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Abstract

This project seeks to advance our understanding of Antarctic Ice Sheet dynamics 

and to gain insight into the bedrock composition beneath the Antarctic Ice Sheet by 

“fingerprinting” ice streams that drain into the Ronne-Filchner Ice Shelf. The Ronne- 

Filchner Ice Shelf is the second largest ice shelf in Antarctica and receives ice drained 

from both the West and East Antarctic Ice Sheets through a series of ice streams. In 

response to global warming, this sector has the potential to contribute dramatically to sea 

level rise, especially from the Recovery Catchment. Till samples were collected from 

lateral moraines adjacent to the Foundation, Academy, and Recovery ice streams, all 

located within the Weddell Sea sector, during a December 2014 field season. Extensive 

analyses of sieved fine fraction (< 63 pm) show that all three ice streams have major 

element profiles that are consistent with the upper continental crust, though with Na and 

Ca depletion. Al/Ti and Fe/Ti ratios are also consistent with upper continental crust for 

all three ice streams. Recovery Ice Stream is the only one of the three ice streams to 

contain Mn- bearing minerals, including psilomelane and hausmannite. Foundation Ice 

Stream is the only stream containing V- bearing titanomagnetite. The Foundation Ice 

Stream also contains the most ilmenite. Academy Glacier till exhibits the most alteration 

textures in Fe-oxides (63%), and Recovery exhibits the most homogeneous Fe-oxide 

grains (24%). Through developing these geochemical and mineral signatures, this project 

will allow researchers to develop proxy records for ice stream activity in marine 

sedimentary records and better understand which ice streams may be the most vulnerable 

to ice loss as a response to global warming.
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1. Introduction

The Ronne-Filchner Ice Shelf is the second largest ice shelf in Antarctica and 

receives ice drained from both the West and East Antarctic Ice Sheets (WAIS and EAIS, 

respectively) through a series of ice streams (Fig. 1, Rignot et al., 2011). In response to 

global warming, the Weddell Sea Sector has the potential to contribute dramatically to 

sea level rise as 22% of all Antarctic ice drains through this sector (Bamber et al., 2007; 

Hillenbrand et al., 2014). A recent study suggests that the Recovery Catchment will be 

the source for the majority of future ice loss from East Antarctica (Golledge, et al., 2017). 

Recovery Catchment is one of several drainages within the EAIS and WAIS that are 

vulnerable to ocean warming and undermelting of ice as warm Circumpolar Deep Water 

(CDW) moves landward within subglacial troughs (Golledge et al., 2017). It is uncertain 

how fast ice streams might transfer ice from land to ocean due to warming air and ocean 

temperatures (Thomas et al., 2015; Golledge et al., 2017). Records of past ice sheet 

movement are preserved within marine sediment cores, and this can help in potentially 

answering these questions (Hillenbrand et al., 2014) as well as providing input data for 

modeling future ice sheet loss and sea level rise.

This project seeks to advance our understanding of Antarctic Ice Sheet dynamics 

and to gain further insight into the bedrock composition beneath the Antarctic Ice Sheet 

through geochemical and mineral “fingerprinting.” The fingerprinting of ice streams 

involves creating a suite of tracers for terrestrial glacial debris that can be used to 

correlate ice rafted debris in marine sedimentary records to the drainage basin from which 

it was eroded. There are many different provenance tracers used, such as lithic 

assemblages within the sand fraction (Licht et al., 2005), bulk sediment geochemistry



(Farmer et al., 2006), Ar/Ar dating of hornblende grains and radioisotope geochemistry 

(Roy et ah, 2007; Williams et al 2010; Pierce et ah, 2014), U/Pb dating of zircons (Rosier 

et ah, 2002), heavy mineral assemblages (Passchier, 2007), clay mineral assemblages 

(Biscaye, 1965; Hillenbrand et ah, 2014), and Fe-oxide assemblages (Darby and Bischof, 

1996, 2001). Through the development of these types of signatures for Weddell Sea 

Sector ice streams, this project will allow researchers the ability to develop and improve 

proxy records for ice stream activity in marine sediment records. These results will 

provide insight to the felsic or mafic nature of bedrock under each ice stream and how 

enriched or depleted each ice stream is with respect to different elements of interest as 

compared with average continental crust.

In addition to identifying provenance signatures, quantifying elemental 

abundances from potential source regions will be useful in interpreting geochemical 

proxies of paleoproductivity and paleoredox conditions in Weddell Sea sector marine 

sediment cores. Fe is a micronutrient that can stimulate phytoplankton blooms, which 

consume dissolved CO2 from the surface ocean, resulting in CO2 drawdown from the 

atmosphere. Increased productivity has been observed in the Weddell Sea surrounding 

large icebergs, which is caused by input of Fe and other micronutrients as the icebergs 

melt (Smith et al., 2007; Duprat et al., 2016). Therefore, the potential for glacial debris to 

supply bioavailable Fe to the ocean is of interest. Enrichment of redox-sensitive elements 

such as V and Mn in sediment cores can be used to monitor changes in bottom water 

oxygen levels, which is of interest in the Weddell Sector since this is an area of Antarctic 

Bottom Water formation (Orsi et al., 1999). This study will explore how much Fe may be 

supplied to the Weddell Sea embayment by the Foundation, Academy, and Recovery Ice
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Streams. The results are reported as total Fe, as quantifying bioavailable Fe is beyond the 

scope of this thesis. In addition, we report the detrital abundances of metals used as 

tracers of redox conditions in sediment such as V and Mn. Determining baseline values of 

detrital V and Mn will be an asset to evaluating whether detrital input can obscure 

patterns of enrichments or depletions due to redox processes in marine sediment cores 

(Haug et al., 2001; Yarincik et al., 2000; Latimer et al., 2006).

Of the many ice streams within the Weddell Sea Sector, we examined three major 

ice streams that discharge significant amounts of ice to the Weddell Sea. The Foundation, 

Academy, and Recovery Ice Streams lie within the two largest ice drainages in 

Antarctica. The Recovery Ice Stream lies within East Antarctica, while the Foundation 

Ice Stream and Academy Glacier entrain sediment from both East and West Antarctica 

(Fig.l, Rignot et al., 2011). Till samples were collected from lateral moraines adjacent to 

each ice stream during a December 2014 field season. The till was used to develop a 

comprehensive suite of tracers in collaboration with colleagues at Texas A&M 

University, Lamont Doherty Earth Observatory, Cambridge University, UK, and the 

Alfred Wegener Institute, Germany (Agrios et al. 2016; Cirone et al., 2016; Williams et 

al., 2016).

This study focuses on bulk sediment geochemistry of the < 63 gm sediment size 

fraction (the mud fraction) and the texture and composition of course silt to medium 

sand-sized iron oxide grains. Fe oxide mineral grains have distinctive textures and 

compositions, lack cleavage, and have moderately high hardness (5.5 to 6.5 on the Mohs 

hardness scale), making them excellent provenance tracers. The grains can be 

differentiated into several distinct compositional categories for each source area and can
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be clustered into subgroups depending upon the host mineral and the presence and 

abundance of trace elements that substitute for Fe and Ti (i.e. Mg, Al, V, Cr, and Mn). 

