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Abstract

Longitudinal and survival data are frequently collected in biomedical studies. The research 
questions of interest in these studies often require separate analysis of the outcomes. But 
in many occasions interest also lies in studying their association structures, such as in 
biomarker research, where the clinical studies are designed to identify biomarkers with 
strong prognostic capabilities for event time outcomes. In the separate analyses, a linear 
mixed-effects model is used for modeling the longitudinal data to study the changing trend 
of the response overtime when controlling some covariates and a survival model is used to 
model the time-to-event data. A common issue in longitudinal studies is that informative 
dropout in the data can cause bias in the analysis. Associations between longitudinal 
and survival data can occur in the explanatory variables or through stochastic dependence 
between the subject-specific random effect component of the longitudinal model and the 
survival model. Ignoring the association between the longitudinal and survival data can 
result in biased inference. The joint model can account for these issues and simultaneously 
analyze the longitudinal and time-to-event data. This approach enables researchers to 
obtain more accurate inference regarding the survival probability to certain event when 
the longitudinal responses associated with the survival response or outcome-dependent 
study dropout.
In an HIV/AIDS study, our primary interest is to compare the survival for the patients 
with two antiretroviral drugs, Didanosine (ddl) and Zalcitabine (ddC) with some other 
risk factors. We also want to determine how the biomarker-CD4 lymphocyte cell counts 
changed over the period of the study. We use separate analysis and the joint model to 
analyze the survival and longitudinal outcome and then compare the two analysis results. 
In the longitudinal analysis, we used a linear mixed-effects model to fit the CD4 cell counts 
using a random intercept and slope for the observation time. In the survival analysis, we 
compared the survival between the two treatment groups by using a cox-proportional 
hazard model. Then a joint model was fitted by using the fitted longitudinal and survival 
objects. To compare the separate analysis and the joint analysis, we use the Akaike’s 
Information Criteria (AIC). The joint model was shown to be better than the separate 
analyses of the longitudinal models and survival models with a smaller AIC value. Using 
the joint model for inference on the HIV study, Zalcitabine (ddC) was significantly effective 
in reducing a person’s risk of death. The risk of death was 1.44 times as likely for patients 
assigned to ddl as compared to the patients assigned to ddC. The previous diagnosis result 
and observation time were significant predictors of the change in CD4 cell count at a 0.05 
significance level. A patient having a previous diagnosis of AIDS at the study entry led 
to a decrease in CD4 cell counts thus, a patient was more likely to die or the disease 
progressed. The joint model showed a significant association between the CD4 count and 
survival: with higher CD4 count, the survival probability is also significantly higher (or 
the hazard of death is lower). The joint model approach provided more accurate inference 
than the separate approaches for the HIV study.

Keywords: longitudinal data, time-to-event data, linear mixed-effects model, sur­
vival model, cox-proportional hazard model, joint modelling, HIV/AIDS study
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1 In troduction

Efforts to control the HIV/AIDS disease have increased significantly in recent years, 

but the virus continues to spread at an alarming rate. Clinical trials have been con­

ducted to alter and enhance the standard HIV/AIDS treatment regimen. Researchers 

who conduct clinical trials often collect longitudinal and survival data. The goal of 

researchers who conduct longitudinal clinical trials on HIV/AIDS is to understand 

how the disease progresses over time and to identify risk factors for the disease. For 

example, in a study involving patients with HIV symptoms, researchers performed 

repeated measurements of patients’ CD4 lymphocyte cell counts to understand the 

progression of disease with time and how risk factors such as gender, previous op­

portunistic infection, and Zidovudine (AZT) impact a person’s chances of disease 

progression [1]. In the same study, researchers used survival data, also known as 

time-to-event data, to study treatment effects of HIV/AIDS medications over a span 

of time until an event of interest occurred.

Longitudinal and time-to-event data are frequently used in biomedical studies. 

Researchers may also use longitudinal and time to event data when studying the 

effect of endogenous time-dependent covariates measured repeatedly over time and 

when attempting to correct for nonrandom dropout. To analyze longitudinal and 

time-to-event data in HIV/AIDS studies, researchers use joint and separate models. 

A survival model combined with a model that enables researchers to study the effects 

of endogenous time-dependent covariates measured repeatedly and over time is an 

example of a joint model [7]. Alternatively, researchers conduct separate analyses in 

studies that include longitudinal and time-to-event data. A popular separate analysis 

is to analyzing longitudinal using a linear mixed-effects model and analyze time-to- 

event data using a survival model. A linear mixed-effects model is used to describe



the process of the repeated measurements over time and study for the treatment effect 

and the survival model is to analyze the treatment effect on survival up until an event 

of interest occurs [7]. The separate model approach does not enable researchers to 

establish if there is an association between the components of the two models.

The joint model approach is complex but enables researchers to establish if an 

association exists. Another advantage of using the joint model approach is that 

it enables researchers to conduct survival and longitudinal analyses simultaneously. 

Due to the complexity of the joint modeling approach, it is under-used in clinical 

research. The objective of this thesis is to provide insight and understanding into 

the joint modeling process. We will first discuss longitudinal studies and introduce 

linear mixed-effects models to analyze the longitudinal data. Next, we will introduce 

the survival model to analyze time-to-event data with nonparametric methods and 

the cox proportional hazard model. Furthermore, we will construct a joint model for 

longitudinal with time-to-event data. We will focus on a randomized clinical trial 

involving patients with HIV/AIDS to provide detailed analytic methods for joint 

modeling using the statistical software R [17].

In our study of interest, researchers collected longitudinal and survival data and 

compared the efficacy and safety of two antiretroviral drugs. The two antiretroviral 

drugs were used to treat patients who were intolerant to zidovudine (AZT) therapy [1]. 

A total of 467 patients with HIV or low CD4 counts were enrolled into the study. The 

467 patients were each randomly assigned to one of two groups. One group of patients 

received an antiretroviral drug called Didanosine (ddl). The other group of patients 

received an antiretroviral drug called Zalcitabine (ddC). Researchers compared the 

effects of the two treatments and studied how the patients’ CD4 cell counts changed 

over the course of the study. Our goal is to fit a joint model and conduct diagnostic 

analysis to ensure that the researchers of this study made valid inferences regarding
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the effects of ddl and ddC on the survival of HIV/AIDS patients.

1.1 Clinical Trial

We will first provide background into biomedical research and the statistical methods 

used to analyze data. A clinical trial is conducted by researchers who want to study 

subjects impacted by or exposed to a disease or risk factor. Researchers use clinical 

trials to compare new intervention methods to existing treatment methods. Clinical 

trials are used to enhance medical intervention options for a disease or outcome, 

thus finding better ways to prevent, screen, diagnose, or treat a disease. To carry 

out a clinical trial, subjects are randomly assigned to different intervention groups or 

stratified according to different prognostic factors such as age or gender. Many clinical 

trials involve following up with patients for a long period of time. The follow-up time 

for the study may range from a few weeks to many years.

Different statistical procedures are used clinical trial studies. These procedures are 

useful in clinical research and provide vital information about intervention methods. 

