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Abstract

In this study, we will analyze a supply retailing company’s data to model the relationship

between their customer’s past purchase behavior to predict their future online purchase

behavior. The data was divided into time periods from 2016: P1-P6(January 31st to July

30th) and P7(July 31st to August 27th ). Based on customer’s past purchase information

from the P1-P6 period, such as money spent, number of cart additions, transactions type,

number of unique purchase dates, number of unique purchase skus, number of page views,

number browse dates, company size, and number of products purchased, we aim to find if

these information could predict the customer’s purchase behavior in the P7 period, which is

the number of responses the customer responded to emails sent to them during P7. With

the response variable as count data, we model the data in R with the Poisson distribution

regression with an offset variable. We also model the number of responses out of the number

of emails sent using a logistic regression model. For the Poisson model, since there are

zero inflation or over-dispersion issues in the response, hurdle model, zero-inflated-poisson

(ZIP) model and zero-inflated-negative-binomial (ZINB) model would be used to handle

these issues. Model comparisons among the Poisson model with an offset, logistic regression

model, hurdle model, ZIP, ZINB is conducted to select the best model to fit the data using

the AIC criterion and the cross-validation criterion.
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Chapter 1

Introduction

1.1 Background

In this study, we aim to study the relationship between customer’s past purchasing behavior

and their future purchase behavior for a supply retailing company (SRC). The variable of

interest is the number of purchases made by the customer in a certain period after receiving

emails from the company. In business, psychology, social, and public health related research,

it is common that the outcomes are relatively infrequent behaviors and phenomena. Data

with abundant zeros are especially frequent in research studies when counting the occur-

rence of certain behavioral events, such as number of purchases made, number of school

absences, number of cigarettes smoked, or number of hospitalizations. These types of data

are called count data and their values are usually non-negative with a lower bound of zero.

Common issues when dealing with count data are typically zero inflation (excessive zeros),

over-dispersion (greater variability than expected) and under-dispersion (less variability than

expected).

The classical Poisson regression model for count data is often of limited use in these dis-

ciplines because empirical count data sets typically exhibit over-dispersion, under-dispersion

or an excess number of zeros. One way to deal with over-dispersion is a negative bino-
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mial (NB) regression. The negative binomial model belongs to the family of generalized

linear models [13]. However, although negative binomial model typically can capture over-

dispersion rather well, it is in many applications not sufficient for modeling excess zeros. In

the econometrics and statistics literature, Mullahy [12] and Lambert [10] proposed the zero-

augmented models that address this modeling by a second model component capturing zero

counts. Hurdle models [12] combine a left-truncated count component with a right-censored

hurdle component. Zero-inflation models [10] take a somewhat different approach: they are

mixture models that combine a count component and a point mass at zero. An overview of

count data models in econometrics, including hurdle and zero-inflated models, is provided

in Cameron and Trivedi [4, 5].

The remainder of this thesis is organized as follows: Chapter 2 discusses data cleaning and

exploratory analysis of the SRC data. In Chapter 3, we discuss all count regression models

and check over-dispersion, under-dispersion or zero-inflation for SRC data. In Chapter 4, we

use three methods to select the best model for the SRC data. The summary in Chapter 5

concludes the main part of the thesis.

1.2 Data source

The data analyzed in this thesis for SRC account managed business customers and was

collected between January 31, 2016 and September 03, 2016. Data from January 31st through

July 30th represents SRC’s fiscal calendar periods 1 through 6 (referred to as P1 through

P6). July 31st through August 27th represents P7. For the purpose of this thesis we are

interested in understanding whether and how a customer’s information from P1 through P6

may be used to predict if they will respond to an e-mail sent during P7. The sample size of

the SRC data is 34,579.
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1.3 Variables used in the data

Rewards is a unique identifier of the customer.

Email is the number of emails sent to the customer during P7.

Responses is the number of emails sent during P7 that a customer responded to (a response

is the act of making a purchase within 7 days of receiving the email).

Revenue is the amount of money spent by the customer during P1 through P6.

Units is the number of product units purchased by the customer during P1 through P6.

Purchasedates is the number of unique dates during which the customer made a purchase

from P1 through P6.

Purchaseskus is the number of unique product SKUs the customer purchased during P1

through P6.

Carts is the number of product units the customer added to their online cart during P1

through P6.

Productviews is the number of product pages (including repeats) the customer viewed

during P1 through P6.

Browsedates is the number of unique dates during which the customer browsed Staples.com

from P1 through P6.

Companysize is the alphabetic code used to identify the size of the customer’s business (if

applicable).“X” represents unknown.

Businesssize is the alphabetic indicator of whether a customer is a small business (Y) or

not (N) (if applicable).
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Consumercode is the alphabetic indicator of whether a customer is a business (B) or

consumer (C). “U” represents unknown.

Coupons is the percent of the customer’s transactions from P1 through P6 which included

the use of a coupon.

1.4 Data masking

The data has been masked to protect sensitive business information by SRC. Numeric vari-

ables (except number of emails and number of responses) have been standardized to z-scores

(centered around their mean and divided by their standard deviation).
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Chapter 2

Exploratory data analysis

In this section, we did data cleaning and conducted exploratory analysis for the variables

involved in this study. Bar charts was provided to display the distribution for categorical

variables, means and standard deviations were obtained for continuous variables, and his-

togram and a frequency table were used to display the distribution of the count response

variable.

2.1 Number of responses

The histogram in Figure 2.1 illustrates the distribution of the number of responses made by

customers. We can see clearly it exhibits both substantial variation and a large number of

zeros in the response variable.
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Figure 2.1: Number of responses made by customers

Table 2.1: Frequency of responses made by customers

Responses 0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 15327 9651 4619 2393 1195 682 377 199 80 38 11 6 1

From Table 2.1, we found that more than 15,000 customers do not respond when they

got the emails from the retailing company. Figure 2.1 indicates that the response might be

zero-inflation. Based on the properties of the response variable, we consider the following

steps to model the relationships in SRC data:

1. We analyze the SRC data using poisson and logistic models to predict our response

variable.

