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Abstract 
 

 Freshwater bivalves provide important ecosystem services, like filtering water and 

cycling nutrients. Predators affecting the behavior of bivalve prey, therefore, could 

potentially impact the structure and function of ecological communities. Because little is 

known about the antipredator responses of sphaeriid clams, I examined the behavior of 

juvenile and adult freshwater clams, Sphaerium simile, when exposed to two types of 

indirect predator cues: effluent of a crayfish (Orconectes rusticus) and damaged 

conspecific clams. Adult clams responded to crayfish effluent by significantly reducing 

burrowing behavior. Juvenile clams, however, buried indiscriminately regardless of 

experimental treatment and significantly more often/more quickly than adults. These results 

suggest that invasive crayfish predators could cause reduction in adult S. simile activity 

that in turn might affect community and ecosystem function. 
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Figures 

 

Figure 1 – Example of S. simile with unique color ID representing 4234.  (Photograph: 

Jesse Eichler) 

Figure 2 – Example of clam arrangement at beginning of trials (Photograph: Jesse 

Eichler) 

Figure 3 – Relationship between percent burrowed individuals (Juvenile) in different 
experimental treatments.  
 
Figure 4 – Relationship between percent burrowed individuals (Adults) in different 
experimental treatments  
 
Figure 5. Relationship of time to burrow (Juveniles) in different experimental treatments 
 
Figure 6. Relationship of time to burrow (Adults) in different experimental treatments 
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Introduction 

 

Predator-prey interactions directly and indirectly affect the populations of both 

predator and prey species, with consequences that potentially affect the function and 

structure of the larger community (Carpenter & Kitchell, 1988; Lodge, Kershner, Aloi, & 

Covich, 1994).Prey species face selective pressures that result in the evolution of 

antipredator responses. Some prey species actively flee from predators, others may avoid 

detection, and some species can develop induced defenses like painful spines or bitter 

tasting secretions as exhibited by some insects (Bowers, 1992; Schmidt, 1990; Ydenberg 

& Dill, 1986). Induction of such defenses comes at a cost; energy spent on defense is 

energy that could be used for reproduction(Lima, 1998). Hence even when predators are 

not successful in killing prey, the response to predation risk may be sufficient to alter the 

ecosystem. For example, Power et al. (1986) demonstrated that when piscivorous bass 

(Micropterus salmoides and M. punctulatus) were introduced into different stream pools, 

grazing minnows (Campostoma anomalum) began to avoid pools containing the 

predators, resulting in an increase of algae in those pools. 

 

 As a mostly sessile group, bivalves generally cannot employ motile means of 

escape from predators. Instead employing other forms avoidance such as burrowing and 

reduced ventilation (Lin & Hines, 1994; Nakaoka, 2000). Adaptations to increase 

handling time are common as well, including changes in shell morphology which make 

shells difficult to crush(Boulding (1984), as well as increased byssus production, making 
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removal difficult (Leonard, Bertness, & Yund, 1999).  Predators that may remove 

bivalves from the sediment surface experience longer handling and processing times to 

dislodge bivalves via excavation or removal from byssal attachment, making bivalves an 

energetically costly food item (Klocker & Strayer, 2004).  

 Literature on shell morphology can be unclear on whether bivalve shells have 

adapted in response to predation, but studies have found that shell morphology does 

affect predation risk regardless; shell thickness as well as shape help to discourage 

predators by increasing handling time of specimens that are to difficult to 

crush(Boulding, 1984). Many mollusc-eating crabs, such as Liocarcinus puber and 

Carcinus maenas(ROPEZ, 1968),  have developed dimorphic claws, a crushing claw used 

to break shells and a cutting claw for catching and holding prey (Vermeij, 1977). 

Burrowing bivalves in particular exhibit little to no adaptation against crushing by 

crustacean predators, likely due to their infaunal lifestyle; while crustaceans are capable 

of excavating sediment, they are more successful foraging on the surface. Heavy 

ornamentation of the bivalve shell as well as less blade-like cross sections would also 

hinder burrowing efficiency (Boulding, 1984; Stanley, 1970). For such bivalves, 

burrowing behavior is the main line of defense against predation. 

