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Abstract

From ancient times to the modern day, public health has been an area of great interest. Stud-
ies on the nature of disease epidemics began around 400 BC and has been a continuous area of
study for the well-being of individuals around the world. For over 100 years, epidemiologists and
mathematicians have developed numerous mathematical models to improve our understanding
of infectious disease dynamics with an eye on controlling and preventing disease outbreak and
spread. In this thesis, we discuss several types of mathematical compartmental models such as
the SIR, and SIS models. To capture the noise inherent in the real-world, we consider stochas-
tic versions of these models, and use two types of stochastic simulation algorithms to solve the
models. The Gillespie algorithm is used for internal noise while the stochastic Euler algorithm
is used for external noise. To improve our understanding of the dynamics, we employ statistical
methods on the simulated data and compare with actual data. Treating the epidemic models
as a partially observed Markov process (POMP) or hidden Markov model, we use inferential
methods via particle filtering and iterated particle filtering to estimate the disease parameters.
This simulation-based inference method is demonstrated using an example of influenza data
obtained from an infection at an English boarding school.
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1 Introduction

Epidemiology is the study of the outbreak and spread of infectious disease in a group of individuals.
It is important to analyze the reasons behind and the potential factors contributing to the outbreak
and spread of the disease [2]. The knowledge gained from these studies enables prevention and
control through vaccine and quarantine.

The father of medicine is often considered to be the Greek physician Hippocrates, who lived
around 400 B.C. He is the first person to seek the relationship between occurrence of disease and en-
vironmental factors. Later, John Graunt considered the statistical study of human populations. As
the founder of the science of demography, he is called ‘the father of demography’. His publication on
the analysis of mortality data in 1662 can be considered as one of the earliest contributions to epi-
demiology [3]. In 1800, William Farr, now considered the father of vital statistics and surveillance,
further developed John Graunt’s work by collecting and analyzing Britain’s mortality statistics [4].
John Snow’s contributions to the cholera outbreak in London with the main aim as prevention of
disease and finding the cause of the disease has led him to now being considered the ‘father of field
epidemiology’ [5].

Ronald Ross and George McDonald are given credit for their work in mosquito born pathogen
transmission [6]. Ross conducted research while in a military post in India in 1897 [6] after discussion
with Patrick Manson, who worked in China in 1877, and showed that mosquitoes transmit a blood-
borne pathogen. Ross also worked on the control and prevention of mosquito-borne diseases as
early as 1902. Later, the theory developed by McDonald helped Ross in his findings which became
the basis for the ‘Ross-McDonald theory’ for understanding mosquito-borne pathogen transmission
whose influence continues to the present day [6].

Kermack and McKendrick’s contribution to the mathematical theory of infectious disease stems
from the early 20th century. Kermack and McKendrick, building on the research of Ross, McDonald
and others, developed the first mathematical compartment models to study the spread of disease.
Their work enabled one to make hypotheses that predict the number of infectious individuals in a
population over time. The basic model developed by Kermack and McKendrick is a deterministic
model and has been extended in numerous ways until the present day [5].

1.1 Importance of Epidemiology

Epidemiology is a multidisciplinary approach to studying the outbreak and transmission of infec-
tious disease. Understanding the cause of the infectious disease is not the only thing epidemiologists
are interested in. Epidemiologists also should have thorough knowledge about disease modelling,
the living habits of the community, environmental factors and community demographics. Consider-
ation of all these factors help in correctly determining the root cause for a disease, either infectious
or non-infectious, and in prevention measures by eliminating the factor of the disease [2].
Epidemiology is an approach to human disease prevention and control of disease outbreak
using a series of systematic findings and research [5]. The research data can be used to find
the cause of the disease and can enable control of the disease. With appropriate data analysis,
dreadful infectious, contagious and chronic disease outbreak can be drastically reduced. While it is
practically impossible to determine the precise number, undoubtedly epidemiology has contributed
to saving millions of lives in the world by implementing various preventive measures. Epidemiology
focuses on a wide range of diseases including infectious, non-infectious, contagious or chronic.



Epidemiologists use simple models to obtain a basic understanding of the disease. For infectious
diseases, where the disease spreads through person to person contact in a population, mathematical
models are designed to capture the most important dynamical processes. For example, in an
SIR model, the entire population is divided into three compartments: susceptible, infectious and
recovered individuals. The model is designed based on the transmission of disease from infectious
to susceptible individuals and the recovery of infectious individuals. By adapting the SIR model,
one can consider additional features such as exposure time, control measures, effect of age, and
immunization characteristics, to name just a few.

As the real method of transmission of disease from person to person is much more complex,
mathematical models are developed with some assumptions. An estimate of parameter values such
as contact rate and recovery rate are used with the models to predict how the disease spreads
through the population. As it is impossible or rather expensive to accurately collect the data
related to epidemic or endemic diseases and since data is often incomplete, to predict the behavior
of disease over time epidemiologists often simulate data to perform the required theoretical and
statistical experiments. Mathematical models or analysis of simulated data can be used to predict
the outbreak and spread of disease and can be used to develop programs for the betterment of the
community [7].