For example, in the case of an oncology clinical trial, an intervention method is 

investigated to test the response on tumor shrinkage. In HIV/AIDS studies, different 

treatments are used to examine the change of CD4 cells on the survival time of patients 

with HIV. Typically, longitudinal data in HIV/AIDS studies consists of recording 

measurements of CD4 cell counts taken at various points in time throughout the 

study period. CD4 cell counts are considered important biomarkers of HIV disease 

progression because CD4 cell counts are an important part of the immune system, 

which begin to deplete as the virus infects the body.
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1.2 Longitudinal D ata A nalysis

A longitudinal study is a type of randomized controlled experiment in which data is 

collected on repeated measurements for the same subject at a series of time points. 

In practice, the measurements are observed at discrete time points, usually including 

baseline measurements. In medical research, the focus is often on interrelationships 

between the variables of repeated measurements on a continuous response. A familiar 

example is that of HIV clinical trials, where covariates, including treatment assign­

ment, demographic information, and measurements on immunologic and virologic 

status such as CD4 cell counts are recorded at baseline and then taken at subsequent 

clinic visits. Although it is common to assume independence between subjects, such 

repeated measurements are correlated within-subjects and therefore require special 

statistical methods for validity and inference. The researcher can establish sequences 

of events because longitudinal studies extend beyond a single moment in time.

1.2.1 Linear M ixed-Effects M odels

We will use linear mixed-effects models to analyze the longitudinal data. The linear 

mixed-effects (LME) model is a type of model that uses fixed effects and random 

effects in the same analyses. A fixed effect contains covariates that relate to the ith 

patient at time of their j th measurement, where i =  1, ...m and j  =  1 ,...., rq. The 

primary interest in the model are the fixed effects, which include levels that could be 

used multiple times for repeated measurements. A random effect is a patient-specific 

coefficient that represents between-patients heterogeneity in an outcome variable that 

cannot be explained by measured covariates [4]. The LME model is widely used in 

statistical analyses of longitudinal data as it considers both the within-subjects and 

between-subjects variation. The LME model allows for a wide variety of correlation 

patterns. The LME model is also effective in modeling data that is missing at random.
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Most models exclude data on a subject if one measurement is missing. In cases where 

data on a subject is missing at random, the LME model includes the available data on 

that subject instead of excluding data on the subject all together. The LME model is 

also preferred when there is uneven spacing of repeated measurements. For example, 

in our application study, measurements of CD4 cell counts for HIV/AIDS patients 

were recorded at 0, 2, 6, 12, and 18 months.

A common model-based approach for longitudinal measurements assumes inde­

pendence between subjects z, where each measurement is a realization of a Gaussian 

random variable [21]. The LME model can be used as an extension of the general 

regression model in equation (1). In equation (1), Y  is a N  x 1 response vector and 

we denote yij as the j th  measurement on the zth subject. X  is a N  x (p +  1) matrix, 

where p are the number of explanatory variables. ¡3 is a (p+ 1) x 1 dimensional vector 

of fixed-effects regression coefficients, and e is a N  x 1 vector of the measurement 

errors, e ~  V(0,of). To extend the general regression model (1) to the LME model, 

we need to consider a random effect. In the equation we use Z  to denote an N  x q 

design matrix for the ^-dimension random effects 7; in which Z  could be a submatrix 

of the X  matrix. 7 is a q x 1 vector of the random effects. We assume 7 ~  N ( 0, D) 

and 7,£ are independent. We denote E* as the variance-covariance matrix of the 

response z/j with var{Y{) =  E* =  Z iD Z j  +  cr^Ini.

By inclusion of the random effects component, equation (1) is extended to the 

linear mixed-effects model in equation (2):

Y  =  X /3 + e ( 1)

Y  =  XQ  + Z7 + e ( 2)
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Different models for longitudinal data differ on the correlation structure for error 

term [21]. We will use the LME form given by equation (3) where Y¿j is the response 

variable measured on subject i = 1 m at time point ¿¿j, with j  =  m  is

the number of subjects and rq is the number of measurements for subject i. Wu(tij) 

is the unobserved random process; where we change notation from Z  in equation (2) 

to Sij are independent realizations of zero-mean Gaussian random variables

with variance cr2 representing pure measurement error, Hi(Uj) is the mean response for 

subjects i at time point ti3, which represents the fixed effects and can have linear form 

such as xfj/3. From this point on we will assume that represents pure measurement 

error.

hq — fii(tij) -I- W \ T E-ij (d)

In this paper we will distinguish between the models of longitudinal process and of 

the survival process to construct the joint modelling of the two processes. We want 

to distinguish between the random effects component Wi(tij) in each process. The 

random effects component is subscript with a T ’, Wu(tij), to denote that it belongs 

to the longitudinal process of the two-stage joint modelling process. In the survival 

process, the random effects component of the survival model will be subscripted with 

a ‘2’. We will provide more details on the relationship of these components later in 

the paper.

Furthermore, some authors choose to decompose the unobserved random process 

Wi(Uj) into two components in an additive way. For example, model (4) uses Diggle’s, 

and Laird and Ware’s proposed linear mixed-effects model [4] [9]. In this model U¿ are 

m  independent realizations of a r-dimension multivariate Gaussian random variable 

and di are r-dimensional vectors of explanatory variables for the random process Z7¿.
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The Vi(tij) are m, independent realizations of a stationary Gaussian process.

Wi(tij)= d ' i(Ui) + Vi{tij) (4)

Guo and Carlin also use Diggle’s and Laird Ware’s subject-specific (LME) model 

in an application to an HIV study. For our study of interest, we use the form of 

longitudinal model proposed in their paper [7] and use error structure proposed by 

Laird and Diggle in their paper [9]. We start with notation to the longitudinal model 

in which every parameter will have a subscript‘T for the combined methods later. The 

sequence of measurements yn, • ••, Him f°r the ith subjects at times tu, ti2, ...,tin. 

is modeled in the LME model (3), where yßUj) =  x^(t)/?i is the mean response, 

W\i(t) =  d J ^ U i  incorporates subject-specihc random effects and Eij ~  N(0,a^)  is 

a sequence of mutually independent pure measurement errors account for variability 

between subjects. In application to the HIV study, Wu(t) is the true individual 

level CD4 trajectories after adjusting for the overall mean trajectory and the fixed 

effects. The vectors Xu(t) and ß\ represent time-varying explanatory variables and 

their coefficients for the longitudinal process, respectively. The U{ are vectors of 

random effects corresponding to the explanatory variables du(t). We will discuss a 

linear mixed-effects model with random intercept only and then a model with the 

combination of random intercept and random slope in our application to the HIV 

study.

1.3 T im e-to-Event D ata Analysis

In survival analysis, subjects are followed over a specified length of time in order to 

study the relationship of survival up to a certain event point with some risk factors. 

Time-to-event data may be based on events other than death, such as recurrence
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of a disease, disease progression, or discharge from the hospital. For example, in 

biomedical studies we study treatment effects of HIV/AIDS medications over a span 

of time until death or disease progression. Survival data includes a censoring variable 

which indicates if an event occurred or did not occur during the observation time. 