Bivalve prey detect their predators through several different sensory processes, 

using diverse cues that can originate from either the predator or from conspecific 

individuals (Flynn & Smee, 2010; Leonard et al., 1999).Bivalves may receive 

chemosensory input from the surrounding water through the osphradia, two patches of 

sensory epithelium located below the posterior adductor muscle. (Haszprunar, 1987; G. 

L. Mackie & Bailey, 2007). Cues from predators that are starved (Côté & Jelnikar, 1999), 
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predators that have fed on bivalves (Griffiths & Richardson, 2006), and cues from injured 

conspecifics are used by different species of bivalves to assess risk of predation. For 

some species, the magnitude of response to a predator is proportionate to the 

concentration of predator-related chemical cues, as there is an initial immediate response 

of zebra mussels to predator cues, followed by an adjustment of the response to match the 

level of threat (Antoł, Kierat, & Czarnoleski, 2018). Bivalves can also respond to changes 

in their orientation and possibly acoustic stimuli (Budelmann, 1992) in the environment 

through the statocyst, a fluid filled organ lined with cilia containing a statolith, a small 

mineral inclusion (McMahon & Bogan, 1991).Studies by Roberts (2015) on the mussel 

Mytilus edulis and Kastelein (2008) on cockles Cardium edule demonstrated that these 

species exhibit reduced siphoning behavior when exposed to certain sound frequencies. 

Some bivalve species use photoreception for predator detection; exhibiting a behavioral 

shadow response when a shadow is cast over the animal, typically a shell closing 

response and retraction of the siphons (Morton, 2008).   

 

In the present study, I examine the behavior of the bivalve Sphaerium simile when 

exposed to predator cues. Sphaerium simile is classified in the Sphaeriidae, a family of 

freshwater ovoviviparous clams (G. Mackie, 1978). Sphaerium simile is distributed 

throughout North America, generally inhabiting the sediments of lentic systems, and 

often found in large aggregates of conspecifics. Sphaerium simile is the largest species of 

the genus in North America with individuals growing up to 20 mm at the widest part of 

the valve (G. L. Mackie & Bailey, 2007). Juveniles of the species are brooded in 

specialized gill pouches (so-called “marsupial sacks”) with up to four offspring at 
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different stages of development existing in the parent clam until release of each offspring 

at approximately 5-8 mm in size (G. L. Mackie & Bailey, 2007; Zumoff, 1973).  

 

It is important to understand the potential costs of anti-predator adaptations in S. 

simile because burrowing bivalves perform ecological functions that affect water clarity, 

nutrient cycles, and oxygenation. For example, filter feeding by bivalves removes 

particles from the water column (Kasprzak, 1986), thereby increasing water clarity which 

in turn increases light penetration resulting in increased primary productivity (Newell & 

Koch, 2004). Larger particles may also be ingested by some species through alternative 

feeding, such as pedal deposit feeding(G. L. Mackie & Bailey, 2007). Deposition of 

nutrients like phosphorus in bivalve feces and pseudofeces might also cause increases in 

primary production (Nakamura & Kerciku, 2000). Shells of bivalves also provide space 

for epiphytic and epizoic colonization, as seen in some epipelic species of Pisidium 

(Beckett, Green, Thomas, & Miller, 1996; G. L. Mackie & Bailey, 2007), thereby 

influencing the distribution of microorganisms in the ecosystem. Bioturbation of the 

sediment via the physical act of burrowing also increases oxygen content and releases 

nutrients such as nitrogen from the sediment (Beckett et al., 1996).  

One potential predator of S. simile in North America is the rusty crayfish 

Orconectes rusticus, a species of crayfish native to the midwestern United States 

(Klocker & Strayer, 2004), which has been introduced into areas north and east of the 

ancestral home range both accidentally through escapes from aquaculture facilities and 

deliberately by pet owners and fisherman (Lodge, Taylor, Holdich, & Skurdal, 2000; 

Taylor & Redmer, 1996).Outside of the historical home range, O. rusticus is an 
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aggressive (Reisinger, Elgin, Towle, Chan, & Lodge, 2017) fast growing species that 

displaces other native crayfish species, and may hybridize with native congeneric species 

(Perry, Lodge, & Feder, 2002). Introduction of O. rusticus into naive communities often 

results in competition with native crayfish and reduces populations of food species, 

thereby negatively impacting biodiversity (Lodge et al., 1994). In areas where bivalve 

populations coexist with smaller crayfish species, introduction of O. rusticus may cause 

increased bivalve predation as O. rusticus have relatively larger chelae that facilitate 

excavation and processing (Klocker & Strayer, 2004).  

