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Introduction

Fluid dynamics is a rich and satiating topic of study. The range of topics that fall 
under its dominion are vast, encompassing the flow of blood through arteries to the 
dynamics of the atmosphere. However, it is solely the study of suspensions that will 
be under consideration here; that is, the rheology of a mixture of two substances, one 
of which is dispersed in the other (carrier fluid). This class of fluid has applications 
including industrial, medical, and sustainability, to name a few; in particular, lubri­
cation theory, the rheology of blood, and biomass transport. Let us take a moment 
to discuss biomass transport and utility, which has been a topic of growing interest 
in recent years.

It is estimated that biomass constitutes 14% of the world energy use, which makes 
it the fourth largest energy source [1]. Biomass can be considered as any or a com­
bination of wood residues, agricultural residues (crops, foods, animals), municipal 
solid waste, and etc. [2], see Figures 1.1 and 1.2. One of the promising approaches 
to utilizing biomass is the development of coal/waste co-firing technology. For co­
firing, biomass has been considered as one of the fuels. Ekinann et al. mention that 
from a technological point of view, upstream and downstream impacts are important 
for biomass co-firing to become a viable source of energy; upstream impacts include 
handling, preparation, and storage, while downstream impacts include pollutant re­
duction, ash deposition, and corrosion [1].

Traditionally, in fossil fuel combustion processes, coal-water slurry is prepared 
and in some cases heated prior to testing and use [3]. Its rheological properties are 
determined using a basic type of viscometer. Coal slurries exhibit non-Newtonian 
flow characteristics. There are many other applications such as injection moulding 
or oil-well drilling where there are significant variations in the viscosity of the fluid, 
caused primarily by shear-rate and temperature [4]. With additional need for fossil 
fuels, the amount of waste materials and the environmental issues dealing with their 
disposal also increase.

The major difficulties in modeling and using the co-firing of coal and biomass are: 
(i) The biomass fuels, especially the switchgrass and wood-residue are neither spheri-

1



CHAPTER 1. INTRODUCTION 2

cal nor disk-like in shape; most modeling approaches treat particles either as spherical 
or as disk-like, with a shape factor to account for other shapes, (ii) Since most of the 
biomass particles are slender and rod-like, the directionality or anisotropy associated 
with the axis of the body, i.e., the orientation of the body, becomes an important 
controlling parameter [5]. (iii) For co-firing applications, the density of the bio-mass 
fuels is, in certain cases, significantly different from that of coal. These issues, in 
many ways, determine the efficiency of the mixing process. Most computational fluid 
dynamics (CFD) codes treat the particles as a homogeneous continuous medium with 
correlations which depend on the diameter and density of these spherical particles.

The increasing demand and dependency on fuels has brought about a sense of 
urgency in the long term availability of non-renewable fuel reserves. A possible solu­
tion to this ubiquitous crisis is the development and characterization of new types of 
fuels, which could be environmentally safer and possibly more sustainable. Bio-fuels 
(a mixture of traditional fossil fuels, such as coal with other waste products such as 
chipped wood, grass, etc., forming biomass) seem to offer such a viable alternative 
[6]. Truck-based transport is currently the primary method of supplying feedstock to 
the biorefinery plants [7]. This type of transport consumes a large amount of fossil 
fuel in relation to the amount of biomass that is actually transported. However, there 
are other means of transport including pipeline, barging, and train [2, 7].

The importance of suspensions can be readily seen in the aforementioned applica­
tion. Let us now move to the purpose of this thesis and briefly discuss the topics of 
study. We take two approaches to the study of this class of fluid. The first approach 
is a single regime analysis. The viscosity will be taken as a product of functions of 
space and temperature and the thermal conductivity of space alone. Consequently, 
the complete modified Navier-Stokes system of equations must be considered. We are 
motivated here by the bulk transport of solid material by a carrier fluid to a combus­
tion chamber and/or processing facility, depending on the utility of the biomass being 
transported. For instance, the effect of the volume fraction and conductive properties 
of solid material on the flow and temperature of the fluid through a channel.

The second approach is a two regime analysis. The viscosity is taken to be a piece- 
wise function containing a product of functions of pressure gradient, volume fraction, 
and shear rate. The pressure gradient dependence is based on new experiments con­
ducted recently at the Complex Fluid Laboratory at Montclair State University [8]. 
The volume fraction and shear rate dependence of the viscosity is well documented 
in the literature. Unlike the first approach, we do not consider temperature effects, 
however, the viscosity encompasses more of the underlying physical properties. The 
motivation for our study is to provide a sound theoretical model to match experimen­
tal work. Furthermore, we wish to gain insight into the behavior and micro-structure 
of the flow.

The objective of subsequent chapters will be to briefly introduce the governing 
equations of motion and the constituent relations for the Cauchy stress tensor and 
heat flux vector. Following this will be a review of viscosity and thermal conductivity 
models discovered and/or used in previous pertinent studies. A chapter will then be
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devoted to the setup, solution, and analysis of each of the two approaches.
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Figure 1.1: An illustration of the many sources of biomass.
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Crushed Leaves Salt

Figure 1.2: The solid particulates used in [8]. Among these, mulch, coffee powder, 
and crushed leaves are biomass.
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Governing equations

There exists a known mathematical framework for the study of fluid dynamics. 
The governing equations for all fluid dynamics are the complete Navier-Stokes (N- 
S) system of equations, which have long been known. There are many notational 
forms of these equations for the particular physics and mathematical tools involved 
[9, 10, 11, 12]. Furthermore, the N-S are often formulated assuming constant viscos­
ity, however, this is not always a valid approximation. In fact, if the viscosity is a 
function of anything other than the shear rate, it is no longer a Newtonian fluid. The 
governing equations of motion for an incompressible fluid include the conservation of 
mass, linear momentum, energy equations (N-S), and are given by [12]:

=  0, (2.1)

+  pb, (2.2)

Ptt =  T  • L -  div(q) +  pr, (2.3)
dt

where p is the density of the fluid, d/dt is the total time derivative, given by ^  =  
^  +  [grad(.)] u, and u is the velocity vector. For isochoric motion we have div(u) =  0. 
Additionally, b is the body force vector and T  is the Cauchy stress tensor. Note: In 
the absence of any chemical and electro-magnetic effects, b =  g, where g denotes the 
effect of gravity. The balance of moment of momentum reveals that in the absence 
of couple stresses, the stress tensor is symmetric.

Lastly, e is the specific internal energy, L is the gradient of velocity, q is the heat 
flux vector, and r is the radiant heating. Thermodynamical considerations require 
the application of the second law of thermodynamics or the entropy inequality. The 
local form of the entropy inequality is given by [13]:

op
dt

4- pdiv(u)

=  div<T>

6



CHAPTER 2. GOVERNING EQUATIONS 7

prj +  div(0) — ps >  0, (2-4)

where r/(x, t) is the specific entropy density, (/?(x, t) is the entropy flux, and s is the 
entropy supply density due to external sources, and the dot denotes the material time 
derivative. If it is assumed that 4> =   ̂ and s =  J , where 9 is the absolute temperature, 
then equation (2.4) reduces to the Clausius-Duhem inequality

P0 +  div ( | )  -  pjj >  0.

Even though we do not consider the effects of the Clausius-Duhem inequality in our 
problem, for a complete thermo-mechanical study of a problem, the second law of 
thermodynamics has to be considered [13, 14, 15, 16].

However, in order to ’close’ these equations, we need to provide constitutive re­
lations for T, q, s and r. In our case, we assume that the radiation effects can be 
neglected. Furthermore, e does not need to be modeled due to the nature of the 
kinematical assumptions for the flow. In the next section, we will provide a brief 
discussion of the two relevant constitutive relations needed in this problem.

2.1 The stress tensor and heat flux vector

A look at equations (2.2) and (2.3) reveals that in the absence of radiation effects, the 
two constitutive parameters which need to be modeled are the stress tensor and the 
heat flux vector. Both the stress tensor and heat flux vector are subject to a variety 
of different models, especially the stress tensor [17, 18, 19, 20].

The Cauchy stress tensor for an incompressible viscous fluid is given by

T  =  —7rl +  2/iD, (2.5)

where 7r is the indeterminate part of the stress due to the constraint of incompress­
ibility, also known as the pressure, p is the viscosity of the suspension, and D  is the 
deformation rate tensor defined as

D =  1 (L  +  L r ).

The heat flux vector q is based on Fourier’s assumption,

q =  — kgvad(9). (2.6)
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2.2 The viscosity relation

The viscosity of a non-homogeneous fluid is highly complicated. In general, it may 
be a function of a myriad of factors. That is, the viscosity may take the form:

¡1 =  /i(X, 0, 7T, 7 , 0 ,...),

where X  is the spatial dependence, 4> is the volume fraction of solid particles in the 
suspension, theta is the temperature, and 7 is the shear rate, with 7 =  D.

A popular approach to study the problem related to modeling a complex inho­
mogeneous liquid is to treat it as a homogeneous continuous medium whose material 
properties are averaged. However, our system of interest is composed of a mixture 
of the carrier fluid and the suspended particles which can be spherical, rod-like or 
irregular in shape. Furthermore, the stresses involved are highly complicated and 
varied [21]. Nonetheless, we must begin somewhere. Let us first consider two existing 
spatially dependent viscosity models.

2.2.1 Spatial dependence

Anand and Rajagopal [23] studied the flow of an inhomogeneous fluid through simple 
geometries using a quadratic function in space X ; they also introduced a parameter 
s which can be thought of as a measure of the inhomogeneity of the fluid. They 
suggested a few equations of the following type:

h  ( y )  = h  ( y ) -  y 0 (2.7)

where h is the separation between two plates. Massoudi et al. [24] extended this work 
considering the feasibility of pipeline transport of biomass after analyzing the flow of 
such a non-homogeneous fluid; the general viscosity model considered was

/i(y) =  no{l +  sf(y)),

with the three models:

f(y)  =  s (H2 -  H

(2.8)

(2.9)

where /¿1, /z2, and k are held constant. We now move to discuss volume fraction 
dependent models for viscosity.
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2.2.2 Volume fraction dependence

There is an extraordinary body of literature on modeling the volume fraction depen­
dence of a suspension and their applications. Mahbubul et al. [25] compile and review 
many of the existing relations for the concentration dependence of the viscosity of a 
suspension, emphasizing nanofluids. For instance, the Einstein, Brinkman. Batchelor, 
and Krieger relations are considered. They are, respectively,

/ir — (1 +  2 .5 0 ), (2 .10)

Mr =  (1 -  4>)2'5. (2 .11)

Hr =  (1 +  2.5  <t> +  6. (2 .12)

Mr =  (1 -
<Pc

(2 .13)

where nr is the relative viscosity of the suspension, 0 represents the volume fraction 
of solid particles in the suspension, 0C is the critical or packing concentration, and 
[77] is the intrinsic viscosity with a typical value of 2.5 for mono diverse hard spheres. 
Two other popular relations attributed to Arrhenius [26] and Mooney [27] are

f i r  — e B4> (2.14)

Btb
(2.15)

where B is a fitting parameter set to 2.5 for monodisperse spheres [20]. The pressure 
dependence of the viscosity can now be considered.