Observations are called censored when the information about their survival time is 

incomplete; the most commonly encountered form is right censoring. Right censoring 

is indicated when a patient does not experience the event of interest for the duration 

of the study. The survival time for this person is considered to be at least as long 

as the duration of the study. Right censoring could also occur when a person drops 

out of the study before the end of the study observation time and did not experience 

the event. This person’s survival time is said to be censored, since we know that the 

event of interest did not happen while this person was under observation. Censoring 

is an important issue in survival analysis, representing a particular type of missing 

data. Survival analysis requires censoring be random and non-informative to avoid 

bias. This means that the time-to-event and censored are independent.

In survival analysis, researchers can use life tables, Kaplan-Meier curves to de­

scribe the survival times of patients of some intervention groups. We use log-rank 

tests to compare the survival curves of two or more groups. To describe the effect 

of some explanatory variables on survival time, we can use cox proportional hazards 

regression or parametric survival models. We will provide a brief description of the 

study methods using the data from the HIV study.

1.3.1 Nonparametric M ethods

The survival and hazard functions are key concepts in survival analysis for describing 

the distribution of event times. The main characteristics in survival functions are the 

response variable y as the surviving time until the occurrence of a well-defined event,
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which could be censored, in the sense that for some units the event of interest has not 

occurred at the time the data are collected. First, we let T  be a non-negative random 

variable representing the waiting time until the occurrence of an event; usually the 

time of failure. We let f{t)  be the density function of T. The survival function 

S(t) is the probability of time-to-event, denoted by the random variable T, beyond 

some time point t. For example, we examine the probability of death or disease 

progression up to 18 months for different treatment groups to test the efficacy of the 

intervention method on patients with HIV. The survival function is defined on the 

domain t G [0,oo) and has a probability range from [0,1]. We assume at t =  0, the 

probability of survival will be one (-5(0) =  1) unless there is an immediate death, and 

S(t) will approach zero as age increases without bound, indicating that life eventually 

ends.

The hazard function A(£), is defined as the instantaneous rate of death occurring 

at time t, given that failure time did not occur up to that time or before that time. 

We denote the survival function and hazard function respectively:

S(t) =  P(T > t) (5)

X(t) lim
A->0+

P(t < T <  t +  A t|T  > t) 
A t (6)

We also denote the hazard function as a relation between the density function and 

survival function or the first derivative of the survival function and the survival func­

tion:

A(i) m  m
S(t) (7)

Generally in survival studies, we wish to describe the relationship of a factor of 

interest (e.g. treatment) to the response, in the presence of several covariates, such
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as age, gender, race, etc. In HIV studies, we analyze how the treatment affects 

survival. Methods to analyze the relationship of a set of predictor variables with 

the survival time include parametric, nonparametric and semiparametric approaches. 

This paper will consider nonparametric methods such as the Kaplan-Meier method 

and the semiparametric cox-proportional hazard model because they does not assume 

a specific distribution.

The logrank test and Kaplan-Meier method are widely used to compare and es­

timate survival probabilities as a function of time, respectively. The Kaplan-Meier 

method can be used to obtain univariate descriptive statistics for survival data, in­

cluding the median survival time, and compare the survival probability for two or 

more groups of subjects. Graphically, Kaplan-Meier curves are useful in obtaining 

the probability of survival at different time points where life tables show us the num­

ber of patients at risk and survival probability for each observed time point in a 

table.

A life table is useful in survival analysis because it summarizes survival data 

in terms of the number of events and the proportion surviving at each event time 

point. For example, researchers could construct life tables to compare the amount 

of patients alive at various time points in each treatment group. The life table will 

provide information on the intervention method in cases of comparing the efficacy 

of two treatments or cases where the treatment is not working and the study needs 

to stop. For notation in our application we will denote a few variables. Let ¿(i) < 

2) < ... < i(fc) be the ordered subset of k < n unique observed failure times from 

the observed survival times. Let di be the number of failures which occurs at ti and 

rii be the number of patients at risk before time ti. We also denote the risk set 

R(ti) and the relation di/rii as the probability of failure at time £* [21]. Based on the 

survival function previously mentioned we estimate the product-limiting estimate of

17



the survival function and hazard function respectively:

S(t)
) if t > t(1)

if t < t(i)
(8)

A (t) (9)

The variance of the product-limit estimate of the survival function can be obtained

Following the Kaplan-Meier method, researchers would then like to analyze the 

effect of predictor variables on the survival time. Kaplan-Meier curves do not work 

easily with quantitative predictors such as gene expression, CD4 count, or age. Cox- 

proportional hazard regression is usually used when the data contains quantitative 

predictor variables. It allows testing for differences in survival times of two or more 

groups of interest, while allowing to adjust for covariates of interest. The Cox propor­

tional hazard model extends the logrank test by allowing the inclusion of additional 

covariates. The cox regression model use the hazard format instead of the survival 

probability, which makes it easy to interpret information regarding the relationship 

of the hazard function to predictors.

1.3.2 Cox-Proportional Hazard M odel

The Cox-proportional hazard model is used when the study interest is to get inference 

for the model parameters of a time-to-event process. In the Cox-proportional hazard 

model, the hazard of an individual with some covariates is proportional to a baseline 

function of time, where the baseline hazard function has no specified form. This

by

(10)
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model allows for fixed covariates that do not change over time and parameters are 

estimated by maximizing the partial likelihood. The covariates can also include time- 

dependent variables. Their corresponding hazard function are given in equations (11) 

and (12) respectively, where A0(t) is the unspecified baseline hazard function.

A i(t\X) =  A 0(t)exp{Xi(3} ( i i )

A¿(t X) =  A0(t)exp{Xi(t)P} (12)

We use the notations from Guo and Carlin’s [7] in the cox proportional hazard 

model in equation (13), where the vectors xj( t)  and fa are possibly time-dependent 

explanatory variables and their corresponding regression coefficients. W 2 i(t) includes 

subject-specific covariate effects and an intercept. Here, the random effects compo­

nent W 2 i(t) in the survival model is subscripted with a ‘2’ to denote that it belongs to 

the survival process. This is to distinguish between the random effects components 

in the construction of the two-stage joint modelling process in the next section.

A i(t) = X0(t)exp{xJ(t)fa +  W2i(t)} (13)

2 Joint M odelling

2.1 Literature R eview

It has become increasingly common in survival studies to record the values of key 

longitudinal covariates until the occurrence of survival time of a subject. This leads 

to informative dropout of the longitudinal data, which also complicates the survival 

analysis. Furthermore, in a survival analysis setting where the covariate of interest 

is time-dependent, either the entire history of the covariate measurement of every
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subject, or, measurements of the covariate at each time of death occurrence or dis­

ease progression for all subjects in the risk set is needed. By modelling the covariates 

over time, we enhance the survival analysis since we can interpolate covariate values 

between the observed measurements to the specific times of death or disease progres­

sion, with use of the entire history of the subjects. Modelling the covariate also allows 

adjustment for covariate measurement error, which is known to result in biased esti­

mates of relative risk parameters [6]. In addition, we can obtain improved covariate 

tracking estimates by adjusting for informative right censoring of the repeated mea­

surements by the disease progression. Therefore to account for the association in the 

separate models researchers use joint modelling to handle irregularity and measure 

time-varying covariates correctly [2]. We defined a joint model in this paper as a 

survival model combined with a longitudinal model that enables researchers to study 

the effects of endogenous time dependent covariates measured repeatedly and over 

time.