2 Theory and Methodology

2.1 Compartmental models

Compartmental models are used to study the outbreak, spread and control of infectious disease.
A population is divided into multiple, well-mixed compartments that represent for example, the
susceptible, exposed, infectious and recovered individuals in the population. These models can
easily be adapted to consider age structure, vertical transmission or many other features relevant to
particular diseases. To understand disease outbreak, spread, and extinction in a certain population,
we need to know the rates at which all processes in the model occur (birth rate, death rate, contact
rate, recovery rate, etc.) The model includes these rates of change for each process which describes
how individuals transition from one compartment to another. These mathematical models help us
to understand and investigate the spread of the disease as well as the implementation of strategies
to control or contain the disease [8].

In the classical SIR model developed by Kermack and McKendrick [9] , individuals in the
population are divided into S, I, and R compartments representing Susceptible, Infectious, and
Recovered individuals respectively. Other similar models often used include the SIS and SEIR
models, where the S, I, and R compartments are as defined for the SIR model, and where the
E compartment is defined as the Exposed individuals (who are infected with the disease but are
not yet infectious and capable of spreading the disease). In particular, the different groups of
individuals are defined as follows:

1. Susceptible (S): group of individuals who are susceptible to the disease and may be infected
if they come into contact with an infectious individual.

2. Exposed (FE): group of individuals who are infected but are not yet infectious.

3. Infected (I): group of infectious individuals who can transmit the disease to susceptible
individuals.
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Figure 1: SIR compartmental model with associated processes and rates of change.

4. Recovery (R): group of individuals who have recovered from the disease and are considered
immune.

Details for two basic compartmental models of infectious diseases are discussed below.

2.1.1 Susceptible-Infectious-Recovered (SIR) Model:

The first epidemiological compartmental model due to Kermack and McKendrick [9] is the SIR
model. This model is appropriate for childhood infectious diseases in which the recovered individ-
ual attains permanent immunity against the infection. Figure 1 shows a schematic outlining the
compartment model with associated processes and rates of change.

The governing equations for the STR model can be formulated as

s BIS

o = MN == — S, (1)
dl  BIS

%—T—(MﬂLV)L (2)
dR

% =1 — pR, (3)

where S, I, and R are the number of susceptible, infectious and recovered individuals respectively,
N = S+ I+ R is the total population size, i is the birth and death rate, 5 is the contact rate,
and 7y is the recovery rate. In these STR equations, the yN term represents the number of healthy
individuals born into the susceptible class, while the wS, pl, and pR terms give respectively
the number of individuals leaving the S, I, and R classes due to natural death. Additionally,
the % term represents the number of susceptible individuals who come into contact with an
infected individual, become infected and move into the infected class, while «I gives the number of
individuals who transition from the infected to the recovered compartment due to recovery. One can
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Figure 2: SIS compartmental model with associated processes and rates of change.

now easily describe the STR equations. For example, in Eq. (1), the rate of change of susceptible
individuals in time is equal to the gain of individuals from healthy birth, the loss of individuals
from the susceptible class to the infected class due to infection, and a loss from natural death.
Similarly, the rate of change of infected individuals in time can be given as a gain of individuals
due to infection, a loss of individuals from natural death, and a loss of individuals due to recovery.
Lastly, the rate of change of recovered individuals in time is given by the gain due to recovery, and
the loss of individuals due to natural death.

2.1.2 Susceptible-Infectious-Susceptible (S1S5) Model

When the recovery does not give any immunity against the infection the model is known as the
SIS model since recovered individuals immediately become re-susceptible to the discase. Figure 2
shows a schematic outlining the compartment model with associated processes and rates of change.
For this model, the governing equations become

dS BIS

E—/UV——N—MS-F’YI, (4)
Al BIS

_ = —_— I

il il Gl s ()

where S and I are the number of susceptible and infectious individuals respectively, N = § + [
is the total population size, p is the birth and death rate, 8 is the contact rate, and ~ is the
recovery rate. There are numerous other versions of compartmental models that add additional
compartments to capture exposure time, vaccination or quarantine, age structure, etc. Regardless
of their exact form, they have similar structure to the SITR and SIS epidemic models discussed
here in detail.
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2.2 Deterministic versus Stochastic Models

To mathematically model the dynamics of an infectious disease in a population, there are two
broad approaches that one can consider. The classical approach, and the one used by Kermack
and McKendrick as well as many others over the years, is a deterministic approach. The model
is given by a set of ordinary differential equations whose solution determines exactly the state of
the disease in time. However, real data gathered during disease events is noisy. Hence the need
for the other approach which is a stochastic one. For internal demographic noise, the stochastic
model consists of very large (possibly infinite) set of differential equations known as the master
equation [10]. The master equation gives the probability of the system having a particular number
of infectious individuals at any instant in time.