Darby and Bischof, (1996 and 2001), and Darby (2015) used this technique in the Arctic 

Ocean to match ice rafted debris (IRD) recovered in sediment cores to terrestrial sources, 

allowing the authors to make inferences regarding ice sheet dynamics and the circulation 

of sea ice in the Arctic Ocean.
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Figure 1. Antarctic ice drainages and ice flow velocity map of Rignot et al., 2011. The 
red box denotes the location of the Foundation (red arrow), Academy (blue arrow), and 
Recovery (green arrow) Ice Streams in the Weddell Sea sector. The West Antarctic Ice 
Sheet has the potential to add approximately 5 meters to sea level rise while the East 
Antarctic Ice Sheet will potentially add approximately 55 meters to sea level rise. (Image 
adapted from Rignot et al., 2011).
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2. Study Area

The Recovery Glacier and Ice Stream system (hereafter referred to as Recovery 

Ice Stream) lies within East Antarctica immediately south of the Shackleton Range, and 

flows southeast to northwest (Fig. 2). The ice thickness estimated from BEDMAP2 

(Fretwell et al., 2013) varies from approximately > 3000 m at its head to < 1000 m as it 

approaches the Filchner Ice Shelf. The BEDMAP2 ice thickness map suggests that 

Foundation Ice Stream and Academy Glacier are thinner, with maximum ice thickness < 

2500 m.

Low-grade (greenschist facies) metasedimentary and metavolcanic rocks comprise 

the Shackleton Range, which is inferred to have been uplifted during the Ross Orogeny 

(500 - 444 Ma). The Shackleton Range may also include medium grade metamorphic 

rocks formed during one or more Precambrian events (Craddock, 1970). During the 2014 

field season, the field team observed multiple lithologies from cobbles and boulders at the 

Recovery Ice Stream site, which consisted of limestones, Ferrar dolerite, schist, and 

quartzite (Williams et al., 2015, 2016).

The Academy Glacier and Foundation Ice Stream may entrain debris from both 

East and West Antarctica (Fig. 2). Academy Glacier flows southeast to northwest, 

between the Patuxent and Neptune ranges (Fig. 3), and then merges with the Foundation 

Ice Stream. The Foundation Ice Stream is approximately 240 km long and flows south to 

north along the western margin of the Pensacola Mountains (Stewart, 1952; Fig. 3). The 

Pensacola Mountains were uplifted during the Ellsworth Orogeny, during the late Triassic 

to early Jurassic between 237 and 174 Ma. The range is predominantly composed of low-
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grade metasedimentary and metavolcanic rocks (mainly greenschist; Fig. 3). The northern 

end of the Foundation Ice Stream lies within the Dufek Massif, a range of exposed peaks 

in the Pensacola Mountains. The massif is home to the Dufek intrusion, estimated to be 

Jurassic in age, consisting of Ferrar Group of basalts and diabases that are found 

throughout the Transantarctic Mountains. The Dufek Massif also includes well-layered, 

magnetite-bearing pyroxene gabbros as well as Ca-poor pyroxenes (Ford, 1976). Sections 

of the Pensacola Mountains also contain granite emplaced during the Ross and Ellsworth 

orogenies. Moving inland, the range turns into a similar lithofacies as the Shackleton 

Range - Ross Orogen low-grade metasedimentary and metavolcanic rocks - then 

transitions into sedimentary rocks of the Gondwana sequence (Craddock, 1970). This belt 

of Gondwana sequence rocks extends from Coats Land along the eastern Weddell Sea 

margin all the way to western Wilkes Land coast in East Antarctica (Craddock, 1970).

The only exposed outcrop in the area visited during the 2014 field season is 

located in the Thomas Hills. The bedrock located here is a part of the Patuxent Formation, 

late Precambrian in age, and composed of meta-subgraywake and slate mixed with 

basaltic and felsic volcanic material (Ford et al., 1978). Cobble and boulder lithologies 

observed in till next to the Academy Glacier include white granite, purple-red sandstone, 

volcanics, and lithologies interpreted as turbidites from the Patuxent Formation (Williams 

et al., 2015, 2016). Lithologies observed at the Foundation Ice Stream sites include 

Patuxent turbidites, sandstones that are red, yellow, and white in color, conglomerates, 

mafic igneous rocks, greenish granitic boulders, and black, gray, and white limestones 

(Williams et al., 2015).
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Figure 2. Tectonic map of the Weddell Sea Sector; white boxes denote locations of 
Recovery Ice Stream (upper box, directly south of the Shackleton Range), the Academy 
Glacier (running through the Pensacola Mountains) and Foundation Ice Stream 
(immediately west ot the Pensacola Mountains). Light green represents low-grade meta- 
sedimentary and meta-volcanic rocks (237-174 Ma). Pink represents meta-sedimentary 
and meta-volcanic rocks (500-444 Ma). Grey represents Gondwana sequence sedimentary 
rocks. Solid red lines represent drainage basins and arrows indicate direction of ice flow 
(image adapted from Craddock, 1970).
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Figure 3. Geologic map of the Pensacola Mountains adjacent to the Academy Glacier and 
Foundation Ice Stream. Solid grey represents Patuxent Formation grey-green argillaceous 
sandstones and slate. Grey with blue horizontal lines represents grey basalt interlayered 
with Patuxent sandstones. Light pink represents Neptune Group sandstones that are 
Ordovician in age (Schmidt and Ford, 1969).



3. Methods

3.1. Study Area and Field Methods

Twenty-one onshore surface till samples were collected from moraines adjacent to 

three ice streams that were accessible by aircraft and/or skidoos during a December 2014 

field season, at distances of approximately 87.5 to 150 km from the inferred grounding 

line position (Table 1; Fig. 4). Square-meter plots were mapped out with rope (Fig. 5). 

Pebbles and cobbles were picked from the surface for lithologic identification. To avoid 

the possibility that wind scouring biased the grain size distribution and composition of 

the surface sediment, approximately 1 cm was removed from the surface of the plots 

prior to sampling. Approximately 2 kg of unconsolidated sediment was scooped from a 

depth of 2 to 5 cm into plastic bags, which were then mixed and homogenized, then 

subdivided into subsamples for each investigator.
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Table 1. Sample site locations, identification codes, and associated ice streams

Sample Site

Mt. Yarborough 
Mt. Yarborough 
South Island 
South Island 
Mt. Suyden 
Hemming Nunatak 
Moustache Moraine 
Moustache Moraine 
Mt. Yarborough moraine 
Mt. Yarborough moraine 
Mt. Yarborough moraine 
Martin Peak 
Martin Peak moraine 
Martin Peak moraine 
Weber Ridge 
N. Side Academy Glacier 
N. Side Academy Glacier 
Stephenson Bastion moraine 
Stephenson Bastion moraine 
Whichaway Nunataks moraine 
Whichaway Nunataks moraine