Typically, a linear mixed-effects model is used first to describe the process of the 

repeated measurements over time and study for the treatment effect. A common 

problem in longitudinal studies is that informative dropout in the data could cause 

bias in the analysis. To account for informative dropout, a number of model-based 

approaches have been proposed to jointly model longitudinal outcome and the dropout 

mechanism (Wu and Carroll, DeGruttola and Tu, Little, Hogan and Laird [11]). We 

will use a linear mixed-effects model to analyze the repeated measurement of time- 

dependent variables over time due to its popularity and simplicity.

After the linear mixed-effects, researchers use survival models to analyze the treat­

ment effect up until an event of interest occurs [7]. A widely used survival model is 

the proportional hazard model. Various approaches have been proposed under this 

framework including the regression method from Pawitan and Self, Tsiatis, DeGrut-
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tola and Wulfsohn, the likelihood-based approaches from DeGruttola and Tu, Faucett 

and Thomas, Wulfsohn and Tsiatis [23], Henderson, Diggle and Dobson, and Song, 

Davidian and Tsiatis), corrected score (Wang) and conditional score (Tsiatis and Da- 

vidian, Song, Davidian and Tsiatis) approaches [20]. In HIV/AIDS studies it is known 

that the effect of antiretroviral treatments may decay after some time, therefore the 

traditional hazard assumption may be too restrictive in this case. An áppealing alter­

native is the time-varying coefficient proportional hazards model proposed by Song 

and Wang [20], which allows the effect of the coefficients to vary over time.

Although there are many different approaches to construct models for the lon­

gitudinal and the time to event data, the separate model approach does not enable 

researchers to establish if there is an association between the components of the two 

models. Associations between longitudinal and survival data can occur in the ex­

planatory variables or through stochastic dependence between the subject-specific 

random effects component of the longitudinal model and the survival model. We also 

assume associations between the drop-out process; when a missing longitudinal mea­

surement terminates the sequence of longitudinal measurements, and the censoring 

process. When association between the two processes exists, we use a joint model to 

obtain less biased and more efficient inferences. The joint model approach is complex 

but enables researchers to establish if an association exists.

Model-based approaches for each type of analysis have been extensively described 

in the literature in HIV/AIDS studies. Clayton proposed a comprehensive model that 

combined the covariate tracking and disease risk models to estimate parameters of 

similar models. DeGruttola and Tu [3] and Tsiatis et al. [22] consider the progression 

of CD4 lymphocyte counts and survival time in patients of AIDS. DeGruttola and 

Tu assume that the joint distribution of log CD4 counts and some transformation of 

survival time are multivariate normally distributed. This formulation allows them to
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use the modified EM algorithm from Laire and Ware [14] to fit the model. Using a 

Cox-proportional hazard model, Tsiatis et al. model the hazard of death as a function 

of the conditional expectation of the ‘true’ log CD4 counts given the history of the 

observed counts. They proposed a two-step procedure for fitting their model. First 

they assume a growth curve random components model with normal error for the 

true CD4 count and used a modified EM algorithm. Then they substituted these 

estimates into the proportional hazard model and used the cox regression to obtain 

estimates of the survival parameters.

Self and Pawitan proposed a similar two-step procedure for parameter estimation 

where they condition on the survival information when computing expected values 

of the covariates. They, like many others, used partial likelihood methods to obtain 

estimates of the disease risk parameters and maximum likelihood methods to model 

jointly immunologic markers, time to infection, and time to AIDS [12]. Wulfsohn 

and Tsiatis suggest that the joint maximum likelihood method is among the most 

satisfactory approaches to combine information. The approach described by Wulf­

sohn and Tsiatis is semiparametric in that no parametric assumptions are imposed 

on the baseline hazard function in the Cox model, while the random effects in the 

longitudinal component are assumed to be normally distributed. An attractive fea­

ture of this approach is its robustness against departure from the normal random 

effects assumption. It is said to be as efficient as a semiparametric random effects 

model proposed by Song, Davidian, and Tsiatis. Many also consider fully parametric 

Weibull regression models for the times to disease and infection. On the other hand, 

Faucett and Thomas used simulation studies to compare the analysis of the joint co­

variate tracking and disease risk model using Gibbs sampling to separate the analysis 

of each component.

To illustrate the association between the longitudinal component and survival
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component, Henderson et al. proposed a LME model for the ith subject via an 

unobserved or latent zero Gaussian process W(t) = {Wu(t), W2i(t)}, which is realized 

independently in different subjects. They assumed that the latent process forces a 

pair of linked longitudinal and survival sub-models. The longitudinal component has 

the following format:

Yij = Hi(Uj) +  Wu(Uj) + Eij (14)

Where is the mean response which could be described by a linear model Xi(t)fa

Eij ~  iV(0, <j ^) is a sequence of mutually independent measurement errors. They as­

sumed could be describe by a linear model where Ui(t) =  Xu(t)Tfa. The survival 

component has the form as in equation (15), where fait) is the hazard function and 

A0(t) is the baseline hazard function. x 2i(t) and fa represent time-varying explana­

tory variables and their coefficients for the survival process, respectively. W2l(t) is an 

unobserved random process for the survival process.

Ai(t) = A0(t) exp(x2i(t)Tfa + W2i(t)) (15)

2.2 Formulation of the Joint M odel

We will use the longitudinal model (14) and survival model (15) in the formulation of 

the joint model. The association between the longitudinal and survival components 

can arise in two ways. One is through common explanatory variables and the other 

is through stochastic dependence between the longitudinal and survival process. The 

association is thus between Wu and W2{ in equation (14) and (15) as proposed by 

Henderson et al. They propose to jointly model the two processes via a latent zero- 

mean bivariate Gaussian process on (W u,W 2i)T, which is independent for different 

subjects. W\i{t) and W2i(t) link the longitudinal model in the LME from equation (14)
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with the cox-proportional hazard model (15) together. The joint model is composed 

by the two linked sub-models, which they refer to as the longitudinal measurement 

model and the intensity survival model. When association between the two processes 

exists, the joint model provides less biased and more efficient inferences than the 

separate analysis.

3 A pplication  to  H IV  Study

3.1 Clinical background

The availability of an increasing number of antiretroviral agents and the rapid evolu­

tion of new information has led to new treatment regimens for patients infected with 

HIV. A current treatment regimen used to treat patients with HIV/AIDS is Zidovu­

dine (AZT) therapy. Anti-HIV drugs such as AZT slows down or prevents damage 

to the immune system. These drugs also reduces the risk of developing AIDS-related 

illnesses. It is known however, that patients can be intolerant to AZT or experience 

a ‘failure’. In such cases, researchers provide alternative intervention methods or 

treatment such as the antiretroviral drugs: Didanosine (ddl) and Zalcitabine (ddC). 