2.2.3 Pressure dependence

The notion of a fluid with a viscosity dependent on the pressure in the system origi­
nates with Stokes. In his 1845 paper, he made the remarks [28]:

Let us now consider in what cases it is allowable to suppose that /x to 
be independent of pressure. It has been concluded by Du Buat from his 
experiments on the motion of water in pipes and canals, that the total 
retardation of the velocity due to friction is not increased by increasing 
the pressure... I shall therefore suppose that for water, and by analogy 
for other incompressible fluids, fi is independent of pressure.

Although Stokes dismissed the dependence of pressure in the aforementioned cases, he 
recognized that the viscosity of a fluid may exhibit pressure dependence, in general.
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There has been discussion on this topic ever since [29]. Additionally, there have also 
been experimental investigations into this relation beginning in the latter half of the 
20th century [30, 31, 32, 33, 34, 8]. Quite recently, there has been a revival of interest 
in this topic, with emphasis on the theoretical aspects [35, 36, 37, 8].

Recently Massoudi et al. [8] performed experimental and theoretical investigations 
into pipeline flow for low volume fraction suspensions. They modeled the viscosity of 
the system as

fi =  exp (2.16)

where k\ is a real constant, An is the pressure difference across the pipe, and L is 
the length of the pipe. It should be noted that this relation was used to theoretically 
calculate the volumetric flow rate, which was then compared to the pressure gradient; 
this theoretical calculation held remarkably well for low pressures (n <  2000Pa) which 
is in sharp contrast to the magnitude of pressures studied in previous experimental 
and theoretical investigation (n ss IMPa), i.e. those that follow below. This model 
will be discussed in Chapter 4 due to the significant role it plays in our model.

Franta et al. [18] studied a class of incompressible fluids with viscosities dependent 
on the shear rate and pressure. They addressed the existence of weak solutions in the 
steady case subject to homogeneous Dirichlet boundary conditions and body forces. 
The viscosity function took the form of

IX(TT, |D |2) =  (A +  7iM  +  |D |2) ^ , i  =  1,2,3, (2.17)

where A E (0,1] and r E (1,2) are constant, and ^(n )  is given by one of three 
relationships

7l(7r) =  (1 +  (l2

72(tt) =  (1

2 2\ ̂  V )  ^ , (2.18)
,Q7r -̂q (2.19)

if n >  0. .—  -  -  7

if 7T <  0,
(2.20)

with a  and q positive constants.

Massoudi and Phuoc [37] considered the unsteady flow between two parallel hor­
izontal plates, the top plate moving, with an oscillating pressure gradient. The vis­
cosity of the fluids in consideration took the form:

li(n) =  an7, (2.21)

with 7 =  1 constant.
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Hron et al. [35] considered three pressure dependent viscosity models for Couette 
and Poiseuille flow, including relation (2.21):

A*(tt) =  ean, (2.22)
p(n) =  p0(l +  an), (2.23)

where a  is a positive constant. It is shown that only particular forms of the viscosity 
function are allowed for plane Poiseuille flow, which is of interest to us here. Namely, 
that for relation (2.22), 7 =  1 is the only form which leads to non-trivial flow for an 
assumed pressure function

tt(x  ,y) =  F(x)G(y).(2.24)

Furthermore, for relation (2.23), the only form of the pressure function allowed is

7r(x\ y) =  R(x) +  S(y), (2.25)

which leads to trivial flow.

Kalogirou et al. [38] studied the flows of Newtonian liquids with pressure depen­
dent viscosities in the context of plane, round, and annular Poiseuille flow. They used 
a linear model (2.23) suggested by Renardy. Another successful pressure dependent 
viscosity model is attributed to Andrade and is given by

p =  Ap* exp((7r +  p2r )e), (2.26)

where p is the density, 7r is the pressure, 0 is the temperature, and A, r, and s are 
constants [39].

2.2.4 Shear rate dependence

It is seen that many fluids either shear thin or shear thicken, that is, there is a 
dependence of the viscosity on the deformation rate tensor D. For instance, ketchup 
and paint are well-known shear thinning fluids and corn starch in water is well-known 
for its shear thickening properties. One of the most simple and effective models is the 
so called power-law model

p oc |D |n~2, (2.27)

where n is constant and the quantity n — 2 dictates the type of fluid being studied. 
For n — 2 <  1, the fluid shear thins, for n -  2 >  1, the fluid shear thickens, and for 
n -  2 =  0, the fluid is Newtonian. The number of models for shear thinning and 
thickening fluids are legion. See [40] for a review of many such models.
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2.2.5 Temperature dependence

The last item under consideration is the temperature 0. It is well known that the vis­
cosity of most fluids decreases with increasing temperature. There are many successful 
viscosity models which account for temperature effects in a range of applications. For 
example, the model of Andrade (2.26) and those of Reynold, Vogel, and Gupta and 
Massoudi, respectively,

m  =  /(2.28)

t* =  Mo exp ( b T f f )  '̂ 2 '29^

=  e7(9_9o). (2-30)
\  fymax J

where /¿0 is some characteristic viscosity, M  is a material parameter, 0max is the 
maximum crystal fraction for which flow can occur, 00 is some characteristic tem­
perature, and a,b, and 7 are constants [37, 18]. It should be noted that both the 
Reynolds and Vogel viscosity models have seen positive results pertaining to lubrica­
tion applications. Furthermore, the model of Gupta and Massoudi is based on the 
Einstein-Roscoe relation which has been successful for low volume fractions in magma 
flows [41].

There is also the model of Kulkarni et al. [42] given by

fir — exp(A (l/0) -  B), (2.31)

which is valid for copper oxide nanoparticles suspended in water for temperatures 
ranging between 5 and 50 centigrade. A and B are functions of volume percentage. 
Now that all major relations for viscosity have been discussed, the thermal conduc­
tivity relation may now be addressed.

2.3 The therm al conductivity relation

The thermal conductivity A; of a material is the property which governs its ability to 
conduct heat. In general, for anisotropic materials, it is a fourth order tensor, which 
can also depend on concentration, temperature, etc. In fact, the general forms of 
the constitutive relations for the heat flux vector q could also depend on temperature 
and concentration gradients and include terms often referred to as the Dufour and the 
Soret effects. There have been many experimental and theoretical studies related to 
this issue. Kaviany surveys a fairly exhaustive array of thermal conductivity models 
pertaining to porous media [43].
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Regarding suspensions, Duangthongsuck and Wongwises [44] found that for T i0 2- 
water nanofluids, the thermal conductivity of the nanofluid increased with increasing 
temperature. They compared several thermal conductivity models, including

k 4ir(AT)ln ( / )  ’

kr(<j>) — a +  b(p,

(2.32)

(2.33)

where q is the applied electrical power per unit length of wire, A T  is the temperature 
change of the wire between times t\ and t2, and a and b are fitting parameters. They 
found that the first model, and many others, did not agree well with experiment. 
The second model was proposed and fit well for the parameters a and b for specific 
temperatures of 15, 25, and 35 centigrade. The first model was also used in the study 
of Al203-water nanofluids by Chandrasekar et al. and showed good agreement with 
experiments [45].

Additionally, there are many other relative models for solid-liquid suspensions, 
such as that of Maxwell, Hamilton and Crosser, and Timofeeva, respectively,

with

K{(p) =
2kf -f- kp -f- 2(J)(kp — kf)

^r(0)

_ 2kf +  kp — </>(kp -  kf) J ’ 

kr{(p) — 1 +  3(j),

kp +  (n — 1 )kf — (n — l)(p(kf — kp) 
kp +  (n -  1 )kf +  (j)(kf -  kp)

(2.34)

(2.35)

(2.36)

where n is the empirical shape factor, ip is the sphericity, kp is the thermal conductivity 
of the solid particles, and kf is the thermal conductivity of the base fluid [46, 47, 48].

2.4 General modeling

In the introduction, we proposed two approaches to the study of suspensions. It is the 
aim of each study to obtain qualitative results, capturing the essence of the proposed 
system, through analytical and/or numerical techniques. Further explanation will 
follow in the subsequent subsections. As a first approximation, we study the fluid 
flow of a suspension between two parallel horizontal plates of infinite length as an 
idealization of the flow of a suspension in a channel or pipe. For the problem under 
consideration, we make the following assumptions:

1. the motion is steady and fully developed,
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L->—
i x

Figure 2.1: The geometry of the system under investigation.

2. chemical and electro-magnetic effects are absent,

3. the constitutive equation for the stress tensor is given by equation (2.5),

4. the internal energy of the system is assumed to be given by

£ — cv6,

5. the velocity and temperature fields are ’unidirectional’, i.e. they are of the form

u(X ) =  U(y) i,

*(X) = %)•

As we’ve seen, the form of the function for viscosity is generally based on exper­
imental observation, where curve fitting is involved. We take the viscosity function 
to be an effective viscosity. Let us first consider the first problem, as proposed in the 
introduction.



C hapter 3

F irst problem : H eat transfer and 
flow of an inhomogeneous fluid

Recall that the first approach is a single regime analysis. The viscosity of the suspen­
sion is assumed to have spatial and temperature dependency; that is, the viscosity 
takes on the form:

/¿(2/>0) =  f(y)9(0), P-1)

where y is the spatial dimension of importance; here, the distance between two plates. 
Equation (3.5) implies that the viscosity is variable for the noil-homogeneous fluid and 
it also depends on temperature. Although the viscosity of an inhomogeneous fluid is 
highly complicated and can be a function of volume fraction, temperature, pressure, 
and etc, we have bypassed these intermediate variables, which are each dependent on 
position. The amount of solid particulate in that region will also act to modify the 
thermal conductivity of the surrounding base fluid in analogous fashion to the change 
of viscosity; that is, the thermal conductivity of such a fluid should follow the same 
position dependent model as does the viscosity.

Many of the models we have reported earlier are either linear or exponential, 
however, there is no reason to assume a suspension could not assume a Gaussian dis­
tributed viscosity profile, with the majority of the solid particulate clustered about 
the mean (or even a skewed Gaussian profile). A Gaussian model is justified in that 
it generalizes the class of suspensions we can consider; a suspension may be a con­
glomerate of different substances/materials, each with different buoyant tendencies. 
Furthermore, an exponential model allows us to consider suspensions with monoton- 
ically increasing viscosity and is somewhat representative of a skewed Gaussian; such 
a model is useful for suspensions where there are more light particles than heavy 
(or the converse). The literature is scarce here, however, Trelles [49] experiences the 
onset of Gaussian distributed viscosities and thermal conductivities in plasma.