Sample ID Ice Stream

YAR-2 Foundation
YAR-3 Foundation
SIS-1 Foundation
SIS-2 Foundation
SUY-1 Foundation
HEM-1 Foundation
MOU-1 Foundation
MOU-2 Foundation
YAR-4a Foundation
YAR-4b Foundation
YAR-4c Foundation
MAR Foundation
MAM PEBTIL Foundation
MAM2 PEBTIL Foundation
WEB PEBTIL Academy
LIC PEBTIL Academy
LIC2 PEBTIL Academy
STB PEBTIL Recovery
STB2 PEBTIL Recovery
WAW PEBTIL Recovery
WAW2 PEBTIL Recovery

Latitude (S) Longitude (W)

-84.4198 -65.8992
-84.409 -65.9705
-84.4418 -66.2704
-84.4459 -66.2323
-84.5326 -65.4768
-84.4401 -65.3698
-84.3303 -65.0988
-84.3304 -65.0983
-84.4296 -66.0726
-84.4195 -66.072
-84.4192 -66.0604
-84.3674 -65.3049
-84.3521 -65.2362
-84.3534 -65.2459
-84.295 -62.8646
-83.9007 -57.4212
-83.8981 -57.4246
-80.8047 -27.2401
-80.8046 -27.2398
-81.5058 -28.6816
-81.5063 -28.6858

PEBTIL = Pebble Till
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Figure 4. Locations of till sample collection sites. Green dots signify Recovery Ice 
Stream sample sites, blue dots signify Academy Glacier sites, and the red dots signify 
Foundation Ice Stream sites (image generated using GeoMapApp). The “Antarctic 
Coastline” overlay in GeoMapApp (solid black line) is the combination of the coastline, 
ice shelf edges, and inferred grounding line locations from Fretwell et al., 2013. The 
sample sites are approximately 87.5 to 150 km upstream of the grounding line.

Figure 5. Example of lm2 plot of till at the LIC field site adjacent to the Academy Glacier 
(photograph courtesy of Kathy Licht).
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3.2. Initial Sample Processing

The twenty-one sediment samples were processed via two sieving steps and by 

magnetic separation for chemical and mineral analysis. Each bulk sediment sample was 

weighed out twice to approximately 15 grams and deposited into pre-labeled glass 

beakers. Labels contained the collection site name, date of collection, and size fraction. 

One bulk sample of 15 grams was sieved into 45-500 pm and 500-2000 pm size 

fractions, and the other was sieved into < 63 pm and > 63 pm size fractions. The 45-500- 

2000 pm beaker was filled with 50 mL of Calgon solution to disaggregate the sediment. 

The < 63 pm beaker used only nanopure water to preclude cations absorbing onto clay 

particles and altering the chemistry of the sample.

After sonicating the samples were wet sieved. The 45-500 pm and 500-2000 pm 

size fractions were oven dried at 45 °C. The 45-500 pm size fraction was used for iron 

oxide extraction, which is described in section 3.4.1. The 500-2000 pm size fraction was 

not used in this study, but is archived for any future grain mounts and point counting, 

following the method of Licht et al. (2005).

The < 63 pm sample was poured into pre-labeled centrifuge tubes and centrifuged 

at 3500 rpm for fifteen minutes or until there was visible separation between sample and 

water and the water was completely clear and colorless; the clear water was pipetted out. 

Samples were then frozen at -20 °C for at least 24 hours, and then freeze-dried for 24-36 

hours using a Labconco Freezone freeze-dryer in order to dry the sample prior to 

geochemical analysis and future magnetic analysis of the fine fraction. The freeze-dried 

sample was then used for geochemical analysis described in section 3.3.

12



3.3. Major and Trace Element Geochemistry via ICP-OES and ICP-MS

3.3.1 Sample fusion

Sediment samples were prepared for inductively coupled plasma optical emission 

spectrometry (ICP-OES) and mass spectrometry (ICP-MS) by starting with lithium- 

metaborate fusion. Subsamples from the < 63 pm size fraction were weighed out to 

0.1000 ± .0005 g and thoroughly mixed with 0.4000 ± 0.020 g of lithium metaborate flux. 

Once mixed, the samples were carefully poured into graphite crucibles. The crucibles 

were placed in a muffle furnace at 1050 °C for approximately 25 minutes, which created 

a glass bead that dissolves easily in nitric acid. After removal from the furnace, the bead 

was transferred to a Savillex beaker containing 50 mL of 7% nitric acid. Beakers were set 

on stirring plates to allow the stir rods to expedite the dissolution process. After the 

samples were completely dissolved, the solution was filtered into 60 mL Nalgene bottles, 

resulting in a 500x dilution of the sample. Each set of 6-8 samples was prepared along 

with one blank containing only the lithium metaborate flux.

3.3.2 Sample Dilution for ICP-OES and ICP-MS

For analysis via the ICP-OES, solutions were diluted to 4000x using 2% nitric 

acid. Approximately 6.5 mL of each 500x sample was pipetted into a new 60 mL 

Nalgene bottle and mixed with 50 mL of the 2% nitric acid. Samples were stored in a 

refrigerator until analysis. In total, 41 samples, including till samples, US Geological 

Survey powdered reference materials standards, and blanks, were prepared for analysis.

The ICP-MS requires a 10,000x dilution. Using the previously prepared 500x 

samples, blanks, and standards, 0.5 mL of sample was pipetted into a clean test tube and
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mixed with 9.5 mL of 1% nitric acid. Dilutions were made either immediately prior to 

analysis, or no more than 1 day prior to analysis.

3.3.3 Sample Analysis and Data processing

Major elements were analyzed on a JY Horiba ICP-OES at Montclair State 

University using the 4000x dilution. Trace elements were analyzed on a ThermoFisher 

iCAP ICP-MS using the 10,000x dilution. Every run contained samples, blanks, and 

standards. Each individual analysis consisted of three replicate measurements of the 

solution. A drift solution was measured after every 4 samples to monitor instrument drift 

and correct data for changes in instrument operating conditions. Raw output was drift- 

corrected, blank corrected, and then calibrated to units of wt% or ppm using a calibration 

line derived from standards.

Ten primary and 2 secondary U.S. Geological Survey Powdered Geochemical 

Reference Materials were prepared using the same procedure as described above. The 10 

primary standards (all igneous materials) were used to derive a calibration line for each 

element of interest. This was done using Microsoft Excel’s line fit function. Three runs 

were conducted on each instrument. Each individual run was corrected and calibrated. 

Finally, the average wt% or average ppm for each element and standard deviation of the 3 

runs was calculated for each sample. The two secondary standards, both sedimentary 

materials, were used to check the accuracy of the calibration.
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3.4 Scanning Electron Microscopy and X-ray Microanalysis

3.4.1 Fe-Oxide Sample Preparation

The 45-500 pm fraction was passed through a Frantz Magnetic Separator set to 

downhill and side slopes of 25 degrees and 0.4 amps of electrical current. Two vessels 

were attached to the end of the device in order to catch the magnetic and the non­

magnetic fractions as the sediment passed through the magnetic field. The magnetic 

fraction was examined under a stereomicroscope and hand-picked for opaque grains with 

metallic luster. These grains were then mounted in epoxy within a Lucite disk (hereafter 

referred to as grain mounts), with each sample occupying a separate 0.125” drill hole 

within the disk.

