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A bstract

In a recent paper, Arratia, Bollobas and Sorkin discussed a graph polyno­

mial defined recursively, which they call the interlace polynomial. There have 

been previous results on the interlace polynomials for special graphs, such as 

paths, cycles, and trees. Applications have been found in biology and other 

areas. In this research, I focus on the interlace polynomial of a special type 

of Eulerian graph, built from one cycle of size n and n cycle three graphs. I 

developed explicit formulas by implementing the toggling process to the graph. 

I further investigate the coefficients and special values of the interlace polyno­

mial. Some of them can describe properties of the considered graph. Aigner 

and Holst also defined a new interlace polynomial, called the Q-interlace poly­

nomial, recursively, which can tell other properties of the original graph. One 

immediate application of the Q-interlace polynomial is that a special value of 

it is the number of general induced subgraphs with an odd number of general 

perfect matchings. Thus by evaluating the Q-interlace polynomial at a spe­

cific value, we determine the number of general induced subrgaphs with an odd 

number of general perfect matchings of the considered Eulerian graph.
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2 History

The origin of studying Eulerian graphs came from Euler’s solution to the Königsberg 

Bridge Problem in 1735; he proved that it was not possible to cross each of the 

seven bridges exactly one time and return to the orginal starting point [13]. Through 

solving this problem, Euler established the foundation of graph theory. He defined 

the Eulerian graph to be a graph containing an Eulerian circuit, which is a circuit 

that includes each edge of a graph exactly once, starting and ending at the same 

vertex. His negative result on the k Bridge Problem  was the first theorem in graph 

thoery [13].

In recent years, an abundance of graph polynomials have been studied. The two 

most prominent graph polynomials that have been studied are the Tutte Polynomi­

als and the interlace polynomial, which resembled the Martin Polynomial [12]. The 

Tutte polynomial, a two-variable graph polynomial, has the important universal prop­

erty that essentially any multiplicative graph invariant with a deletion/contraction 

reduction must be an evaluation of it [8]. These deletion/contraction operations are 

natural reductions for many network models arising from a wide range of problems 

at the hearts of computer science, engineering, optimization, physics, and biology [8]. 

Martin Polynomials can be considered as a specific type of a Tutte Polynomial, by 

making the two variables equal, which is how we can connect interlace polynomials 

to Tutte Polynomials.

Eulerian circuits are directly connected in DNA sequencing by hybridization; 

counting the number of 2-in, 2-out digraphs (Eulerian, directed graphs in which each 

vertex has in-degree two and out-degree two) [3]. The interlace polynomial can count 

the number of Eulerian circuits in a 2-in, 2-out digraph [3] and models the interlaced 

repeated subsequences of DNA that can interfere with the unique reconstruction of 

the original DNA strand [8]. The interlace polynomial can also be used to successfully 

count the k-component circuit partitions of a graph [3]. Interlace polynomials share
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similar properties as Martin Polynomials and Kauffman polynomials, which encode 

information about the families of closed paths in Eulerian graphs [4]. Since Euler cir­

cuits have a lot to do with DNA sequencing and other graph polynomials, I choose to 

observe a certain type of Eulerian graph and investigate if they share common prop­

erties with other graph polynomials. In this paper I focus on the interlace polynomial 

for a specific Eulerian Graph, Tn, and investigate how the graph polynomials can be 

specialized and generalized, and if they can encode any information relevant to phys­

ical applications. Aigner and Holst defined two interlace polynomials [1]. Since each 

one holds its own specific properties, I develop the recursive and explicit formulas for 

both interlace polynomials for r n.

3 Prelim inaries

In this paper, we work with graphs, which are represented by an ordered pair of sets 

of vertices and edges.

D efin ition 1 . A graph G is an ordered pair G  =  (V, E ) such that:

1. V  is a set, called the vertex set;

2. E  is a set o f  two-element subsets o f  V , called the edge set, that is 

E  C {{w ,u} : u ,v  E V }.

The number of edges incident to a specific vertex, v E V, is called the degree of 

v , denoted deg{y). The maximum degree of a graph G is the highest degree of all the 

possible vertices in the graph G. From existing results, we know that for any graph, 

the number of vertices with odd degree is always even. Furthermore, the degree sum 

formula tells us the sum of the degrees of all vertices in a graph G is equivalent to 2 

times the cardinality of the edge set of G.

Lem m a 3.1 . (Degree Formula) Given a graph G =  {V ,E ),
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5 ~Zdeg(v) =  2 | E
v e v

In this paper we focus only on simple graphs. A graph G is called a simple graph 

if there are no multiple edges joining the same pair of vertices, as well as no loops, 

which would be an edge that starts and ends at the same vertex. In order to uderstand 

the structure of a graph, we state common elements a graph can have, which can be 

found in any graph theory text book.

D efin ition 2 . Given a graph G =  (V, E ), where V  =  {vo, V\,. . . ,  vn} and

E  {Cl, ^2) • • • i -̂m} •

1. A walk o f  length k is a sequence Vq, V\, . . .  Vk, which contains k edges o f  the form  

{u0,u i}, {u i,u2}, • • • ,{u fc_ i,u fc}.

2. A path o f length k is a walk with k  +  1 distinct vertices, denoted by .

3. A cycle o f  size k, is a path with k vertices, with an additional edge between Vk 

and Vi, making a closed path, denoted by Ck-

4 ■ A sequence o f  distinct edges e ^  • • • e* is called a trail i f  we can take a continuous 

walk in our graph, first walking through the edge e\, then the edge e-i, and so 

on. In addition, i f  we start and end at the sam e vertex, we have a closed trail.

5. An Eulerian Trail is a trail that covers each edge o f  G exactly once.

6. An Eulerian Circuit is an Eulerian Trail that starts and ends at the same vertex, 

covering each edge exactly once.

Note that the difference between a trail and a path is the uniqueness of edges and 

vertices. A trail has distinct edges while a path has distinct vertices.
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D efinition 3. [7] I f  fo r  any two vertices x and y in a graph G, one can find a path 

from  x to y, then we say that G is a connected graph.

When dealing with graphs, we can have directed or undirected graphs. A graph 

where each edge is assigned a direction is a directed graph. When the edges of a graph 

are not assigned a specific direction, we are dealing with an undirected graph.

A graph G' is called the subgraph of the graph G if the set of vertices and edges 

of the graph G' form subsets of the vertices and edges of the original graph G. In 

other words, G' — (V j  E ') where V' C V  and E' C E . An induced subgraph of G by 

a subset S C V (G )  is the subgraph G' =  (5, E') where for u ,v  G S , uv =  e G E' 

e G E (G ). We must take all and only those edges present in G between the specified 

vertices in S. That is E' =  {uv \ u ,v  G S, uv G E {G )}. Below we define special 

graphs that we will use further in the paper.

D efinition 4. Special Graphs

1. A Bipartite Graph is a graph whose vertex set is decomposed in two disjoint 

sets, called partite sets, such that no two graph vertices within the partite set 

are adjacent.

2. A Complete Graph, denoted K n, is a simple undirected graph which every pair  

o f  distinct vertices is connected with a unique edge.

3. A Complete Bipartite Graph, denoted K mn̂, is a bipartite graph such that every 

pair o f  graph vertices in different partite sets are adjacent.

4 . An Eulerian Graph, is a graph containing an Eulerian circuit, which is only 

possible i f  all vertices are o f  even degree.

When finding the interlace polynomial of a graph we need to recall a few defini­

tions. If x G V (G ), G \ {a;} is the resulting graph after removing the vertex x and 

all edges of G incident to x. Further, we need to recall the pivot of a graph [13].
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Consider an undirected graph G and a, b G V (G ), with ab G E (G ). The edge ab will 

divide the neighbors of a or b into three classes: (1) vertices adjacent to both a and 

6, (2) vertices adjacent to a alone, and (3) vertices adjacent to b alone. Hence when 

we toggle an edge in between any two of these three classes, xy will be an edge of the 

new graph if and only if xy is not an edge of G.

D efin ition 5. [3] (Pivot) Let G be any undirected simple graph and ab an edge o f  G. 

The pivot o f  G with respect to ab, denoted Gab, is the resulting graph after toggling all 

pairs x ,y  where x ,y  are from  different classes o f  (1), (2), (3) described above, shown 

in Figure 1.

a b

toggle

Figure 1: Neighborhoods of a , b and the Toggle Operation

The formula for finding the interlace polynomial of a graph G is given recursively 

by:

D efin ition 6 . (Interlace Polynomial) For any undirected graph G with n vertices, the 

interlace polynomial o f  G is defined recursively by:

1. q {G ,x) =  x n i f  E (G ) =  0 ;

2. q(G , x) =  q (G \  {a }, x) +  q (Gab \ { 6}, x) where ab £  E (G );

3. q {G , x) =  q (G i,x )q (G 2, x) • • • q(Gn, x) i f  G =  G\ U G2 U • • • U Gn.
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Note that it is shown [3] that the interlace polynomial is the same no matter what 

edge is toggled. Below we state the existing results of interlace polyomials of certain

graphs.