2. We then use Quasi-Poisson to test whether the count data is over-dispersion or under-

dispersion. If it is over-dispersion, we can use negative binomial model. If it is under-

dispersion and zero-inflation, we can use Hurdle Model and Zero-inflated Model.
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3. We use Vuong test [15], Akaike information criterion (AIC) [2] and Cross-Validation [8]

to find which model is the best for our data.

2.2 Summary statistics of numerical variables

The second step in the exploratory analysis is to obtain the summary statistics for the nu-

merical variables.

Table 2.2: Summary statistics of numerical variables

Variable Name Mean Std Max Med Min

emails 2.309 1.488 12 2 1

responses 1.130 1.474 12 1 0

revenue 0.534 1.619 110.638 0.1475 -0.504

units 0.010 1.629 204.907 -0.056 -0.079

purchasedates 0.727 1.372 22.350 0.346 -1.087

purchaseskus 0.701 1.580 138.919 0.338 -0.914

carts 0.920 1.673 77.875 0.475 -0.442

productviews 0.779 1.728 83.181 0.272 -0.392

browsedates 1.047 1.402 18.077 0.671 -0.572

coupons 0.370 0.736 2.492 0.324 -1.122

Summary statistics of numerical variables are given in Table 2.2. The mean of the

responses made by customers is 1.130 and the mean emails received by customers is 2.309;

and the minimum of responses made by customers is 0, and the minimum of emails received

by customers is 1; The maximum number of responses made by customers is 12 as in the

maximum of emails received by customers. The standard deviation is 1.474 for responses

made by customers, and the standard deviation of emails received by customers is 1.488.
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2.3 Categorical variables

We obtained the distribution of the Categorical variables using bar plots and frequency tables

shown below:

Figure 2.3: company size Figure 2.4: customer small or not busi-
ness

Company size Frequency Percentage

A 1943 6.25%

B 15386 49.49%

C 8157 26.24%

D 3808 12.25%

E 1116 3.59%

F 678 2.18%

Table 2.3: Frequency of comany size

Small business Frequency Percentage

N 6065 20.61%

Y 23357 79.39%

Table 2.4: Frequency of Customer Small
Business

Table 2.3 shows us that there are seven different sizes for companies. In past six months,

6.25% online purchase behaviors come from Company size A, 49.49% come from Company

size B, 26.24% come from Company size C, 12.25% come from Company size D, 3.59%

come from Company E, 2.18% come from Company size F. Table 2.4 Shows us whether the

customer is a small business or not. 79.39% customers are small business.
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Figure 2.4: business code

Table 2.5: Frequency of Business Code

Business Frequency Percentage

B 34344 99.39%

C 212 0.61%

Table 2.5 tells us there are two kinds of customer code Business and Consumer: 99.39%

customers were business customers, only 0.61% customers were consumer customers. When

including the customers business code in the models, the models do not converge, so we drop

the variable consumer code in the modeling.
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Chapter 3

Statistical model of the SRC data

In this section, we fit the SRC data using different statistical models listed in Table 3.1. The

classic Poisson and negative binomial models are described in a generalized linear model

(GLM) [11] framework; they are implemented in R [14] by the glm function in the stats

package and the glm.nb function inMASS package. The hurdle and zero-inflated extensions

of these models are provided by the functions hurdle and zeroinfl in package pscl [7]. Each

model is introduced in more details separately in next section.

Table 3.1: Models and Functions

Type Distribution Method Description

GLM Poisson ML Poisson regression: classical GLM

Quasi Quasi-Poisson regression: overdispersion GLM

NB ML NB regression: extended GLM

Logistic ML Logistic regression: extended GLM

Zero-augmented Poisson ML Zero-inflated Poisson: ZIP

Hurdle Poisson: Hurdle

NB ML Zero-inflated negative binomial: ZINB

Hurdle negative binomial: Hurdle-NB

10



3.1 Classical Poisson model

3.1.1 Poisson model

The simplest distribution used for modeling count data is the Poisson distribution with

probability density function

f(y;μ) =
exp(−μ)(μ)y

y!
. (3.1)

Poisson distribution is a special case of the generalized linear model (GLM) framework [11].

The canonical link is the log function resulting in a log-linear relationship between the mean

and the linear predictor. The variance in the Poisson model is identical to the mean, thus

the dispersion is fixed at φ = 1 and the variance function is V (μ) = μ.

Poisson regression models allow researchers to examine the relationship between predic-

tors and count outcome variables. Using these regression models gives much more accurate

parameter estimates than trying to fit an least square linear regression model whose assump-

tions rarely fit count data such as normal residuals and constant variance.

In R, this can easily be specified in the glm function by setting family = poisson. As a

first attempt to capture the relationship between the number of responses made by customers

and the regressors, we fit the basic Poisson regression model. The output is given in Table

3.2:
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Table 3.2: Poisson model output

Regressor Estimate Std Error Z value P-value

emails 0.365 0.003 113.590 <0.001

revenue -0.023 0.004 -5.602 <0.001

purchasedates 0.121 0.007 18.105 <0.001

purchaseskus 0.015 0.005 3.254 0.001

carts -0.021 0.004 -5.579 <0.001

productviews -0.012 0.004 -2.801 0.005

browsedates 0.073 0.007 10.384 <0.001

browseskus -0.039 0.007 -5.619 <0.001

coupons -0.054 0.009 -6.358 <0.001

companysizeB -0.009 0.025 -0.373 0.709

companysizeC 0.020 0.026 0.761 0.447

companysizeD 0.053 0.028 1.916 0.055

companysizeE 0.101 0.034 2.989 0.003

companysizeF 0.081 0.039 2.075 0.038

smallbusiness 0.008 0.014 0.587 0.557

In the output in Table 3.2, we can see the P -values for emails received, revenue, purchase

dates, carts, productviews, browsedates, browseskus and coupons predictor variables are all

statistically significant at 0.05 significance level. We can see the relationships between the

number of responses made by customers and purchasedates, purchaseskus, browsedates are

all positive. In specific, with one additional email the customer received, the log number

of responses made by customers increases 0.365; for one additional unique date when the

customer made a purchase in last six month, the log number of responses made by customers

increases 0.121; for one additional unique product SKUs the customer purchased in last six

months, the log number of responses made by customers increases 0.015. The relationships

between the number of responses made by customers and revenue, carts, browsekus are

12



negative. Specifically, for each additional dollar spent by customers from last six months,

the log number of responses made by customers decreases 0.023; for one additional prod-

uct which the customers added to their online carts in last six months, the log number of

responses made by customers decreases 0.021; for one additional product page that the cus-

tomer viewed in last six months, the log number of responses made by customers decreases

0.012.