  

Orconectes rusticus, like most crayfish species, uses olfaction (Moore & Grills, 

1999) to locate prey. Locating prey through chemosensory cues appears to be a learned 

behavior, as crayfish exhibit an increased feeding response to chemical cues from prey 

species they have encountered before (Hazlett, 1994). Crayfish generally forage for food 

at night, walking along the sediment. When food is identified, crayfish use the chelae and 

walking legs to handle and initiate processing of food items, moving food particles to the 

mandibles for grinding and consumption (Brown, 1995). Crayfish are polytrophic, 

feeding on almost any organic matter, alive or dead (King, 1883). This relatively 

indiscriminate feeding behavior can impact food webs at many different levels (Lodge et 

al., 1994; Momot, Gowing, & Jones, 1978). However, crayfish prefer to consume animal 

protein when available (Momot, 1995),and can significantly impact densities of both 

gastropods and bivalves (Perry, Lodge, & Lamberti, 1997). 
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The present study examines whether indirect predator cues affect behavior of the 

freshwater clam S. simile. In addition, I compared the responses of adults versus juveniles 

to address the possibility of developmentally-associated antipredator behavior in this 

species. Although little is known about antipredator behavior in freshwater bivalves, 

marine bivalves like Macoma balthica and Cerastoderma edule (Griffiths & Richardson, 

2006) have been observed to burrow in the presence of predators. I therefore expected S. 

simile to exhibit a burrowing response in the presence of O. rusticus. Because O. rusticus 

do not readily excavate Sphaeriid and Unionid bivalve prey (Klocker & Strayer, 2004) 

burrowing in the presence of crayfish would suggest an adaptive response.. 

 

Methods 

 

Collection and Maintenance. Sphaerium simile were collected at a privately-owned 

pond in Byram Township, NJ (40°59'22.5"N 74°40'37.4"W) in May of 2018 using a dip 

net along the eastern shore. Clams were found burrowed in sandy sediment that was 

artificially introduced during the construction of the spring-fed pond. Clams were 

transported to the laboratory in large plastic buckets and thereafter housed in a 38 L 

aquarium containing aged tap water and no substrate to facilitate cleaning, maintenance, 

and selection of individuals for trials. Subjects were fed once each week with commercial 

API® Algae Eater wafers, crushed with a mortar and pestle to distribute food particles 

throughout the aquarium.  

Two to seven days prior to observations, each clam was measured across the 

widest point of the valve from anterior to posterior using an electronic caliper to the 
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nearest 0.01mm and marked with a distinct ID using a Sharpie® permanent marker (Fig. 

1). Crayfish used as stimulus animals in this study were collected from the Wallkill river 

in Ogdensburg, NJ (41°05'13.1"N 74°35'41.4"W) using a dip net. Crayfish were found 

concealed under rocks during the daytime. Crayfish were housed in a 38 L aquarium 

containing aged tap water, Sakrete ® natural recreational sand as substrate and broken 

terra cotta pots to provide shelter. Crayfish were fed commercial Hikari® Crab Cuisine 

food every two days. The water in all aquaria was treated with chemical, biological, and 

mechanical filters as well as bi-weekly 20% water changes with aged tap water. 

 

Behavioral Trials. 

In general, each observational trial took place in a 100 mm diameter 350 ml watch 

glass. Each watch glass was filled with approximately 175 cm3 sand as a burrowing 

substrate, with an additional 180 ml of aged tap water. In each trial, nine clams were 

selected by the observer (passively based on conspicuousness) from the stock tank and 

behavior recorded for one hour via time lapse videos (at a rate of one frame per second) 

to assess burrowing and crawling behavior. The clams were transferred from the stock 

tank using 25.4 cm forceps and individuals were arranged in a 3 x 3 grid (Fig. 2) in the 

center of the watch glass as this arrangement allowed for easy tracking and recording of 

individuals. 

Each independent group of nine clams was exposed to only one of three possible 

treatments: control, predator-cues, or distressed conspecific-cues. Clams in control 

treatments were observed in aged tap water only. Clams in predator-cue treatments were 

observed in water collected from the crayfish tank immediately before each trial began. 
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Clams in distressed conspecific-cue treatments were observed in aged tap water in the 

presence of two damaged conspecifics placed on one side of the watch glass. 