Lem m a 3.2 . The interlace polynomials are known fo r  the following graphs [3]:

1. (complete graph K n) q (K n,x ) =  2n 1x ;

2. (complete bipartite graph K m,n)

x) =  (1 +  x 4------- b xm_1)( l  +  x  H------ b xn~l ) +  xm +  xn -  1;

3. (path Pn with n edges) q (P i,x ) =  2x, q(P2, x) =  x 2 +  2x, and fo r  n >  3, 

q(Pn, x) =  q(Pn- 1, x) +  xq(Pn- 2, x );

4 . (small cycles) q(C?„x) =  4x and q {C ^ x ) =  3x2 +  2x.

Note that the interlace polynomial of an isolated vertex is simply x. Below is an 

example of the pivot process for a graph G.

E xam ple 1. Developing the Interlace Polynomial o f  T3 using the pivot process. 

Consider the following graph, called 1^. l^e pivot with respect to ab.

r 36\{6} :  In this step we toggle between N\ =  N (a , b) and N2 =  N (b)\ ({a}  U N (a)), 

then remove b and its adjacent edges.

a

r 3 \ W :
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a a a

We will now use this pivot process multiple times, in order to find the interlace 

polynomial fo r  r 3; q(T3, x) -  q ( r 3 \ {a } , a;) +  q ( r f  \ {b}, x ) .

Step 1: Using the pivot process from  above we obtain the two graphs T3 \ {a }  and

r?\{b}.

a

Step 2: Pivoting T3 \ {a }  with respect to cd, we obtain a graph we call and P3.

X k  =  . A  + U  +
g h

Step 3: Pivoting Ai with respect to gh gives us C3 and x P i.

X X  =  Za  + * I + 1—i +

Step 4-' Pivoting Tg6 \ {b }  with respect to e f  gives us C4 and xP2.

XX = Z\ + • I + Li + + —

Now we are able to substitute the existing results for the graphs left in Step 4 and 

determine the interlace polynomial for T3. From our last step in the pivot process of 

r 3, we have q{T3,x ) =  q(C3,x ) + x q (P i ,x )  +  q(P3,x ) +  q{C4,x )  +  xq(P2,x ).

12



q{ r 3, x) =  4x +  x(2x ) +  (3x2 +  2x) +  (2x +  3a;2) +  x(x2 +  2x)

=  a;3 +  10a;2 +  8a;.

This specific example is actually an example of the type of graph we work with, 

and is denoted by r n. I define this type of graph further in this section, but before I 

do, I want to point out another graph from Step 2 of Example 1. This graph consists 

of a triangle and an edge from Step 2, and is called By the breakdown in Step 3 

we see that q(A1? a;) =  2x2 +  4a; =  2x{x  +  2). This result will be used in section 4.

Lem m a 3.3 . The interlace polynomial fo r  Ai is q(A\,x) =  2x(x  +  2).

In this thesis, I focus on a special type of an Eulerian graph, Tn. An Eulerian 

graph is a graph that contains an Eulerian circuit. Recall that an Eulerian circuit is 

a trail that starts and ends at the same vertex and uses each edge exactly once. A 

certain vertex can be repeated throughout the circuit, but an edge cannot be repeated. 

The graph Tn has all vertices with degree two or four. It consists of a cycle graph 

Cn, where each edge contributes to a cycle graph C3 along the perimeter of Cn, and 

the third vertex is of degree two. I use pivoting and other techniques to find the 

interlace polynomial for this graph of any size n. Further, I discuss any recognizable 

patterns noticed during the pivoting process. After finding a explicit formula for the 

interlace polynomial of Tn, I focus on the meaning of the coefficients, properties at 

specific values of x, properties dealing with different paraties of x, the relationship 

with matrix theory, and other applications of the interlace polynomial.

4 Basic Properties of Tn

D efin ition 7. For n >  3, define Tn =  (V, E ), where V  =  {ui, v-2, • • • , v^n} and

E  =  {t»iU2, ^2^3? ’ • ’ j v2n -lv2m ^2n^l) v3v5i ‘ ‘ i ^2n-3^2n-l, ^2n -l^ l}-

E xam ple 2 . The graph Tn (see Figure 2): the inner part is Cn

13



Figure 2: Tn with n three-cycle graphs outside of the cycle graph Cn 

An example of T4 is provided below.

E xam p le 3. The graph T4 consists o f  the graph C4; with a graph C3 associated to 

each edge in C4, around the outside perim eter: (see Figure 3).

Figure 3: r 4

P rop osition  4 .1 . The graph Tn has 2n vertices and 3n edges, with n o f  each, degree 

2 and degree 4 vertices.

Taking a look at the characteristics of the graph Fn gives us a better perspective 

on how to relate the meaning of our graph at certain values of x. The following 

characteristics were observed and proved:

T heorem  4 .2 . Properties o fT n.

1. The independent number o fT n is n.

2. Edge-connectivity and vertex-connectivity o fT n are both 2.

14



3. The circumference o f  Tn is 2n, which is the cardinality o f  the vertex set, or

|vr(r„)|.

4- D iameter{Tn) =
i f  n is even 

IL̂ - i f  n is odd

5 The Interlace Polynomial of

Throughout, for any graph G , we will represent the interlace polynomial q{G ,x)  as 

G(x). Using the toggling approach and some basic results about interlace polyno­

mials, we first describe the interlace polynomial of Tn for small values of n. The 

polynomials are shown below for n ranging from 3 to 7.

Lem m a 5.1 . The interlace polynomials fo r  r n; with 3 <  n <  7, are as follows:

1. T3(a:) =  x3 +  10a;2 +  8a:;

2. T4(x) =  x4 +  8x3 +  32x2 +  24a:;

3. r 5(a:) — x5 +  10a:4 +  40a:3 +  96a:2 +  64a:;

4. V6(x) =  x6 +  12a:5 +  60a:4 +  160a:3 +  272x2 +  160a:;

5. T7(a:) =  x7 +  14a:6 +  84a:5 -f 280a:4 +  560a:3 +  736a:2 +  384a:.

While working on the polynomials for the specific values of n, I started to notice a 

couple of patterns in the graphs that resulted from the toggling process. For n greater 

than or equal to four, the toggling process produced very similar graphs, resulting in 

particular, three special types of graphs defined below.

D efin ition 8 . The graphs Mn, An, and A n, with n >  1.

1. The graph Mn =  (V(M n),E (M n)), where V (M n) =  {v i,v 2, - "  ,v 2n,v2n+i} and 

E (M n) =  {uiu2,u2u3, • • • ,v2„v2„+i,viv3,v3v5,---  , v2n- iv 2n+l}.

15



2. The graph An =  (V (M n) U {u0}, E (M n) U { ^ i } ) -

3. The graph An =  (V(An) U {v2n+2}, E(A n) U {u2n+:lu2n+2}). 

Below we provide an example of each graph.

E xam ple 4. The graphs M$, A5; and A5.

v2 V4 V6 V8 Vjo

AAA/y\
Vj V j V j V7 Vp V ;;

Figure 4: M5 made of 5 adjacent C3 graphs.

Vo v2 V4 Vo Vs Vjow w v \
Vi Vi Vj V7 Vp V j;

Figure 5: A5 made of M5 and an additional edge

Vo v2 v4 V6 Vs Vjo Vj2

V V v V W
V ; V j Vj V7 Vp V;i

Figure 6: A5 made of M5 and two additional edges, one at each end. 

P rop osition  5 .2 . The recursive form ula fo r  r n(x), with n >  4, is:

r n(:r) =  2r n_i(x) +  An_2(a:) +  xA n_3( i ) .

Proof. For n >  4, applying the toggling process for Tn, with respect to ah, creates 

T„ \ {a }  and T®6 \ {&}. Applying the toggling process to these resulting graphs, with 

respect to cd and e f  results in the graphs An_2, two Tn_i graphs, and An_3 with an 

isloted vertex. The process is shown below.

16



Figure 7: Toggle proccess for Tn.

□

We demonstrate this process for T4, which also provides a proof for the formula 

for r 4(:r) shown in Lemma 5.1.

Decomposition of T4:

Step 1: Toggling T4 into T4 \ {a }  and \ { 6}

o =  0>+
Step 2: Toggling T4 \ {a }  to show A2 and r 3.

< i >  =  W \  + A

Step 3: Further toggling A2 to show Pi with P2 and a new graph.

V  \ + M +  / 0 \

17



Step 4: Further, toggling the second graph in Step 3 results in K 4 and C3, with

an isolated vertex.

/ f—h.€ I I > v  \ + M  + K '

Step 5: Toggling the last graph in Step 4 we achieve T3 and a A i with an extra 

vertex. v \ + M + K'+ A  + A  + W
Step 6: Finally, we toggle A x in Step 5 to achieve Ai the graph P2.

