A., Raghunathan, T. E., and Sánchez, B. N. (2018). FPCA‐based 

method to select optimal sampling schedules that capture between‐subject variability in 

longitudinal studies. Biometrics, 74(1), 229-238. 

 

Xiao, L., Zipunnikov, V., Ruppert, D., and Crainiceanu, C. (2016). Fast covariance 

estimation for high-dimensional functional data. Statistics and Computing, 26(1-2), 409-

421. 

 

Yao, F., Müller, H. G., and Wang, J. L. (2005a). Functional data analysis for sparse 

longitudinal data. Journal of the American Statistical Association, 100(470), 577-590. 

 

Yao, F., Müller, H. G., and Wang, J. L. (2005b). Functional linear regression analysis for 

longitudinal data. The Annals of Statistics, 33(6), 2873-2903. 

 

Zhang, D., and Davidian, M. (2001). Linear mixed models with flexible distributions of 

random effects for longitudinal data. Biometrics, 57(3), 795-802. 

 

 

 



 

 53 

 

APPENDIX  

Included below are several other metrics used in determining the sampling study 

design for longitudinal functional data setting considered. The metrics presented in this 

Appendix include AIC and mean squared error for estimation (MSEE) accuracy.  

Imputation Step 1:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Results for MSEE for Imputation Step 1. Results are displayed as MSEE x 100. 

 

 

 

 

 

 

  
SSR LIE LOCF LME fPCA PLS1 PLS2 

Im1 0.240 0.134 0.554 0.225 0.059 0.135 0.045 

Im2 0.121 0.098 0.134 0.130 0.033 0.081 0.056 

Im3 0.042 0.049 0.107 0.048 0.023 0.049 0.049 

Im4 0.021 0.021 0.020 0.022 0.021 0.021 0.021 

Im5 0.048 0.043 0.039 0.055 0.025 0.031 0.032 

Im6 0.084 0.059 0.107 0.114 0.023 0.064 0.080 

Im7 0.361 0.484 0.671 0.274 0.132 0.444 0.532 

Im8 0.117 0.236 0.488 0.111 0.028 0.213 0.294 

Im9 0.200 0.271 0.467 0.073 0.086 0.252 0.292 

Im10 0.060 0.037 0.034 0.044 0.023 0.041 0.046 

Im11 0.043 0.045 0.061 0.026 0.023 0.047 0.052 

Im12 0.020 0.020 0.020 0.022 0.022 0.020 0.020 

Im13 0.084 0.082 0.103 0.051 0.031 0.074 0.065 

Im14 0.425 0.203 0.243 0.109 0.038 0.179 0.069 
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Table 2: Results for AIC for Imputation Step 1. Results are displayed as AIC /104. 

 

 

 

 

 

 

 

 

 

  SSR1 LIE LOCF LME fPCA PLS1 PLS2 

Im1 0.235 0.222 0.218 0.218 0.218 0.220 0.222 

Im2 0.210 0.209 0.220 0.205 0.205 0.207 0.208 

Im3 0.187 0.185 0.186 0.184 0.184 0.184 0.185 

Im4 0.170 0.170 0.170 0.170 0.170 0.170 0.170 

Im5 0.182 0.181 0.183 0.179 0.179 0.180 0.181 

Im6 0.212 0.208 0.215 0.201 0.201 0.205 0.207 

Im7 0.223 0.220 0.231 0.216 0.216 0.218 0.219 

Im8 0.231 0.232 0.246 0.220 0.220 0.225 0.228 

Im9 0.219 0.219 0.231 0.212 0.212 0.215 0.218 

Im10 0.200 0.200 0.211 0.192 0.192 0.197 0.200 

Im11 0.177 0.178 0.181 0.177 0.177 0.177 0.178 

Im12 0.170 0.170 0.170 0.170 0.170 0.170 0.170 

Im13 0.180 0.179 0.181 0.179 0.179 0.179 0.179 

Im14 0.202 0.201 0.211 0.199 0.199 0.200 0.201 
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Imputation Step 2:  

  SSR LIE LOCF LME fPCA PLS1 PLS2 

Im1 0.257 0.126 0.593 0.241 0.058 0.133 0.057 

Im2 0.214 0.126 0.165 0.175 0.036 0.117 0.08 

Im3 0.1 0.076 0.114 0.08 0.029 0.075 0.079 

Im4               

Im5 0.035 0.031 0.078 0.067 0.025 0.027 0.03 

Im6 0.076 0.059 0.137 0.145 0.028 0.058 0.069 

Im7 0.416 0.497 0.697 0.339 0.144 0.472 0.572 

Im8 0.152 0.18 0.401 0.141 0.027 0.173 0.268 

Im9 0.179 0.228 0.38 0.075 0.086 0.228 0.266 

Im10 0.06 0.068 0.047 0.065 0.031 0.074 0.085 

Im11 0.106 0.085 0.097 0.034 0.028 0.09 0.111 

Im12               

Im13 0.109 0.086 0.112 0.051 0.03 0.079 0.075 

Im14 0.151 0.206 0.321 0.122 0.042 0.195 0.072 

 

Table 3. Results for MSEE for Imputation Step 2. Results are displayed as MSEE x 100. 
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  SSR LIE LOCF LME fPCA PLS1 PLS2 

Im1 0.235 0.223 0.221 0.22 0.22 0.22 0.222 

Im2 0.212 0.208 0.22 0.206 0.206 0.207 0.208 

Im3 0.189 0.185 0.186 0.184 0.184 0.185 0.185 

Im4               

Im5 0.185 0.183 0.185 0.179 0.179 0.182 0.184 

Im6 0.216 0.208 0.214 0.202 0.202 0.205 0.208 

Im7 0.225 0.221 0.232 0.217 0.217 0.218 0.219 

Im8 0.233 0.234 0.249 0.222 0.222 0.226 0.23 

Im9 0.223 0.22 0.234 0.213 0.214 0.216 0.218 

Im10 0.202 0.2 0.21 0.193 0.192 0.197 0.2 

Im11 0.18 0.178 0.18 0.177 0.177 0.178 0.178 

Im12               

Im13 0.181 0.179 0.181 0.179 0.179 0.179 0.179 

Im14 0.205 0.202 0.208 0.201 0.201 0.202 0.203 

 

Table 4. Results for AIC for Imputation Step 2. Results are displayed as AIC /104.  
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