Immediately before each distressed conspecific trial, the two stimulus clams were 

damaged by placing pressure on the valves with a mortar until the shell cracked. 

Damaged clams were still alive during the experiments, but immediately euthanized by 

freezing at the end of the trial. Adults and juveniles were placed into different groups in 

which all nine individuals were of the same developmental stage. Adults were 

characterized by being over 8 mm wide, the size class at which reproductive activities 

become possible (Zumoff, 1973). Clams below this size threshold were considered to be 

pre-reproductive juveniles. 

Time lapse recordings were taken using a Campark® ACT74 action camera 

mounted on a tripod above the watch glass to capture a clear view of all individuals and 

their movement during the trial period. Recordings were then transferred to a computer 

for video analysis. 

 

Video Analysis. A single human observer viewed all video recordings and transcribed 

relevant behavioral events that occurred during a trial, including whether and when 

burrowing behavior occurred. When a clam exhibited burrowing behavior, burrowing 

time was defined as the time that had elapsed between the beginning of the trial and when 

a clam had ceased burying any further. Timestamps on the video frames were used to 

measure burrowing time in minutes. 
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Statistical Analysis. All statistical analyses were performed in JMP Pro (v 14.0) 

statistical software (SAS Institute, Cary, North Carolina, USA). Results were analyzed 

with factorial ANOVA using the JMP least squares fit model platform. Post-hoc 

comparisons of least square means were conducted in JMP with the Tukey HSD 

procedure with α = 0.05. Sample size for each analysis was conservatively determined by 

the number of trial replicates, not the total number of individual clams observed to 

account for the possibility of interactions among the nine clams in each watch glass. 

Behavioral data were therefore averaged for each replicate. 

 

Results 

  

Percent Burrowed.  

ANOVAs were conducted separately for juveniles [F (2,14) = .1726, p= .8436, 

Fig 3] and adults [F (2, 26) = 19.8044, p < .0001, Fig 4]. There was a significant effect of 

trial on proportion of clams burrowed in adults (p < .0001). In general, clams were 

significantly less likely to burrow in predator treatments than control or distressed 

conspecific treatments.  

Time to Burrow.  

ANOVAs were conducted separately for juveniles [F (2,14) = 0.6657, p = .5319, 

Fig 5] and adults [F (2, 21) = 2.1952, p= .1388, Fig 6] for influence of treatment on mean 

time to burrow. There was no significant effect of treatment on burrowing time. In 

general, juvenile clams burrowed faster than adult clams across all treatments.  
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Size. ANOVAs were conducted separately for juveniles and adults to compare 

differences in body size of individuals selected for different treatments. There were 

significant differences in mean body size between treatments for both adults [F (2,24) = 

6.9454, p = .0042) and juveniles [F (2,12) = 6.8806, p = .0102). Average size was 

significantly different between control and distressed clam treatments for adults and 

juveniles (p< .0042 and p < .0102 respectively), but not between predator-cue and either 

treatment. This is most likely the result of human bias for larger, more conspicuous 

specimens during selection. However, it is unlikely that this influenced the experimental 

outcomes of the study because the behavior of clams did not differ between the control 

and distressed treatments. 

 

 

 

 

Discussion 

 

The results of this study were unexpected, particularly the depressed burrowing 

behavior of adult clams in the presence of a predator. Adult clams were least likely to 

bury themselves when placed in water that previously housed crayfish. Juvenile clams, 

however, were very likely to bury regardless of experimental treatment. Juvenile clams 

also buried themselves more rapidly than adults in all treatments. 

 That adult clams exposed to predator cues were significantly less likely to bury 

than all other treatments was in contrast to my prediction that the presence of a predator 
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would stimulate burrowing behavior. Burrowing is expected  to reduce the likelihood of 

predation because clams in the substrate presumably require more energy and handling 

time for the predator to excavate and process relative to prey located on the sediment 

surface (Klocker & Strayer, 2004; Nyström & Pérez, 1998).Indeed, other species of clam 

are known to respond to predator cues, burrowing when exposed to a predator or injured 

conspecific. For example, the Baltic clam (Tellinidae) , Macoma balthica and common 

cockle (Cardiidae) Cerastoderma edule increase burrowing depth in response to effluent 

from the predatory crab Carcinus maenas (Griffiths & Richardson, 2006) while 

Mercenaria mercenaria responds to both predator signals as well as injured conspecifics 

(Smee & Weissburg, 2006). The razorshell clam Ensis directus is known for particularly 

rapid burrowing time, moving from a prone position atop the sediment surface to 

completely buried in less than 30 seconds (Drew, 1907).  