In deterministic models a large population is divided into groups or compartments, each rep-
resenting a specific stage of the epidemic. As discussed in the above example for the STR model,
the compartments are S, I and R. In these situations, the mathematical model is formulated using
ordinary differential equations. The population size in a compartment changes deterministically in
time according to the transition rates and initial conditions. In short, for a prescribed set of pa-
rameter values and initial conditions the model always gives the same output no matter how many
times we solve the equations. There is no randomness, and hence we have one output solution.
These deterministic compartment models often have two equilibria: an extinct state in which there
is no disease in the population, and an endemic state in which the disease is maintained without
any external forcing.

The transmission potential of a disease can be determined using the basic reproduction number,
Ry, which is the ratio of the expected number of new infectious individuals from a single infection
in an entirely susceptible population. The basic reproduction number tells us if the disease could
spread in a population. When Ry < 1, the number of infectious individuals declines, and hence the
disease will go extinct (possibly after a small outbreak). When Ry > 1 the number of infectious
individuals increases and the disease takes off in the population [10].

When Ry > 1 the infection will spread and will be maintained in the population for a long
period of time. In this situation the endemic state is stable. Because of the stability of the endemic
state, in the deterministic approach there is no chance for the disease to go extinct. However, in
real world scenarios, we see that disease outbreaks often do go extinct, at least locally. In order to
capture these extinction events mathematically, we must use a stochastic model that includes the
randomness or noise in the system. In particular, we will capture the internal demographic noise.
This internal noise can lead to a rare, large fluctuation that causes the disease to escape from the
endemic state and go to the extinct state [10].

A stochastic model involves random processes which lead to unpredictable outcomes. To prop-
erly understand the stochastic effects on disease modeling, we must estimate the probability distri-
butions of potential outcomes with variation in inputs over time. Since the same set of parameters
and initial conditions lead to a wide variety of outputs, we must consider a probabilistic/statistical
framework to properly understand the results of the stochastic models. It is worth noting that most
real world situations are inherently noisy, and therefore the statistical techniques discussed within
this proposal are general and can be used for many model systems, not just epidemic models.

11



3 Stochastic Modelling

For the simplest of problems, it is possible to perform theoretical analysis to solve a stochastic
problem. However, in many instances, one must simulate the stochastic solutions numerically and
then perform statistical analysis to understand the system’s behavior. In the following sections, we
present an example of the theory along with the numerical simulation algorithm.

3.1 Theoretical Analysis - An Example

Consider the simple birth-death-immigration (BDI) process with a population size N [11]. We
neglect the effect of susceptible depletion, assuming that only a small fraction of the population
are infected at one time, replenishing the pool of susceptible individuals at sufficient speed. The
three steps involved in the BDI process are: (i) introduction of the infectious individuals into the
population; (ii) the infection spreads to the other individuals at a rate proportional to the number
of infectious individuals present; and (iii) infectious individuals recover from the disease.

We assume that n is the number of infectious individuals, 3(¢) is the transmission rate of the
disease, ( is the constant rate of individuals importing the infection due to contact with external
sources, yn is the rate of recovery, 1/ is the typical duration of an infection, and A(t) = S(t)n + ¢
is the total force of infection consisting of the transmission of the disease between individuals as
well as the import of disease from external sources.

The transition rate 75, , is defined as the probability per unit time of transitioning from a state
with n infected individuals to a state with m infected individuals. In this BDI process there are
two possible transitions, namely an infection event and a recovery event. The transition rates for
infection and recovery are given as

Tn—i—l,n = B’I”L + C7 (6)
Th-1n="n. (7)

In the BDI process, the chain of transmission stemming from a particular introduced index case
is given by a branching process [11,12]. A particular outbreak can be considered as a superposition
of the separate chains of transmission caused by each introduced case during the outbreak [13].
The basic reproductive number is defined as the average number of secondary cases, Ry = /7,
found using the offspring distribution of the associated branching process [11,12,14].

If P, (t) is the probability of n individuals being infected at time ¢, then the change in probability
with time is found by solving the master equation. The advantage in considering such a simple
model is that the master equation, which determines how the probability distribution of the number
of infectious individuals changes in time, can be solved exactly for this model without the need for
any approximations [15]. This can be achieved using the moment generating function [11].