Grain mounts were ground and polished beginning with the coarsest grinding of 

600 SiC for five minutes. Disks were then polished for one hour using 6 pm diamond 

polishing solution, followed by one hour using 1 pm diamond polishing solution. Grain 

mounts were checked periodically during polishing to ensure that scratches and 

blemishes were being removed. All polished grain mounts were imaged using a Zeiss 

reflected light microscope in order to create a map of each set of grains and assign 

identification numbers to all potential iron-oxides that could be used for analysis. Grain 

mounts were then carbon coated using a Denton Desk IV Turbo Sputter Coater.

3.4.2 SEM Imaging and X-ray Microanalysis

Under low-magnification backscatter (BSE) imaging, a BSE map and an x-ray 

map were created to identify oxides vs. silicates. The x-ray maps were color-coded for 

ease of interpretation, with Fe colored red, Ti colored blue, and Si colored yellow. Grains

15



with resulting red, purple, and blue colors were determined to be Fe-oxides and were 

assigned identification numbers. Grains colored yellow were interpreted to be silicates 

and were not included in further analysis (Fig. 6). Close-up BSE images were taken of 

each numbered Fe-oxide grain for texture identification and to identify analytical regions 

for Energy Dispersive X-ray Spectrometry (EDS). EDS analysis of host grains, 

inclusions, lamellae, and intergrowths was conducted to determine the chemical 

composition of each phase present.

Figure 6. Color-coded X-ray map of grains from site MAM near the Foundation Ice 
Stream.
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4. Atlas of Iron Oxide Textures and Compositions

The Fe oxide composition and texture identification process was based upon 1) 

comparison of wt% of each element derived from EDS analysis with stoichiometric wt% 

of each element within major minerals; and 2) identifying textures within the host grain.

4.1 Host Mineral Classification

Host minerals were assigned a mineral name based on the wt% of Fe, Ti, and O 

for Fe-oxide grains, and wt% Fe and S for iron sulfides. Magnetite was identified by its 

high wt% Fe (near to 72%), absence of Ti, and O wt% in the range of 27-28%. 

Titanomagnetite contains high Fe wt% (61-72%), low amounts of Ti (2-13%), and O wt% 

ranging from 27-28.5%. We use the term (titano)maghemite to describe a 

(titano)magnetite grain that has been oxidized but still retains its spinel mineral structure, 

as indicated by an intermediate O wt% of 28.5-30%. Hematite and titanohematite EDS 

spectra look nearly identical to magnetite and titanomagnetite, respectively. We identified 

(titano)hematite via its higher O content of 30-31 wt%.
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Table 2. Stoichiometric Formulae and Element wt% for Fe-Ti Oxide Minerals

M ineral N am e Form ula wt%  Fe wt%  Ti wt%  O

M a g n et ite F e 30 4 7 2 .3 6 - 2 7 .6 4

T M 1 0 F e 2 .9Tio.1O 4 7 0 .1 9 2 .0 7 2 7 .7 3

T M 2 0 F e 2 .8Tio.2O 4 6 8 . 0 1 4 .1 6 2 7 .8 3

T M 3 0 F e 2 .7Tio.3O 4 65.81 6 .2 7 2 7 .9 3

T M 4 0 F e 2 .6Tio.4O 4 6 3 .5 9 8 .38 2 8 .0 3

T M 5 0 F e 2 .5Tio.5O 4 6 1 .3 6 10 .52 2 8 .1 2

T M 6 0 F e 2 .4Tio.6O 4 6 1 .5 7 12 .67 2 8 .2 2

H em atite Fe2 0 3 6 9 .9 4 - 3 0 .0 6

T H 1 0 Fei oTiojO i 6 6 .7 8 3.01 30 .2 1

T H 3 0 Fei 7Tio.30 3 6 0 .3 6 9 .13 30 .51

Ilm en ite F e T i 0 3 36.81 3 1 .5 5 3 1 .6 4

R utile T i 0 2 - 5 9 .9 3 4 0 .0 7

TM = titanomagnetite (Fe3_xTix0 4), TH = titanohematite (Fe2.yTiy0 3).

Ilmenite is characterized by similar wt% of Fe, Ti, and O (36.81%, 31.55%, and 

31.64% respectively for stoichiometric ilmenite). The term ferrian ilmenite is given to 

ilmenite grains where the Fe content is greater than 37%. Rutile is named for its high 

percentage of Ti (>58%) and high O (near 40%), and little to no Fe. However, rutile 

observed in this study also contained small amounts (< 2 %) of Mg or Mn.

Fe sulfides were rare in these samples, but several forms were observed including 

framboids within sedimentary lithic grains. The Fe-sulfide grains were often part of 

multi-phase intergrowths and/or were smaller than the EDS interaction volume of 5 pm. 

Fe-sulfide stoichiometric formulae and wt% Fe and wt% S are included in Table 3, 

though in most cases we are unable to confidently identify the specific mineral phase. 

When present as framboids, we assume these were originally pyrite, though EDS spectra



containing oxygen suggest that the pyrite has been partially replaced by magnetite (Suk et 

ah, 1990).

Table 3. Formulae and Element wt% for Stoichiometric Fe-sulfide Minerals

M ineral N am e Form ula wt%  Fe wt%  S
T roilite FeS 6 3 .5 3 3 6 .4 7

Pyrite F e S 2 4 6 .5 5 5 3 .4 5

Pyrrhotite Fe7Sg 6 0 .3 8 3 9 .6 2

H e x a g o n a l  Pyrrhotite FeçSio 6 1 .0 6 3 8 .9 4

G reig ite F e3S 4 5 6 .6 4 4 3 .3 6

Table 4 presents formulae and wt% for other notable minerals observed in these 

samples. Fe-spinel describes minerals that resemble magnetite and titanomagnetite with 

respect to Fe and O wt%, but which contain spinel-group elements such as Al, Mg, and 

Cr in place of Ti. Other impurities present include Ca and V. Titanite is used to describe 

Ca-Ti silicates. While not expected to be magnetic, the presence of titanite in our 

magnetic fraction suggests it contains magnetic inclusions or intergrowths. Psilomelane 

and hausmannite are Mn-bearing minerals that are present in the till samples. We 

assigned the name psilomelane to Mn- and Ba-bearing oxides, and the name hausmannite 

to Mn-oxides, though small amounts of other cations are present in both of these 

minerals.
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Table 4. Formulae and Element wt% for Other Minerals of Interest