— v  \ + 1 3  + bv + + + is/ * + V*
Now using the formulas from Lemma 3.2, the result for T3(x) in Lemma 5.1, and 

the result for Ai(x) in Lemma 3.3, the interlace polynomials for the graphs from Step 

6 can be expressed by:

r 4(x) =  2x(x2 +  2x) +  8x +  x(4x) +  2(x3 +  10x2 +  8x) +  x(4x +  2x2) +  x2(x2 +  2x) 

=  x4 +  8x3 +  32x2 +  24x.

If we take a look at Step 6 for the breakdown of A lt we see that Ai(a;) =  x(x +  2)2. 

We will use this result in Section ??.

Lem m a 5.3 . The interlace polynomial fo r  A j is: A i(x ) =  x(x  +  2)2.

In order to achieve an explicit formula for Tn(x), we need to find an explicit 

formula for each of An(x) and An(x).

18



5.1 Recursive Formula for An(x)

Applying the toggling process to the graph An, with respect to ab , gives us two graphs 

(see Figure 8): Mn and An_1? with an additional vertex.

ay \A -A A
1/

AA-AA + -VA-AA

Figure 8: Toggling An with respect to ab

Since toggling An results in Mn we further our process by toggling Mn with respect 

to ab , giving us two An_i graphs (See Figure 9).

„AA-AA

VA-AA + VA-AA

Figure 9: Toggling Mn with respect to ab.

From these two steps, we have a recursive formula for An(z), which we use to 

find an explicit formula, An(a;) =  Mn(x) +  xAn_i(x) =  2An_i(a:) +  xAn_i(a;) =  

(x +  2)An_1(x).

Lem m a 5.4 . The recursive form ula fo r  An(x):

An{x) =  (x +  2)An- 1(x).

We can now expand on our recursive formula to achieve an explicit formula for An(x):

19



A n(z) =  (x +  2)An_i(a:) =  (x +  2)2An_2(x) =  (a: +  2)3An_3(:r) =  ••• =  (x +  2)n 1Al (x). 

From Lemma 3.3, we substitute in for A ^x) =  rr(a:4-2)2 to achieve an explicit formula. 

An(x) =  {x +  2)n~1(2x 2 +  Ax) =  (x +  2)n-\ 2 x )(x  +  2) =  2x(x  +  2)n.

This formula will be formally mentioned in the next section.

5.2 Recursive Formula for An(x)

Before I introduce the recursive formula for An(x), I would like to share a known
n

result for a given power series we will see. The finite sum ^  r k can be expanded as:fc=0n n
Y l rk ~  l~i-r • ^ P P ^ n§ ^ e  toggling process to the graph An, with respect to ab , 
fc=o r
gives us the graph An, and An_j with an extra vertex. We demonstrate this process 

with A5 (see Figure 10).

b

VSA--AA * Y S A -A ' '
Figure 10: Toggling An with respect to ab.

From the toggling process, we create a recursive formula for A n(x) and use it to 

find the explicit formula.

Lem m a 5.5. The recursive form ula fo r  A n(x) is:

A n(x) =  An(x) +  xA n_!(a:) =  2x{x  +  2)n +  iA n_ i( i) .

We can now expand the recursive formula to achieve an explicit formula for An(a:). 

A n(x) =  2x{x  +  2)n +  x[2x(x  +  2)n_1 +  x(A n_2(x))]20



=  2x(x  4- 2)n 4- 2x 2(x 4- 2)n~1 +  x2An_2(a;)

=  2x(x  +  2)n +  2x 2(x +  2)n_1 +  x2[2x (x +  2)n~2 4- x(A n_3(x))]

=  2x(x  +  2)n +  2a;2(a: 4- 2)n_1 4- 2:r3(:r 4- 2)n~2 4- x3(An_3(a:))

=  xn 1(A 1(a;)) +  2xn l (x 4- 2)2 4- 2xn 2(a; +  2)3 + ----- \-2x(x +  2)n

=  xn_1(A 1(a:)) +  2 x ^ 2  (x +  2)kxn~k =  a:n~1(A1(x)) +  2x Y  xn( ^ ~ ) k
k= 2 k= 2 ^

=  xn_1(A 1(a:)) 4- 2xn+1 Yfc=2 X
Now we can expand our finite sum by the known result mentioned above, but we 

will have to modify our expansion since we are starting with k =  2 instead of k =  0 :

2xn+1 Y  )k =  2xn+1
k= 2

=  2xn+1

i- ( ^ ) n+1
2_x-\-z

X

1 — (x+2)n+l

=  x n+1 1 _ (x+2) _n —L-n-f 1

-  (2a;n+1) ( ^ ) 0 -  (2xn+1) ( ^ ) 1

-  (2xn+1) ( ^ ) °  -  (2xn+1) { ^ y

(~ x )  -  (2x n+1) ( ^ ) °  -  (2x n+1) ( ^ Y

=  —x n+2 4- x(x  4- 2)n+1 — 4xn+1 — 4xr

Now going back to the previous formula A n(x) =  xn 1(A 1(rc)) 4- 2xn+1 Y  ( ~ ~ ) k
k=2 x

and apply the result for the finite sum and the result for A^ar), from Lemma 5.3, to 

receive:

An(x) =  xn~1(x3 +  4x2 4- 4x) — xn+2 4- x(x  4- 2)n+1 — 4xn+l — 4xn 

=  xn+2 4- 4xn+1 4- 4xn — xn+2 4- x(x  4- 2)n+1 — 4xn+1 — 4xn 

=  x(x  4- 2)n+1.

Lem m a 5.6 . Respectively, the explicit form ula fo r  An(x) and A n(x) are:

1. Rn(x) =  2x(x  4- 2)n, n >  1.

2. A n(x) =  x(x  4- 2)n+1, n >  1.

P roo f 1. An(x) =  2x{x 4- 2)n, for n >  1. By Induction:
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Let 71— 1, Ai(rr) =  2x(x  4- 2)1 =  2x(x  +  2).

From Lemma 3.3, we know this is true.

From Lemma 5.4, we know An(rc) =  (re 4- 2)(An_i). Assume An_!(re) — 2rc(rc 4-2)n_1 .
An(rc) =  (re 4- 2)(An_1) =  (re 4- 2)(2rr(re 4- 2)n_1) =  2rr(rc 4- 2)n.

An(re) =  2rc(re 4- 2)n, for all n >  1.

□

Proof. 2. An(rc) =  rc(re +  2)n+1, for n >  1. By Induction:

Let 7i  =  1, =  rc(re 4- 2)2.

From Lemma 5.3, we know this is true.

From Lemma 5.5, we know An(rr) =  2re(rc 4- 2)n 4- rc(An_ 1). Assume An_i(re) =  

rc(rc 4- 2)n.

An(re) =  2rc(rc +  2)n 4- rc(An_1) =  2rc(re 4- 2)n +  rr(rc(rc +  2)n)

=  rc(rc +  2)n+1.

An(re) =  re(rc +  2)n+1, for all 7i  >  1.

□

5.3  Explicit Formula for r n(rr)

We can now use the recursive formula for r n(rc) from Lemma 5.2 to find an explicit 

formuala for r n(rc).

r n(rc) =  2 rn_i(rc) 4- An_2(re) 4-rcAn_3(rc) — 2 rn_i(rr) 4-2rr(rc +  2)n-2 +  rc2(rc4- 2)n~2 

=  2 rn_1(rc) 4- rc(rc 4- 2)n_1 =  22r n_2(re) 4- 2rc(re 4- 2)n_2 4- x(x  4- 2)n~1 

=  23r n_3(x) 4- 22rr(rr 4- 2)n~3 4- 2re(re +  2)n~2 +  re(re +  2)n- J
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=  2n- 4r 4(x) +  2n~5(x +  2)4 +  2n~6(x +  2f  +  • • • +  2Qx(x  +  2)n~l 

=  2n-4r 4(a:) +  £ 2n~1~kx{x  +  2)k =  2n- 4(T4(x)) +  2n~ 1x Y  )k.
k ~  4 k—4

Note that Y  ( ^ ) fc =  Y, )k ~  Y  )k■
k = 4  k = 0 k = 0

n—1
2n_1x Y, ( - r ) fc =  (z +  2)n -  2n;

fc=0
3

2n~1o: 2  =  2n~4(x +  2)4 -  2n.
fc=0

We go back to our previous equation to apply the power series formula and the result 

for r 4(:r), from Lemma 5.1.

r n(x) -  2n-4(o;4 +  8a;3 +  32a;2 +  24a:) +  (x +  2)n -  2n -  [2n~4(o; +  2)4 -  2n]

=  2n~4(8x2 — 8x — 16) +  (x +  2)n =  2n~1(x2 - x - 2 )  +  {x +  2)n.

T heorem  5.7 . The explicit form ula fo r  r n(a;), with n >  3, is:

Tn(x) =  2n~1(x2 — x — 2) +  (x +  2)n .
Proof. By Induction:

Let n — 4, T4(x) =  23(x2 — x — 2) +  (x +  2)4 =  x4 +  8a:3 -f 32a;2 +  24a:.

It is confirmed by Lemma 5.1.