However, it is possible that the depressed burrowing behavior of adults in the 

present study is a function of physiological processes. Czarnołęski (2010) suggested that 

chemical cues can have a different effect on physical processes in zebra mussels 

(Dreissena polymorpha), which responded to predator cues (injured conspecifics and 

effluent from predators that were fed mussels) by reducing crawling speed and distance. 

The result was surprising, as it was previously thought that increased byssus production 

was responsible for slower movement in the mussels; but this was not the case because 

byssus production was halted, suggesting that increased attachment strength is not a 

viable strategy in response to an immediate threat from a predator (Czarnołęski et al., 

2010). Antol et al (2018) subsequently demonstrated suppression of metabolites in zebra 

mussels as an immediate response to predator cues, with the response modulated to match 
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predation risk. Perhaps for these species reduced risk of detection is more adaptive than 

resistance to attack (Czarnołęski et al., 2010). If so, the lack of burrowing behavior 

exhibited by the clams in the present study could be due to a decrease in mobility that 

reduces emission of metabolites detectable by predators. Anecdotally, clams in the other 

two (non-predator) treatments were more apt to extend the foot and touch the sediment, 

even when a burrowing event did not follow. A similar study by Ishida and Iwasaki 

(2003) found that the solitary intertidal mussel Hormomya mutabilis (Mytilidae), reduced 

crawling speed in the presence of predators, suggesting that the action of opening the 

valves and extending the foot provides predators with both visual and olfactory cues.  An 

additional study by Czarnołęski et al. (2011) found that crayfish (Orconectes limosus) 

congeneric to those in the present study used chemosensory cues to detect prey, including 

bivalves, further suggesting that lowered emission of chemical cues by clams in the 

present study would have adaptive significance.    

Different bivalve species use different cues to assess predation risk, such as cues 

from the predator itself, cues from injured conspecifics, or a combination of both 

(Griffiths & Richardson, 2006; Nakaoka, 2000; Tallqvist, 2001). In the current study, 

clams responded to water presumably containing an olfactory cue(s) from a predator. In 

the absence of a predator cue, clams in the control treatment and distressed clam 

treatment buried in greater proportions, coincident with the presumed absence of risk, 

whereby clams can increase metabolism while burrowing without being detected. It is 

worth noting that these results are limited to cues from a crayfish predator, and other 

clam responses might be observed if a different type of predator were present, such as a 
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duck, gull, boring snail, or fish. Future studies of antipredator behavior in this species 

would therefore benefit from a multi-predator context. 

A predator-mediated reduction in clam physiological processes could have 

ecological consequences, as bivalves perform several important ecological roles 

including filtration, nutrient cycling, and as a habitat themselves for smaller organisms 

like epiphytic algae (Beckett et al., 1996; Vaughn & Hakenkamp, 2001). Bivalves affect 

water clarity by filtering the water column, processing phytoplankton, bacteria, and other 

organic matter (Strayer 1999, Vaughn 2001). Sphaeriid clams also remove organic matter 

from the sediment, through the process of deposit feeding (Vaughn & Hakenkamp, 

2001). They also affect nutrient cycling in their habitats through deposition of feces and 

pseudofeces (Vaughn & Hakenkamp, 2001). By reducing activities such as filtering and 

burrowing, clams become less effective as a filtering system within their environment, 

possibly causing a decrease in water quality (Newell & Koch, 2004). With increasing 

populations of invasive predator species like O. rusticus, significant reduction in bivalve 

filtering could have significant negative impacts on ecosystems with large bivalve 

communities. Unfortunately, in the present study the video camera resolution was not 

sufficient for direct observation and quantification of the siphoning behavior of 

individual clams. In the future, a study of siphoning behavior during predator exposure 

could help elucidate the effect that an abundance of predators might have on water 

quality in environments with S. simile populations. 