M in e r a l
N a m e
Hausmannite

F o rm u la

Mn30 4

w t%
T i

w t%
O

27.96

w t%
M g

w t%
M n

72.03

w t%
A1

w t%
Ba

w t%
Si

w t%
C a

Psilomelane BaMn9Ol6(OH4) - 26.78 - 51.73 - 14.36 - -

Spinel (Fe,Al,Mg,Cr)30 4 - 27-28 var - var - - -

Titanite CaTiSiOs 24.42 40.82 . - _ _ 14.33 20.41

var = variable

4.2 Fe Oxide Textures

Below is a gallery of Fe-oxide textures observed in the till samples from the 

Weddell Sea Sector (Fig. 7A-J). While this is not all-inclusive, these images represent the 

major textures we observed and are used here to illustrate the features that form the basis 

of textural classification names.
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Figure 7 A. Homogeneous Texture. There are no visible exsolution bodies or noteworthy 
features on, or within, the grains. This example is an ilmenite grain. The oval feature is 
likely a scar from plucking out another mineral grain (WAW2 near Recovery Ice Stream).
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Figure 7B. Trellis Texture. The host contains continuous intergrowths or lamellae that 
span the whole grain. Grains may contain 1 to 4 swarms of lamellae. This example is a 
titanomagnetite host containing 4 swarms of ilmenite lamellae (MOU near Foundation 
Ice Stream).
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Figure 7C. Exsolution Texture. The host contains discontinuous intergrowths such as 
blebs, needles, and lenses. This example is a titanomagnetite host containing multiple 
ilmenite blebs and needles (YAR4C from Foundation Ice Stream).
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Figure 7D. Framboidal Texture. Framboids within sedimentary lithic clasts. We infer that 
these were originally pyrite framboids, but many of the observed grains show 
replacement by magnetite (WEB from Academy Glacier).
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Figure 7E. Myrmekitic Texture. “Wormy” micron to submicron scale intergrowths of 
multiple minerals in a host grain. This example is a titanohematite host with Ca-rich 
silicate intergrowths (MAM2 from Foundation Ice Stream).
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Figure 7F. Alteration Texture. The host grain chemistry and/or texture has been 
modified, presumably by oxidation, chemical weathering, or hydrothermal alteration of 
the bedrock that supplied the grain. Alteration is suggested in the BSE images by 
changing shades of grey along mineral twins, along grain boundaries and lamellae 
boundaries, or along cracks in the grain. These are interpreted as chemical changes 
propagating through the grain. This was the most abundant and the most variable Fe- 
oxide texture observed. This example is a Ti-rich ilmenite host with silicate alteration 
zones (YAR4A from Foundation Ice Stream).
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Figure 7G. Extrusive igneous texture. This term describes Fe-oxides within basalt lithic 
fragments. The Fe-oxide grains (bright white) are euhedral or have skeletal crystal forms. 
This example is a basalt lithic clast containing multiple skeletal magnetite crystals 
(YAR4A from Foundation Ice Stream).
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Figure 7H. Botryoidal Texture. Globular texture with circular ringlets of varying shades 
within a host grain. This example is a hematite host containing silicate and apatite 
banding (WAW2 from Recovery Ice Stream).
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Figure 71 and 7J. Other Texture. “Other” describes those grains that are unlike any other 
textures previously listed or which have multiple textures. 71 is an example of an Fe- 
sulfide host with aluminosilicate and titanomagnetite inclusions and banding (YAR4C 
from Foundation Ice Stream). 7J is an example of an ilmenite host with aluminosilicate 
inclusions (MAM from Foundation Ice Stream).
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5. Results

5.1. Study Area 1 -  Foundation Ice Stream

5.1.1. Geochemistry

Major and trace element results for the < 63 pm sieve fraction are shown in 

Tables 5a-c. Spider diagrams were generated for major elements for each ice stream 

using wt% oxide data normalized such that the oxides sum to 100%. Major element 

oxides were normalized by average upper continental crust composition of Taylor and 

McLennan (1985). A larger number of samples were collected from along Foundation Ice 

Stream (Fig. 8) and there is variability within the sample set. Most of the mud fraction 

sediment samples are very similar to average continental crust composition, though with 

depletion of Ca and Na. The till in this ice stream has a greater range of elemental ratios 

when compared to the two other ice streams. The Al/Ti ratios range from 15 to 21, the 

Fe/Ti ratios range from 6.5 to 10.5, and the CIA values range from 55 to 68 with an 

average of 59.41 ±4.17 (Table 5a). With exception of Ca and Na, all oxide ratios are 

very close to 1, indicating a composition very similar to average upper continental crust.
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Table 5a. Major and Trace Element Results for the Foundation Ice Stream. Major 
element results are represented in weight percent oxides. Trace element results are 
represented in parts per million (ppm).
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Table 5b. Major and Trace Element Results for the Academy Glacier. Major 
element results are represented in weight percent oxides. Trace element results are 
represented in parts per million (ppm).

ICP-OES - Major Elements (wt %)
Sample WEB Till LIC Till LIC2 Till
Ice Stream Academy Academy Academy

Si02 6 4 .4 9 6 4 .7 0 6 3 .7 9
Ti02 0 .84 0 . 6 6 0.71
Al 203 18.09 18 .03 18 .39
Fe203 6 .9 5 5 .72 5 .77
MnO 0 .0 9 0 .08 0 .08
MgO 3 .05 2 . 0 2 2 .0 3
CaO 0 .55 2 .6 3 3 .13
Na20 1.16 0 .6 9 0 .63
K20 4 .5 9 5 .26 5 .28
P205 0 .1 9 0 .1 9 0 .1 9

ICP-MS - Trace Elements (ppm)
Sample WEB Till LIC Till LIC2 Till
Ice Stream Academy Academy Academy

Sc 16.35 13 .66 12 .94
V 9 5 .3 3 8 0 .2 5 8 5 .3 5
Co 18.15 11 .90 11 .14
Ni 31 .2 8 2 2 . 1 1 3 5 .4 0
Ga 2 3 .5 6 2 4 .1 0 21.61
Rb 2 1 4 .1 4 2 2 5 .1 0 1 97 .25
Sr 6 5 .8 6 6 9 .9 6 8 1 .1 4
Y 4 2 .8 7 4 0 .9 0 3 7 .3 7
Zr 2 0 2 .4 4 2 4 5 .1 6 2 2 6 .8 4
Nb 16.14 12.16 13 .05
Cs 15.75 7 .82 8 .8 5
Ba 666.71 6 4 9 .5 8 5 9 1 .6 8
La 4 6 .6 0 4 9 .4 7 4 5 .2 5
Ce 113.38 117 .53 1 02 .89
Pr 12.07 12 .55 10 .97
Nd 46.61 4 7 .1 5 4 1 .0 2
Sm 9 .4 9 9 .3 3 8 .24
Eu 1.62 1.57 1.42
Tb 1.36 1.29 1 .17
Dy 7 .56 7.11 6 .52
Ho 1.58 1.43 1.35
Er 4 .2 7 3.91 3 .6 4
Tm 0 .67 0 .62 0 .56
Yb 4.11 3 .78 3 .52
Lu 0.61 0 .58 0 .52
Hf 5 .62 7 .03 6 .2 4
Ta 1.31 0 .98 0 .9 5
Pb 31 .2 3 3 2 .1 4 2 0 .5 9
Th 18.79 2 1 .5 0 18 .73
U 3 .55 3 .6 9 2 .9 9
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Table 5c. Major and Trace Element Results for the Recovery Ice Stream. Major 
element results are represented in weight percent oxides. Trace element results are 
represented in parts per million (ppm).