In the BDI process, the random variable is n, noting that n is discrete as it is the number of
infected individuals. Therefore, the moment generating function can be written as

Z(,t) = Ble¥"V] = 5e¥" ) P, (t), (8)
where the ith moment is given by
. 0'Z
i = En'l = —
1 '] o0 9)

$=0
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For the BDI process, the master equation is given as

dP,(t
d?f( ) - n,n—an—l(t) + Tn,n+1Pn+1(t) - [Tn+1,n + Tn—l,n]P”(t)’ vn >0 (10)
and
dPy(t
d?f( ) =To 1P (t) — TioFPo(t), n=0. (11)

The transition rates for infection and recovery are given by Eqgs. (6) and (7). Substitution of these
rates into the mater equation given by Eq. (10) gives

dP,(t)
dt

= (B(n—=1) + OPu1(t) +7v(n+ 1) Poga(t) — [Bn + ¢+ yn] Pu(t)

= B(n = 1)Po-1(t) + (Pa1(t) +v(n + 1) Paga(t) — BnPp(t) — ynPy(t) — CPa(t)
= Bl(n — 1)Pu—1(t) = nPu()] +v[(n + 1) Poya(t) — nPu()] + ([P-1(t) — Pu(t)],  (12)

and therefore

dlz;t(t)ewn =3[ = VP (1" — Y P00 +

i [Z(n + 1) Poyr(t).e?" =) nPn(t).em] +
([P =3 P ] (13)

Using Eq. (8) one can rewrite Eq. (13) as

(-1 (952 +2) + ¥ -1 (1)

It is possible to solve Eq. (14) when Ry, 7 and ( are constant or are functions of time. The
solution allows one to analytically compute a number of statistical quantities associated with the
BDI process including the mean, variance, coefficient of variation, index of dispersion, correlation
time, and autocorrelation [11].

3.2 Numerical Simulation of Data

As demonstrated, for simple models, it is possible to theoretically analyze and understand the
complex nature of the the random behaviour of infection in the population over time. However,
in most instances, the models are too unwieldy to analyze theoretically. In these cases, it is often
necessary to simulate the model’s solution data which can then be statistically studied. Once
understood, the simulated data can be employed in a wide range of control strategies [16]. In this
work, we use two types of numerical algorithms to stochastically simulate the solution data: (a)
Gillespie algorithm, and (b) stochastic Euler method.

13



3.2.1 Gillespie Algorithm

To generate a solution of a stochastic equation where the noise is internal to the system we use the
Gillespie algorithm or Gillespie’s stochastic simulation algorithm (SSA) [17]. The algorithm is a
type of Monte Carlo method that was originally proposed by Kendall [18] for simulating birth-death
processes and was popularized by Gillespie [17] as a useful method for simulating chemical reactions
based on molecular collisions. The results of a Gillespie simulation is a stochastic trajectory that
represents an exact sample from the probability function that solves the master equation. Therefore
the method can be used to simulate population dynamics where molecular collisions are replaced
by individual events and interactions including birth, death, and infection [10].

Let x = (x1,...,2,)" denote the state variables of a system, where z; provides the number
of individuals in state x; at time ¢t. The first step of the algorithm is to initialize the number of
individuals in the population compartments xy. For a given state x of the system, one calculates
the transition rates (birth rate, death rate, contact rate, etc.) denoted as a;(x) for i = 1...1, where

l
[ is the number of transitions. Thus the sum of all transition rates is given by ag = >_ a;(x).

Random numbers are generated to determine both the next event to occur as Wellla; the time at
which the next event will occur. One simulates the time 7 until the next transition by drawing from
an exponential distribution with mean 1/ag. This is equivalent to drawing a random number r;
uniformly on (0,1) and computing 7 = (1/ag) In (1/71). During each random time step exactly one
event occurs. The probability of any particular event taking place is equal to its own transition rate
divided by the sum of all transition rates a;(x)/ag. A second random number rg is drawn uniformly
on (0,1), and it is used to determine the transition event that occurs. If 0 < 3 < a1(x)/ag, then
the first transition occurs; if a;(x)/ap < r2 < (a1(x)+a2(x))/ao, then the second transition occurs,
and so on. Lastly, both the time step and the number of individuals in each compartment are
updated, and the process is iterated until the disease goes extinct or until the simulation time has
been exceeded.

Figure 3 shows a single realization of a stochastic time series for the SIR model found using the
Gillespie model. The cyclic behaviour observed in Fig. 3 is due to the continual influx of susceptible
individuals due to birth. Without the birth term, the susceptible pool could not rebuild itself after
a disease outbreak, and therefore one would not see multiple outbreaks as seen in Fig. 3.

3.2.2 Stochastic Euler Method

To generate a solution of a stochastic equation where the noise is external we use a stochastic
Euler method. Leonhard Euler, one of the most eminent mathematicians of all time, developed
a numerical algorithm to solve a deterministic ODE with initial conditions. In general, an exact
solution is difficult to find analytically, and so Euler resorted to a numerical approximation. The
idea is as follows: given an ODE ‘fl—f = f(x) with initial condition x(ty) = ¢, we wish to find the
solution x(t). As it is difficult to obtain the true solution z(¢) to the ODE, Euler wished to find a
numerical approximation #(t) to the ODE.