Both drugs are commonly used to treat patients with HIV who cannot tolerate AZT 

or who had disease progression despite it [1]. It is also common in HIV studies to 

collect repeated measurements of important biomarkers of HIV progression such as 

CD4 lymphocyte cell count in a sample of blood and viral loads [15]. CD4 cell are 

an important part of the immune system, which begin to deplete as the virus infects 

the body. We note that a decrease in CD4 cell counts indicates the degree of im­

munosuppression. Our objective is to investigate the change of CD4 cell count over 

the period of the study to determine if the two drugs impact the survival of patients 

using the HIV dataset.
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3.2 D escription of D ataset

The HIV study was a randomized clinical trial in which both longitudinal and survival 

data were collected to compare the efficacy and safety of two antiretroviral drugs in 

treating patients who had failed or were intolerant of Zidovudine (AZT) therapy [1]. 

The study enrolled 467 patients from December 1990 through September 1991. The 

patients were enrolled if they met the following criterion: they had an AIDS-defining 

condition or they had two CD4 counts of 300 cells or less per cubic millimeter, with 

either a positive serologic test for HIV or a clinician’s working diagnosis of HIV 

infection; and they had undergone AZT therapy that led to intolerance of the drug or 

progression of disease during therapy [1]. The patients were then randomized to receive 

two antiretroviral drugs, either Didanosine (ddl) or Zalcitabine (ddC). However, a 

patient was allowed to switch drug treatment after 3 months with a washout period of 

at least 3 days. The patient data was then censored at the time of drug re-assignment.

The dataset consisted of 1408 observations on 9 variables. The data consisted of 

three continuous explanatory variables: the square root of the CD4 lymphocyte cell 

count, but for simplicity reasons we will refer to as CD4, Time (the time to death or 

censoring), and Obstime (the observed time points for CD4 measurements). CD4 cell 

counts were recorded at baseline (0 months) and at various time points (2, 6, 12 and 

18 months) during the trial. The data also included six binary explanatory variables: 

Drug (ddC, ddl), Death (censoring=0, death=l), Gender (male, female), PrevOI 

(previous opportunistic infection of AIDS diagnosis or no previous AIDS diagnosis 

at study entry), and AZT (failure or intolerance). In total, 230 patients received ddl 

and 237 received ddC. There were 45 females and 422 males involved in the study. 

A total of 160 patients did not have a previous diagnosis of AIDS while 307 patients 

did have a diagnosis of AIDS at beginning of the study. There were 292 patients who 

were intolerant to AZT and 175 experienced a ‘failure’ to AZT, meaning the disease
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progressed despite AZT.

Let Dij denote the square root of the j th  CD4 count measurement on the ith. 

patient in the trial, j  — 1 , . . . ,  n*, i — 1 , . . . ,  m. Four explanatory variables as main 

effects were included in the analysis: Drug(ddl, ddC), Gender(male, female), Pre- 

vOI(AIDS,noAIDS), and AZT(intolerance, failure). The main goal of the study is to 

analyze the association of among CD4 count and survival, druggroup, gender, AIDS- 

diagnosis at baseline and AZT intolerance, accounting for all relevant correlations 

and subject-specific random effects.

3.2.1 Exploratory Data Analysis

To visualize the dataset, we used exploratory plots of the CD4 cell counts at each 

observed time point in Figure 1 and the CD4 counts at each observed time separated 

by treatment in Figure 2. The figures allow us to study how the CD4 cell count 

changes over time and determine the shape of the distributions. Figure 1 shows 

that the median of the CD4 counts was greater for the beginning months of the 

trial. We observed that the CD4 cell counts decreased at each observed month for 

all patients. The median CD4 count at each time point was between 5 and 10. The 

summary statistics value the median of the CD4 cell count at 6.083. However, we see 

outliers at months 2, 6, and 18 months. The boxplot for month 12 presents the most 

variability represented by the IQR. The shape of each distribution is right skewed 

and contains outliers. The dataset used a square root transformation of CD4 cell 

count however still see some skewness. The boxplots show high outliers after the 

baseline measurements, meaning there were patients with exceptionally high CD4 

cell counts. Furthermore, we wanted to investigate how the CD4 cell count changes 

for each treatment group at each time point to detect a pattern. In Figure 2, the 

patients who received ddC had a lower median CD4 cell count than the patients who

26



received ddl during months 0-12. However, at month 18, the median CD4 cell count 

was higher in the ddC group compared to the ddl. It appears that at the end of the 

study patients assigned to ddC had a better chance of surviving or the disease has 

not progressed. However, there does not appear to be a big difference between the 

two treatment groups.
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Figure 1: Boxplot illustrating the CD4 cell counts recorded at time points: 0, 2, 6, 
12, and 18 months for all subjects
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Figure 2: Side-by-side boxplots illustrating the CD4 cell counts recorded at time 
points: 0, 2, 6, 12, and 18 months for both treatment groups

3.3 Longitudinal D ata Analysis

3.3.1 Linear M ixed-Effects M odel

We first examine the change of CD4 cell count throughout the time of the study and 

compare the two drugs when controlling other covariates. To analyze the repeated



CD4 cell measures we use linear mixed-effects models.

The linear mixed-effects models can be modeled as:

Uij — fill +  Pl2 (Uj) +  Wi i +  Eij, (16)

where ylJ is the response of the j th CD4 cell count measured on ith patient in jth  

measurement, j  — l,...,n* and i = l,...n  where n — 467 subjects followed over the 

period of the study [0-18 months]. /3n is the intercept and /3i2 is the observation 

time parameter and Wu  is the intercept random effect. The fitted model shows a 

significant negative effect of observation time on CD4 count. But this model only 

assumes subjects have different CD4 count at the baseline, their decreasing rate are 

all the same with time. We know that the AIC value for the model will be higher 

than the models we fit next. Therefore, we do not include the output table in the 

paper.

Next, in equation (17), we fit a linear mixed-effects model with random intercept 

and slope for Obstime. This model also assumes the change rate of CD4 with time are 

different with different subject besides assuming different baseline CD4 counts. From 

equation (16) we include the random effects for intercept and slope over time, W\i(Uj). 

We denote Wu(Uj) =  Uu +  U2 i(Uj). We include CD4 count and use the intercept 

and obstime as the random effects. The results are shown in Table 1; Obstime is 

a significant predictor of CD4 cell count (t =  —9.88, p-value =  0). We denote p- 

value =  0 as p < 0.0001. The parameter for obstime is —0.1501, this describes the 

negative effect of obstime time on CD4 cell count. For every one month increase in 

observation time, the CD4 cell count decreases by 0.1501 cells per cubic millimeter of 

blood. A decrease of CD4 cell counts is harmful to a patient’s autoimmune response 

in ability to fight diseases. This is evidence of death or disease progression occurring
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throughout the study period.