 Contrary to the observed behavior in adults, juvenile clams exhibited similar 

burrowing behavior in all three treatments. In two studies of substrate preference, Gale et 

al. (1971, 1973) discovered that species (S. striatinum, S. transversum) of sphaeriid clams 
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congeneric to the species in the present study preferred a mud substrate, followed by 

sandy mud. Perhaps burrowing regardless of threat level is a more general adaptation 

against predation in juveniles, as the lighter pigmentation of juvenile valves may produce 

higher contrast against the dark mud substrate in which they tend to burrow, making them 

easier to detect by visual predators. Innate burrowing regardless of predation risk might 

also be adaptive for juvenile clams, because smaller clams are more vulnerable to 

predation at the sediment surface by crayfish than larger clams with thicker shells 

(Klocker & Strayer, 2004). Klocker (2004) observed this phenomenon in a study 

comparing O. rusticus and O. limosus, where both crayfish species preferred to eat 

exposed bivalves smaller than 7 mm, while buried individuals were generally undisturbed 

by crayfish and larger clams sustained damage only on the outer margins of the valves. It 

is also possible that predation is not a factor driving juvenile burrowing behavior at all. 

Juvenile S. simile may bury in order to feed on small particles of inorganic matter in the 

sediment similar to juvenile unionids (Yeager, Cherry, & Neves, 1994). Although 

average size was significantly different between control and distressed clam treatments in 

the current study, this was due primarily to bias during selection of subjects and there 

were no corresponding differences in burrowing behavior between treatments.   

 Similarly, selection favoring juveniles that burrow could also influence the 

evolution of burrowing time if juveniles that burrow quickly reduce predation risk. The 

physical act of burrowing is also easier for smaller clams, as their smaller shells have a 

slimmer cross section on the leading edge during burrowing, requiring less energy to 

burrow than required for burrowing adults (Levine, Hansen, & Gerald, 2013; Stanley, 

1970). 
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 It is important to consider the timescale on which clams exhibit behavior when 

interpreting the results of the present study. Trial times for the experiment were limited to 

one hour, and therefore all observed behaviors occurred only during that period. This 

limited the data collection on other aspects of behavior that may have occurred during 

longer exposure to predator cues. Clams may require several days to alter their behavior 

in response to a predator. For example, the Baltic clam Macoma balthica and the 

common cockle Cerastoderma edule increase burrowing depth in the presence of crab 

predators over a period of several days (Griffiths & Richardson, 2006). Certainly changes 

in shell morphology in response to specific predator types, as seen in blue mussels 

Mytilus edulis (Leonard et al., 1999) and Zebra mussels (Hirsch, Cayon, & Svanbäck, 

2014) take place on timescales far larger than the scope of the present study. 

Morphological changes to the size, shape, and weight of the valves during growth and 

development could also influence antipredator behavior, including likelihood or speed of 

burrowing. It would therefore be helpful to observe clam behavior during longer 

experimental trials and observational periods. A much longer study would permit 

measurement of changes in factors like shell morphology and reproductive output under 

different predator conditions.  

There are many studies about the predators of marine bivalves and their responses 

(Delavan & Webster, 2012; Flynn & Smee, 2010; Griffiths & Richardson, 2006; 

Tallqvist, 2001) but many freshwater studies focus only on invasive species (Antoł et al., 

2018; Czarnoleski et al., 2011; Hazlett, 1994; Perry et al., 1997; Saloom & Scot Duncan, 

2005) predator effects on bivalve distribution. Generally speaking, there is more to be 

learned about predator response in freshwater bivalves. Further information on the 
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nonlethal effects predators may have on bivalve communities would lead to a better 

understanding of how predator-prey dynamics shape freshwater ecosystems. 
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Fig. 1 Example of S. simile with unique color ID representing 4234.  

(Photograph: Jesse Eichler)  
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Fig. 2 Example of clam arrangement at beginning of trials (Photograph: Jesse 

Eichler) 
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Fig. 3 Relationship between percent burrowed individuals (Juvenile) in different 

experimental treatments 
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Fig. 4 Relationship between percent burrowed individuals (Adult) in different 

experimental treatments 
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Fig 5. Relationship of time to burrow (Juveniles) in different experimental 

treatments 
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Fig 6. Relationship of time to burrow (Adults) in different experimental 
treatments 
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