3.1.2 Poisson regression with an offset

Poisson model can also handle rates. A rate is just a count per unit time. Poisson models

handle exposure variables by using simple algebra to change the dependent variable from

a rate into a count. If the rate is count/exposure, when both sides of the equation are

logged, the final model contains log(exposure) as a term that is added to the regression

coefficients. That is log
(

Y
exposure

)
= log(Y )− log(exposure) = θ′x, which implies log(Y ) =

log(exposure) + θ′x, where log(exposure) is called the offset variable.

In the SRC data, since the response variable, the number of purchases made by the cus-

tomers is considered only when they they received emails from SRC, modeling the count

outcome (number of purchases) should consider the number of emails they received from

SRC. Thus, instead of modeling count directly using emails as a covariate, we consider a

poisson model with an offset, which is log(number of emails received) in the poisson regres-

sion. We fit the SRC data using a poisson model with an offset, the result is given in Table

3.3.
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Table 3.3: Output from the poisson model with an offset

Regressor Estimate Std Error Z value P-value

revenue -0.014 0.004 -3.388 <0.001

purchasedates 0.123 0.007 18.542 <0.001

purchaseskus 0.011 0.004 2.424 0.015

carts -0.021 0.004 -5.422 <0.001

productviews -0.009 0.004 -2.136 0.033

browsedates 0.079 0.007 11.658 <0.001

browseskus 0.004 0.007 0.634 0.527

coupons -0.065 0.009 -7.545 <0.001

companysizeB -0.0002 0.025 -0.006 0.995

companysizeC 0.031 0.026 1.179 0.238

companysizeD 0.054 0.028 1.948 0.051

companysizeE 0.090 0.034 2.663 0.008

companysizeF 0.047 0.039 1.218 0.223

smallbusiness -0.006 0.014 -0.463 0.646

From Table 3.3, we can see the P -values for the revenue, purchasedates, purchaseskus,

carts, productviews, browsedates, coupons predictor variables are all statistically significant

at 0.05 significance level. Comparing with Poisson model, browseskus is not statistically

significant at 0.05 significance level in the poisson offset model. We can see that the rela-

tionships between the rate of responses made by customers and purchasedates, purchaseskus,

browsedates and browsekus are all positive. For example, with one additional unique date

when the customer made a purchase in last six months, the log rate of responses made by

customers increases 0.123, it is less than Poisson model in section 3.1.1. The relationships

between the response rates made by customers and revenue, carts and productviews are all

negative. For example, with one additional dollar spent by customers in last six months, the
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log rate of responses made by customers decreases 0.014, it is less than the value in Poisson

model in section 3.1.1 too.

3.2 Logistic regression

In modeling the rate of purchases out of the number of emails sent to the customers, a

logistic regression can also be fitted to the data. If we use linear regression to model a

dichotomous variable (as Y ), the resulting model might not restrict the predicted responses

within 0 and 1. Besides, other assumptions of linear regression such as normality of errors

may get violated.

The logistic regression (or logit model) is a widely used statistical model that, in its basic

form, uses a logistic function to model a binary dependent variable. Mathematically, a binary

logistic model has a dependent variable with two possible values, such as pass/fail, win/lose,

alive/dead or healthy/sick; these are represented by an indicator variable, where the two

values are labeled “0” and “1”. In the logistic model, the log-odds for the value labeled “1”

is a linear combination of one or more explanatory variables (“predictors”); the explanatory

variables can each be a binary variable (two classes, coded by an indicator variable) or a

continuous variable (any real value). The corresponding probability of the value labeled “1”

can vary between 0 and 1.

In logistic regression, we model the log odds of the event log( P
1−P ), where P is the

probability of event.

log(
Pi

1− Pi

) = β0 + β1x1i + ..+ βkxki, (3.2)

where i is the index of ith subjects, k is the index for the kth predictor. The above equation

can be modeled using the glm function by setting the family argument to “binomial”. We

fit SRC data in logistic regression and the results are given in Table 3.4.
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Table 3.4: Logistic regression output

Regressor Estimate Std Error Z value P-value

revenue 0.004 0.011 0.337 0.736

purchasedates 0.439 0.015 28.253 <0.001

purchaseskus 0.144 0.019 7.670 <0.001

carts 0.019 0.013 1.480 0.139

productviews 0.025 0.011 2.293 0.022

browsedates 0.150 0.015 10.198 <0.001

browseskus -0.116 0.022 -5.191 <0.001

coupons -0.120 0.012 -9.701 <0.001

companysizeB -0.017 0.038 -0.436 0.667

companysizeC 0.014 0.039 0.363 0.717

companysizeD 0.058 0.043 1.374 0.169

companysizeE 0.137 0.056 2.449 0.014

companysizeF 0.077 0.068 1.128 0.259

smallbusiness -0.039 0.021 -1.811 0.070

From the output in Table 3.4, we can see the P -values for purchasedates, purchaseskus,

productviews, browsedates, browsesuks and coupons are all statistically significant at 0.05

significance level. On the other hand carts is not statistically significant at 0.05 significance

level. We can see that the relationships between the odds of responses made by customers and

purchasedates, purchaseskus, productviews and browsedates are all positive. For example,

with one additional unique date when the customer made a purchase in last six month, the

log-odds of responses made by customers increases 0.439; For one additional unique product

SKUs which the customer purchased in last six months, the log-odds of responses made by

customers increases 0.144. Similarly we can see the odds of responses made by customers

and browseskus and coupons are both negative. For example, with one additional product
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which the customers added to their online carts in last six months, the log-odds of responses

made by customers decreases 0.12.