ICP-OES - Major Elements (wt %)
Sample STB Till STB2 Till WAW Till WAW2 Til
Ice Stream

Si02 6 9 .7 9 7 0 .2 0 6 0 .6 2 6 0 .1 0
TI02 0 .6 7 0 .6 3 1 .33 1 .19
AI203 16 .34 16 .27 19 .38 2 0 .1 7
Fe203 3 .8 6 3 .7 9 8 . 2 1 8 .4 4
MnO 0 . 0 2 0 . 0 2 0 .0 9 0 .0 9
MgO 2 .3 3 2 .3 2 2.41 2 .4 5
CaO 0 .2 8 0 .2 5 1.51 1.50
Na20 0 .9 7 0 .9 6 2 .6 3 2 .3 0
K20 5 .6 4 5 .4 8 3 .4 7 3 .4 6
P205 0 .0 9 0 .0 8 0 .3 4 0.31

ICP-MS - Trace Elements (ppm)
Sample STB Till STB2 Till WAW Till WAW2 Til
ice Stream Ĥ|B|||||̂ 8||||||S|[B|BH|||||||||||B)||||BB||||||||BH|H|ES|B8B|H9|SB||̂ ^̂ [̂8E

Sc 14 .34 1 3 .30 21.31 2 0 . 1 2

V 5 5 .8 6 59.21 1 6 2 .4 7 14 9 .0 2
Co 6 .4 5 6 .3 7 18 .82 17 .64
Ni 9 .4 7 8 .0 3 4 4 .1 3 4 2 .7 6
Ga 2 0 .5 3 2 0 .7 4 2 8 .5 8 2 7 .4 3
Rb 2 0 9 .3 0 2 0 2 .9 4 1 5 2 .5 0 142 .2 5
Sr 4 2 .7 9 4 4 .6 6 183 .0 3 170 .7 0
Y 45.71 4 5 .4 6 5 4 .4 3 4 7 .5 7
Zr 4 7 3 .8 5 3 3 2 .9 5 4 5 3 .2 4 3 1 4 .4 4
Nb 14 .74 13 .95 18 .58 1 6 .06
Cs 6 .5 0 6 .5 8 5 .6 5 5 .4 2
Ba 6 8 7 .6 6 681.11 8 3 8 .1 0 7 7 9 .8 9
La 51.61 5 5 .2 7 7 7 .1 7 6 2 .5 5
Ce 121 .3 0 1 27 .18 15 1 .8 9 14 0 .8 4
Pr 13 .16 1 3 .96 19 .3 0 15 .60
Nd 4 9 .8 9 5 2 .6 9 7 3 .4 8 5 9 .1 2
Sm 9 .7 7 10 .14 14 .07 11 .5 7
Eu 1.79 1 .82 2 .2 8 1 .97
Tb 1.33 1 .37 1 .84 1 .54
Dy 7 .4 2 7 .6 2 9 .7 7 8 .2 7
Ho 1.62 1 .63 2 . 0 0 1 .70
Er 4 .7 6 4 .6 0 5 .3 8 4 .5 9
Tm 0 .7 9 0 .7 5 0 .8 3 0 .7 0
Yb 5 .1 6 4 .8 2 4 .8 9 4.31
Lu 0.81 0 .7 6 0 .7 6 0 .6 5
Hf 14 .35 9 .2 6 13 .06 8 .4 3
Ta 1 . 2 2 1 .16 1 .34 1 .16
Pb 8 .3 4 17 .24 2 3 .3 9 18 .28
Th 19 .50 2 0 . 1 2 2 7 .4 6 2 2 .4 0
U 5 .1 4 4 .7 9 6 .4 3 5 .5 6
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Foundation Ice Stream
— YAR2 Till 

YAR3 Till 
a YAR4A 

| — YAR 4B
—«— YAR 4C 
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—  HEM Till 
o—SIS Till 
0-SIS2 Till 
*>-MAR Till
—  MOU Till
—  MOU2 Till

Figure 8. “Spider Diagram” of major element oxides in the mud fraction normalized by 
average upper continental crust composition of Taylor and McLennan, 1985. Foundation 
Ice Stream has overall depletion in Ca and Na.

5.1.2. Fe-Oxides

The dominant texture in Foundation Ice Stream samples is the alteration texture 

category (49%), followed by exsolved and trellis textures (23%), homogeneous texture 

(16%), and then the “other” category (8%). The next four textures were present in the 

Foundation Ice Stream, but did not exceed 1% of the total assemblage: Extrusive igneous 

texture, myrmekitic, botryoidal and framboid textures (Fig. 9).

The dominant host minerals are titanomagnetite (34%) and ilmenite (32%) 

followed by magnetite (18%). Hematite (4%), calcium titanite, and titanohematite (3% 

each) are present along with rutile (2%) and finally <1% each of maghemite and spinel 

(Fig. 10).
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Foundation Ice Stream - Textural Assemblage

■ Homogenous

■ Exsolved & Trellis

■ Alteration

■ Framboid

■ Other

■ Botryoidal

■ Myrmekitic

■ Extrusive Igneous Rock

Figure 9. Foundation Ice Stream Fe-oxide textural assemblage. The assemblage is 
predominately composed of alteration, exsolved & trellis, and homogenous textures.

F ou nd ation  Ice S tream  - H ost M in eral A ssem b lage

32%

■ Titanomagnetite

■ Magnetite

■ Ferrian Ilmenite

■ Ilmenite

■ Spinel

■ Titanohematite 

Hematite

■ Maghemite 

Calcium Titanite

■ Rutile

■ Vanadium Bearing Magnetite

■ Framboid

V'anadium Bearing 
Titanomagnetite

Figure 10. Foundation Ice Stream Fe-oxide host mineral assemblage. The majority of the 
assemblage is composed of titanomagnetite (34%), ilmenite (32%), and magnetite (17%).
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5.2. Study Area 2 -  Academy Glacier

5.2.1. Geochemistry

Academy Glacier till is very similar to the average crust composition, with slight 

depletion of Ca and strong depletion of Na (Fig. 11). The exception is WEB, from the 

Weber Ridge on the southern margin of Academy Glacier, which lies within the Patuxent 

Formation. WEB is strongly depleted in Ca and slightly more enriched in Ti, Fe, Mg, and 

K when compared to the two other sample sites. LIC and LIC2 are located on the north 

side of Academy Glacier within the Neptune Group, host to younger Ordovician 

sandstones. The till from northern Academy Glacier (LIC and LIC2) has the highest 

Al/Ti values (23-24) of the three ice streams studied, as well as the highest Fe/Ti values 

(9-10). The chemical index of alteration values range from 60.0 to 70.0, with an average

of 63.37 ± 5.47 (Table 5b, 6).

Figure 11. “Spider Diagram” of major element oxide concentrations in Academy Glacier 
till (mud fraction) normalized by average upper continental crust composition of Taylor 
and McLennan, 1985. All three sites are depleted in Ca and Na and have slight 
enrichment in Ti, Fe, and K. The WEB site shows greater Mg enrichment. Although there 
are no outcrops exposed, these patterns suggest the presence of mafic units under the ice.
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5.2.2. Fe-Oxides

The dominant Fe-oxide texture observed in Academy Glacier samples is the 

alteration texture (63%), followed by the exsolved and trellis textures (26%), 

homogenous texture (7%) and finally the framboid structures (4%) (Fig. 12). The 

Academy Glacier host grain mineralogy consists of titanomagnetite (44%) followed by 

magnetite (30%). There is also maghemite present (7%) and small amounts of ferrian 

ilmenite (4%), Fe-Mg-Mn spinel (3%), titanomaghemite (3%), pyrite/magnetite 

framboids (3%), hematite (3%), and Al-bearing magnetite (3%) (Fig. 13).