V i j —  P n  +  ( 3 n { U j ) +  +  £ i j (17)

Table 1: Linear Mixed-Effects Model with Random Intercept and Slope
LME Model 

Random Int. and Sip.
AIC

7141.282
BIC

7172.76
logLik

-3564.641

Random Effect StdDev Corr
Intercept 4.5065 (Intr)
obstime 0.1729 -0.152

Residuals 1.7508

Estimate Std. Error DF T-Value P-value
Intercept 7.1890 0.2222 937 32.36 0
obstime -0.1501 0.0152 937 -9.88 0

In addition, we examined the treatment effect on CD4 cell count by controlling 

other covariates in the model. This model (model 3) is a linear mixed-effects model 

with a random intercept and random slope for obstime and the inclusion of all the 

four covariates drug, gender, prevOI, and AZT. The output displayed in Table 3 

shows that prevOI and obstme are significant predictors of the change in CD4 cell 

counts. In comparison to Models 1 and 2, the AIC value is smaller in the model 

with the added covariates (AIC  =  7020.004) than the lme model with only a random 

intercept (A IC  =  7176.633) and the lme model with a random intercept and slope 

(AIC  =  7141.282). The estimate for prevOIAIDS is negative; this indicates that the 

CD4 cell count decreases more for the patients with a previous diagnosis of AIDS than 

the patients with no previous diagnosis of AIDS at the study entry. In agreement 

to our previous models, the variable obsime is significant (p — value = 0) and has 

a negative estimate. We conclude, as the observation time increases by month, the 

CD4 cell count decreases by 0.1524. The estimate for the obstime is similar to the
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previous model outputs. In addition, the treatment term was found to be insignificant 

and reported an estimate of 0.4544. The CD4 cell count was higher in the ddl group 

than in the ddC group by 0.4544 cells. Males had lower CD4 cell counts than women 

by 0.3154. Patients who experience a disease progression despite AZT therapy had 

lower CD4 cell counts than patients who were intolerant to AZT by 0.2570.

Table 2: Linear Mixed-Effects Model with Random Intercept and Slope with Covari­
ates_________________________________________________________________

Full LME Model 
with covariates

AIC
7020.004

BIC
7072.439

logLik
-3500.002

Random Effect StdDev Corr
Intercept 4.0029 (Intr)
obstime 0.1726 -0.18

Residuals 1.7496
Estimate Std. Error DF T-Value P-value

Intercept 10.3869 0.6886 937 15.08 0 .0000
obstime -0.1524 0.1514 937 -10.0686 0.0000
drugddl 0.4544 0.3803 462 1.19 0.2328

gendermale -0.3154 0.6527 462 -0.48 0.6291
prevOIAIDS -4.62561 0.4787 462 -9.66 0.0000
AZTfailure -0.2570 0.4725 462 -0.54 0.5868

Next, we extend model 3 by including an interaction effect between drug and 

obstime. Model 4 is shown in equation (18). The output in Table 3 report the 

A I C  = 7026.648, this value differs by 6.644. Although the interaction effect is not 

significant, we keep it in the model in case the investigator is interested in it. We 

then would consider Model 4 with in the interaction term in our construction of the 

joint model. The interaction between drug and obstime did not have a significant 

effect on the CD4 cell count. PrevOIAIDS and obstime were once again significant 

predictors on CD4 cell counts. Each estimate is similar to the output from model 3 

and our conclusion remain the same. We conclude, as the observation time increases 

by month, the CD4 cell count decreases by 0.1628. The CD4 cell count was higher
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then would consider Model 4 with in the interaction term in our construction of the 

joint model. The interaction between drug and obstime did not have a significant 

effect on the CD4 cell count. PrevOIAIDS and obstime were once again significant 

predictors on CD4 cell counts. Each estimate is similar to the output from model 3 

and our conclusion remain the same. We conclude, as the observation time increases 

by month, the CD4 cell count decreases by 0.1628. The CD4 cell count was higher
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in the ddl group than in the ddC group by 0.3841 cells. Males had lower CD4 cell 

counts than women by 0.3180. The CD4 cell count decreases more for the patients 

with a previous diagnosis of AIDS than the patients with no previous diagnosis of 

AIDS at the study entry by 4.6281. Patients who experience a disease progression 

despite AZT therapy had lower CD4 cell counts than patients who were intolerant 

to AZT by 0.2538. As the observation time increases by month for the patients the 

CD4 cell counts are higher for the patients in the ddl group than the ddC group by 

0.0217. Both outputs suggest that male patients in the ddl group, with a previous 

diagnosis of aids, and experienced a failure with AZT had worse survival outcomes.

Vij = Pn-\-P i2(ti j )+ ^ i3(tij ) x D ru g i + ^ uG ende ri +f3i5P re vO I i+ (3 i6A Z T i + W ij (tij )+£ij

(18)

Table 3: Linear Mixed-Effects Model with Random Intercept and Slope with Inter 
action Effect

Full LME Model 
with Interaction

AIC
7026.648

BIC
7084.319

logLik
-3502.324

Random Effect StdDev Corr
Intercept 4.0036 (Intr)
obstime 0.1734 -0.181

Residuals 1.7488
Estimate Std. Error DF T-Value P-value

Intercept 10.4243 0.6906 936 15.09 0.0000
obstime -0.1628 0.0210 936 -7.75 0.0000
drugddl 0.3841 0.3928 462 0.98 0.3287

drugddLobstime 0.0217 0.0303 936 0.7146 0.4750
gendermale -0.3180 0.6527 462 -0.49 0.6263

prevOIAIDS -4.6281 0.4787 462 -9.67 0.0000
AZTfailure -0.2538 0.4726 462 -0.54 0.5915
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3.4 Survival D ata Analysis

3.4.1 Summary Statistics

Next, we constructed a table of the number of patients at risk for each treatment at 

each observed time point (0, 2, 6, 12, 18 months) in Table 4. The number of patients 

at risk for the five time points are (230, 182, 153, 102, 20) for the ddl group and (237, 

186, 157, 123, 14) for ddC group. The table demonstrates that the number of people 

at risk decreases at each time point for both treatments. The table also shows there 

is increasing missing rate due to death, dropouts, or missed visits.

In the beginning months (0-6), the number of patients at risk for ddl was less than 

the number of people at risk for ddC. We do note a strange occurrence at month 12 

where the number of patients at risk for ddl decreases drastically and at 18 months 

the number of patients remaining in the ddl group is greater than the number of 

patients remaining in the ddC group. However, we need to consider these values 

proportional to the amount of patients at baseline in each group. Thus, converting 

the numbers of patients at risk, proportional to the amount of patients in each group 

we obtain (1, 0.79, 0.67, 0.44, 0.09) for ddl and (1, 0.78, 0.66, 0.52, 0.06) for ddC. 

Proportionally, for all time points except month 12, more people were at risk in the 

ddl group compared to the ddC group. At the end of the study, there were 20 patients 

remaining in the ddl group and 14 remaining in the ddC. This suggests that ddl may 

be better than ddC however, we note that there was not a big difference in the number 

of remaining patients between both groups.