3.3 Models for dealing with over/under-dispersion

3.3.1 Quasi-Poisson model

We can use two ways to test whether the model is over-dispersion or under-dispersion. One

way to confirm with over-dispersion (under-dispersion) is to use the mean and variance

functions from the Poisson GLM but to leave the dispersion parameter φ unrestricted. Thus

φ is not fixed at 1 but is estimated from the data. This strategy leads to the same coefficient

estimates as the standard Poisson model but inference is adjusted for over-dispersion. This

procedure is called Quasi-Poisson procedure and is usually used to confirm the over-dispersion

in the data. In R, the quasi-Poisson model with estimated dispersion parameter can also be

fitted using the glm function by setting family = quasipoisson.

We fit SRC data using the Quasi-Poisson regression model and the dispersion estimate

is 0.663 from the result. Since the estimator is less than one, it turns out the conditional

variance is actually smaller than the conditional mean, which indicates we have under-

dispersion in the SRC data in the Poisson model.

3.3.2 Testing for dispersion

The other method to test over-dispersion or under-dispersion is by uisng the dispersiontest

function in AER package by Cameron Trivedi [4]. It follows a simple idea: In a Poisson

model, the mean is E(Y ) = μ and the variance is V ar(Y ) = μ as well. The test simply

tests the null hypothesis V ar(Y ) = μ against V ar(Y ) = μ+ c ∗ f(μ) as an alternative where
the constant c < 0 means under-dispersion, c > 0 means over-dispersion, and the function

f(μ) is some mononton function (often linear or quadratic; the former is the default). The
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resulting test is equivalent to testing H0 : c = 0 vs H1 : c �= 0 and the test statistic used is

asymptotically standard normal under the null.

The dispersiontest function in R assesses the hypothesis that the equidispersion assump-

tion holds against the alternative that the variance is of the form:

V AR[y] = μ+ α ∗ trafo(μ), (3.3)

where trafo is a specification of the transformation function such as trafo(μ) = μ2 which

corresponds to a negative binomial (NB) model with quadratic variance function (called NB2

[5]) or trafo(μ) = μ which corresponds to a NB model with linear variance function (called

NB1 [5]) or Quasi-Poisson model with dispersion parameter, i.e.,

V AR[y] = (1 + α)μ = dispersion ∗ μ. (3.4)

By default, for trafo = NULL, the latter dispersion formulation is used in dispersiontest.

Otherwise, if trafo is specified, the test is formulated in terms of the parameter α. The

transformation trafo can either be specified as a function or an integer corresponding to

the function xtrafo, such that trafo = 1 and trafo = 2 yield the linear and quadratic

formulations respectively.

We used this test on SRC data, and the α estimate is −0.232 when trafo = 1. This

indicates there is evidence of under-dispersion.

3.3.3 Negative binomial (NB) model

Another way of modeling over-dispersed count data is to assume a negative binomial (NB)

distribution for yij|xij which arise as a gamma mixture of Poisson distributions. Its proba-

bility density function is

f(y;μ, θ) =
Γ(y + θ)

Γ(θ)y!

μyθθ

(μ+ θ)y+θ
(3.5)
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with mean μ and shape parameter θ,Γ() is the gamma function. It also has φ = 1 but with

variance function V () = μ+ μ2

θ
.

If θ is not known but to be estimated from the data, the negative binomial model is not

a special case of the general GLM–however, an ML fit can easily be computed re-using GLM

methodology by iterating estimation of β given θ and vice versa. This leads to ML estimates

for both β and θ which are computed using the function glm.nb from the package MASS.

It returns a model of class negbin inheriting from glm for which appropriate methods to the

generic functions described above are again available.

Because we already showed the Poisson model is with under-dispersion, we don’t use

negative binomial model to fit the data here. We used Hurdle-negative-binomial model and

Zero-inflated-negative-binomial model to fit the SRC data in section 3.4.

3.4 Models dealing with zero-inflation

3.4.1 Hurdle model

Besides over-dispersion and under-dispersion, many count data exhibit more zero observa-

tions than would be allowed for by the Poisson model. One model class capable of capturing

both properties is the hurdle model, originally proposed by Mullahy in 1986 [12] in the

econometrics literature. A review article can be refered to Cameron and Trivedi [4, 5]. They

are two-component models: A truncated count component, such as Poisson, geometric or

negative binomial, is employed for positive counts, and a hurdle component models zero vs.

larger counts. For the latter, either a binomial model or a censored count distribution can

be employed.

The hurdle model combines a count data model fcount(y; x, β) (left truncated at y = 1)
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and a zero hurdle model fzero(y; z; γ) (right censored at y = 1):

fhurdle(y; x, z, β, γ) =

⎧⎪⎪⎨
⎪⎪⎩
fzero(0; z, γ) if y = 0

(1− fzero(0; z, γ))fcount(y; x, β)/(1− fcount(0; x, β)) if y > 0,

(3.6)

where y is the value of the dependent variable, z is a vector denoting the predictor variable

in the zero hurdle model, x represents a vector denoting the predictor variable in the count

data model, γ is a vector of coefficients related to z, and β denotes a vector of coefficients

related to x. fzero is a probability density function of y = 0, which is typically modeled

with binary logistic regression, where all counts greater than 0 are given a value of 1 and

otherwise 0. In the zero part using the SRC data, the probability of zeros are estimated

probability of non-responses made by customers. The lower part in equation (3.6) fcount is

modeled with a left-truncated (y > 0) count model.

We now use the hurdle model to fit SRC data, but it is now truncated for responses less

than 1 and has an additional hurdle component modeling zero versus count observations.