In the algorithm, time is divided into small intervals of length § so that t(n) = t9 + nd, for
n =1,2,3,.... Initialization of the numerical approximation is done at some known starting value
given as Z(tg) = x(tg) = xo. Euler assumed the slope dz/dt to be roughly constant each small
interval of time dt, which allows one to approximate the value of the solution at the next time step.

14
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Figure 3: Single time series realization of a stochastic STR model for infectious individuals. Time
is measured in years. Typical measles parameters are used as follows: population size N = 3 x 109,
u = 0.02/year, g = 1500/year, and v = 100/year.

This numerical approximation is given by
Tpt1 = Tp + f(xn)dt, (15)

and is demonstrated in Fig. 4 which shows a comparison of the Euler approximation to the true
solution of an ODE for two different time step choices.

Consider the stochastic ODE J
T

B t 16
= J(@) + (o) (16)
where 7 is an external noise and o is the standard deviation of the noise intensity D = 02/2. The
simplest numerical method to solve Eq. (16) is the stochastic Euler method, sometimes referred to

as the Euler-Maruyama method [10]. The stochastic Euler scheme is given by
Tnt1 = Tn + f(2n)0t + 0 (1) 000, (17)

where the time increment is 0t = ¢,,41—1, and the noise increment is dn, = n,,,—,. To implement
the stochastic Euler scheme, we note that the noise increments are independent Gaussian random
variables with the following first and second moments:

E(An,) =0, E((Ana)?) = Dét, (18)

so that
An, ~ N (0, Dét). (19)

In practice, one can solve (17) numerically, using a random number generator to draw noise values
from the distribution given by (19). Alternatively, one can numerically solve

Tptl = Tn + f(l’n)ét + VvV Dét U("L’n) ﬁnv (20)
where

i ~ N(0,1). (21)

15
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Figure 4: Euler approximations Z(t) with step size § = 0.1 (A) and é = 0.05 (B) are shown in blue.
The true solution, x(t), is shown in black. Image from [1].

4  Partially Observed Markov Processes (POMP)

We discussed previously that there is a need to design theoretical models with which one can perform
theoretical analysis as well as simulate data. In this way, we can account for the randomness of
infectious diseases as described in the previous section. Recent studies have shown that theoretical
studies alone have not led to a complete understanding of the demographic stochasticity [19].
Therefore, statistical models should be developed to provide clarity on the stochastic dynamics of
infectious disease. In epidemiology and many other areas Markov Chain Processes have proved
to be a very powerful and reliable method [19]. In this section we examine a simulation-based
statistical method for epidemiological systems using partially observed Markov process (POMP)
models [1]. POMP are also known as Hidden Markov Models as the states to be determined are
unobserved [7,20]. POMP has been and continues to be widely used in reinforcement learning,
speech, handwriting and gesture recognition, and bioinformatics [20], and more recently POMP
has shown successful results in epidemiology [20—24].

To improve our understanding of the dynamics of infectious disease, we will employ stochastic
simulation using a partially observed Markov process. This random process evolves in time ¢,
and the observations are dependent only on the current state of the process and therefore are
independent of the past states. POMP is based on a Markov chain, which consists of a set of
variables with a property that the future state is conditionally independent on the past given the
present state [25]. We use the stochastic Euler scheme for the numerical solution of the model’s
governing equations.

POMP can be generalized as shown in Fig. 5. The states of the process are denoted by
Xo, X1,y Xn, Xnt1, at time £o,¢1,...,tn, tnr1. Let Y, be a random variable with observations at
time ¢,, given by Y1,Ys,...,Y,, Y, 1. Datais collected at times t1 <2 < ... <ty by yi.u3,...,yxn-
The state process, X, is Markovian, and is given by

an|X0:n_1,Y1;n_1 ($n|$0;n_1, yl?n—l) = ern|Xn_1($n|$n—1)7 (22)

where the density function of each state variable is obtained from the probability distribution at
that particular time given the previous state. The measurable random variable, Y;,, depends only
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Figure 5: Partially Observed Markov Process (POMP) model schematic. Image from [1].

on the state at that time and is given as

Il Xoon Yino1 WnlToms Y1:n—1) = fy xn (UnlTn) (23)

Vn = 1,...,N, where the observations at any time ¢ are obtained from the probability of the
unchanged state.

4.1 SIR Epidemic model in POMP

Consider the SIR compartmental epidemic model discussed in Sec. 2.1.1 with a a fixed population
size N. Recall that S(t), I(t), and R(t) represent the number of susceptible individuals, infectious
individuals, and recovered individuals respectively at time ¢. Introducing a change of notation from
Sec. 2.1.1, let ugr represent the rate at which susceptible individuals become infected per day and
let purr be the rate at which infected individuals recover per day. Additionally, the rate of birth into
compartment S is given as u_g. The mortality rates from each of the S, I, and R compartments are
s, pr., pg. respectively . In the example discussed below involving data of an influenza outbreak
at a boarding school, the birth and death rates are not taken into account so that p.g, ps, pr.,
ur. = 0. A diagram of the compartment model used for the boarding school influenza outbreak
can be seen in Fig. 6.