These considerations lead us to,

15
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A*0 Vga?  2fcl̂  *  ̂ +  ßgb

,2kiy/h

f(v) = (3.2)

Figures 3.1 (a) and (b) show the behavior of the exponential and Gaussian viscosity 
models for varying k\. Furthermore, the temperature dependency is taken to be of 
the form:

where the factor of two in the exponent is introduced for later computational conve­
nience. This particular form is chosen for many reasons. For instance, when 0 =  01, 
the function takes on the reference value g(0\) =  1. This corresponds to the base 
fluid’s viscosity /¿0 at y =  0 for a floating particle system, for instance. This form 
also takes into account the effect of increasing temperatures on viscosity. As 0 —> 02, 
the argument in the exponential increases in magnitude which results in a decrease 
of viscosity.

In relations (3.2) and (3.3), the quantities /¿¿, \iga, and ggb are arbitrary real 
quantities. The quantity /i0 is taken to be the characteristic viscosity of the fluid, k\ 
is a non-dimensional parameter related to the concentration and shapes of particles 
in the inhomogeneous medium, k2 is a non-dimensional parameter which controls the 
rate of temperature dependence of the viscosity, e is taken to be the arithmetic mean 
in the Gaussian distributed viscosity model and h is the width of the channel.

It should be noted that, for a fluid with viscosity the introduction of a quantity 
of solid particles will increase the viscosity of the fluid, which is now a suspension. 
Increasing the amount of solid particles will result in an increase in the effective 
viscosity of the fluid. Therefore, it is reasonable to assume hi should be related 
to the volume fraction of ’light’ solid particles in the suspension; kx will effectively 
increase the viscosity at all points within the channel except for y =  0. The height 
dependence of f(y )  allows for the modeling of different distributions of a suspension. 
ki is taken to be positive in our model; however, a decreasing exponential function can 
be used to model a suspension with ’heavy’ particles or even sedimentation. Lastly, 
the parameter k2 is taken to be positive and is taken to be independent of the volume 
fraction of solid particles within the suspension. Note: If ^ (6̂ ) =  1, temperature has 
no effect on the viscosity and the two viscosity models revert to an exponential and 
a Gaussian function of height y alone.

The thermal conductivity is taken to be of the form

g(9) =  e- M Z A , (3.3)

(3.4)
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where k0 is a constant reference thermal conductivity, k3 is taken to be a positive 
non-dimensional parameter and is related to the volume fraction of solid particles 
within the suspension. It is proportional to k\, with ka and kb positive constants for 
the Gaussian model of thermal conductivity. It is to be noted that, for example, coal 
has a lower conductivity than water and therefore such a model would make physical 
sense, in that case. This model can be readily extended to suspensions where the 
solid particles have a larger thermal conductivity than the base fluid. Let us move to 
set up the system to be solved.

3.1 Governing equations

In Chapter 2.4, the main assumptions were laid out. With these assumptions, the 
conservation of mass is automatically satisfied and the balance of linear momentum 
in the x-direction reduces to:

dir d f  dU \
dx dy \  dy )

The no-slip boundary conditions at the two plates are imposed such that:

(3.5)

U(y =  0) =  U(y =  h) =  0.

Furthermore, the energy equation reduces to:

0 =  y
id k \  id 0 \  <Pd_

\ d y )  \ dy )  +  dy2
(3.6)

where the first term represents the dissipation of the kinetic energy into internal 
energy by the viscosity, which results in an increase in temperature. The second 
and third terms represent the transfer of internal energy through molecular effects 
(diffusion and particle collision). These terms play a vital role in certain systems. For 
instance, when the boundaries are heated, it is the conductive term that introduces 
heat into the system.

The boundary conditions are

0(y =  0) =  eu 
%  -  h) =  02,

where 0\ and 02 are the temperatures at the bottom and top plate, respectively. It 
is assumed that 02 >  0\.
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Let us now non-dimensionalize the equations (3.5) and (3.6) by using the following 
dimensionless forms:

_  P 
V =  — , 

^0
_ y
y = h '

o = ( g - f t )
(O t-O J '

A0 =  92 - 0 u

where Uq is the average velocity of the fluid flow, ¡iq is the viscosity of the base fluid 
at the bottom plate, h is the distance between the two plates, A 9 is the temperature 
difference between the two plates, and is the thermal conductivity of the base fluid 
at the bottom plate. With these, equation (2.10) becomes:

_  dpdU_ _ d2U 
dy dy +  ^ dy2

where c is related to the pressure drop An across the length of the channel, and the 
Reynolds number (Re) and given by Note: the Reynolds number does not
explicitly appear due to the assumption dn/dx ~  An/L. The boundary conditions 
for the momentum equation are:

U(0) =  U (1) =  0.

The dimensionless form of the energy equation (2.12) becomes:

0 =  7
-d?e dkde_
~ dy2 dy dy

J d l V  2 

+  /A  dy

where 7 is a non-dimensional quantity defined as

7
k0A9

Im p s '

where ko is the thermal conductivity of the base medium and A0 is the tempera­
ture difference across the channel. We note that 7 can be viewed as a parameter 
which relates heat production due to both thermal (conduction) k0A9 and viscous
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(dissipation) ^qUq effects, a sort of competition between the two. Finally, the non- 
dimensional forms of the boundary conditions for the energy equation are:

0 (0) =  0,

* (1 )  =  1-

The bar notation is now dropped, recognizing that all quantities are non-dimensional 
from this point on. The governing equations for this system are:

subject to

0 =  7

diidU d2U 
dy dy ^ dy2 '

dk dß 
dy dy

[7(0) =  [/( 1) -  0,

(3.7)

(3.8)

(3.9)

0(0) =  0,0(1) =  1. (3.10)

In the next section, a numerical (parametric) study for different values of the 
relevant dimensionless numbers and transport properties, i.e. viscosity and thermal 
conductivity, is performed.

3.2 R esults

In this section, we describe the results of our computations for the various cases 
described below. In Case 1, the system (3.7) and (3.9) is solved, where the system is 
taken to be isothermal; a simple analytical solution is possible to obtain, at least in 
the case of the exponential viscosity model. In Case 2, temperature effects are taken 
into account; that is, the system (3.7) - (3.10) is solved.

C ase 1: V ariable viscosity with constant tem perature. The solution to the 
system (3.7) and (3.9), when temperature is a constant permits a closed form for the 
velocity U (y). The exponential viscosity case is more tractable and is shown below. 
In particular, the velocity U(y) and flow rate Q are given by:

U{y)
ce—2ki y

2k\ (e2fcl — 1)
( l —e2kiy—y ( l+ e 2kl)) (3.11)
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c (coth (A*) — 1) (cosh (2k1) — 2{k\)2 — l)

Q = T L f

The analytical solutions for the Gaussian model remain complex and cannot be 
presented in a simple enough analytical form. The results are computed numerically 
and shown in Figures 3.2 and 3.3. In addition to the velocity, we also compute the 
flow rate since this provides meaningful insight into the physics of the problem and 
a way to discuss the feasibility of pipeline transport of suspensions (biomass). A 
detailed analysis of the variations in the flow rate is presented towards the end of this 
section. The Figures 3.2 and 3.3 show the steady velocity profile and its dependence 
upon the parameters k\ and c.

The overall profile in the aforementioned figures remain skewed parabolic in the 
exponential case and parabolic in the Gaussian case. In the former, the velocity 
achieves its maximum away from the centerline of the channel while in the latter case, 
the maximum speed of the flow is along the centerline, determined by the nature of the 
viscosity function and hence the ‘distribution of the suspended particles’. The effect 
of k\ in the exponential viscosity case is to contract the profile and increasing values 
of h\ results in a lowering of the position of the maximum speed. The overall speed 
of the flow becomes slower with increasing k\\ the value of this parameter effectively 
increases viscosity due to increased particle concentration, see the introduction to this 
chapter for more details. Note that with regard to the parameter c increasing values 
cause the velocity to increase since c is related to the pressure gradient of the flow.

C ase 2: V ariable viscosity and tem perature. When thermal effects are in­
cluded, the velocity profiles change considerably. The solutions for the system (3.7) 
- (3.10) were found numerically and are plotted below in Figures 3.4 - 3.8, for select 
values of the parameters k\, &2, &3, 7 and c. The figures below specifically show the 
velocity and temperature profiles for the exponential and Gaussian viscosity models. 
In the former case, the combined effect of spatial and temperature variation of vis­
cosity renders the velocity profile less skewed away from the centerline of the channel 
than in Figure 3. As seen earlier, increasing ki decreases the speed while &2 has the 
effect of stretching the profile, i.e. increasing the speed of the flow. The parameter k3 
has a relatively negligible effect upon the flow profile, as seen in Figure 3.6. The tem­
perature distribution is seen to be nonlinear in both viscosity models and unaffected 
by any variations in k\ and ¿2 but is effected by k3. Note that in the case where 
k3 =  0, the temperature assumes a linear profile, which is anticipated for non-varying 
thermal conductivity. The prominent difference between the two models remains the 
shape of the velocity curve; in particular the presence of an almost uniform-flow re­
gion in the Gaussian case. In all the cases analyzed, the temperature profile for the 
exponential viscosity model shows a concave down profile while the Gaussian model 
reveals the presence of an inflection point. The most noteworthy plot is Figure 3.8 
which shows the variation of velocity and temperature for different values of 7. The
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effect of changing 7 results in no prominent change in the flow speed, but surpris­
ingly gives rise to a ‘hot spot’ in the top half of the channel. This phenomenon is 
present in both viscosity models and is pronounced in the case of smaller values of 7 
approaching zero. This phenomenon was also observed by Gupta and Massoudi [4] 
who attributed it to the effects of viscous dissipation.

In Tables 3.1 and 3.2. we summarize the results by looking at the effects of fluid 
properties on the numerical simulations for various parametric sweeps. We identify 
the location f  of the maximum velocity Umax achieved in the channel. The variation of 
the parameters &i, k2, and ks has a net effect of changing the maximum and minimum 
viscosity in the channel. This in turn determines the magnitude of the velocity. As 
jfci is increased, the ratio between the maximum velocity and the base case decreases. 
However, this ratio does not vary much with variation in k2, 3̂ or 7 but does show a 
noticeable change with parameter c. The primary difference between the tables seems 
to be the position of the maximum. The flow speed shows a changing maximum and 
is strongly dependent upon the various parameters employed in this study. However, 
in Table 3.2, the values of £ remains fairly uniform, showing a slight shift from the 
centerline due to thermal effects.