Prom Proposition 5.2 and Lemma 5.6 we know r n(a;) =  2 r n_i(a:) +  x(x  +  2)n_1. 

Assume r n_i(a;) =  2n_2(a:2 -  x -  2) +  (x +  2)n_1, then

r n(a;) =  2r n_i(a:) +  x(x  +  2)n_1

-  2(2n~2{x2 -  x -  2) +  (x +  2)n_1) +  x(x  +  2)n_1 

=  2n_1(a:2 - x - 2) + 2(x +  2)n~1 +  x(x  +  2)n- 1

— 2n -1(a:2 — x — 2) +  (a: +  2)n.

r n(a;) =  2n_1(a:2 — x  — 2) +  (x +  2)n is true for all n >  3. □
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6 Properties of rn(x)
The interlace polynomial of a graph is a special graph invariant that can tell us 

different information about the graph. We are specifically interested in the coefficients 

and some special values of Tn(x). Do the coefficients give us any meaning towards 

the graph Tn itself, or any of the subgraphs within Tn? What do special values of 

r n(a;) tell us and what can that information be used for? Furthermore, what kind 

of relation is there with Tn(x) to the adjacency matrix of Tn? Within this section, I 

analyze the meaning of the interlace polynomial for Tn and correlate the information 

to certain applications.

6 .1  C o e f f i c ie n t s  o f  T n(x )

From the explicit formulas given in Lemma 5.6 and Theorem 5.7, we are able to 

relate the coefficients between r n(a:), A„(a;), and An(x). The relation is made using 

generating functions to define the coefficients. Obviously the constant term of any 

interlace polynomial is zero. From the explicit formula of Tn(x) (Theorem 5.7) we 

can see that the polynomial is of degree n. Using the fact that the constant term is 

zero and expressing (x +  2)n by the binomial formula, we can rewrite Tn(a;) as:

r n(x) =  2n~1x 2 - 2n~ 1x  + n >  3. ( i )

D efinition 9. Consider the polynomials r n(x), An(x), and A n(x). We use an ln,k> 

and dnj, to represent the coefficients fo r  each polynomial respectively. That is,

Dn(•£) ; An(x)
fc=l

n+1
ln,kXk, and

k=1
A n ( x ) n + 2

É  dn,kXk-
k=1

n
Lem m a 6 .1 . The coefficients o f  Vn(x) =  an^ x k, with n > 3 ,  are given by

k=1
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®n,fc ^

2n_1(n — 1) i f  k  =  1

2n_3(n2 — n +  4) i f  k =  2

2n_fc ©  i f  2 <  k  < n

Let us take a look at an example of the coefficients of r 3(:c). We know the degree 

of the polynomial is three, so we will only need to concentrate on the formula for our 

coefficients a3)fc with 1 <  k <  3.

E xam ple 5. Coefficients o fT 3(x):

a3,, =  22(2) =  8 , a3i2 =  2°(9 — 3 +  4) =  10, o3,3 =  2 ° r j = l .

This gives r 3(x) =  x3 +  10:r2 +  Sx. It is confirmed by Lem ma 5.1.

We can express the coefficients for A.n(x) and A n(x) in a similar manner. Recall, 

taking a look at Lemma 5.6, the degree of An(x) is n +  1 and the degree of A n(x) is 

n +  2.

Lem m a 6 .2 . Coefficients o f An(x) and A n{x) are, respectively:

¿„.* =  2 n+2- k [ k " 1 ) ; (2)

dn,k =  2n+2'M ?  +  ! )

Proof. (2). Using the binomial formula:

(3)

A„(x) =  2x(x  +  2)n =  2x Y. © 2n~kxk =  £  ( l ) 2n+1~kxk+1 =  Ÿ. (fc! 1) 2n+2- V .
fc=0 fc=0 k = 1

□

Proof. (3). Using the binomial formula:
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□

A n(x) =  x(x  +  2)n+1 =  £  (n+ 1)2 n+1~kx k+1 -  £  (”+ J)2n+2~kx k.
k=0 fc=l

Let us look at an example for the coefficients of the polynomials A2(x) and Ai(a;). 

Exam ple 6 . Coefficients o f  A2(x):

22+2- l (2) = 8 fo r  k =  1

h  ,k — < 22+2- 2(2
) = 8 fo r  k — 2

k 22+2_3(j ) = 2 fo r  k =  3

This gives A2(x) — 2x3 +  8a;2 +  Sx, which can be confirmed by Lem ma 5.6: 

A2(x) =  2x(x +  2)2 =  2a;3 +  8a;2 +  8x.

E xam ple 7. Coefficients o f  A i(x ):

d,k =  <

21+2 1Q  = 4  fo r  k  =  1 

2i+2- 2(2 ) = 4  f o r k  =  2

2 1+ 2 -3 ( 2 )  =  i  f o r k  =  3

This gives Ai (a;) =  x3 +  4x2 +  4x, confirmed by Lem ma 5.6: A i(x )  =  x(x  +  2f

x3 +  4a;2 +  4a;.

Recall from Proposition 5.2, the formula r 4(x) =  2 r3(x) +  A2(x) h r A ^ x ) .  From 

our examples, 5, 6, and 7, we have the following expression for the polynomial r 4(x), 

proving the result from Lemma 5.1.

T4(x ) — 2(x3 +  10x2 +  8x ) +  (2x3 +  8x2 +  8x ) +  x (x3 +  4x2 +  4x ) — x4 +  8x3 +  32x2 +  24x.

Obviously, since Tn(x) is made from An(x) and An(x), the direct relationship can 

be shown among the coefficients of each polynomial.
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C orollary 6 .3 . The direct relationship o f  coefficients between Tn(x), An(x), and 

An(x) is:

ln,k+1 2(2n,kt fo r  n ^  k  2, (4)

dn,k -  L,k =  an,k-2 fo r  n >  4 and k >  5. (5)

Proof. To prove equation (4), we proceed as follows:

From equation (2), we have

U i  =  2’>+1- * ( ”) =  2(2”- fc(")) =  2 a«,*.

To prove equation (5), we proceed as follows:

From equations (2) and (3), we have:

Using Pascals Recurrence Relation, which states (fĉ 1) +  (fc”2) ~  (fc-i)’

-  ln,k =  2n+2~k[ ( " « )  -  ( ¿ , ) ]  =  2"-<‘ - 2)(t " 2) =  a„,*_2.

□

Concentrating on the coefficients for r n(x), we notice a few properties. The first 

observation made is that our leading coefficient, aniTl, is always one. Another obser­

vation we can directly see is the coefficient of xn-1, or anjTl_i, is 2n, which represents 

the cardinality of the vertext set, or |V(rn)|. This value is also the circumference of

27



6.2 Properties of Vn(x) at Different Values of x

Research has been done on the values of interlace polynomials at x =  1 and —1 [1]. 

We discuss the importance of these values for r n(:r) in this section. Using the known 

results from previous papers, we determine some characteristics for r n(x).

C orollary 6 .4 . (Known results from  [1] and [6]  respectively.) Let G be a graph with 

n vertices.

1. G (l) =  number o f induced subgraphs o f  G with an odd number o f  perfect match­

ings (including the empty set).

2. G (3) is divisble by G (—1) and the quotient is an odd integer.

3. Let A be the adjacency matrix o f  G, n =  |U(C)| and let r be the rank o f  the 

matrix I  A A over the field Z2 o f  two elements. Then

G ( - l )  =  ( —l) r2n -r.

We eveluate Tn(l) and Tn(—1) then correlate the meaning to these results.

C orollary 6 .5 . The number o f  induced subgraphs o f T n with an odd number o f  perfect 

matchings is 3n — 2n.

The number of induced subgraphs for the complete graph K 2n is 22n. It is obvious 

that the number of induced subgraphs of r n is less than the number of induced 

subgraphs of the complete graph K 2n.

T heorem  6 .6 . Let An be the adjacency matrix o f T n. The matrix B n =  I  +  An has 

a full rank, or r a n k (B n) =  2n, over Z2.

Proof. Note that An, B n, and I  are 2n x 2n matrices. Let r =  ra n k (B n) over Z2 with 

0 <  r <  2n.

From Theorem 5.7,
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r n( - l )  =  2n_1( l2 -  ( - 1) -  2) +  ( - 1  +  2)n =  1 V n >  3.

From Corollary 6.4,

1 =  (—l) r(2)2n_r.

This leaves us with only one solution, r  =  2n, because 2 cannot divide one. Thus 

B n is of full rank.

□

Let us look at the 2n x 2n adjacency matrix An of Tn:

An —

I  +  An — B n —

0 1 0 0 0 •• • 0 0 1

1 0 1 1 0 •• • 0 0 1

0 1 0 1 0 •• • 0 0 0

0 1 1 0 1 •• • 0 0 0

0 0 0 1 0 . 0 0 0

0 0 0 0 0 . 0 1 1

0 0 0 0 0 •• • 1 0 1

1 1 0 0 0 •• • 1 1 0

1 1 0 0 0 • • 0 0 1

1 1 1 1 0 • • 0 0 1

0 1 1 1 0 • • 0 0 0

0 1 1 1 1 • • 0 0 0

0 0 0 1 1 ■ 0 0 0

0 0 0 0 0 ■•. 1 1 1

0 0 0 0 0 • • 1 1 1

1 1 0 0 0 • • 1 1 1

2nx2n

2 n x 2 n

29



Since B n has a full rank, we know the determinant of B n ^  0 and the matrix B n 

is invertible.