S M4 | —— R

Figure 6: Diagram of the SIR compartmental model used for the boarding school influenza outbreak.
Image from [1].
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The below counting methods can be used to find the number of individuals in each compartment:

S(t) = S(0) = Nsi(t), (24)
I(t) = I(0) + Nsr(t) — Nrr(t), (25)
R(t) = R(0) + Nir(?) (26)

where Ngr(t), and Nrg(t) are the count of the number of hosts infected and recovered respectively
by time ¢. The rate at which individuals move from S to I is the force of infection which is given
as A\ = uSI = BI/N, while the rate at which individuals move into the R class is uI R = 7.

It is worth noting that a system of ordinary differential equations with specified initial condi-
tions S(0), I(0), and R(0) is Markovian. Therefore, since only the current state of the system is
responsible for the flow rate between the compartments, the compartmental model is a Markov
Model.

4.2 A POMP model for boarding school influenza data

As an example, we consider data from an influenza outbreak at a boarding school and show the
synthesis of POMP with an epidemic model to perform stochastic simulations as well as statistical
inference of parameter values.

The data was gathered from an outbreak of influenza in an all boys boarding school in England
recorded in the year 1978. Due to the nature of the school, the population is considered to be
closed (i.e. constant). The data, which shows the number of boys confined to bed over a 14 day
period from January 22, 1978 to February 4, 1978, is plotted in Fig. 7.

No. of Infected Boys by Date
300 -

B (Confined to Bed)

Jan 23 Jan 30
Date

Figure 7: Influenza data showing B, the number of boys confined to bed, over a 14 day period from
January 22, 1978 to February 4, 1978.

We model the boarding school influenza data as a partially observed Markov process. Con-
sidering the STR model as the underlying epidemic model for influenza, the hidden states or the
unobserved states are the number of individuals in each of the susceptible, infectious, and recov-
ered compartments. The observations are the number of newly reported infectious cases in the
population.
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To start, we are interested in obtaining a simulated state process rather than the transition
probabilities. Therefore, we estimate the parameters of the model using prior knowledge of the
SIR epidemic model. Inspecting the data, one finds a total of 1540 infections. Therefore the
population size N is larger than this value. The reproductive number R for influenza is generally
estimated to be about 1.5 Since the reproductive number can be related to the final size of the
epidemic f = R(o0)/N as
_log (1)

f

one can show that N = 2600 approximately. Additionally, the infectious period of influenza is
roughly 1 day as that 1/y ~ 1 day and 3 = yRy ~ 1.5 day~!. We use these parameter values to
simulate the model. For initial conditions, we let the number of infected individuals be I = 1 and
the number of recovered individuals R = 0. Then for a constant population the initial number of
susceptibles is S(0) = N — 1. The time series for 20 stochastic realizations using the stochastic
Euler scheme for the infection in time (in days) is shown in Fig. 8.

Figure 9 compares the actual influenza data (in red) with the 20 simulations. One can observe
that there is a shift of the peak at day 6 in the actual data to more than 10 days in the simulated
data. Overall, the simulated data agrees well qualitatively with the actual data for our parameter
guess. Later, we will use inference methods to estimate the parameters to improve the comparison.

Ro = (27)

4.2.1 Effect of Gillespie algorithm

Instead of using the Euler scheme, we can consider the Gillespie algorithm for the same model and
the same parameter and initial values. Figure 10 shows the simulated data of the infected versus
time (in days) under the Gillespie scheme. Comparing with the simulations using the Euler scheme,
we see improved accuracy in the timing of the outbreak. However, the amplitude is not quite as
good. Overall, however, there is good qualitative agreement for both Euler and Gillespie schemes.

200 - .

|nfectad

100~

e
'

10

n

Time(days)

Figure 8: Infected individuals as a function of time (in days) for 20 stochastic realizations found
using the stochastic Euler scheme. Note that many realizations have gone extinct after just a few
days - all of these realizations are overlapping each other in the bottom-most realization.
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Figure 9: Comparison of the actual data and 20 simulations of infected versus time (in days).
Note that many realizations have gone extinct after just a few days - all of these realizations are

overlapping each other in the bottom-most realization.