The zero hurdle part targets the odds of non-responses made by customers. The count

part models the number of responses made by customers. In R, hurdle count data models

can be fitted with the hurdle function from the pscl package. Both its fitting function

and the returned model objects of class “hurdle” are modeled after the corresponding GLM

functionality in R. The hurdle model results are given in Table 3.5.
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Table 3.5: Estimated coefficients, standard errors and Z value for hurdle model

Count model Zero hurdle model

Regressor Estimate Std Error Z value Estimate Std Error Z value

revenue -0.004 0.004 -0.945 -0.012 0.024 -0.494

purchasedates 0.080 *** 0.008 10.397 0.484 *** 0.032 15.225

purchaseskus 0.006 0.005 1.115 0.205 *** 0.037 5.571

carts -0.011 ** 0.004 -2.650 0.007 0.031 0.221

productviews -0.014 ** 0.005 -2.942 0.169 *** 0.027 6.130

browsedates 0.077 *** 0.008 9.958 0.196 *** 0.033 5.969

browseskus 0.012 0.008 1.503 -0.227 *** 0.051 -4.445

coupons -0.024 * 0.012 -1.958 -0.151 *** 0.018 -8.285

companysizeB -0.003 0.034 -0.074 -0.035 0.058 -0.606

companysizeC 0.029 0.035 0.840 -0.009 0.060 -0.157

companysizeD 0.065 . 0.036 1.787 -0.020 0.068 -0.294

companysizeE 0.099 * 0.042 2.351 0.038 0.095 0.398

companysizeF 0.054 0.048 1.132 0.083 0.120 0.693

smallbusiness 0.006 0.017 0.325 -0.043 0.034 -1.239

Note:*** P-value<0.001, ** P-value<0.01, * P-value<0.05, . P-value<0.1.

In Table 3.5, we get outputs from two different models. The first section of the output is

for the positive-count process. The second section is for the zero-count process. Following

the result of zero hurdle model, we can see the P -value for purchasedates, purchaseskus, pro-

ductviews and browsedates, browseskus and coupons are all statistically significant at 0.05

significance level. On the other hand revenue and carts are not statistically significant at 0.05

significance level. This indicates the relationships between the odds of non-responses made

by customers and purchasedates, purchaseskus, productviews, browsedates are positive. For

example, with one additional date the customer made a purchase, the log-odds of non-
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responses made by customers increases 0.484; For one additional product SKUs which the

customer purchased, the log-odds of non-reponses made by customers increases 0.205. The

relationship between the odds of non-responses made by customers and predictors browsekus

and coupons are negative. For example, with one additional using coupons’ percentage of

customer’s transactions, the log-odds of non-responded by customers decreases 0.151. From

the output in positive count model, we can see the P -value for purchasedates, carts, pro-

ductviews and browsedates and coupons are all statistically significant at 0.05 significance

level. On the other hand, revenue, purchaseskus and browseskus are not statistically signifi-

cant at 0.05 significance level. This means the relationships between the number of responses

made by customers and purchasedates and browsedates are positive. For example, with one

additional date the customer made a purchase in P1 through P6, the log number of responses

made by customers increases 0.08 among those who have positive counts. The relationships

between the number of responses made by customers and carts, productviews and coupons

are negative. For example, with one additional using coupons’ percentage of customer’s

transactions, the log number of responses made by customers decreases 0.024 among those

who have positive counts.

3.4.2 Hurdle-Negative-Binomial model

Hurdle models are two-component models with a truncated count component for positive

counts and a hurdle component that models the zero counts. The count model is typically

a truncated Poisson or negative binomial regression. In this part, we fit the count model of

hurdle regression with negative binomial. We get the estimated regression coefficients listed

in Table 3.6.
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Table 3.6: Estimated coefficients, standard errors and Z value for hurdle-negative binomial

Count model Zero hurdle model

Regressor Estimate Std Error Z value Estimate Std Error Z value

revenue -0.004 0.004 -0.945 -0.012 0.024 -0.494

purchasedates 0.080 *** 0.008 10.397 0.484 *** 0.032 15.225

purchaseskus 0.006 0.005 1.115 0.205 *** 0.037 5.571

carts -0.011 ** 0.004 -2.650 0.007 0.031 0.221

productviews -0.014 ** 0.005 -2.942 0.169 *** 0.027 6.130

browsedates 0.077 *** 0.008 9.958 0.196 *** 0.033 5.969

browseskus 0.012 0.008 1.503 -0.227 *** 0.051 -4.445

coupons -0.024 * 0.012 -1.958 -0.151 *** 0.018 -8.285

companysizeB -0.003 0.034 -0.074 -0.035 0.058 -0.606

companysizeC 0.029 0.035 0.840 -0.009 0.060 -0.157

companysizeD 0.065 . 0.036 1.787 -0.020 0.068 -0.294

companysizeE 0.099 * 0.042 2.351 0.038 0.095 0.398

companysizeF 0.054 0.048 1.132 0.083 0.120 0.693

smallbusiness 0.006 0.017 0.325 -0.043 0.034 -1.239

Note:*** P-value<0.001, ** P-value<0.01, * P-value<0.05, . P-value<0.1.

Following the result of Zero-hurdle model, we can see the P -values for purchasedates,

purchaseskus, productviews and browsedates, browseskus and coupons are all statistically

significant at 0.05 significance level. On the other hand, revenue and carts are not statistically

significant at 0.05 significance level. This means the relationships between the odds of non-

responses made by customers and purchasedates, purchaseskus, productviews, browsedates

are positive. And the relationship between the odds of non-responses made by customers

and browsekus and coupons are negative. From output in positive count model, we can see

the P -values for purchasedates, carts, productviews and browsedates and coupons are all
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statistically significant at 0.05 significance level. On the other hand, revenue, purchaseskus

and browseskus are not statistically significant at 0.05 significance level. The relationships

between the number of responses made by customers and predictors purchasedates and

browsedates are positive. And the relationships between the number of responses made

by customers and predictors carts, productviews and coupons are negative. Comparing

with Hurdle mode in section 3.4.1, the estimated regression coefficients for hurdle-negative-

binomial are almost the same.