Academy Glacier - Textural Assemblage

■ H o m o g e n o u s

■ E x s o lv e d  &  Trellis

■ A lteration

■ F ram b oid

Figure 12. Academy Glacier Fe-oxide textural assemblage. The assemblage is 
predominately composed of alteration texture.
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Academy Glacier - Host Mineral Assemblage

■ Titanomagnetite

■ Magnetite

■ Ferrian Ilmenite

■ Fe-Mg-Mn Spinel

■ Titanomaghemite

■ Maghemite

Pyrite Magnetite Framboids

■ Hematite 

A1 Bearing Magnetite

Figure 13. Academy Glacier Fe-oxide host mineral assemblage. The majority of the 
assemblage is composed of titanomagnetite (44%), magnetite (30%), and maghemite 
(7%).

3.3. Study Area 3 -  Recovery Ice Stream

5.3.1. Geochemistry

Recovery Ice Stream is represented by 4 samples, two from the northern margin 

(STB and STB2, Fig 14) and two from the southern margin (WAW and WAW2, Fig. 15). 

Till mud fraction from the northern margin of the ice stream is slightly depleted in Mn, 

Ca and Na, but has high Al/Ti ratios (21-22) and high Fe/Ti ratios (6-9). Till from the 

southern margin is more enriched in mafic elements relative to the northern margin 

samples, has lower Al/Ti ratios (13-15), and elevated Mn/Al (0.0060-0.0065) and Fe/Al 

ratios (7.5-8.5). CIA values range from 63 to 68, with an average of -66.04 ±1.31 (Table 

5c).
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Figure 14. “Spider Diagram” of northern margin till mud fraction (STB and STB2) major 
elements normalized by average upper continental crust composition of Taylor and 
McLennan, 1985. The northern margin samples STB and STB2 are depleted in Mn, Ca 
and Na.

Figure 15. “Spider Diagram” of southern margin till mud fraction (WAW and WAW2) 
major elements normalized by average upper continental crust composition of Taylor and 
McLennan, 1985. Southern till is slightly more enriched in mafic elements than the 
northern margin sites, and are slightly less depleted in Ca and Na.

5.3.2 Fe-Oxides

Recovery Ice Stream is dominated by alteration texture (34%), followed by the 

exsolved and trellis texture (24%) and homogenous grains (24%). Other textures present 

include other (9%), framboid textures (7%), and botryoidal (2%) (Fig. 16). The northern
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margin till (STB and STB2) displays more exsolved and trellis textures than the southern 

margin till (WAW and WAW2). The southern margin till, on the other hand, displays 

significantly more homogeneous, framboidal, and botryoidal textures when compared to 

the northern till samples (Fig. 17).

Host minerals for this site are varied and numerous, however, the most dominant 

mineral is titanomagnetite (35%), followed by hematite (15%), Ca- and Mn-bearing 

magnetite (12%), rutile (7%), and ilmenite (7%). Also present are Mg- and Al-bearing 

titanomagnetite (3%), ferrian rutile (3%), Mn- bearing ilmenite (3%), magnetite (3%), 

and Mg-bearing magnetite (3%). Finally, host minerals that are present but comprise <

2% of the total assemblage are titanohematite, hausmannite, ferrian ilmenite, psilomelane, 

and Fe- and Al- bearing rutile (Fig. 18). The northern and southern tills show a few 

distinct differences between them; the southern till contains more Ca- and Mn- bearing 

magnetite, hematite, and Mg- bearing magnetite. WAW and WAW2 are the only sites 

from Recovery Ice Stream, and in the entire sample set, that contain psilomelane and 

hausmannite. The northern till is distinct from the southern till as it contains significantly 

more titanomagnetite, rutile, Mn- bearing ilmenite, and Mg- bearing magnetite (Fig. 19).
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Recovery Ice Stream - Textural Assemblage
2 % ■ H o m o g en o u s

■ E x so lv ed  & Trellis

■ Alteration

■ Framboid

■ Other

■ Botryoidal

Figure 16. Recovery Ice Stream Fe-oxide textural assemblage. The assemblage is 
predominately composed of alteration, exsolved & trellis, and homogenous textures.

Figure 17. Recovery Ice Stream Fe-oxide textual assemblage comparison between 
northern till (STB and STB2; blue) and southern till (WAW and WAW2; red).



Recovery Ice Stream - Host Mineral Assemblage
2% 2%

2% 1%

■ Titanomagnetite

■ Magnetite

■ Ilmenite

■ Ferrian Ilmenite 

Mn Bearing Ilmenite

■ Mg & Al Bearing Titanomagnetite

■ Titanohematite

■ Rutile 

Ferrian Rutile 

Hematite

Fe & Al Bearing Rutile 

Ca & Mn Bearing Magnetite 

Mg Bearing Magnetite

■ Fi-Mg-Al Bearing Hausmannite

■ Psilomelane

Figure 18. Recovery Ice Stream Fe-oxide host mineral assemblage. The ice stream is 
composed of titanomagnetite (35%), hematite (15%), and Ca & Mg bearing magnetite 
( 12% ).
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Figure 19. Recovery Ice Stream Fe-oxide host mineral assemblage comparison between 
northern till (STB and STB2; blue) and southern till (WAW and WAW2; red).
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6. Discussion

Till from all three ice streams have Al/Ti values consistent with upper continental 

crust sources rocks (Table 6). Average Al/Ti ratios from Academy Glacier (21.9± 2.57) 

are higher than the average Foundation (19.2 ± 1.86) and Recovery (18.0± 4.85) Ice 

Stream values. Average Fe/Ti ratios from Academy Glacier (9.7 ±0.33) are higher than 

Foundation Ice Stream (8.3 ± 1.06) and Recovery Ice Stream (7.3 ± 0.69) values. The 

Chemical Index of Alteration (CIA) values were calculated according to Nesbitt and 

Young (1982). In this study we observe that CIA values increase from west to east, with 

59.41 ±4.17 observed in Foundation Ice Stream, 63.3 ± 5.47 observed in Academy 

Glacier, and 66.06 ±1.31 observed in Recovery Ice Stream. Neither the major element 

ratios or CIA values are sufficiently distinct to identify individual ice streams once 

sediments are deposited and mixed in the ocean. However, CIA values are consistent 

with physical weathering of the bedrock rather than local reworking of sediment. This 

suggests that our geochemical data is a reliable bedrock signature. However, trace 

element data from our ICP-MS dataset is likely better suited to this purpose than major 

elements. Principal Component Analysis of the trace element data will comprise post­

thesis work.
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Table 6. Summary of Provenance Tracer Data