4.2.2 Effect of Vaccination

Within the framework we have described, it is possible to study the effect of a vaccine as a control
mechanism. Vaccination is a protection that can give immunity against a certain disease. Within
the context of the boarding school influenza example, we are interested in assessing the impact
of vaccination on the spread of the disease. In particular, we introduce a systematic vaccination
group with a particular rate on the susceptible class. The idea is that vaccinated susceptibles move
into the recovered and immune compartment and therefore can no longer become infected by the
disease. The model is shown in Fig. 11, and the governing equations for the STR model with

vaccination can be formulated as

Infected

Time(days)

Figure 10: Infected individuals as a function of time (in days) for 20 stochastic realizations found

using the stochastic Gillespie scheme.
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Figure 11: Diagram of the SIR compartmental model with vaccination used for the boarding school
influenza outbreak.

s _ _BIS _ o

dt N ’

dI _BIs .

a - N

dR

alv _ r 9
7 vI + S, (28)

where S, I, and R are the number of susceptible, infectious and recovered individuals respectively,
N = S+ I 4+ R is the total population size, § is the contact rate, v is the recovery rate, and «
is the vaccination rate. Note that birth and death has been neglected due to the short time span
associated with this influenza outbreak.

120 - “Vaccination (%)

20
a0
40
50
Gl
70
- B0
5 B0

80-

Infected

Time(Days)

Figure 12: Infected individuals versus time (in days) for varying vaccination rates ranging from 10
to 90 percent.

From Figs. 9 and 10 we can observe the peak of the infection with no vaccination is approxi-
mately 200. When vaccination is included, Fig. 12 shows a systematic decrease in the peak number
of infectious individuals as the vaccination rate increases from 10% to 90%. One can also see the
disease goes extinct much faster for the higher vaccination rates.

Although the simulations discussed in this section are quite reasonable qualitatively, there are
some differences between the simulated data and the actual influenza data. In order to improve
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the agreement, we will now estimate the parameters statistically. Specifically, we will investigate
the use of maximum likelihood estimation of the parameters.

5 Likelihood-based inference for POMP models

In this section we will employ standard likelihood based inference to estimate the parameters for
epidemiological data. Let the set of data consist of N observations denoted by yj.,. Given a
parameter vector 6, the density function fy,  (yi.n;6) defines the probability distribution with
parameter 6. This density function forms the statistical model. Then the likelihood function,
which is the density function evaluated at the data, is given by [1]

L(Q) - le:N (yik:N; 9)

For convenience, one often works with the logarithm of the likelihood function, given by
1(0) = log L(0) = log fv,,x (y7.n: 0)-

5.1 The particle filter

The particle filter [26] is a method we can use to estimate the parameters of a dynamical systems
when only partial observations are available. The method allows one to compute the likelihood of
a POMP model more efficiently than direct Monte Carlo integration techniques [1]. The likelihood
is an approximation of the parameters which best define the model. Unlike direct Monte Carlo
integration, this sequential Monte Carlo uses standard Monte Carlo techniques to sequentially
estimate the integrals by simulating, updating and resampling [1].

To implement the particle filter for the estimation of parameters in a POMP model, recall from
Fig. 5 that Xg.,+1 represents the states and Yj.,4+1 represents the observations at time #y.,41.
Using the observations y7.; from the POMP model we randomly select P samples from the density
function for the state variable at time ¢,,_1. This posterior distribution is given as

X Wine: (Xn—1[Yn—1).

A new set of samples are obtained from the prior distribution

Ix 1%, (Xn| Xn-1))

at time t,, using the model.

Next, weights are calculated for each particle in the posterior distribution. The weights,
p(y:| X)), for i = 1...N, of the particles in the prior distribution is updated using the weight
of the particles calculated in the posterior distribution. The more weight a particle has, the greater
the probability that it will be drawn in the prior distribution. The weights are then normalized to
sum to unity.

Prior particles are re-sampled with replacement according to the normalized weights in the
posterior distribution. The samples in the prior distribution are chosen with a probability equal
to its normalized weights [27]. The entire procedure outlined above is iterated several times with
simulating, updating and re-sampling in each step until n = N. The likelihood is approximated by

. 1 .
Ly (0) = FfYMXn(yn‘Xn)’
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with the log likelihood given by [(0) = log L(0).

Returning to the example of boarding school influenza data, we consider fitting the STR model
to the influenza data to estimate the parameters. The estimation of the parameters was found
numerically using the R package pomp [28]. Using the initial conditions from Sec. 4.2, we performed
the particle filtering and found the log likelihood to be -88.86625419, with associated estimated
parameters given as 8 = 2, v = 1 and p = 0.9, where p is the probability that an infection is
observed and recorded.

These results reflect the log likelihood of a single realization of the particle filter. To attain a
much higher likelihood of the estimated parameters we perform several of these realizations of the
particle filter in order to maximize the likelihood that is obtained. The process of using iterated
filtering to determine the maximum likelihood estimate is described in the following section.

6 Maximizing the likelihood of an estimate using iterated filtering

A maximum likelihood estimate (MLE) is the maximum likelihood over all possible §. The MLE
estimates parameter values lying in a subset of the set of possible parameter values. The estimator
considered lies in the subset and is the solution of the likelihood equations which gives a maximum
of the likelihood function [29] as shown by

0 = argmax(6),
0
where
argmax g(0)
0

determines a value of the argument ¢ at which the maximum of function g is attained. If there are
many values of 6 giving the same maximum value of the likelihood, then an MLE still exists but is
not unique [1].