3.4.3 Zero-Inflated-Poisson regression model

Another model class capable of dealing with excess zero counts is zero-inflated models (ZIP)

[12, 10]. They are two-component mixture models combining a point mass at zero with a

count distribution such as Poisson, geometric or negative binomial. There are two sources

of zeros: zeros may come from both the point mass and from the count component. The

zero-inflated density is a mixture of a point mass at zero and a count distribution. The

probability of observing a zero count is inflated with probability π = fzero(0; z, γ):

fzeroinfl(y; x, z, β, γ) = fzero(0; z, γ) · I{0}(y) + (1− fzero(0; z, γ)) · fcount(y; x, β), (3.7)

where y is the value of the dependent variable, z is a vector denoting the predictor variable

in the zero part, x is a vector denoting the predictor variable in the count part, γ is a vector

of coefficients related to z, and β denotes a vector of coefficients related to x. fzero is a

probability density function for excess zeros, and fcount is a probability density function for

Poisson count. I() is the indicator function and the unobserved probability π of belonging to

the point mass component is modeled by a binomial GLM π = g−1(zTγ). The corresponding

regression equation for the mean is

μi = πi · 0 + (1− πi) exp(x
T
i β), (3.8)
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using the canonical log link. The vector of regressors in the zero-infation model zi and the

regressors in the count component xi need not to be distinct. The default link function g(π)

in binomial GLMs is the logit link [1]. The parameters of β, γ and potentially the dispersion

parameter θ (if a negative binomial count model is used) can be estimated by ML.

Unlike in the hurdle model where all zeros are modeled in fzero, in the zero-inflated model

only excess zeros are estimated in fzero part. More specifically, individuals with y = 0 can

be part of two groups: one group (excess zero) is not part of count process, and one group

belongs to the count part. The right part in equation (3.7), fcount is typically modeled with

Poisson model. Comparing with hurdle model, the only difference is in the way that the zero

values are modeled.

Table 3.7: Estimated coefficients, standard errors and Z value for ZIP

Count model Zero-inflation model

Regressor Estimate Std Error Z value Estimate Std Error Z value

revenue -0.010 * 0.004 -2.230 0.157 0.192 0.820

purchasedates 0.112 *** 0.007 16.662 -2.156 *** 0.310 -6.952

purchaseskus 0.008 . 0.004 1.808 -0.512 0.328 -1.562

carts -0.016 *** 0.004 -4.067 0.660 ** 0.217 3.040

productviews -0.008 . 0.004 -1.946 -1.194 ** 0.415 -2.875

browsedates 0.068 *** 0.007 9.855 -0.967 ** 0.317 -3.046

browseskus 0.002 0.007 0.321 0.113 0.404 0.281

coupons -0.048 *** 0.010 -4,914 -0.380 *** 0.095 3.999

companysizeB -0.005 0.027 -0.196 -0.166 0.312 0.530

companysizeC 0.027 0.028 0.962 0.295 0.327 0.904

companysizeD 0.051 . 0.029 1.728 0.369 0.379 0.974

companysizeE 0.076 * 0.035 2.166 -0.764 0.985 -0.776

companysizeF 0.041 0.040 1.005 -0.736 1.017 -0.724

smallbusiness -0.006 0.014 -0.419 -0.053 0.212 -0.251

Note:*** P-value<0.001, ** P-value<0.01, * P-value<0.05, . P-value<0.1.
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In R, zero-inflated count data models can be fitted using the zeroinfl function from the

pscl package. Both the fitting function interface and the returned model objects of class

“zeroinfl” are almost identical to the corresponding hurdle functionality. We fit the ZIP

model using the SRC data and the output are given in Table 3.7.

This output is also a two-part model. However, both parts predict zero counts. The

count model predicts some zero counts, and on the top of that the zero-inflation binary

model part adds zero counts, thus, the name zero-“inflation”.

From output in zero-inflation model, we can see the P -values for purchasedates, carts,

productviews, browsedates and coupons are all statistically significant at 0.05 significance

level. On the other hand, revenue, purchaseskus and browseskus are not statistically signifi-

cant at 0.05 significance level. We see that the relationship between the odds of non-responses

made by customers and predictor carts is positive. For example, with one additional prod-

uct which the customers added to their online cart in the last six months, the log-odds of

non-responses made by customers increases 0.660. And the relationship between the odds

of non-responses made by customers and purchasedates, productviews, browsedates and

coupons are negative. For example, with one additional unique date the customers browsed

on website in the last six months, the log-odds of non-responses made by customers de-

creases 0.967. For one additional using coupons’ percentage of customer’s transactions , the

log-odds of non-responses made by customers decreases 0.380. From the output of count

model, we can see the P -values for revenue, purchasedates, carts, browsedates and coupons

are all statistically significant at 0.05 significance level. On the other hand, purchaseskus ,

productviews and browseskus are not statistically significant at 0.05 significance level. We

can see that the relationships between the number of responses made by customers and pre-

dictors purchasedates and browsedates are positive. For example, with one additional date

the customer made a purchase, the log number of responses made by customers increases

0.112. And we can see that the relationships between the number of responses made by

customers and predictors revenue, carts and coupons are negative. For example, with one
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additional using coupons’ percentage of customer’s transactions, the log number of responses

made by customers decreases 0.048.

3.4.4 Zero-Inflated-Negative-Binomial model (ZINB)

A Poisson distribution assumes that the variance of the outcome variable equals its mean.

When over-dispersion or under-dispersion also comes from the non-zero part of the outcome,

the ZIP model can be extended to ZINB model to deal with zero-inflation and over-dispersion

(under-dispersion) at the same time. In this section, we fit the SRC data using the ZINB

model with the result given in Table 3.8.

From the output shown in Table 3.8, similar conclusions were obtained as those in the

ZIP model in section 3.4.3.
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Table 3.8: Estimated coefficients, standard errors and Z value for ZINB

Count model Zero-inflation model

Regressor Estimate Std Error Z value Estimate Std Error Z value

revenue -0.010 * 0.004 -2.230 0.157 0.192 0.820

purchasedates 0.112 *** 0.007 16.662 -2.156 *** 0.310 -6.952

purchaseskus 0.008 . 0.004 1.808 -0.512 0.328 -1.562

carts -0.016 *** 0.004 -4.067 0.660 ** 0.217 3.040

productviews -0.008 . 0.004 -1.946 -1.194 ** 0.415 -2.875

browsedates 0.068 *** 0.007 9.855 -0.967 ** 0.317 -3.046

browseskus 0.002 0.007 0.321 0.113 0.404 0.281

coupons -0.048 *** 0.010 -4,914 -0.380 *** 0.095 3.999

companysizeB -0.005 0.027 -0.196 -0.166 0.312 0.530

companysizeC 0.027 0.028 0.962 0.295 0.327 0.904

companysizeD 0.051 . 0.029 1.728 0.369 0.379 0.974

companysizeE 0.076 * 0.035 2.166 -0.764 0.985 -0.776

companysizeF 0.041 0.040 1.005 -0.736 1.017 -0.724

smallbusiness -0.006 0.014 -0.419 -0.053 0.212 -0.251

Note:*** P-value<0.001, ** P-value<0.01, * P-value<0.05, . P-value<0.1.
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Chapter 4