Ice
Stream

Al/Ti Fe/Ti CIA Major Fe- 
oxide 

textures
Major host 

minerals
Range Range Range

Avg ± std Avg ± std Avg ± std

Foundation
15 to 21 6.5  to 10.5 55 to 68 A L  (4 9 % ) Titanomagnetite, 

Magnetite, and 
Ilmenite

19 .20  ±  

1.86 8 .3 6  ±  1.06
59.41 ±  

4 .1 7
ET (2 3 % )

H O  (1 6 % )

Academy
23 to 2 4 9 to 10 6 0 .0  to 7 0 .0 A L  (6 3 % ) Titanomagnetite 

and Magnetite2 1 .9  ±  2 .5 7 9 .7 3  ± 0 . 3 3
6 3 .3 7  ±  

5 .4 7
ET (2 6 % )

Recovery
13 to 23 6.3  to 8.3 6 4  to 67 A L  (3 4 % ) Titanomagnetite,

Psilomelane,
and

Hausmannite
18 ± 4 . 8 5 7.31 ± 0 . 6 9

6 6 .0 4  ±  

1.31

ET (2 4 % )

H O  (2 4 % )

AL = alteration texture; ET = exsolved + trellis; HO = homogeneous

All three ice streams show depletion in Ca and Na relative to the average 

continental crust. Calcium and sodium are easily leachable elements that are prime 

indicators of weathering as feldspar minerals are weathered to clay minerals. The 

depletion seen within these ice streams may be indicating weathering of plagioclase 

feldspar in the bedrock and/or sediments below the ice.
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Fe- Oxide Textural Assemblage Results

Foundation 

n = 14, N= 186

Primary Igneous

Homogeneous

| |  Exsolved and Trellis

Extrusive igneous

Academy
n = 3, N= 27

Secondary(?) textures

| |  Alteration

Botryoidal 

Myrmekitic

Recovery
n = 4, N= 55

Other

Framboidal

Other

n = number of sites 

N = number grains

Figure 20. Comparison of Fe-oxide textural assemblages. The Academy Glacier, an Fe- 
oxide poor ice stream, yields the most alteration texture. The Recovery Ice Stream yields 
the least amount of alteration texture and the most homogeneous texture.
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Fe- Oxide Host Mineral Results

34%

18%

17%

Foundation Academy
n = 14, N= 186 n = 3, N= 27

18%

Recovery 1 
n = 4. N= 55

Titanomagnetite + Spinel Hemoilmenite and 
other Ti-bearing

|  Magnetite 1 Hematite +
titanohematite

|  Titanomagnetite + Spinel |__ j Ilmenite

■ Maghemite + 
titanomaghemite |  Rutile + Titanite

Other

Mn-minerals:
Psilomelane + 
Hausmannite

Fe-sulfides

Figure 21. Comparison of Fe-oxide host mineral assemblages. The Foundation Ice 
Stream yields the most ilmenite. The Academy Glacier yields the most maghemite and 
the Recovery Ice Stream yields the only Mn- bearing minerals, including psilomelane and 
hausmannite.

Mn-bearing minerals such as psilomelane and hausmannite appear to be restricted 

to the Recovery Ice Stream, specifically within the southern margin till (WAW and 

WAW2). Recovery Ice Stream also has the least amount of Fe-oxide alteration textures 

and the highest amount of homogenous texture. This could indicate that there are more 

granitoids along Recovery Ice Stream’s path. Brachfeld et al. (2013) observed Fe-oxide 

assemblages in Transantarctic Mountain basement units and in granitoids from the 

Granite Harbor Intrusive Complex, and observed homogeneous textures to be more 

common in granitoids. The Foundation Ice Stream contains the most ilmenite. The
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Academy Glacier has the most alteration texture signifying that this ice stream, and its 

underlying bedrock, experienced the highest amounts of oxidation and/or hydrothermal 

alteration.

Micronutrients and redox-sensitive elements used for paleoclimate studies 

include, but are not limited to Fe, Mn, and V. As shown below (Fig. 22), the abundance 

of all three elements within each ice stream is comparable to the global average upper 

continental crust values determined by Taylor and McLennan (1985). This study did not 

measure what portion of the Fe in the fine fraction is bioavailable. However, observations 

of increased chlorophyll levels and phytoplankton abundance adjacent to large drifting 

icebergs in the Weddell Sea suggests that icebergs calved from the Ronne-Filchner 

system can stimulate productivity in the Weddell Sea (Smith et al., 2007; Duprat et al., 

2016). The V and Mn results reported here suggest that redox signatures analyzed in 

Weddell Sea sediment cores will not be obscured by detrital interference.

Micronutrient and Redox Elements

~  1000 -,--------------------------------------------------------------------------------------------------------------------------------------------------------------0)

Fe (wt % ) Mn (wt % ) V  (ppm )

Figure 22. Comparison of micronutrient and redox element abundances (Fe, Mn, and V) 
between the global average upper continental crust of Taylor and McLennan, 1985, and 
the Foundation, Academy, and Recovery ice streams. All ice streams are comparable to 
the average upper continental crust.
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Further review of the Fe-oxide EDS results indicates that magnetite and 

titanomagnetite found within all ice streams can be differentiated by the presence of 

specific impurities. The Academy Glacier has the least amount of impurities within 

magnetite, with only A1 above detection via SEM-EDX. The Recovery Ice Stream 

contains Mn, Mg, Al, and Ca- bearing magnetite, while the Foundation Ice Stream is the 

only ice stream with V-bearing titanomagnetite.

Generating grain-by-grain Fe-oxide geochemical profiles to build an assemblage 

could be a way to match IRD in marine cores back to their most probable source, a 

method that has proven successful in the Arctic Ocean (Darby and Bischoff 1996, 2001). 

This combined with the ascertained mineral signatures of the three Weddell Sea sector 

ice streams could allow researchers to develop proxy records for ice stream activity in 

marine sedimentary records.
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7. Conclusions

Through multiple petrological, geochemical, and geochronological analyses 

presented here and conducted by project collaborators, it can be concluded that these 

three ice streams within the Weddell Sea sector have observable differences between 

them. The geochemistry results presented here are consistent with the average upper 

continental crust materials in the drainage basins that house these ice streams. This is 

consistent with lithic clast observations made in the field, with the field team reporting 

abundant sandstones, quartzites, and metasedimentary units. Al/Ti and Fe/Ti ratio and 

CIA differences are also observed, but they are subtle and not suitable for fingerprinting 

for this project. All three ice streams contain average amounts of Fe, Mn, and V relative 

to global average upper continental crust.

A future project goal will include using trace element abundances in magnetite 

and titanomagnetite as a tracer of individual ice streams, with Al, V, Mn, Mg, and Ca 

having the greatest potential to distinguish between these three ice streams. In addition, 

principal component analysis (PCA) of the trace element data is pending as a means of 

exploring whether distinctive groups of trace elements occur in each ice stream.

Developing these geochemical and mineral signatures of three Weddell Sea sector 

ice streams (Foundation, Academy, and Recovery) allows researchers to develop proxy 

records for ice stream activity in marine sedimentary records. This also helps in better 

understanding records of ice sheet advance and retreat recorded in offshore sediment 

cores for this area as well as provide further insight as to which ice streams may be the 

most vulnerable to ice loss as a response to global warming.
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