6.3 Parity of Tn(x)

From Corollary 6.4, we know Tn(3) must be an odd integer since r n(—1) is 1. Now 

we determine parity of x. Recall Tn(x) — 2n~ 1(x2 — x — 2) +  [x +  2)n. For n >  3, the 

first term in r n(a:) is a multiple of 2, resulting in an even number. The parity of the 

second term depends on x , since x is adding to an even number. Any power of an 

even number stays even and any power of an odd number stays odd. Therefore, the 

parity of r n(x) is the same as that of x.

Proposition 6.7. r n(:r) is odd i f  x is odd and r n(rr) is even i f  x is even.

Lets take a look at a couple values of x >  3 for r n(:r).

r n(3) =  2n(2) +  5n;

Tn(4) =  2n(5) +  6n =  2n(2) +  5n +  2n(3) +  6n -  5n =  Tn(3) +  2n(3) +  6n -  5n; 

r n(5) =  2n(9) +  7n =  r 4 +  2n(4) +  7n -  6n.

We can visibily see the pattern for the parity of r n(ar) depends on x. Also, from 

the pattern of x values and values inside the first term, I create a formula for finding 

the next value of r n(x):

Fn(a; +  1) — r n(x) +  2n{x) +  (:r +  3)n — {x +  2)n.

It can be proved easily by applying Theorem 5.7.
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7 Applications

In this section, we show applications of the interlace polynomial towards linear algebra 

and a related application in biology.

7.1 Linear Algebra

If someone was given the matrix B n =  An +  / ,  where An is the adjacency matrix 

for r n and I  is the identity matrix, and was asked to find the determinant of the 

matrix, there would be multiple steps to find the solution. By Theorem 6.6, the rank 

of B n is 2n, which is a full rank. One way to find this result using Linear Algebra is 

by showing the 2n x 2n matrix has a nonzero determinant, or det(B n) 7̂  0. Let us 

examine at the process to show the matrix J55, for r 5, has a full rank.

The adjacency matrix A5 and I  +  A5, respectively, for r 5 is:

1
0 1 0 0 0 0 0 0 0 1

1 0 1 1 0 0 0 0 0 1

0 1 0 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0

A5 —
0 0 0 1 0 1 0 0 0 0

0 0 0 1 1 0 1 1 0 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 1

1 1 0 0 0 0 0 1 1 0
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B ,5

1 1 0  0 0 

1 1 1 1 0  

0 1 1 1 0  

O l i l i  

0 0 0 1 1 

0 0 0 1 1 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 1 0  0 0

0 0 0 0 1 

0 0 0 0 1 

0 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 1 1 0  0 

1 1 1 0  0 

1 1 1 1 1  

0 0 1 1 1  

0 0 1 1 1
J 10x10

One popular way to find the determinant is to use cofactor expansion multiple

times, in order to reduce the matrix into a 3 x 3 matrix, or a triangular matrix, to 

easily compute the determinant.

D efin ition 10 . [11]  Let A G MnXn(F ). For n >  2, we define det(A), or | A 

recursively as

\A |= Ê  ( ~ l ) 1+ iAlj ■ | At, |.
3=1

By the cofactor expansion on the first column of £?5, we obtain:

1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 \

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 1 1 1 1 1 0 0 — det 0 0 1 1 1 1 1 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1 ) 1 0 0 0 0 0 1 1 1 /

32



1 0 0 0 0 0 0 0 1 \

1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1
/

In order to have all the matrices reduced to 3 x 3 or trianglar matrices, this process 

would need to be continued multiple times. It is tedious and time consuming. This 

is where the interlace polynomial for this graph comes extremely useful. For r 5(—1), 

we use the formula from 6.4 and show that the matrix has a full rank.

T5(—1) =  1 =  (—i) r210~r => r =  10, where r  =  r a n k (B 5) over Z2.

Hence we know the | B 5 0 and B 5 has a full rank. Using Maple Software, we 

can show | B 5 \= 1, confirming the result.

7.2 Biology

As mentioned in Section 2, the study of interlace polynomials grew from trying to 

reconstruct DNA strings. String reconstruction is the process of reassembling a long 

string of symbols from a set of its subsequences together with some sequencing in­

formation [9]. For example, fragmenting and reassembling messages is a common 

network protocol, and reconstruction techniques might be applied when the network 

protocol has been disrupted, yet the original message must be reassembled from the 

fragments [9]. Sequencing by hybridization is a method of reconstructing a long DNA 

string from knowledge of its short substrings. Unique reconstruction is not always
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possible, and the goal is to study the number of reconstructions of a random string 

[4]. This is where the interlace polynomial for 4-regular Eulerian digraphs come to 

play. The different types of reconstructions can be looked at through the different 

Eulerian circuits in that graph, which the interlace polynomial can tell about. The 

probability of correctly sequencing the original strand is thus the reciprocal of the 

total number of Euler circuits in the graph [9].

A de Bruijn graph is a directed graph representing overlaps between sequences of 

symbols in string reconstruction [5]. A DNA string is represented by a 2-in 2-out de 

Bruijn Graph. Tracing the original DNA sequence of this graph can be represented 

by a Eulerian Circuit that starts at the vertex representing the beginning and end of 

the strand [9]. Therefore, once we have the de Bruijn Graph of the DNA sequence, 

we look at one of the Eulerian Circuits that begins with the orginating vertex in the 

strand. Then we represent it by a chord diagram, and construct the circle graph from 

the chord diagram. Given this circle graph, we calculate the interlace polynomial of 

the graph, and relate it to the Circuit Parition Polynomial to calculate the number 

of Eulerian Circuits in the orignial graph.

The coefficient of a: in a Circuit Partition Polynomial counts the number of Eule­

rian circuits for the graph. The Circuit Partition Polynomial, represented by f (G ,x ) ,  

where G represents the de Bruijn 2-in 2-out digraph, can be represented by the in­

terlace polynomial of the circle graph, created from the Eulerian Circuit of the 2-in 

2-out digraph. We modify the relation to deal with only one component graphs

P rop osition  7 .1 . [5] I f  G is a 2-in 2-out Eulerian digraph, C is any Eulerian circuit 

o f  G, and H is the circle grah o f  the chord diagram determined by C, then f {G ,x )  =  

xH n(x +  1).

This is how the interlace polynomial is applied to DNA sequencing, but unfortu­

nately the graph Tn does not represent a circle graph so it does not represent any 

type of DNA string. Fortunately, research has shown a modification of the interlace
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polynomial can show more properties on induced subgraphs and specifically induced 

Eulerian subgraphs. This modified interlace polynomial is defined in the next chapter, 

and also defined explicitly for Tn.

8 A New Interlace Polynomial

A related interlace polynomial is introduced by Aigner and Holst [1], which tells us 

a few more distinct properties about the graph. We represent this new interlace 

polynomial by Q (G ,x). The difference between the previous interlace polynomial 

and Q (G , x) is an additional term in the formula. The graph G  * a is obtained from 

G by interchanging edges non-edges in the neighborhood of a [1]. The modified 

definition for Q (G , x ) is defined below.

D efinition 11 . [1] Let G be a simple graph, where G =  { V ,E } .  The Q-interlace 

polynomial, Q (G ,x) is given by:

Q {G , x) =  Q(G \ {a } , x) +  Q(G  * a \ {a } , :r) +  Q (G ^  \ {&}, x) where a ,b  £ V{G)

As we see, respectively the first and last term for Q (G , x) follow the same process 

as our previous interlace polynomial. The additional term is what makes the new 

interlace polynomial different. An example is shown below.

Exam ple 8 . Consider a graph G and a vertex a o f  G shown below.

The neighborhood o f  a, or N (a), is {b ,d } , and bd £ E {G ). For G * a, we must 

interchange the edges -f-* non-edges within the neighborhood o f  a. Therefore, the edge 

bd does not exist in G  * a, shown below.

and ab £ E {G ).

d c
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G * a :

a.________ .b

d c

In order to find Q(Tn,x ), we needed to work with more graphs, and the method 

was a lot more tedious. The formula is more complicated than the previous polyno­

mial, but can still be used to calculate an explicit Q (rn,o;). Below we discuss the 

breakdown of r n using definition 11.

8.1 The Q-Interlace Polynomial Q(Fn,x)

In order to avoid confusion, in this section, we write Q(Gn) for any graph G , to 

represent the Q-interlace polynomial Q(Gn,x).