Finally, we also computed the flow rates for the cases analyzed in this section. 
The flow rate in our study is given in the non-dimensional form as

Q =  ( l U (y) dy (3.13)
Jo

The flow rate was computed numerically using the trapezoidal method with maxi­
mum step-size Ai/max — 0.000005. Figures 3.9 - 3.11 present the variations of the flow 
rate Q versus the rest of the parameters in our study. In all of the figures the pro­
file for both models is essentially similar. Note that despite the exponential model’s 
larger maximum velocity for each case, the Gaussian model exhibits a larger flow rate. 
Figure 3.9 (a) shows that the flow rate decreases rapidly with increasing k\ while the 
remaining parameters are fixed and non-zero. In fact, we note that increasing con­
centration of particles by varying k \  between 0 and 2.5 results in a nearly a 90% drop 
in the flow rate. However, k2 has the effect of increasing the flow rate as seen in 
Figure 3.9 (b). Figure 3.10 (a) exhibits a relatively small flow rate dependence on A:3; 
in fact the Gaussian model nearly remains unchanged over the range of £3 explored. 
Therefore, we infer that the introduction of thermal effects can help increase the flow 
rate by decreasing the effective viscosity of the system, however, variability of the 
thermal conductivity does not affect the flow rate very much. Figures 3.10 (b) and 
3.11 validate the results from the previous subsection that flow rate strongly depends 
upon c but is minimally affected by 7.



CHAPTER 3. FIRST PROBLEM 22

3.3 N otes on Convergence of Num erical Solutions

The high nonlinear coupling in the system made it difficult to obtain precise solutions, 
even with sophisticated numerical techniques. The system of equations (3.7) - (3.10) 
are solved using M ATLAB’s ‘bvp4c’ package, which utilizes a three-stage Lobatto 
Ilia  scheme, a variation of the Runge-Kutta method. The step-size Ay was chosen 
to be 0.00005 and the relative tolerance was set to 10~9. Solutions were verified by 
seeking zeros of equations (3.7) and (3.9). It was found that the parameters ki, k2, 
&3, c, and 7 play an important role on the stability of the numerical solutions.

The most important of these parameters was c. The range of values tested range 
between 1 and 30. It was found that as c —> 1, solutions became increasingly sta­
ble. Futhermore, with c «  1, stability was exceptional for all choices of the other 
parameters. However, for c exceeding 20 and approaching 30, the numerical stabil­
ity deteriorates; to reach stable solutions, the parameters k\ and ks must take on 
increasingly larger values; that is, for c —» oo we require ki,k2 —> oo.

The two parameters, k\ and k3, interacted with one another to each other’s benefit, 
with increasing k\ values acting to stabilize the solutions. However, k\ ~  1, deviations 
in solutions were noticed; k\ proved to be the second most influential parameter in 
dictating the stability of the solutions. k2 became problematic for small values of 
ku 7, and c; the larger the value, the greater the deviation from zero (noticeably so 
at the top of the channel). Lastly, 7 also played a role in the numerical stability. 
In particular, for 7 —> 0 and k2 >  2, oscillations in the numerical solutions occur 
(alluded to above in the case of c >  20 and k\ —> 1).

Let’s take a moment to analyze the convergence figures, Figures 3.12 (a) and 
(b). As we decrease the step-size Ay, the magnitude of the relative errors decrease, 
in general. Furthermore, for the exponential case, the magnitude of the relative 
error between these values decreases as the relative tolerance decreases in solving the 
problem. This is not true for the Gaussian case, which exhibits nearly no change in 
accuracy with change in the relative tolerance. Regardless, the difference between 
solutions with relative tolerances of 10-9 and 10~12 is negligible; that is, the extra 
demand on the computation is unnecessary. These trends can be seen in Figure 8.

The values of all parameters in our study were chosen such that the errors were 
minimized while encompassing a broad enough range to give a suitable enough idea 
of trends in the solutions, while simultaneously minimizing the values of parameters 
k\ , k2, and £3.

3.4 N otes on applications

There are powerful implications in real applications of the results obtained here. 
Kumar et al. [52] discusses biomass transport with simultaneous saccharification of 
corn stover. It is estimated that a temperature of 65 degrees Celsius is needed for
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the process over a 36 hour period. This could be achieved, for instance, by uniformly 
heating the pipeline. Although the reduction in processing time would be significantly 
reduced, the cost associated with heating is undoubtedly significant; the proposal of 
a method to mitigate this cost by any feasible means would be welcome.

In our study, we show that the ability to modify the thermal conductivity of an 
inhomogeneous fluid allows us to potentially control the temperature distribution 
within a pipe; for instance, corn stover has a tendency to float and so we may mix 
solid particulate into a suspension with the same tendency, but with a higher thermal 
conductivity. In principle, this could yield a rapid increase in temperature at the 
bottom of the channel to near top channel temperatures. This would maximize the 
percentage of the channel, and therefore the corn stover, which experiences near top 
channel temperatures. In other words, the pipeline can be heated non-uniformly and 
cheaper. The specific details can be fleshed out by those with intimate knowledge 
of the cost of such industrial processes; however, we have supplied the recipe, so to 
speak. Although biomass transport is used as motivation for the development of the 
model, the study is intended to be more general.

Another interesting consequence is that we could potentially optimize the flow 
rate output such that the maximum amount of solid particulate is transfered per 
unit time per capital spent. This can be done by recognizing that the parameter 
c is related to the pressure drop across the channel. An optimization model could 
be coupled to the system pairing our parameters with monetary considerations, such 
as the cost of maintaining the pressure drop across a pipe. From our analysis, the 
parameters c and Aq, related to the volume fraction of solid in the suspension, should 
have the most impact on the feasibility of pipeline transport of biomass, for instance.

3.4.1 Concluding remarks

A model for the transport of a fluid with suspended particles in it is discussed. The 
effect of temperature and heat transfer upon the flow is analyzed rendering the gen­
eral problem highly nonlinear. Analytical and numerical solutions to the governing 
equations are obtained and the flow rate of the system is obtained. The important 
dimensionless numbers are c (related to the pressure drop and the Reynolds number) 
and 7 (related to the viscous dissipation).

Two models were proposed: an exponentially increasing model and a Gaussian 
model for the viscosity and thermal conductivity of the suspension. The parameters k\ 
and ks are related to the volume fraction of suspended particles in the base fluid and k̂  
decides the impact of temperature on the viscosity. The effect of k\ in the exponential 
viscosity case is to contract the profile and increasing values of k\ results in a lowering 
of the position of the maximum speed. The overall speed of the flow becomes slower 
with increasing k\\ the value of this parameter has the effect of essentially increasing 
viscosity due to increased particle concentration. The parameter k% has a relatively 
negligible effect upon the flow profile. However, it has a powerful effect upon the
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temperature distribution. The temperature distribution is seen to be nonlinear in 
both viscosity models and unaffected by any variations in ki, k2 but is effected by 
k3. Note that in the case where k% =  0, the temperature assumes a linear profile, 
which is anticipated for non-varying thermal conductivity. It was also found that the 
parameters hi, fc2, fc3, c, and 7 play an important role on the stability of the numerical 
solutions. The most important of these was c.
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h k2 k3 7 c Hmax ? M max 
Mm in

Umax
Uh

™ max 
-̂min

0.00 1.00 1.00 100.00 10.00 1.4121 0.522 1.3138 0.9842 2.7183
1.00 1.00 1.00 100.00 10.00 0.5305 0.361 5.6243 0.3697 2.7183
2.50 1.00 1.00 100.00 10.00 0.1499 0.201 112.9680 0.1045 2.7183
1.00 0.00 1.00 100.00 10.00 0.4752 0.343 7.3891 0.3312 2.7183
1.00 1.00 1.00 100.00 10.00 0.5305 0.361 5.6243 0.3697 2.7183
1.00 2.50 1.00 100.00 10.00 0.6287 0.39 3.7350 0.4382 2.7183
1.00 1.00 0.00 100.00 10.00 0.5399 0.362 5.6243 0.3763 1.0000
1.00 1.00 1.00 100.00 10.00 0.5305 0.361 5.6243 0.3697 2.7183
1.00 1.00 2.50 100.00 10.00 0.5184 0.358 5.6243 0.3613 12.1825
1.00 1.00 1.00 1.00 10.00 0.5763 0.37 5.6243 0.4016 2.7183
1.00 1.00 1.00 100.00 10.00 0.5305 0.361 5.6243 0.3697 2.7183
1.00 1.00 1.00 1000.00 10.00 0.5301 0.361 5.6243 0.3695 2.7183
1.00 1.00 1.00 100.00 1.00 0.0530 0.361 5.6243 0.0369 2.7183
1.00 1.00 1.00 100.00 10.00 0.5305 0.361 5.6243 0.3697 2.7183
1.00 1.00 1.00 100.00 20.00 1.0634 0.36 5.6243 0.7412 2.7183

Table 3.1: Summary of flow properties for the exponential models of viscosity and 
thermal conductivity. Ub — 1.4121 corresponding to the case for k\ =  0.
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Viscosity, (j^y)

Figure 3.1: (a) The exponential viscosity model, (b) The Gaussian viscosity model 
for varying k\, /j,i =  1, nga =  (e2fcl -  1)/(1 -  e~~* ) and \igh =  e2kl -  figa
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Figure 3.2: Velocity profiles for (a) exponential and (b) Gaussian viscosity models 
with varying ki and c =  10
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Figure 3.3: Velocity profiles for (a) exponential and (b) Gaussian viscosity models 
with varying c and k\ =  1

h k2 *3 7 c Vmax f
Mmax

___A*min___
Umax
Ub__

max
fcmin___

0.00 1.00 1.00 100.00 10.00 1.4348 0.524 1.3138 1.0000 2.7183
1.00 1.00 1.00 100.00 10.00 0.4848 0.537 8.5395 0.3379 2.7183
2.50 1.00 1.00 100.00 10.00 0.0735 0.55 171.0562 0.0512 2.7183
1.00 0.00 1.00 100.00 10.00 0.4238 0.499 7.3891 0.2954 2.7183
1.00 1.00 1.00 100.00 10.00 0.4848 0.537 8.5395 0.3379 2.7183
1.00 2.50 1.00 100.00 10.00 0.5887 0.592 10.9270 0.4103 2.7183
1.00 1.00 0.00 100.00 10.00 0.4851 0.534 8.5016 0.3381 1.0000
1.00 1.00 1.00 100.00 10.00 0.4848 0.537 8.5395 0.3379 2.7183
1.00 1.00 2.50 100.00 10.00 0.4843 0.54 8.7061 0.3375 12.1825
1.00 1.00 1.00 1.00 10.00 0.4983 0.536 8.5440 0.3473 2.7183
1.00 1.00 1.00 100.00 10.00 0.4848 0.537 8.5395 0.3379 2.7183
1.00 1.00 1.00 1000.00 10.00 0.4847 0.537 8.5259 0.3378 2.7183
1.00 1.00 1.00 100.00 1.00 0.0485 0.537 8.0849 0.0338 2.7183
1.00 1.00 1.00 100.00 10.00 0.4848 0.537 8.5395 0.3379 2.7183
1.00 1.00 1.00 100.00 20.00 0.9704 0.537 8.5436 0.6763 2.7183