6.1 Iterated Filtering

Iterated filtering is useful for choosing the point estimate corresponding to the MLE. Iterated
filtering methods have been shown to solve likelihood based inference problems in epidemiological
situations which are computationally intractable for the available Bayesian methods [1]. When
employing iterated filtering, each iteration has a particle filter, with a parameter vector for each
particle undergoing a random process. At the end of the time series, the collection of parameters at
the end of each iteration is taken as starting parameters for the next iteration. At each iteration, the
random process variance decreases. In this way, the procedure maximizes the maximum likelihood.

This method of statistical inference has shown promise in the estimation of parameters along
with profile likelihood, confidence intervals, likelihood ratio tests, etc. [20]. These inferential tech-
niques can be applied to a variety of disease data including influenza, measles, or polio data to name
just a few. The idea is to replace the epidemic model we are interested in fitting the data, having
invariant parameters, with the same type of model but with parameters that take a random walk
in time [20]. By repeating the filtering procedure for many iterations this intensity of the random
walk approaches zero and the modified model approaches the true model. In iterated filtering this
random walk intensity (referred to as the temperature) must be decreased by a factor (called the
cooling schedule) which approaches zero when the maximum likelihood is reached [20].
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Figure 13: Comparison of the actual data (blue) and simulations (red) of infected versus time (in
days). The simulations use parameter values derived a maximum likelihood estimate using iterated
filtering.

The estimation of parameters via particle filtering provides us with a point estimate of the
parameters. We conduct a local search around this point given the intensity of the random walk
and the cooling schedule. In the parameter space we are looking for a set of parameter values
around the point estimate that contain all the sensible parameter vectors. These parameter vectors
have a diverse starting point on which a global search is conducted. With this set of parameters
many iterations are run which gives us set of likelihood estimates for the most sensible parameter
vectors. The likelihood estimate with a maximum value is considered to be the MLE which gives
us the model which best fits the data.

As an example, we return to the the boarding school influenza data and apply the iterated
filtering algorithm. The initial conditions and parameter starting values are the same as from the
particle filtering example in the previous section. Iterated filtering is performed for 300 iterations
and the maximum log likelihood obtained is -72.66927 with associated parameter values of § =
3.571134, v = 1.985172 and p = 0.9533523.

Given the MLE of parameter values, we can re-compute simulations of the disease model.
Figure 13 shows the results. When compared with Figure 9 which was computed using best-guess
parameter values from our knowledge of epidemiology, we find the new plot gives better predictions
of the actual data. In Figure 13 we find a clear shift in the peak from day 10-12 to day 4-6 when
compared to the actual data at day 6. Overall, the simulation based inference algorithms provide
much better results and improved understanding of the disease dynamics.
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7 Summary and Remarks

We have presented a numerical approach for understanding different epidemiological compartmental
models with stochastic simulation methods. Specifically, we highlight the Gillespie algorithm and
stochastic Euler scheme as tools for simulating infectious disease data. Both actual and simulated
data are important for understanding a variety of applications, including predicting when and how
can the disease go extinct as well as the optimal path for the control of disease by vaccination or
quarantine [10,30-32].

Unlike the deterministic approach, the stochastic approach captures the randomness and noise
which can arise from demography or from external sources. For simple models, it is possible to
theoretically solve these stochastic models. However, most models of interest are too complicated
to solve analytically. Therefore we rely on simulations and statistical modelling. In this work we
considered two types of numerical algorithms to simulate the data: Gillespie algorithm for internal
noise and stochastic Euler for external noise.

Since real epidemic data is relatively sparse, we projected the data as a partially observed
Markov process (POMP) with some initial conditions of the unobserved state process. Importantly,
the future state depends only on the current state. The observations are the number of newly
reported infectious individuals at a given time in each state. Using simulated data from stochastic
Euler, statistical inference provided parameter values that matched well with actual influenza data
(see Fig. 9). We additionally investigated the differences between Gillespie simulated data and
Euler simulated data, and also showed the effects of vaccination.

It is well worth noting that inference including particle filtering and iterated filtering, provide
more accurate estimation of parameters with relatively fast computational speed. In dynamically
complex models that are nonlinear and non-Gaussian, it can be very difficult to estimate param-
eters, and in these cases the inference algorithms are of great use. Coupling these inference with
POMP models for disease enables one to achieve a maximum likelihood of the estimate that gives
parameter values that better agree with the actual data. These inferences can be used not just
in epidemic models but also in many different fields. Our work allows epidemiologists to have
improved understanding of disease dynamics as they perform predictive work that is important for
the survival of mankind.
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