T h eorem  8 .1 . The Q-Interlace Polynomials fo r  T*, a n d T 5 are:

1. Q(T3, x ) =  2a;3 +  47a;2 +  84a;;

2. Q{Ta, x) =  2x4 -I- 64a;3 +  363a;2 +  468a;;

3. g ( r 5, x) =  2a;5 +  100a;4 +  800a;3 +  2421a;2 +  2388a;.

Before introducing the recursive formula for Q(Tn), I define a new graph we will 

see in our breakdown. If we take the graph Tn and eliminate any two edges, not in 

Cn, that form the same C3 graph around the perimeter of Cn, we are left with On_!.

D efin ition 12 . The graph =  (V (Tn) \ {r/2} , £ ( r n) \ {uiu2, ^2̂ 3})-
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Figure 11: f ln with n C3 graphs.

We begin by giving the initial recursive formula for Q (rn). 

Lem m a 8 .2 . The recursive form ula fo r  Q (rn); fo r  n >  4, is:

Q (rn) =  2Q (rn_i) +  Q(i^n_i) +  Q(Mn- 1) +  xQ( An_3). 

Proof. Breaking down Tn with respect to definition 11:

Figure 12: Respectively from left to right, the graph Mn_l5 r n_!, Tn_i, and

X^n-3-

□

In the recursive formula for Q (rn), we deal with two graphs that were defined in 

the previous sections, Mn and An. Also, when using the toggling process for these 

two graphs, we achieve another familiar graph, An. During the devlopment for an 

explicit formula for Q (rn), I use the Q-interlace polynomials at specific values of n, 

for An, Mn, An, and Qn.
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Lem m a 8 .3 . Q-interlace polynomials at specific n :

1. Q(A0) =  3a;.

2. Q{Ai) -  5a;2 +  I2x.

3. Q(A2) =  7a;3 +  44x2 +  48a;.

4- Q{M0) =  x

5. Q(M i) =  x2 +  6a;.

6. Q(M2) =  x3 +  16a;2 +  24x.

7. Q(Ai) =  a:3 +  16a:2 +  24a;.

8. Q(A 2) =  x4 +  30a:3 +  112a:2 +  96a:.

9. Q(Q2) =  15a:2 +  36a;.

10. Q {ih )  =  14a;3 +  133a:2 +  204a:.

We start by working for an explicit formula for Q(An). 

Lem m a 8 .4 . The recursive form ula fo r  Q(An), with n >  1, is:

Q(An) = x Q { A n_l ) +  2Q{Mn).

Proof. Looking at Q(An):

A A -A A  A A - AA W V " A
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Obviously, the statement is true.

□

Since we have the graph Mn inside our recursive formula, let us take a look at the 

recursive formula for Q(Mn) and try to relate them.

Lem m a 8 .5 . The recursive form ula fo r  Q(Mn), with n >  1, is:

Q(Mn) — xQ(M n- 1) +  2Q(An_1). (6)

Proof. Looking at Q(Mn):

AA-AA.

vy \-A ‘/ va.—/\ w V "/\
xM „.i A j,.,

Obviously, the statement is true.

We substitute equation 6 into Q(An) and solve for Q(Mn- i) .

□

Q(A„) — rcQ(An_;i) +  4Q(An_!) +  2xQ(Mn- i );

Q(An) — (x +  4)Q(An_i)
Q(Mn_ 0  =

2x

Now plug this into the recursive formula for Q(An).

Q { A n) —  ^ Q ( A n _ i )  +  2
(  Q(A„-|-i) — (x +  4)Q(An)

i) — T- A I

x Q ( A n )  =  x 2 < 2 (A n _ i )  +  Q ( A n + i )  -  (re +  4 ) Q ( A n );
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Q(-A-th-i ) — (2a; +  4)Q(A„) — x2Q( An_i). (7)

We represent this recurrence relation by its characteristic equation and solve for the 

roots, shown below.

y2 — (2x +  4 )y +  x2 =  0 => y =
2x +  4 ±  \J{2x +  4)2 — 4a:2

The solutions to the characteristic equation are:

y =  x -f 2 ±  2\/x +  1.

D efin ition 13. The roots o f  the characteristic equation fo r  Q(An) are defined as:

y i(x) =  x +  2 +  2y /x ~ + l, y2 (x) =  x +  2 — 2y/x +  1. (8)

We use these roots to express An explicitly, shown below.

Q{ An) =  Ci(o:)(?/i(a:))n +  c2(x)(y2(x))n.

We know the values for Q(A0) and Q(Ai), so we use them to find our values for the 

two coefficient functions C \ (x )  and c 2 { x ) .

3a: =  ci +  c2;

5a;2 T  12a: =  C\(x T  2 -f- 2 \ Jx  T  1) T  c2 { x  T  2 — 2y /x  T  1).

Solving this set of linear equations, I find the values for our coefficient functions of x.

ci(ar) =
;2 +  3a: +  3xy/x +  1 

2y/x +"T (9)
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(10)C2(x)
— x 2 — 3x +  3xy/x  4- 1 

2y/x +  1

In order to simplify the explicit formula for Q(An), I determine relations between 

the coefficient functions and the roots to the characteristic eqution.

P rop osition  8 .6 . Relationship between y\{x), y2{x), c\(x), a n d c 2{x).

ci(x) 

y i ( x )  +  y 2 ( x )  

Vl(x) - V 2 (x) 

C i ( x )  +  c2{x) 

An{x)

3xy/x +  1 +  x 2 4- 3a:
C2(x) =

3xy/x  +  1 — x 2 — 3x
2\/X -(- 12 V x T l

2x +  4, yi(x)y2(x) =  x 2\

4V x~+T  and ((yi(x) — x)(y2(x) — x) =  —4x; 

3x and c\(x)y2(x) +  c2(x)yi{x) — x2\ 

ci{x){yi(x))n +  c2{x)(y i{x ))n.

Notice that since C\{x) and c2(x) are fractions, we must make sure the denomi­

nator is never zero. It is easy to see that when x =  — 1, the denominators are zero. 

Q(An, —1) can be obtained seperately:

*& (-!)  =  ( - 1 )  +  2 +  0 =  1;

2/2 ( 1) =  (~1 ) +  2 — 0 =  1;

2/i =  l  =  2/2-

Since the roots are the same, the solution looks like:

Q(An, ( - 1)) =  c3( - l ) ( l ) n +  c4(—l)n ( l)n;

Q(An, ( - 1)) =  c3( - l )  +  c4(—l)n;

Applying values at Q(Ai, - 1) and Q(A2, - 1):
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Q (h ì) (—1)) — —7 — c3 +  C4; 

Q {^2 i ( — 1)) — —11 =  C3 +  2C4j

Solving this system of linear equations, we obtain:

c3(—1) =  —3 and c4(—1) =  —4.

T heorem  8 .7 . The interlace polynomial Q(An, x) is:

Ln/2J
i . Q(A„,x) =  £  4m(x +  l ) m(x +  2)n-2m_1 [(3x2 +  6x )(2J  +  (2x2 +  6x )(2 " ) ]

m = 0

fo r  x ±  - 1 ;

2. Q(An, ( - l ) )  =  - 3 - 4 n .

Proof. Note that

Q( An) =  c i( x ) y i( a ; )+  c2(a:)?/J(a:) 

3x\/x +  1 +  x2 +  3a;
2\/x -|-1

„ 3x -v/x + T  -  x 2 -  3x
»?(*) + --------„V - T T ----------»2 O')2v ^  +  1

Q/r* I Q̂ y*

= Y  (»?(*) + #5(*)) + (Ii(*) -  iS(*))

!/5* ( x )  =  (x +  2 +  2V x T T )n =  ^
_ \

fc=0
(x +  2)n- fc2fc(x +  l ) fc/2,

2/ J (x) =  ( x +  2 -  2\/x +  l ) n =
k=0 \ k

(x +  2)n~k2k( - l ) k(x +  \)k/2,

Thus set k =  2m.
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yi(x) +  y j(x ) =  E
fc=0

(1 +  ( — l ) k)(x  +  2)n~k2k{x +  l ) k/2

\K
L»/2J

=  2 E
m=0

„  ^ 

y 2m j

m / m i rt\n—2m4"*(x +  !)-»(* +  2)

Similarly, let k  — 2m  +  1.

Vi(x) ~  =  E
\

fc=0

n

v f c /

(1 -  ( - l ) k)(x +  2 +

=  4(x + 1 )W 2> E

ln/2J (  \L ' J n

m —0

4m(x +  l ) ra(x +  2)n —2 m —1

^ 2m  +  1 y

From here you can combine the above and obtain the formula in Theorem 8.7. 

Note that equation (2) in Theorem 8.7 can be proven by looking at the development 

prior to the theorem. □

We now use the explicit formula for Q(An) to find the explicit formulas for Q(Mn) 

and Q(An). Recall, from Lemma 8.4, we have

Q(Mn) = Q{An) -  xA„_,)
( 11)

T heorem  8 .8 . The interlace polynomial Q(Mn,x ), fo r  n >  1, with yi(x) and y2(aO 

given by equation 8 is:

1. Q(M n) =  [(x2 +  6x) +  ^ s j  - y r l {x) +  [(x2 +  6x ) -  ^ +1 

x  /  - 1;

Ax2-\-Qx V2 fo r
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2. Q{Mn, (—1)) =  - 1  -  4n.