Table 3.2: Summary of flow properties for the Gaussian models of viscosity and 
thermal conductivity. Ub =  1.4348 corresponding to the case for k\ =  0.
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Figure 3.4: (a) Velocity and temperature profiles for exponential viscosity model with 
k\ varying for k2 =  k3 =  1, 7 =  100, and c =  10 (b) Gaussian viscosity model with 
k\ varying for Afc =  A& =  1, 7 =  100, and c =  10.
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Flow Velocity, U(y)

Temperature, ©(y)

Flow Velocity, U(y)

Figure 3.5: (a) Velocity and temperature profiles for exponential viscosity model with 
k2 varying for k\ =  k3 =  1, 7 =  100, and c =  10 (b) Gaussian viscosity model with 
k2 varying for k\ =  k$ =  1, 7 =  100, and c =  10.
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Figure 3.6: (a) Velocity and temperature profiles for exponential viscosity model with 
k3 varying for k\ =  k2 =  1, 7 =  100, and c =  10 (b) Gaussian viscosity model with 
&3 varying for ki =  k2 =  1, 7 =  100, and c =  10.
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Flow Velocity, U(y)

Temperature, 0(y)

Figure 3.7: (a) Velocity and temperature profiles for exponential viscosity model with 
c varying for ki =  &2 =  =  1, and 7 =  100 (b) Gaussian viscosity model with c
varying for k\ =  k2 =  ks — 1, and 7 =  100.
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t-------- 1-------- 1-------- r

O'-------- I I ■■ I _ i ----- --------- 1---------------1-------------- 1---------------1___________I__
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Temperature, 0(y)

Figure 3.8: (a) Velocity and temperature profiles for exponential viscosity model 
with 7 varying for k\ =  — ks =  1, and c =  10 (b) Gaussian viscosity model with 7
varying for ki =  k2 — k% =  1, and c =  10.
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Figure 3.9: (a) Flow rate comparison between the exponential and Gaussian models 
with A?i varying for k2 =  k3 =  1, 7 =  100, and c =  10 (b) with k2 varying for 
Aji =  ks =  1, 7 =  100, and c =  10.
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Figure 3.10: (a) Flow rate comparison between the exponential and Gaussian models 
with ks varying for fci =  =  1, 7 =  100, and c =  10 (b) with c varying for
ki =  &2 =  &3 =  1, and 7 =  100.
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Figure 3.11: Flow rate comparison between the exponential and Gaussian models 
with 7 varying for k\ =  k<2 =  k% =  1, and c =  10.

Parameter Value Unit
U0 0.00020040 m /s
Vo 0.001002 P a  • s
h 1 m
L 5000 m
P 1000 kg /m 3
01 293.15 K
AO 40 K
k0 0.6 W/m ■ K
Ay 0.00005 -

RelTol 10"9 -

Table 3.3: Summary of parameter values for the numerical study in this chapter. 
Parameters which are swept are not listed here.
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Figure 3.12: Relative velocity differences vs. step-size for the (a) exponential model 
and (b) Gaussian model .
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Second problem : Two regim e 
pressure gradient dependent flow 
of an inhomogeneous fluid

The effect of pressure on the viscosity of fluids has been well documented in the high 
pressure regime experimentally, but the low pressure regime has not been studied 
systematically. The recent experimental study by Massoudi et al. [8] is a crucial 
motivating factor in the implementation of this dependency in our model. This study 
was performed at the Complex Fluids Laboratory at Montclair State University. Ex­
periments were performed using salt water, crushed leaves, mulch, sand and coffee 
powder in water. A mixture was poured into an initial holding tank and then trans- 
fered to a second tank. This transfer was moderated by a valve, which served to 
maintain the pressure head in conjunction with a second valve. The mixture was 
then allowed to flow through a pipe and collected into a third tank, see Figure 4.25.

The volume fractions of each of the inhomogeneous mixtures were varied between 
2% and 6%. Additionally, the pressure head was varied between 240 and 1250 Pa. The 
volumetric flow rate and percentage of solid particles transfered were recorded, which 
are pertinent to our study. The authors compared the results for an inhomogeneous 
fluid to that of salt water, a homogeneous fluid (mixture).

The volumetric flow rate measurements were curve fit to,

where k\ is the same real constant seen in relation (2.16), ao is related to the volume 
fraction of solid particles in the flow, A7T is the pressure difference across the pipe, 
and L is the length of the channel. This relationship was derived using a physically 
reasonable exponential pressure dependent viscosity model (2.16) under the same 
conditions we will impose on our system. This model is different from all other 
previously posed models mentioned in the literature review in that it depends on the

(4.1)

38
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pressure gradient, rather than the point-wise pressure; this is an important difference. 
The relationship (4.1) fits remarkably well to the experimental data and therefore is 
a valid predictor of this phenomena.

Three figures have been reproduced here from [8]. In Figures 4.1 and 4.2, we see the 
volumetric flow rate plotted versus the pressure gradient across the channel. Water 
and salt water show linear behavior over the range of pressure gradients imposed on 
the system; this holds for salt concentrations up to 35% in their experiments. A sand 
mixture shows the same behavior for 2% and 4% volume fraction of sand in water. 
Coffee powder, mulch, and leaves in water at 2, 4, and 6% volume fractions show an 
exponentially decaying profile with an initial linear growth period. It is these profiles 
that are particularly interesting.

The table found in Figure 4.3 lists the percentage of solid material transfered 
for a given pressure head. Furthermore, these percentages are gathered for different 
volume fractions of each solid material. From the table, we see that as the pressure 
head increases, the percentage of solid material transfered increases. This trend is 
seen across the board. As we increase the pressure gradient, the amount of solid 
particles entering the fluid flow increases; that is, volume fraction (j) is dependent on 
A pi.

Although the pressure gradient is an important factor, it should not be the only 
factor effecting the viscosity of an inhomogeneous fluid; among other parameters, 
there should at least be dependence on the volume fraction of solid particles in the 
suspension, which has been shown to be important in numerous studies. This depen­
dence has been the primary target of suspension rheology in its varied aspects. For 
volume fractions less than 5%, the Einstein model (2.10) is both accurate and simple. 
Furthermore, we may also consider both shear thinning and shear thickening fluids. 
Such a dependence is of great importance because it allows for the consideration of 
a far greater scope of suspensions; in effect, this dependence acts to generalize the 
study further, although adding a significant degree of complexity.1

We assume that the viscosity of the suspension can be adequately accounted for 
by a product of functions of volume fraction, shear rate, and pressure gradient; that 
is,

//(tt, grad(?r), 0 ,7 ,...)  =  /(grad(?r))y(0)/i(7). (4.2)

We contend that theoretical consideration based on sound physical principles should 
be able to further validate the pressure gradient dependence of the viscosity in this 
regime. Furthermore, a two regime flow is considered; that is, the fluid is broken into 
a developing regime and fully developed regime. In the former, the fluid is thought to 
have some volume fraction distribution throughout the height of the channel. As the 
pressure gradient across the channel increases, more solid particles are propelled into

^ o te: there is a pertinent phenomenon called ’hydroclustering’ which occurs when a colloidal 
suspension experiences relatively large stresses (shearing rates). The colloidal particles form ’clusters’ 
which increase the viscosity of the suspension; this is a shear-dependent viscosity. See, for instance, 
Wagner and Brady [50] for further discussion.
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the flow from either a sedimented or floating state. The increase of solid particles 
entering the flow causes the viscosity to increase; that is, the viscosity is dependent 
on the pressure gradient across the channel. This continues until the suspension is 
saturated with virtually all of the solid material. At this point, the fluid is considered 
to behave as a homogeneous fluid independent of pressure effects; that is, although 
the fluid is inhomogeneous, the bulk qualities of the fluid are homogeneous-like. Such 
behavior is seen in other contexts, such as fluidized beds [51].

4.1 Governing equations

Let us now define each of the functions. The viscosity y of the suspension is given by 
relation (4.2) with

/(grad(?r))
/ /0e a lgrad(7r)l

Ti

if A7t <  A7rc, 
if A 7r >  A7tc,

g{4>) =  (1 +  2.50), 

h( 7) =  |D |"-2,

(4.3)

(4.4)

(4.5)

where g((f>) and /¿(y) are given by the Einstein and power-law models, respectively. 
Also, fiQ and fi\ are some characteristic viscosities, Anc is a critical pressure which 
depends on the material properties of the system and a  is a constant.

Regarding /(grad(7r)), which is a generalization of the model of [8] and an exten­
sion of Stokes’ idea of pressure dependent viscosity, this model was chosen over the 
many other explicit pressure dependent models for several reasons. For instance, the 
exponential pressure dependent model (2.22) leads to a trivial plane Poiseuille flow 
under steady and unidirectional conditions [35].

Furthermore, in the context of a two-dimensional system, when the steady laminar 
flow of a fluid between two parallel plates (or within a pipe) has become established, 
the fluid profile U(x,y) is independent of x and therefore takes the form U(y)\ that 
is, the flow profile does not change as we move downstream (unidirectional). We 
may view such a fluid as a series of layers, where each layer (or parcel) of fluid is 
constrained to it ’s own horizontal plane. Since the fluid’s flow profile is established, 
the properties of the fluid will not change on each layer, however, they may change 
between layers (i.e. perpendicular). For this reason, a viscosity function dependent 
on both x and y is not valid, which would be the result of the choice of an explicit 
pressure dependent model. This physical notion is identified and discussed in a more 
general context pertaining to stratified fluid flow by Anand and Rajagopal [23].

Lastly, our model directly lends itself to existing low pressure regime experiments 
mentioned above, where the pressure differences are known, but not the point wise 
pressure; this matter will become apparent after we implement the model. It is for
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the above aforementioned reasons that our choice of model excludes explicit pressure 
dependence although such models have seen success for homogeneous fluids in the 
high pressure regime.

We will seek solutions, velocity, to the system (2.1) and (2.2) under the assump­
tions of steady and unidirectional flow between two horizontal parallel plates of infinite 
length. Furthermore, the no-slip boundary conditions are applied at the two plates. 
Volume fraction conservation across any cross-section of the channel is imposed, as 
well as a non-negativity condition on the volume fraction relation. The flow rate will 
be calculated and compared to the pressure difference across the length of the plates. 
The results will be compared to known experimental work in the low pressure regime. 
Further analysis will be undertaken to determine any other unique qualities of this 
system, including the volume fraction distribution of solid particles in the suspension.