Table 4: Number of patients at risk at months 0, 2,6,12, and 18 months
Time(Months)

No. At Risk 0 2 6 12 18
Didanosine(ddl) 230 182 153 103 20
Zalcitabine(ddC) 237 186 157 123 14
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3.4.2 Kaplan-M eier Survival Curve

To further investigate the efficacy of the two treatments, we looked at the Kaplan- 

Meier estimates in Figure 3. The survival rates are plotted against the observation 

times and separated by treatment group. The plot displays the survival curve for 

ddC in blue and the survival rates for ddl in red. In accordance with the life table in 

Table 4, in the beginning months (0-6) we see similar survival curves for ddC and ddl. 

During months 6-18, the survival rates for patients in the ddC group is higher than 

the survival rates for the patients in ddl. Therefore, we suspect ddC was as effective 

as ddl in delaying disease progression and death. The patients assigned to ddC had 

a slightly better chance of surviving than patients assigned to ddl before 18 months. 

After 18 months we see the survival rate for patients assigned to ddC become worse 

than the survival rate for patients assigned to ddl. It is important to note that we 

have not found sufficient evidence to suggest that there is a difference in treatment 

effects. To investigate the treatments further, we constructed a Cox regression model 

to compare the ddl and ddC treatments while controlling other covariates in the 

model such as gender, prevOI, and AZT.
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Kaplan-Meier Curve by Treatment

Figure 3: Kaplan-Meier survival curves for ddC (zalcitabine) and ddl (didanosine) 
from 0-24 mont.lis.

3.4.3 Cox-Proportional Hazard M odel

In this section, we fit a cox-proportional hazard model to investigate the survival 

time on the drug term and other covariates gender, prevOI, and AZT. The event is 

defined as death. Using a significance level of 0.05, PrevOI is a significant predictor 

of hazard. We use the exponential of the estimates shown in column 2 in Table 5



to summarize our results. The expected hazard is 1.2423 times for the patients that 

were assigned ddl as compared to the patients assigned to ddC, while holding all other 

covariates constant. This indicates that the ddl group had worse survival than the 

ddC group, however this is not statistically significant. The male’s expected hazard is 

0.7104 times of females. The expected hazard is 3.6402 times for the patients with a 

previous opportunistic infection of AIDS diagnosis as compared to the patients with 

no previous diagnosis of AIDS. The expected hazard for patients with AZT failure is 

1.1704 times of the patients that were intolerant to AZT. This suggests that the risk 

of death is greater in female patients who took drug ddl, had a previous diagnosis of 

AIDS at the beginning of the study and were failure to the drug AZT.

The covariates in the model are not time-varying therefore, the regression equation 

for the cox-proportional hazard model is given in equation (19).

log(Ai) =  ß2i + ß22Drugi +  ß23 Gender i + ß24PrevOIi +  ß23AZT{ (19)

Table 5: Expected Hazard on Parameter Effects
CoxPH Model AIC

2113.514
Estimate Exp(est) SE(est) Z P-value Lower L Upper L

drugddl 0.2170 1.2423 0.1464 1.482 0.138 0.9324 1.655
gendermale -0.3419 0.7104 0.2455 -1.393 0.164 0.4391 1.149

prevOI 1.2920 3.6402 0.2270 5.692 <0.0001 2.3330 5.680
AZTfailure 0.1575 1.1705 0.1634 0.964 0.335 0.8497 1.612
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3.5 Joint M odel

In the joint modeling, we combine the linear mixed-effects submodel (18) and cox- 

proportional hazard submodel (19)

log(Aj) =  f a i  + /d22 Drugi + faG enderi + /324PrevOI, +  fc^AZTi +  W2i{t) (20)

The association is between Wu and W2i, which linked the two processes together 

through the joint model.

In the longitudinal process, prevOI (p-value <0.0001, with 95% CI(-5.6315, - 

3.7498)) and observation time (p-value <0.0001, with 95% Cl (-0.2239, -0.1398)) are 

still significant predictors of CD4 cell count at a 0.05 significance level. In accor­

dance to the longitudinal results previously mentioned, for every one month increase 

in the observation time, the CD4 cell count decreases by 0.1819. The patients with 

a previous diagnosis of AIDS showed a decrease in CD4 cell count by 4.6906 com­

pared to the patients without a previous diagnosis of AIDS. In the event process 

the treatment factor (p-value=0.0285, with 95% Cl (1.0363,1.9044)), previous IO (p- 

value=0.0098 and 95% Cl (1.1616,2.9791)), and the association component (p-value 

<0.0001, with 95% Cl (0.7284,0.8407)) were significant predictors. The relative haz­

ard is exp(0.3399) = 1.40 for patients assigned to drug ddl as compared to 1.28 in the 

separate survival model. The relative hazard is exp(0.6207)=1.86 for the patients with 

a previous diagnosis of AIDS as compared to 2.19 in the separate survival model. The 

association term is the parameter that measures how strongly associated the CD4 cell 

count at any particular time point t is to the risk of death of disease progression. The 

association term (p-value <0.0001) is significant; the CD4 cell count was correlated 

to the risk of death or disease progression. The joint model parameter estimates are 

similar to the separate longitudinal and survival parameter estimates.
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Table 6: Joint Model of Longitudinal and Time-to-Event
Joint Model AIC

8546.979
BIC

8621.613
logLik

-4255.489
Longitudinal Process

Estimate Std. Error Z-value P-value Lower L Upper L
Intercept 10.4173 0.6912 15.0721 <0.0001 9.0626 11.7719
drugddl 0.3909 0.3911 0.9997 0.3175 -0.3755 1.1574

gendermale -0.2515 0.6536 -0.3847 0.7004 -1.5326 1.0296
prevOI -4.6906 0.4800 -9.7719 <0.0001 -5.6315 -3.7498

AZTfailure -0.2779 0.4738 -0.5865 0.5575 -1.2065 0.6507
obstime -0.1819 0.0214 -8.4790 <0.0001 -0.2239 -0.1398

drugddLobstime 0.0103 0.0304 0.3386 0.7349 -0.0492 0.0698
Event Process

Estimate Std. Error Z-value P-value Lower L Upper L
Intercept -3.5044 0.4468 -7.8441 <0.0001 0.0125 0.0722
drugddl 0.3399 0.1552 2.1899 0.0285 1.0363 1.9044

gendermale -0.3742 0.2573 -1.4542 0.1459 0.4153 1.1390
prevIOAIDS 0.6207 0.2403 2.5834 0.0098 1.1616 2.9791
AZTfailure 0.0904 0.1687 0.5360 0.5920 0.7865 1.5234

Assoct -0.2452 0.0366 -6.7038 <0.0001 0.7284 0.8407

4 M odel Selection  and A ccuracy

For model comparison we examine the AIC criterion of the joint model to see if it 

is smaller than the combination of the AIC criterion from the separate models. The 

joint model has an AIC of 8546.979 and the separate models together have an AIC= 

9140.162 (7026.648 4- 2113.514). The joint model does in fact do better than the 

separate approaches because the AIC criterion for the joint model is smaller than the 

AIC criterion for the separate models.