Model selection

4.1 Using AIC criterion

The Akaike information criterion (AIC) is an estimator of the relative quality of statistical

models for a given set of data. Given a collection of models for the data, AIC estimates the

quality of each model, relative to each of the other models. Thus, AIC provides a means for

model selection. AIC is given by: AIC = −2 logL(θ) + 2k, where L(θ) is the maximized

likelihood function for the estimated model and k is the number of free parameters in the

model. Given a set of candidate models for the data, the preferred model is the one with

the minimum AIC value [2]. AIC rewards goodness of fit (as assessed by the likelihood

function), but it also includes a penalty that is an increasing function of the number of

estimated parameters. The penalty discourages overfitting, because increasing the number

of parameters in the model almost always improves the goodness of the fit. In this section,

we will use the AIC criterion to compare all the fitted models to select the best model for

the SRC data. AIC and the result of coefficient is given in Table 4.1.
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Table 4.1: Coefficient and AIC for the count and zero Models (Logistic regression has binary
responses, it doesn’t have zero model part in the table. Poisson and Poisson with an offset
models do not consider zero-inflation, thus have no zero model part in the table either)

Count model Poisson-offset Logistic Poisson Hurdle Hurdle-NB ZIP ZINB

revenue -0.014 ** 0.004 -0.023 *** -0.004 -0.004 -0.010 * -0.010 *

purchasedates 0.123 *** 0.439 *** 0.121 *** 0.080 *** 0.080 *** 0.112 *** 0.112***

purchaseskus 0.011 * 0.144 *** 0.015 *** 0.006 0.006 0.008. 0.008.

carts -0.021 *** 0.019 -0.021 *** -0.011 ** - 0.011 ** -0.016 *** -0.016 ***

productviews -0.009 * 0.025 * -0.012 * -0.014 ** -0.014 ** -0.008. -0.008.

browsedates 0.079 *** 0.150 *** 0.073 *** 0.077 *** 0.077 *** 0.068 *** 0.068***

browseskus 0.004 -0.116 *** -0.039 *** 0.012 0.012 0.002 0.002

coupons -0.065 -0.120 *** -0.054 *** -0.024 * -0.024 * -0.048 *** -0.048 ***

companyB -0.0002 -0.017 -0.009 -0.003 -0.003 -0.005 -0.005

companyC 0.031 0.014 0.020 0.029 0.029 0.027 0.027

companyD 0.054. 0.058 0.053. 0.065. 0.065. 0.051. 0.051.

companyE 0.090 ** 0.137 * 0.101 ** 0.099 * 0.099 * 0.076 * 0.075 *

companyF 0.048 0.077 0.081 * 0.054 0.054 0.041 0.040

smallY -0.006 -0.039 0.008 0.006 0.006 -0.006 -0.006

Zero model Poisson-offset Logistic Poisson Hurdle Hurdle-NB ZIP ZINB

revenue -0.012 -0.012 0.157 0.157

purchasedates 0.484 *** 0.484 *** -2.156 *** -2.156 ***

purchaseskus 0.205 *** 0.205 *** -0.512 -0.512

carts 0.007 0.007 0.660 ** 0.660 **

productviews 0.169 *** 0.169 *** -1.194 ** -1.195 **

browsedates 0.196 *** 0.196 *** -0.967 ** 0.968 **

browseskus -0.227 *** -0.227 *** 0.113 0.113

coupons -0.151 *** -0.151 *** 0.380 *** 0.380 ***

companyB -0.035 -0.035 0.166 0.168

companyC -0.009 -0.009 0.295 0.297

companyD -0.020 -0.020 0.369 0.370

companyE 0.038 0.038 -0.764 -0.764

companyF 0.083 0.083 -0.736 -0.740

smallY -0.047 -0.047 -0.053 -0.053

AIC 64978 59259 66796 64651 64653 64643 64645

Note:*** P-value<0.001, ** P-value<0.01, * P-value<0.05, . P-value<0.1.

Six models described in section 3 were used to fit the data. AIC values for all the

model are presented in Table 4.1. The Poisson regression model had the largest AIC value,
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demonstrating the worst fit to the data. For the other four models, the Hurdle-NB and

ZINB models had larger AIC values comparing with Hurdle and ZIP models. Among all

the poisson models the Zero-inflated Poisson Model had the smallest AIC value, so ZIP is

the best choice for the SRC data. Comparing with ZIP model, AIC of logistic regression

is smaller, we can say that logistic regression is the best model for SRC data in this study.

Because the response variable of logistic regression is binomial, it means that we can choose

the logistic regression if we want to know whether the customers would make purchases

based on the information given in P1 through P6. If we want to know how many responses

made by the customers (count data), the ZIP model is the best choice among all the models

we tried in dealing with count in the study.

4.2 Using Vuong Test

The Vuong non-nested test [15] is based on a comparison of the predicted probabilities of

two models that do not nest. Examples include comparisons of zero-inflated count models

with their non-zero-inflated analogs (e.g., zero-inflated Poisson versus ordinary Poisson, or

zero-inflated negative-binomial versus ordinary negative-binomial). A large, positive test

statistic provides evidence of the superiority of model 1 over model 2, while a large, negative

test statistic is evidence of the superiority of model 2 over model 1. Under the null that the

models are indistinguishable, the test statistic is asymptotically standard normal.