As in the previous chapter, we use the assumptions in Chapter 2.4. The conser­
vation of mass is automatically satisfied and the balance of linear momentum reduces 
to:

Ö7T
dx

d
dy

^/i(grad(7r),</>,7)
dU \
d y )

(4.6)

dn
dy -Pe9 , (4.7)

where pe is the effective density of the fluid and g is the gravitational constant. The 
no-slip boundary conditions at the two plates is given by,

U(y =  0) =  U(y =  h) =  0. (4.8)

The volume fraction of solid particles in the suspension must remain constant and 
positive, therefore,

[  4>(y)dy =  0o, (4.9)
Jo

</>(y) >  o, (4.10)

where 0O is the total volume fraction of solid within the suspension and 0O >  0.

Before we move to non-dimensionalize and then solve the system (4.6) and (4.7), 
we consider the pressure function ir(x,y). The pressure function it(x,y) can assume 
two general forms, the sum or product of functions solely dependent on x and y. If 
we replace 7r in equations (4.6) and (4.7) with 7r(x,y) =  F(x)G(y), the result is

(4-n )

dG W \
-dy =  B{X)’

(4.12)
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with

Mv)
l

Gfo)

d
dy

^(grad(7r),

B(x) = -Peg 
F(x) '

The second condition implies that F(x) is a constant function and so the pressure is 
independent of x\ that is, there is no driving force for the fluid along the direction 
parallel to the channel. Since we are interested in pressure driven flows, a pressure 
function consisting of products of functions of x and y is inappropriate.

If we replace n in equations (4.6) and (4.7) with 7r(x, y) =  R(x) 4- S(y), the result 
is

S = |(^ (sradw’^ )?) ' (4-i3)
7^- =  ~Pe9- (4.14)dy

We can rewrite equation (4.13) in a more illuminating form using our model for the 
viscosity as

dR
dx

/dR2,dS- 
7 V d x  d y

d
dy

(4.15)

where ^  =  —peg is constant. In this form, the first condition implies one of three 
possibilities; either R(x) is constant and we have no driving force, it is a complex 
transcendental function, when S'(y) =  0 it results in a Lambert W function, or linear 
in x. The second condition implies that S(y) is linear in y. The dependence of the 
pressure on the height y of the channel is now in immediate need of discussion.

Under the assumption of incompressible flow, we have arrived at the equation 
(4.14), which leads to a linear relationship in y of S(y). We are now left with two 
choices: either we move to solve the system using the generalized functions R(x) 
and S(y) or we choose to draw physical connections, specifying the nature of these 
functions before proceeding. The nature of these functions is important to the physics 
of the problem and therefore we move to discuss the latter.

We notice that, from the equation (4.14), the term S(y) is related to the effective 
density pe, which is constant under the assumption of incompressible flow. The 
density, however, is known to be dependent on position, temperature, volume fraction 
and etc. under different contexts; that is, p should be compressible. Although we 
recognize the compressibility of the density, we ignore such effects and treat the 
suspension as incompressible. In the case of compressibility, the density would be a
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function of height y2\ however, in principle, the density could be a function of the 
volume fraction and possibly its derivatives. Note: If p oc </>, the pressure gradient 
will depend on the y coordinate. This leads to a contradiction in our assumption of 
unidirectionality of the velocity field.

Prom the above observation, we propose that S(y) behaves either like 4> or 
that is, the pressure is related to either the local volume fraction of solid material 
in the flow or spatial rate of change. Note: for either choice, the independence of 
/(grad(7r)) on the spatial coordinates is guaranteed.

The natural physical meaning of the function R(x) is the driving force of the 
fluid flow and therefore it is related to the pressure drop A7T across the length of 
the channel. This is taken to be linear in x, opposed to a complex transcendental 
function.3 This dependence is shared under similar flow conditions by homogeneous 
Newtonian fluids [10, 11].

The last item to consider before non-dimensionalizing the system is the effective 
density pe. Although we presented an argument for the dependence of S(y) on the 
volume fraction through a height dependent density, it is treated as a constant in this 
study. We define the effective density by pe =  pbase (1 -  </>0) +  psoiid^oi for discussion 
on choices for the density of suspensions, see [53].

We non-dimensionalize the system using the following dimensionless forms,

ß
ß — — » 

ßo
-  y 
v = h • 
_  x
* = L ’

TT =
TT

Ntt

2For a compressible fluid, the conservation of momentum is given by,

+  div(pu) =  0.

For steady unidirectional flow, the above equation reduces to,

which implies that p is a function of height y alone.
3In the latter case, the viscosity p would become a function of both x and y. It was argued earlier, 

based on the physical assumption of unidrectional flow, that such a function could not occur. Also, 
in the interest of simplicity, a linear model would be a more appropriate choice.
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where Uo is the average velocity of the fluid flow, /iQ is the viscosity of the base fluid 
at the bottom plate, h is the distance between the two plates, L is the length of each 
plate, and An is the pressure drop across the length of the plates. The system (4.7) 
and (4.8) becomes,

dn d

with c defined as

|  ( W a d f , ^ )  ¡ g )  , (4.16)

On _  pegh 
dÿ An

(4.17)

Anh"
u r ^ o L '

The three conditions (4.9) - (4.11) become,

U (0) =  U (1) =  0, (4.18)

/  <t>(ÿ)dÿ =  (A), (4.19)

<Kv) >  0- (4.20)

Note: It is interesting to see that c is dependent on n and so for any pressure differ­
ential An along the channel, the value of c may vary depending on the type of fluid 
being studied.

We will now drop the bar notation for convenience, noting that further discussion 
of the solution quantities and independent variables are non-dimensional.

C ase 1 We relate S(y) to the volume fraction <f>(y) through the relation

S{y) =  e(f)(y).

This leads to the pressure function,

?r(x, <t>(y)) =  —j — +  t(j), (4.21)

where An is the pressure difference across the channel, L is the channel length, and 
e constant. The equation (4.17) simplifies under this relation to,

d4 _  pegh 
dy e
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Integrating with respect to y, setting <j>(y =  0) =  0 and using condition (4.19) leaves 
us with a closed form solution for the volume fraction:

the boundary <j)(y =  0) =  0. Note: the volume fraction is set to zero at the bottom 
of the channel to simulate a floating particle suspension; that is, a suspension where 
the buoyant tendency of the solid material is skewed towards the bottom. This can 
be easily changed to simulate an initially fully sedimented system. See the previous 
chapter for more discussion on this item.

Notably, <f>(y) is linear in y and independent of the pressure gradient. In fact, 
once the total volume fraction of solid particles in the flow is specified, the volume 
fraction profile remains unchanged. Although such a distribution may be possible, 
it does not capture the physics of the problem under consideration. Solid particles 
should be entering the fluid flow from the boundaries with increasing pressure gra­
dient. This effect is thought to be the mechanism that 'invokes’ a pressure gradient 
dependence on the viscosity at low pressures. For this reason, we do not pursue such 
a model further.

C ase 2 We relate S(y) to the volume fraction gradient grad(^) through the relation

where A7r is the pressure difference across the channel, L is the channel length, and 
/3 constant. The quantity grad(0) represents the local effect of differences in volume 
fraction on the pressure. The equation (4.17) may be simplified using the pressure 
relation (4.24). We arrive at,

(¡>{y) =  2 (j)0y, (4.23)

with e =  — The parameter e is uniquely determined here by the condition at

S(y) =  ßgrad (</>).

This leads to the pressure function,

(4.24)

d2<f) _  pegh2
dy2 ß

Integrating twice with respect to y, setting (J)(y =  0) =  0 and using condition (4.19) 
leaves us with a closed form solution for the volume fraction:

(4.25)
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The identity of the parameter (3 is still unknown to us at this point. However, it 
should depend both on the pressure gradient An across the channel and some critical 
pressure Anc where the critical pressure marks the transition to pressure gradient 
independent fluid flow. In other words, as An —> A7rc, volume fraction contributions 
to the pressure should stabilize, /? —-> f t ,  due to the suspension becoming more 
homogeneous-like; the fluid will not be homogeneous in space, however, the bulk 
properties will become independent of the pressure gradient. We may represent this 
by

(3 =  (3o\An -  Anc\ 4- f t ,

with f t  positive. Since <j>{y) is parabolic and </>(y) >  0, we require <j>(y =  1) >  0, thus

Solving for ¡3,

0('£/ — 1) — (20o +  )
pegh2

w
>  0.

ß >
pegh2 
1200 '

Note that the quantity ft|A7r — Anc\ will always be greater than or equal to zero. 
Since the nature of /? is unknown to us, we make the simple choice of f t  =  \  and 
f t  =  which guarantees the above condition is met. It should be noted that
/3 has the effect of modifying the strength of the volume fraction gradient on the 
pressure. Experimental work towards the determination of the nature and numerical 
value of this parameter would be novel. Furthermore, it is interesting to note that, 
for the problem under consideration, (3/An «  1 and e /An «  10.

Now that we have dealt with equation (4.17) completely, we move our attention 
to equation (4.16). First, we note that the shear rate dependence transforms under 
the assumption of unidirectional flow,

ID |n -2 dU
dy

n —2

Combining this result with the pressure relation (4.24), equation (4.16) becomes,

ce - a \ A ¥ ) 2+ ( - ^ 2)2 d
dy

(1 +  2.50)
dU "~ 2 dU
dy dy

(4.26)

The pressure dependent component /(grad(7r)) of the viscosity function is indepen­
dent of both spatial coordinates; however, it is dependent on the pressure drop An 
across the channel, as alluded to in the opening of this section. Together with our 
relationship for the volume fraction (4.25) and the no-slip boundary condition (4.18), 
we may now solve for the flow velocity U(y).
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4.2 R esults

In this section, we describe the results of our numerical experiments described below. 
The system (4.16) and (4.18) is solved, where the viscosity is taken to be piecewise 
pressure gradient dependent. No exact analytical solutions could be found due to 
the nonlinearity introduced by the viscosity. Discussion will be broken down into 
two regimes. The pressure gradient dependent regime will be discussed, followed by 
discussion of the pressure gradient independent regime.

It is worthwhile to discuss the parameter a  which has the effect of shifting the 
maximum. Furthermore, as a  increases, the maximum shifts towards the lower pres­
sure regime. This is intuitive if we look at the flow rate relation (4.1); the exponential 
term will dominate earlier for larger a  and the linear term will dominate for smaller 
o. The value chosen for computation is which is approximately {2n)~l times 
the value fitted for experiment.