4.1 D iagnostics

We conducted model diagnostics to assess the validity of the joint model. We can 

check if a model works well for data in many different ways such as residual plots,
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R 2 or AIC criterion that tell us how well a model fits the given data. We also 

assess the validity in exploration of the model’s underlying statistical assumptions, 

an examination of the structure of the model by considering formulations that have 

fewer, more, or different explanatory variables, or looking for influential points that 

does not fit well represented by the model (outliers) or that have a relatively large 

effect on the model’s predictions. Figure 4 showed a plot of the subject-specific 

residuals against the fitted values and a normal Q-Q plot of the standardize residuals 

and theoretical quantiles. We performed a Shapiro Wilk test of normality and plotted 

the marginal residuals against the fitted values to examine the validity of the Joint 

model. We also plotted the marginal survival curve and the marginal cumulative 

hazard rates against time.

The residuals vs fitted in top left corner in Figure 4 is a subject-specific residual 

plot. From this plot, we can see the residual vs fitted plot shows a constraint. In the 

left lower corner the residuals have a 45 degree downward slope, therefore the residuals 

are not random. The Normal Q-Q plot on the top right corner in Figure 4 is also a 

subject-level Q-Q plot. The Q-Q plot shows most of the residuals follow a straight 

line pattern but seems to have some extreme values deviated from the straight line 

pattern. With careful examination of the tail residuals shows strong evidence against 

Normality. These are not just extreme values as we may have thought. The pattern 

is consistent with a heavy-tailed distribution (such as a t-distribution).

The Shapiro-Wilk test of normality was used to determine if the residuals of the 

longitudinal process in the joint model meet the normality assumption. The test 

produced a test statistic W=0.9478 (p-value<0.0001), indicating the residuals are 

not from a normally distributed population. However, since the test is biased by 

sample size, the test may be statistically significant from a normal distribution in any 

large samples. Thus, we use the Q-Q plot in the top right corner for verification in
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addition to the test.

From the marginal residual plot in Figure 5, we can see for small fitted values we 

have more positive than negative residuals. Small fitted values correspond to lower 

levels of square root CD4 cell count, which corresponds to a worsening of the patient’s 

condition and subject to higher chance of dropout. Thus, the residuals corresponding 

to small fitted values are only based on patients with a ‘good’ health condition.

The problem in the residual plot and Q-Q plot is that the distribution of the resid­

uals for the longitudinal process is affected by the dropout caused by the occurrence 

of events. When a patient experiences the event, it corresponds to a discontinuation 

of the collection of longitudinal information because either follow up measurements 

can no longer be collected or their distribution changes after the event occurred. The 

dropout mechanism implied by joint models is of a nonrandom nature, which im­

plies the observed data, upon which the residuals are calculated, do not constitute a 

random sample of the target population [24]. This implies the residuals plots based 

on the observed data alone can be misleading because these residuals should not be 

expected to exhibit standard properties, such as zero mean and independence.

Even if we think there is a problem with the normality assumption, the inference 

is still valid because the joint model is a more robust procedure than the classical 

separate longitudinal and survival analysis and the sample size is large for this data. 

You can see that the model is robust because the Q-Q plot demonstrated heavy tailed 

distribution of residuals such as the t-distribution. A robust joint model still provides 

accurate inference on the study objectives despite having its assumptions altered or 

violated. A robust joint model works better than the separate models when a greater 

proportion of more extreme longitudinal outliers are present. Through t-distribution 

assumptions, longitudinal outliers are accommodated with their detrimental impact 

being down weighed and thus providing more efficient and reliable estimate.
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Furthermore, the Marginal Survival curves shows a decreasing trend; as time 

increases the survival rate decreases. Lastly, examining the Marginal Cumulative 

Hazard curve, there is an increasing trend over time. As time increases the cumulative 

hazard rate increases exponentially. Both plots indicate that the disease progressed 

for the patients in the study.
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Figure 4: Residuals for the Joint Model Fit
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Figure 5: Marginal Residuals vs Fitted Values for the Joint Model Fit

5 D iscussion  and C onclusion

To summarize, previous authors have used separate analyses of longitudinal and time- 

to-event data. Common issues in longitudinal studies is that the data suffers from 

attrition, which can cause bias in the analysis if the dropout are informative. Also
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associations between longitudinal and survival data can occur in the explanatory vari­

ables or through stochastic dependence between the subject-specific random effects 

component of the longitudinal model and of the survival model. We used a joint 

model to account for these issues and simultaneously analyze the longitudinal and 

time-to-event data. Our approach is important in many bio-statistical application 

areas, because we obtain accurate inference regarding longitudinal responses while
A

adjusting for outcome-dependent study dropout. We can also apply these ideas to 

problems involving surrogate markers, where the focus is on using longitudinal mea­

surements to improve prediction of survival prognosis.

We used the HIV study to investigate the efficacy and safety of the two drugs, 

Didanosine (ddl) and Zalcitabine (ddC), and how the CD4 cell counts changed over 

time. In the analysis of the HIV data, we compared separate analyses of the longi­

tudinal model and survival model to the joint model. The separate analysis of the 

LME model with a random intercept and slope of obstime with all four covariates 

showed that observation time (p-value=0) had a significant negative effect on CD4 cell 

counts, indicating that for every one month increase for the observed time, the CD4 

cell count decreased. PrevOIAIDS (p-value=0) had a significant negative effect on 

CD4 cell count, indicating that CD4 cell counts decrease for patients with a previous 

diagnosis of AIDS compared to patients with no previous diagnosis of AIDS at the 

study entry. The separate cox-proportional hazard model was used to investigate the 

effect the drug groups and additional covariates on the hazard. The cox-proportional 

hazard model showed prevOIAIDS was significant at the 0.05 significance level. We 

note that the drug term was not significant at 0.05 significance level but significant at 

0.10 significance level. The expected hazard was 2.1886 times higher for patients who 

were diagnosed with AIDS compared to patients who didn’t have a previous diagnosis 

of AIDS at baseline.
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The joint model showed that prevOIAIDS and obstime were significant predictors 

of the change in CD4 cell count at a 0.05 significance level. Having a previous diagnosis 

of AIDS as time went on in the study led to a decrease in CD4 cell counts which means 

a patient was more likely to die or the disease progressed. The risk of death for 

patients assigned to ddl was 1.44 times as likely compared to the patients assigned to 

ddC with a significant p-value at 0.05 significance level. The association term between 

the CD4 count and the survival process (p-value <0.0001) is significant; the CD4 cell 

count was correlated to the risk of death. The joint model parameter estimates are 

similar to the separate longitudinal and survival parameter estimates. It also showed 

the two drug groups had significant hazard rate when controlling other covariates in 

the joint model. Model diagnostic showed the joint model fit the data well. With the 

model diagnostic results and a significant association between the longitudinal process 

and survival process, the joint model approach provides valid and accurate results for 

the HIV study. The joint model can be readily fit using the jointModel function under 

the JM package in R, thus avoiding the need for complex EM programming. This 

makes it more convenient to use in real data analysis.
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