Let p1 be the predicted probabilities from model 1, evaluated conditional on the estimated

MLEs. Let p2 be the corresponding probabilities from model 2. Then the Vuong statistic is
√
Nm
Sm

where m = log(p1)− log(p2) and sm is the sample standard deviation of m, N is sample

size. We compare all the poisson models using Vuong test in SRC data, the comparison result

is given in table 4.2.
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Table 4.2: Vuong non-nested tests results for the count data. Poisson = Poisson regression
model, ZIP = zero-inflated Poisson model, ZINB = zero-inflated negative binomial model,
Hurdle = Hurdle model, Hurdle-NB = Hurdle negative binomial model.

Model Comparison Vuong Test Statistic P-value Preferable Model

ZIP vs. Poisson 8.462 <.0001 ZIP

Hurdle vs. Poisson 4.656 <.0001 Hurdle

ZINB vs. Poisson 8.461 <.0001 ZINB

Hurdle-NB vs. Poisson 4.656 <.0001 Hurdle-NB

ZINB vs. ZIP -0.223 0.412 ZIP

ZIP vs. Hurdle-NB 0.122 0.452 ZIP

Hurdle vs. Hurdle-NB 0.649 0.258 Hurdle

ZINB vs. Hurdle-NB 0.122 0.452 ZINB

ZINB vs. Hurdle 0.122 0.452 ZINB

ZIP vs. Hurdle 0.122 0.452 ZIP

From the results given in Table 4.2, the comparison between the ZIP model and Poisson

model had a Vuong test statistic of 8.462 with P -value<.0001, indicating the ZIP model

was preferred. The similar result was obtained when comparing ZINB model with Poisson

model, the Vuong test statistic is 8.461 with P-value<.0001. For comparing Hurdle model

with Poisson model, the Vuong test statistic is 4.656 with P -value<.0001. When comparing

Hurdle-NB with Poisson model, the Vuong test statistic is 4.656 with P -value<.0001. All

the results indicate, the Hurdle model, Hurdle-NB model, ZIP model and ZINB model are

all better than Poisson model. Using Vuong test, we didn’t find the significant difference

between any two models among Hurdle model, Hurdle-NB model, ZIP model and ZINB

model in Table 4.2. But we still can see that the most preferable model is the ZIP model,

because it has the smallest P -value in Vuong test, and is the best model we can choose.
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4.3 Using five-fold Cross-validation (CV)

Suppose we have a model with one or more unknown parameters, and a data set to which the

model can be fit (the training data set). The fitting process optimizes the model parameters

to make the model fit the training data as well as possible. If we then take an independent

sample of validation data from the same population as the training data, it will generally

turn out that the model does not fit the validation data as well as it fits the training data.

The size of this difference is likely to be large especially when the size of the training data

set is small, or when the number of parameters in the model is large. Cross-validation [9] is

a way to estimate the size of this effect.

We will randomly divide the set of observations into five approximately equal size groups

or folds. The first fold is treated as a validation set, and the method is fit on the remaining

four folds. The mean squared error,MSE1, is then computed on the observations in the held-

out fold. This procedure is repeated five times; each time, a different group of observations

is treated as a validation set [6]. This process results in five estimates of the test error,

MSE1,MSE2, . . . ,MSE5. The five-fold CV estimate is computed by averaging these values,

CV(5) =
1
5

∑5
i=1 MSEi .

Five fold cross-validation procedure was applied to every poisson model in Chapter 3 to

obtain the Cross-Validation errors as below.

Table 4.3: Five-fold Cross-Validation MSE results

Model Average MSE

Poisson 1.461

Hurdle 0.847

Hurdle-NB 0.909

ZIP 0.880

ZINB 0.885
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After we obtained the five-fold cross-validation MSE for the five models in Table 4.3, we

order the models by increasing MSE order: Hurdle, ZIP, ZINB, Hurdle-NB, Poisson. The

smallest value of MSE was obtained for the Hurdle model. Based on the Cross-Validation

criterion, the Hurdle model is the best choice.

4.4 Summary of Model selection

Model selection is a process of seeking the model in a set of candidate models that gives the

best balance between model fit and complexity [3]. In this paper, we use three difference

methods to select the best model for the count data. Based on AIC criterion, we found the

best model is ZIP model. Using the Vuong Test method to compare five models, we found

ZIP, ZINB, Hurdle and Hurdle-NB are all better than Poisson model, and the best model

is the ZIP model because the P-value is the smallest when comparing with Poisson model.

This result is the same as using the AIC method . When using five-fold Cross-Validation

to estimate MSE.CV for each model, we found that Hurdle model has the smallest cross

validation error, so Hurdle model is the best choice in this case.
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Chapter 5

Conclusion

In this thesis, the Poisson model, logistic regression model, hurdle model, zero-inflated-

poisson and zero-inflated-negative-binomial model have been applied to model the customers’

online purchase behavior which deal with under-dispersion and zero-inflation problems, based

on customers’ past purchase information in the last six months.

We used the AIC criterion, Vuong test and five-fold cross-validation criterion to select

the best model for modeling the count data. The results show that ZIP and Hurdle models

have better performance than Poisson model for count data. We also use logistic regression

to fit the binary response using the same set of predictors.

Using ZIP model in SRC data, we find that the number of responses made by customers

are positively related with purchasedates and browsedates, and negative related with revenue,

carts and coupons. If we use Hurdle model, the number of responses made by customers are

positively related with purchasedates and browsedates, and negatively related with carts,

productviews and coupons. If we want to know whether the customers make a purchase or

not, the logistic regression is the best choice. The odds of responses made by customers and

purchasedates, purchaseskus, productviews and browsedates are positively correlated. The

odds of responses made by customers and browseskus and coupons are negatively correlated.

In this thesis, the models that we built include all the predictors regardless whether
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they are significant or not significant. In the future, we may use some variable selection

techniques to build the best model including only significant predictors. For example, we can

use stepwise selection procedure to eliminate all the insignificant predictors from the current

models. We can also try the subset selection procedures to select significant predictors

in all the models or use the lasso (least absolute shrinkage and selection operator)-based

techniques [16] for variable selection in Poisson model and ZIP models. With the variable

selection procedures, not only we can find all the statistical significant predictors to the

response variable, we may also remove possible collinearity problem among the predictors.
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