Mathematically, the effect of the critical pressure A7rc on the flow rate vs. pressure 
differential profile is to modify the ’peaks’. As the critical pressure increases, the peaks 
become sharper and more pronounced. The opposite effects holds for decreasing 
values of the critical pressure. This value should be a property of the given fluid. For 
instance, this value is approximately 8500 Pa for coffee powder suspended in water at 
2% volume fraction, when approximating a linear relationship between pressure drop 
and percentage of solid particulate transfered. The value chosen for two-dimensional 
computation is A7rc =  —1350 Pa, which is approximately (27r)_1 times the three- 
dimensional approximate analog, similar to a ;

Regim e 1: P ressu re  gradient dependent viscosity The complex nonlinearity
-2

of the viscosity, which is a product of the functions </>(?/) and ? does not permit
analytical solutions. Solutions to the system (4.16) and (4.18) were found numerically, 
as in the previous study. The channel velocity, concentration, pressure, and flow 
rate were computed. Each of these quantities offers a different perspective of the 
system. The flow rate is of particular interest and is calculated using the relation 
(3.13). In [8], the volumetric flow rate was compared to the pressure differential in 
their experimental work; each of these quantities was measurable, compared to the 
velocity, pressure, and concentration profiles. Consequently, we can perform a similar 
comparison to see if our results match experiment.

The velocity U(y) was computed after fixing the parameters n and 00; the system 
was then solved for A7r =  p p , ^ p  ? p p  ? which were chosen arbitrarily for a para­
metric sweep. In Figures 4.4 - 4.6, we see that as A7r increases, the velocity contracts 
dramatically. Also, the total volume fraction of solid particles in the suspension 0O, 
acts to contract the velocity as well, although, significantly less than An. Another 
interesting feature is that for n =  1.8, the velocity profile is rounded and reaches a 
maximum below the center line. For n — 2.0, the velocity profile narrows and reaches 
a maximum along the center line. Lastly, for n =  2.2, the velocity profile narrows
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more greatly and reaches a maximum above the center line.

The volume fraction <j>{y) was computed for the same values of n and 0O, however, 
the parametric sweep is over A7r =  It is found that for any n, the
volume fraction profile will reach higher (maximum) values near the center line as 
A7r increases. Consequently, due to the fixed amount of solid particles in the fluid, 
the amount of solid particles along the top half of the channel will decrease. So, as the 
pressure drop along the channel increases, more and more solid particles are ’dragged’ 
into the flow, as expected. This effect causes the suspension velocity to contract and, 
as we will see, the flow rate to diminish. Lastly, the effect is more greatly marked as 
0o is increased. These effects can be seen in Figures 4.7 - 4.9.

The flow rate Q is computed after fixing n and 0O and sweeping through values 
of An =  ^ |p  for k =  0 ,1 ,2 ,..., 20, which were chosen for a parametric sweep. In 
Figures 4.10 (a), 4.11 (a), and 4.12 (a), we immediately see a marked resemblance 
to the experimental results found in [8]. It should be noted that some deviation 
is expected due to experiment being three-dimensional and this study being two- 
dimensional. Regardless, the profile is qualitatively captured. Additionally, we see 
that the maximum is reached around An =  —180 for n =  1.8 and An =  —300 for 
both n =  2.0 and 2.2. Another interesting feature is that for n =  1.8, the flow rate 
decreases more rapidly after reaching its maximum than for the cases of n =  2.0 and 
n =  2.2, with the latter being the least rapid. If we compare Figures 4.2 (a) and (b) 
to the abovementioned figures, the exponential decay of the flow rate profiles show 
stronger resemblance to one another in the shear thickening fluid regime (7?- >  2); 
that is, the introduction of solid material to a base homogeneous fluid acts to create 
a shear thickening solid-liquid suspension. Additionally, as 0o is increased, the profile 
contracts, with the effect being strongest for shear-thinning fluids.

In Figures 4.13 - 4.15, we see contour plots of the pressure within the channel. The 
pressure was computed by fixing n, 0o, and A7i\ There are no noticeable differences 
between differing values of n. Overall, we see larger values for the pressure as we 
both rise in the channel and travel along the length. Noticeably, the effect due to 
the volume fraction gradient is initially stronger than that of the pressure differential 
along the channel. Furthermore, as An increases, the relative strength of the pressure 
differential to the volume fraction gradient increases. This is readily seen through the 
increasing slope.

Regim e 2: P ressure  gradient independent viscosity The velocity U(y) was 
computed after fixing the parameters n and 00; the system (4.16) and (4.18) was then 
solved for An — In Figures 4.16 - 4.18, we see that as An increases,
the velocity increases quite dramatically. Also, the effect of 0o is to contract the 
velocity as it does in the pressure gradient dependent regime. We see the same trends 
due to the parameter n as well.

The volume fraction <j>(y) was computed in the same way the velocity was. It 
is found that for any n, the volume fraction profile will reach higher values near
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the center line as 0o increases. There is little to no effect on the volume fraction 
profile with varying n and A7T, as should be the case; the volume fraction profile has 
established itself into a stable configuration that is a symmetric parabolic profile with 
(f)[y =  0) =  (j){y =  h) =  0; that is, the top floating solid particles have all entered the 
’interior’ of the suspension. See Figure 4.19.

The flow rate Q is computed after fixing n and (fro and sweeping through values 
of An =  for k =  0 ,1 ,2 ,..., 20. In Figures 4.10 (b), 4.11 (b), and 4.12
(b), we see a linear profile analogous to that seen in Chapter 3, that holds for each 
n. Note that for both n =  1.8 and 2.2, the profiles have slight curvature to them; 
the former exhibits downwards curvature and the latter exhibits upwards curvature. 
Furthermore, as in the pressure gradient dependent regime, the effect of increases in 
4>o is to contract the flow rate profile, and vice-versa.

In Figures 4.20 - 4.22, we see contour plots of the pressure within the channel. The 
pressure was computed in the same way as in the previously discussed regime. Again, 
there are no noticeable differences between differing values of n. We see the same 
overall trends throughout the domain. Note that as An increases, the relative strength 
of the pressure differential to the volume fraction gradient increases, continuing from 
the previous regime. The pressure drop along the channel becomes much stronger 
than the effect due to the gradient of volume fraction across the channel.

4.3 N otes on Convergence of Num erical Solutions

As in the previous study, the system is highly nonlinear. The system of equations 
(4.16) and (4.18) are solved using M ATLAB’s ’bvp5c’ package, which implements 
a four-stage Lobatto Ilia  scheme. The system was solved for varying step-size and 
relative tolerance. Two extreme values of n were chosen, n =  1.8 and 2.2, and the 
pressure differential was set to y y  =  —200 and —2362.5 for the pressure gradient 
dependent and independent regimes, respectively. The relative tolerance was then 
set to one of three values, 10~6, 10~9, and 10~12. The initial guess for step-sizes 
were then set to for j =  2, 5, 10, 20, 100, 200, 500, 1000, 10000, 20000, 30000, 
40000, 50000, 100000, and 200000. The solution for each regime was computed at 
half the distance between the plates; that is, U(y =  h /2). The difference between 
the solutions for subsequent step-sizes was evaluated for each relative tolerance value. 
This gives us the relative difference between solutions from which we may readily find 
error percentages.

It is found that for any n, there is strong correlation between the varying relative 
tolerance values. However, the correlation is especially strong for 10~9 and 10~12. 
Note that the differences are of magnitude 10~7 or smaller. In Figures 4.23 - 4.24, we 
see a general downward trend across the board which indicates convergence. However, 
for the pressure gradient dependent regime for n — 2.2, we see some oscillation. This 
indicates that the solution has not yet converged for the given range of step-sizes; 
however, the scale is 10~7, which is quite tiny.
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In general, when n >  2, the system is more sensitive to the step-size Ay. Although, 
for all cases, the solutions converge to particular values as the step-size decreases, 
there are issues with some solutions. There is a threshold step-size such that the 
solution is met throughout the channel for each particular value of n with A7r and 
a fixed relative tolerance. This threshold step-size is larger for n <  2 and smaller 
for n >  2. If we exceed this threshold, the solutions show noticeable deviations at 
one or more locations within the solution domain. This phenomenon does not appear 
in the linear regime until step-sizes become incredibly tiny (Ay — 5xl0~6). With 
this in mind, the step-size was chosen such that the threshold would be met for all 
cases. This is done by setting our initial value for the step-size to Ay =  0.002 and the 
relative tolerance was set to 10~9. Although the solution has not yet fully converged 
at this value of Ay, as we see oscillations in the differences, the relative differences 
are less than 0.5% in the pressure gradient dependent regime. The vastly increased 
time required to compute a solution is not warranted for a qualitative study.

4.4 Concluding remarks

A model for the transport of a fluid with suspended particles in it is discussed. The 
effects of pressure, volume fraction and shear rate upon the flow is analyzed. The ve­
locity, flow rate, volume fraction, and pressure are computed and analyzed in different 
contexts. It is found that the flow rate versus pressure differential relationship quali­
tatively matches experiments performed on inhomogeneous fluids in the low pressure 
regime. It is seen that experimental results match the behavior of a shear thickening 
fluid than the alternatives.

Additionally, we see a linear relationship between the two until approximately 
Air =  —300. Once this value is reached, an exponentially decaying profile is seen. 
Once the critical pressure is reached, we see a linear relationship once again. We could 
even consider the first regime to have a linear and exponential sub-regime. Note that 
the slope of lines in the first sub-regime and in the second regime indicate the effective 
viscosity of the fluid. The linear relationship in the first sub-regime has a greater slope 
than in second regime which is intuitive since all of the solid particles have entered the 
flow in regime two, increasing the viscosity above that initially experienced. Figure 
4.26 illustrates these remarks.