Proof. 1. 

Note that

yi — x — 2(1 +  \/x -f 1) and y2 — x — 2(1 — \Jx +  1).

Then

Q(Mn) -
Q(A-n) xQ(^A.n—i)2
ci(x)y? (x) +  c2(x)?/2 (x) -  xc^x)*/"-1(x) -  xc2(x)?/2

ci(^)y? M fo iM  ~ x ) +  caM y? W f e W  - s )

(3xy/x +  1 +  a;2 +  3x) (1 +  y/x +  1 ) - .
----------------------- . ------------------- - y f  (x)

2y/x +  l  yi K '
(3x\/x +  1 — x2 — 3x) (1 — y/x 4- 1 )

y 22y/x +  1
(x2 +  6x)\/x +  1 +  4x2 +  6x 1
---------------- 7 = f ---------------- Vi Mv x  +  1

(x2 +  6x)y/x  +  1 -  4x2 -  6x n—1 / \

---------------7 T T Ï ---------------- (X)'

□

Proof. 2. By mathematical induction. Assume x =  — 1.

Our inital case for n =  1 holds true.

Since Q(Mn, x) =  x2 +  6x,

Q ( M i ,  —1) =  ( - 1 ) 2  +  6(—1) =  - 5  =  - 1  -  4 ( 1 ) .
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Now assume Q(Mn_ i ,—1) =  — 1 — 4(n —1) is true. Recall that Q(An, x) =  —3 — 4n.

Q{Mn, —1) — (—l)Q (M n_i, —1) +  2Q(An_i);

-  —1(—1 -  4 (n -  1)) +  2(—3 -  4(n -  1)) =  - 1  -  4n.

Thus Q(Mn, — 1) =  — 1 — 4n for all n >  1.

We now develop a formula for ^  x fcQ(An_jt).
t= 0

Lem m a 8 .9 . For a// n > 0 ,

□

¿ x " - fcQ(Afc) =  i  [Q(An+1) -  xQ(A„) -  2xn+1] .
¿=0

Proof. By the recursive formula Q{Mn) — xQ{M n-\) — 2Q(An_i), for n >  0,

Q(M n+1) -  xQ{M n) =  2Q(An) 

xQ(M n) -  x 2Q(Mn- 1) =  2xQ(An_i)

x2Q(Mn_i) -  x3Q(Mn„2) =  2x2Q(An- 2)

xnQ {M 1) -  xn+1Q(M0) 

Add the above equations we obtain:

n

Q(M n+1) -  xn+1Q(M 0) =  2 ^ x ’*-feQ(AJi) ==►
i=0

=  2x"Q(A0)

Q(M„+1) =  x "+2 +  2 £  x*<2(An_t ).
i= 0
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But from equation 11, Q(Mn+1) =  <̂ An+1')2 x^ Anl 

Q(An+1) -  x Q ( A„) =  x„+2 +  2

¿=0

Which derives the result.

□

The recursive formula for Q { An) is given by the following lemma.

Lem m a 8 .10 . The recursive form ula fo r  Q ( An,x) with n >  1 is:

Q{ An, x) =  xQ (A n_!, x) +  2 Q ( A n ).

Define A0 =  x2 +  6x. Recall the recursive formulas: Q{Mn) =  xQ{M n- i)  -f 

2Q(An_f) for n >  1, and 2Q(An) =  Q(Mn+1) — xQ(M n). We claim:

T heorem  8 .11 . For n >  0,

1. Q(A„) =  Q(M„+J) =  ; or x ^  - 1 ;

2. <5(A„, (—1)) =  —5 — 4n.

Proof. 1. By mathematical induction.

Obviously Q(A0) =  Q ( M \ ) .  Assume Q(An_!) =  Q ( M n ) for n >  1. Then 

Q(An) =  x Q (  An_i) +  2 Q ( A n ) —  x Q ( M n ) +  Q(Mn+ i ) — x Q ( M n ) =  Q(Mn+i).

□

Proof. 2. By mathematical induction. Assume x — — 1.

Our initial value for n =  1 holds true.
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Since Q(An, x) =  x3 +  16a:2 4- 24a:,

Q{A 1? - 1) =  ( - 1)3 +  16(—l ) 2 +  24(—1) =  - 9  =  - 5  -  4(1).

Now assume Q (A n, — 1) is true for n — 1.

Q(An, - 1) =  ( - l ) g ( A n_!, - 1) +  2Q(An, - 1);

=  —1(—5 -  4(n -  1)) +  2(—1 -  4(n)) =  - 5  -  4n.

Q(An, —1) =  —5 — 4n for all n >  1.

□

Now we look at our last recursive relation in order to form an explicit formula for 

Q(Tn,x ).

Lem m a 8 .12 . The recursive form ula fo r  Q (tin, x), with n >  2, is:

Q(Qn) =  Q(rn) +  Q(An-i) +  2Q(^n-i) +  xQ(An- 2) (12)

The idea of the proof can be expressed by looking at Q (fl4) shown below. 

E xam p le 9. Breaking down Q (il4).
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A fter one step, from  left to right, we have A3, il3; fl3; xA2, and T4; respectively.

Similar to the recursive relation between Q(An) and Q(Mn), we use the same 

technique for Q(S2n) and Q (rn).

Define

Hn(x) =  Q( An) +  (x — 2)Q(An_j) — 2xQ(An_2) +  Q(Mn) +  xQ( An_2).

We simplify Hn(x) using the previous formulas.

Hn =  2(x +  1) [g(An_x) -  xQ (An_2) ] , n >  3. (13)

Then we have

Q (0 .+ l)  -  Q(Oi) =  4 (Q(i2„) -  g (fin -l))  +  #«(*)• (14)

In order to achieve an explicit formula for Q(Cln), we define the following:

vn(x) =  Q(ton+i) -  Q(fln), n > 2  (15)
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We substitute equation (15) into equation (14) to result in the following.

vn(x) =  4K -1 (x) +  Hn(x ), n >  2 (16)

We develop an explicit formula for Yn{x) using similar techniques from the previous 

polynomials. Note that the smallest value of n for Yn(x) is 2 since i l2 is the smallest 

graph of its kind.

V2(x) — 14a:3 +  118a:2 +  168a:; (17)

K (x )  =  4 " -2^ ( x )  +  ^ 4 " - J if ,(z ) , n >  3. (18)
3 =  3

Now we use equation (15) to develop an explicit function for Q(Qn). Again we 

use similar techniques and we also use equation (18) to substitute into the function 

to simplify further and achieve the final function. Some steps are shown below.

n — 1
Q(^n) — Q{Q2) +  ^2(3:) +  E  Vi{x )i

i=3
71—1

-  14a:3 +  133a:2 +  204a: +  E  ^ ~ 2V2(x) +  E  ^ ~ j H j{x) ;
i=3 3= 3

(14a:3 +  118a:2 +  168a:) +  E  E  ^ ~ j Hj(x)\
4=3 j = 3

=  14a:3+133a:2+204a :+— (14a:3 +  118a:2 +  168a:)+- E  (4n_i — l)H i(x).
3 i=3

14a:3 +  133a:2 +  204a: +

T heorem  8 .13 . The explicit function Q(Qn,x ) , where Hn{x ) is given by equation 

(13) is:

1. Q{£ln,x )

=  14a:3 +  133a:2 +  204a: 4- (14a:3 +  118a:2 +  168a:) +  -  E  (4n_i — l)H i(x),
3 i=3

fo r  n >  4 and x 7̂  — 1;

2. g ( f in, - 1 )  =  |(1 -  (4)n+1) fo r  n >  2.
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Proof. 1. By mathematical induction. Assume x 7̂  — 1.

Our initial conditions for n =  4 and n — 5 can be confirmed by Mathematica.

Q{ OO =  18a;4 +  240a;3 +  949a;2 +  1068a;;

<2(ft5) =  22a;5 +  440a;4 +  2464a;3 +  5983a;2 +  5292a;.

Now assume Q(£ln) and Q(On_i) are true.

Q(Ün+i) =  5Q(Qn) -  40 ( 0 » - ! )  +  Hn(x)

=  (5 -  4) (14a;3 +  133a;2 +  204a;)

+  ^5 ( 4n 32~4)  -  4 (14a;3 +  118a;2 +  168a;)

+  I ( g  (4n_* -  l ) # i ( * ) i  -  I  p £  (4n_1_* -  l ) i f j (x)') +  Hn(x)

=  14a;3 +  133a;2 +  204a; +  ^ ^ ( 1 4 a ; 3 +  118a;2 +  168a;)

+  l  ( E  [5(4n_i -  1) -  4(4n_1_* -  1)] +  |(4 -  1

+  Hn(x)

=  14a;3 +  133a;2 +  204a; +  ^ ^ ^ ( H a ;3 +  118a;2 +  168a;)

+  I  ( " E  (4n+1_* -  l)H i(x)\  +  5tf„_i(x) +  Hn(x).