Furthermore, the micro-structure of the flow is investigated by analyzing the effect 
of the pressure differential on the volume fraction. It is found that as the pressure 
drop across the channel increases, an increase in solid material entering the flow is 
seen. This trend holds until all the solid material has entered the flow and reaches a 
stable configuration. The fluid thereafter behaves as a homogeneous fluid independent 
of the pressure gradient. This is seen through the linear relationship between the flow 
rate and pressure differential; the bulk properties behave in analogous fashion to a 
homogeneous fluid.
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Figure 4.1: The volumetric flow rate versus pressure differential plots for salt water 
mixtures found in [8].
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Mulch

Coffee Powder

Figure 4.2: Volumetric flow rate versus pressure differential plots for suspensions with 
(a) mulch and (b) coffee.
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P ressure(P a)
P articu late

249.2 498.3 747.5 996.7 1245.9

2% Coffee Powder 8.6% 9.6% 13% 15.2% 19.6%

4% Coffee Powder 10.3% 11.3% 13.1% 14.5% 15.1%

6% Coffee Powder 10.3% 11.4% 13.5% 13.5% 15.3%

2% Mulch 13% 21% 31% 37% 35.2%
4% M ulch 22% 29% 42% 43.6%, 46%,

6% Mulch 26%, 27% 31%: 41.2% 56%,

2% Crushed Leaves 30% 13% 31.6% 37.4% 38%

4% Crushed Leaves 30% 15.5% 20.5% 30.5% -

6% Crushed Leaves 26.7% 14.3% 14.5% to to 16.7%,

2% Sand 2% 4% 1% 0.2% 5%

4% San d3 3.6% 0.3% 0.14%, 0.71% 2.9%

Figure 4.3: (a)Volumetric flow rate versus pressure differential where the model 4.1 is 
best fit to the experimental data for the case of 6 % volume fraction of coffee powder 
in water; the correlation is 0.8 (b) Table with values for percentage of solid material 
transfered for any given pressure head.
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Figure 4.4: Velocity profiles for n =  2.2 and (a) 0o =  0.01, (b) (j)o =  0.02.
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Figure 4.5: Velocity profile for n =  2.2 and (po =  0.04.
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Figure 4.6: Velocity profiles for 0O =  0.02 and (a) n =  1.8, (b) n =  2.0.
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Figure 4.7: Concentration profiles for n =  2.2 and (a) (f)0 — 0.01, (b) <p0 =  0.02.
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Volume Fraction, 4>(y)

Figure 4.8: (a) Concentration profile for n =  2.2 and 0 = 
volume fraction cj)(y =  1) is plotted versus A pi for An =

0.04 (b) Top channel 
for fc =  0 ,1 ,2 , ...,20.20
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Figure 4.9: Concentration profiles for (p0 =  0.02 and (a) n =  1.8, (b) n =  2.0.
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x 10'7

Figure 4.10: Flow rate profiles for n =  1.8 and (a) An =  for k =  0,1, 2,..., 20, 
(b) for An =  (fc+22°Q)A7rc for k =  0,1, 2,..., 20.
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x 10'6

Absolute Pressure Differential |An|

Figure 4.11: 
(b) for An —

Flow rate profiles for n =  2.0 and (a) An — 
(* +2° )A,fc for A: =  0 ,1 ,2 ,..., 20.

k Anc 
20 for k =  0 , 1 , 2 , 2 0 ,

20
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x 10'6

Figure 4.12: Flow rate profiles for n =  2.2 and (a) An =  for k =  0 ,1 ,2 , ...,20, 
(b) for An =  ^ 22°Q)A7rc for k =  0,1, 2,..., 20.
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Figure 4.13: Contour plots for pressure with n =  2.2, 0o =  0.02 and (a) A7r 
(b) A7r =

A7Tc

4 ’
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Figure 4.14: Contour plot for pressure with n — 2.2, 0O =  0.02 and An =
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Figure 4.15: Contour plots for pressure with A7r =  =  0.02 and (a) n =  1.8,
(b) n =  2.0.
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Figure 4.16: Velocity profiles for n =  2.2 and (a) 4>q =  0.01, (b) 0o =  0.02.
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Figure 4.17: Velocity profile for n =  2.2 and 0O =  0.04.
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Parameter Value Unit
Uo y J-A lïlp e m /s
Vo 1 Pa  • s
h 0.0190 m
L 1.4 m
Pe 1000(1 -  <t>o) +  940(^0 kg/vP
9 9.8 kg • m /s2
cx 0.0133 (P a )-1
Anc -1350 P a
Ay 0.002 -
RelTol 10~9 -

Table 4.1: Summary of parameter values for the numerical study in this chapter. The 
values for Uo and pe vary depending on the values for Air and 0O which are swept. 
The parameters which are swept are not listed here.
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Figure 4.18: Velocity profiles for (f)o =  0.02 and (a) n =  1.8, (b) n =  2.0.
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Figure 4.19: Concentration profiles for n =  2.2 and 4>o varying.
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Figure 4.20: Contour plots for pressure with if =  2.2, <j>o =  0.02 and (a) A7r 
(b) A tr =  2A^.

5A 7tc 
4 ’



CHAPTER 4. SECOND PROBLEM 72

0.6 0.8 
Length, x

1.2 1.4

Figure 4.21: Contour plot for pressure with n =  2.2, <̂0 =  0.02 and An =
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Figure 4.22: Contour plots for pressure with An =  p p ,  0O =  0.02 and (a) n =  1.8, 
(b) n =  2.0.
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1.8
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0
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a

0

x 10
•12

1.2 -

1 -

0.8 -

0.6 -

0.4 -

0.2 -

Q

0.02 0.04 0.06
Ay

O RelTol = 10"06

0 RelTol = 1 O'09

□ RelTol =1 O'12

0.08
-0-
0.1 0.12

O
0

RelTol = 10'06 

RelTol = 10'09
— in-12□ RelTol =10

) lo Q ____ÜL
0 0.01 0.02 0.03 0.04

Ay
0.05 0.06

lq — a
0.07 0.08

Figure 4.23: Successive differences in half-pipe velocity plotted versus step-size for 
n =  1.8 and varying relative tolerances for pressure gradient (a) dependent regime 
and (b) independent regime.
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x 10' 
7 Cr

5 -

Am 4
Q
c5_oa>>

3 -

2 -

1 -

O

0
0.005 0.01 0.015

o  RelTol = 10'06

0  RelTol =1 O'09
□ RelTol = 10*12

n -fr
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 

Ay

Figure 4.24: Successive differences in half-pipe velocity plotted versus step-size for 
n =  2.2 and varying relative tolerances for pressure gradient (a) dependent regime 
and (b) independent regime.
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Figure 4.25: The figure illustrâtes the experimental configuration used in [8].

Figure 4.26: The figure illustrates the initial pressure gradient dependent regime 
(Regime I) and the subsequent pressure gradient independent regime (Regime II). 
Regime I can be considered to have two sub-regimes; an initial linear sub-regime 
which is then followed by an exponential decaying sub-regime.



C hapter 5 

Conclusion

The flow of a non-homogeneous suspension is considered. The solid-liquid mixture 
is treated as an incompressible fluid where the inhomogeneity is treated through the 
viscosity. Two methods of attack were chosen, motivated by two different problems.

The first approach is a single regime analysis. This analysis is motivated by the 
bulk transport of solid material by a carrier fluid to a combustion chamber and/or 
processing facility; that is, biomass transport through pipeline. The viscosity is taken 
to be a function of products of position and temperature. Furthermore, the thermal 
conductivity of the fluid is taken to be a function of position, related to the viscos­
ity function position dependence. The complete modified Navier-Stokes system of 
equations is considered. It is found that as we increase the amount of biomass in the 
suspension, fixing all other parameters, the flow rate diminishes exponentially. The 
velocity profiles contracts while the position of the maximum shifts downwards. No 
effect on temperature profile is found here.

Furthermore, as the strength of the intrinsic temperature dependence of the sus­
pension becomes more powerful, fixing all other parameters, the flow rate and velocity 
profiles increase in magnitude. However, there is no effect on the temperature profile 
within the channel. Also, as the thermal conductivity of the biomass decreases, fixing 
all other parameters, the temperature distribution in the channel varies nonlinearly. 
This effect is extremely powerful and may be used in the context of simultaneous 
pipeline transport and corn saccharification as stated in Chapter 3.4. There is almost 
no effect on the velocity or flow rate here.

The effect of the pressure gradient, which is proportional to the parameter c, is 
to increase the velocity and flow rate of the biomass suspension. There is no effect 
on the temperature profile. Lastly, when thermal conduction and viscous dissipation 
are comparable, a ’hotspot’ appears within the channel. This is a startling result; 
we would expect that the temperature within the channel should be greater than 
the temperature at the bottom boundary and lower than that of the upper boundary, 
where the latter is hotter than the former. This nonsensical result is worth confirming 
experimentally.

77
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The second approach is a two regime analysis. This analysis is motivated by exper­
iments performed at the Complex Fluids Laboratory at Montclair State University. 
It is found that for an inhomogeneous mixture of water and biomass (coffee, mulch, 
and etc.), the flow rate undergoes an initial approximate linear trend relative to the 
pressure gradient which is then followed by exponential decay. Furthermore, the per­
centage of solid material transferred increases with the pressure gradient. This leads 
to the consideration of a viscosity function dependent on a product of functions of 
pressure gradient, volume fraction, and shear rate. Furthermore, the suspension be­
comes independent of the pressure gradient as we approach a critical pressure, where 
all the biomass in the suspension has entered the fluid flow. The complete modified 
Navier-Stokes system of equations is solved.

The flow rate is computed and compared to the pressure gradient. It is found 
that the same relationship between the flow rate and pressure gradient that is seen 
in experiment is found in our theoretical investigation. In other words, the flow 
rate initially behaves approximately linearly followed by an exponential decay with 
increasing pressure gradient. Furthermore, the percentage of volume fraction in the 
fluid flow is found to increase with increasing pressure gradient. The amount of 
volume fraction at the top of the channel is found to decrease as a consequence. The 
consistence of the theoretical results with experiment is striking.

Future work can take myriad directions. In the first approach, different functional 
relationships can be investigated. Furthermore, the thermal conductivity could be 
taken to be temperature dependent as well. Also, the geometry of problem can 
be changed; for instance, one can consider an incline plane or snaked paths. In 
the second approach, temperature effects can be included, which would complicate 
matters dramatically. Additionally, compressibility of the fluid can be considered; 
that is, the density would be a function of position, temperature, volume fraction, 
and etc. This treatment can be performed in the first approach as well.
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A ppendix A

M easurem ent of the viscosity and 
therm al conductivity

There are numerous ways to measure the viscosity and thermal conductivity of a 
fluid. Devices which measure the viscosity of a fluid are called viscometers and are 
used primarily for Newtonian fluids, where flow conditions do not effect the viscos­
ity. Rheometers are used when the fluid viscosity varies under different different flow 
conditions and are used primarily for non-Newtonian fluids. In such devices, the fluid 
is constrained to some specialized geometry (or system) in which, under physically 
reasonable assumptions, a closed form relationship between the shearing stress and 
corresponding shear strain rate can be established. The viscosity can thereby be de­
termined, as the proportionality constant relating the two previous quantities. Three 
popular methods include concentric cylinders, cone-and-plate, and falling sphere; for 
a detailed discussion of these methods and more see [54].

As in the case of viscosity, there are a number of techniques to measure thermal 
conductivity for both fluids and solids. However, the transient hot-wire method is 
used often for suspensions due to accuracy and speed, among other factors. Measure­
ment is performed by suspending a thin wire into a fluid, in which a constant current 
is supplied briefly. The thermal conductivity of the fluid is found to be related to the 
temperature field around the heated wire. A more detailed discussion can be found 
elsewhere, see [44], for instance.
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