For this to be true for Q (^n+i), we need 5 # n_i +  Hn to be equivalent to 

I  £  ( 4 1 1+ 1 - 1  _  1)H{.

I  Ê (4"+1-i -  1) ^ ( 1 ) =  l ( 4"+i-(n-D  _  1)ffn l +  1(4»+1-» -  1 )H„
i = n —1

=  |(42 — +  3(4 — l)H n(x)

=  5Hn- i(x )  4- Hn(x). 

x) is true for all n >  4.
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□

Proof. 2. By mathematical induction.

Our initial case for n =  2 holds true.

<3(Q2, - l )  =  | ( l - ( 4 ) 3) =  -2 1 .

Now assume Q(i7n_ 1, —1) is true, and from equations (15) and (18) we have,

Q{fin, - 1 )  =  Q(ttn- l, - 1 )  +  K - i ( - l )  and Vn(x) =  4n~2V2(x) +  4n~j H j(x).
5=3

Note that for Hj(x) — 2(x  +  1) [2Q(AJ_ 1 -  ajQ(Aj_2)]. Clearly f/j-(—1) =  0. 

Q(fin, - 1 )  =  |(1 -  (4)n) +  4n_3(—64) =  |(1 -  (4)n+1).

Q(f2„, —1) holds true for all n >  2.

□

Finally, we go back to the recursive function from Lemma 8.2 and define one more 

function in order to finalize an explicit function for Q (rn,a;).

Rn{x)  — Q ( ^ n - l )  +  Q ( M n - 1) +  x Q (  An_3).

We use our previous formulas to simplify R n.

Rn{x) — Q{&n-2) +
Q{Aw- i)  -  X2Q(An_3) 

2 (19)

Using the function from Lemma 8.2 and equation (19), we express Q (rn) as shown 

below.

Q (rn) =  2Q(rn_i) +  Rn(x), for n >  4. (20)

We apply similar techniques used previously to achieve the explicit function.

n

Q(rn) =  2" - 4Q (r4) +  ^ 2"-\R,(x), n > 5 .
i= 5
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T heorem  8.14 . The interlace polynomial Q(Tn,x ) , with Rn(x ) given by equation 

(19), fo r  n >  5 is:

1. 0 (T b, x) =  2n-4(2o;4 +  64a;3 +  363a;2 +  468a;) +  £  2n~lR l (x);
i= 5

2. g ( r n, - i )  =  | ( n - 22"+1)

Proof. 1. By mathematical induction. When a; ■=£ — 1.

A confirmation with M athematica shows our initial condition for n =  5 holds true.

Q (r5,a;) =  2a;5 +  100a;4 +  800a;3 +  2411a;2 +  2388a;.

Now assume Q(Tn_i,a;) is true.

Q (r„, x) =  2g ( r n_i) +  i?n(a;);

n —1

2n-5(2a;4 +  64a;3 +  363a;2 +  468a;) +  X) 2n~1~iRi {x)
i= 5

-  2"~4(2x4 +  64x3 +  363x2 +  468x) +  £  2" " ‘^ ( x )  +  fl„(x);
n—1

2=5

=  2n-4(2x4 +  64a;3 +  363a;2 +  468a;) +  £  2n~ ^ ( a ;) .
4=5

Therefore, Q (rn,a;) is true for all n >  5.

□

Proof. 2. By mathematical induction.

The initial case for n =  5 is confirmed below. 

g ( r 5, - 1 )  =  1(11 - 2 n ) =  -679.

Now assume Q (rn_!, —1) is true, and from equation (20) we have,Q (rn,~ i) — 2 g (rn_ !, —1) +  R n(—i).

We use equation (19) to determine Rn{—1)-
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Q (r„, -1) =  2(1(11 -  22" - 1) +  1(1 -  4") -  4;

22 -  22n +  1 -  22n -  12 
=  3  ;

=  § ( l l - 2 2n+1).

Q (rn, —1) =  |(11 — 22n+1) for all n >  5.

□

8.2 Applications of Q(Fn,x)

Study has been done specifically on x values of 2 and 4 for the interlace polynomial 

Q (G , x). Q (G , 2) equals the number of general induced subgraphs of G (with possible 

loops attached to the vertices) with an odd number of general perfect matchings [1]. 

Q(G, 4) equals 2n times the number of induced Eulerian subgraphs of G [1]. Below 

we will relate these specific values to our graph Tn.

C orollary 8 .15 . The number o f  general induced subgraphs fo r  a few  Tn (with possible 

loops attached to the vertices), with an odd number o f general perfect matchings are 

defined below:

1. For  r 3, we have 372 general induced subgraphs with an odd number o f  general 

perfect matchings;

2. For  T4, we have 2932 general induced subgraphs with an odd number o f  general 

perfect matchings;

3. For  r 5 we have 22484 general induced subgraphs with an odd number o f  general 

perfect matchings, general induced subgraphs.

C orollary 8 .16 . The number o f  induced Eulerian subgraphs o fT 4 is 1536.
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9 Future D irections

Below I discuss the direction I intend to continue with the interlace polynomial of 

r n(x) as well as Q (rn,a;). I wish to show more direct relationships within the coeffi­

cients of r n(x) and Q (rn,a;).

9.1 More Properties on r n(:r)
The adjacency matrix can give us specific information about our graph. Let us look 

at one theorem that can tell us how many walks of length k  are bewteen two specific 

vertices.

T heorem  9 .1 . (see, eg., [7].) Let G be a graph on labeled vertices, let A be its 

adjacency matrix, and let k  be a positive integer. Then A^- is equal to the number o f  

walks from  i to j  that are o f  lenth k.

Let us use 9.1 and take a look at the adjacency matrix for T5 and concentrate on 

walks of size 4 and 5.

0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 0 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 1 1

0 0 1 0 1

0 0 1 1 0
J 10x10
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10 11 7 10 4 6 4 10 7 11

11 24 11 14 10 14 6 14 10 14

7 11 10 11 7 10 4 6 4 10

10 14 11 24 11 14 10 14 6 14

4 10 7 11 10 11 7 10 4 6

6 14 10 14 11 24 11 14 10 14

4 6 4 10 7 11 10 11 7 10

10 14 6 14 10 14 11 24 11 14

7 10 4 6 4 10 7 11 10 11

11 14 10 14 6 14 10 14 11 24

22 38 21 28 16 28 16 28 21 38

38 50 38 59 28 44 28 44 28 59

21 38 22 38 21 28 16 28 16 28

28 59 38 50 38 59 28 44 28 44

16 28 21 38 22 38 21 28 16 28

28 44 28 59 38 50 38 59 28 44

16 28 16 28 21 38 22 38 21 28

28 44 28 44 28 59 38 50 38 59

21 28 16 28 16 28 21 38 22 38

38 59 28 44 28 44 28 59 38 50
L  -• 1 0 x1 0

Each of the entries, in the matrices for A4 and A5 represent the number of 

walks, respectively, of size 4 and 5, between the two vertices i and j .  My goal here is 

to be able to show the number of walks of size k , correlate to the coefficients in my 

interlace polynomial for Tn at a specific n. I will concentrate on specific vertices and 

the patterns associated in the matrix to try and see if in fact there is a correlation 

between a walk from two specific vertices and my coefficients in the polynomial.

Another interesting theorem that can be used for further investigation deals with
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the number of spanning trees within a graph.

T heorem  9 .2 . (see, eg., [7].) Let U be a simple undirected graph. Let {vi ,V2, • • • , vn} 

be the vertices o f U .  Define the (n — 1) x (n — 1) matrix L 0 by

the degree o f  Vi i f  i =  j ,

— 1 i f  i j  and Vi and Vj are connected, and, 

0 otherwise.

where 1 <  i, j <  n — 1. Then U has exactly det(Lo) spanning trees.

Research has been done on the interlace polynomial for arbitrary trees [2]. I will 

use Theorem 9.2 to show how many spanning trees Tn has and will try to deter­

mine any significance for the interlace polynomial of arbitrary trees and the graph 

polynomial Tn(a:). Let us take a look at L 0 for r 5.

2 - 1 0 0 0 0 0 0 0

- 1 4 - 1 - 1 0 0 0 0 0

0 - 1 2 - 1 0 0 0 0 0

0 - 1 - 1 4 - 1 - 1 0 0 0

0 0 0 - 1 2 - 1 0 0 0

0 0 0 - 1 - 1 4 - 1 - 1 0

0 0 0 0 0 - 1 2 - 1 0

0 0 0 0 0 - 1 - 1 4 - 1

0 0 0 0 0 0 0 - 1 2
L J 9x9

Using Maple Software, I was able to determine the determinant.

det(L0) =  810.

This tells us, from Theorem 9.2 that IT's has exactly 810 spanning trees. Now the 

question is, how can we relate the interlace polynomial from [2], for arbitrary trees
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for the spanning trees in my graph, and do they relate to my graph polynomial for

r 5(aO?

9.2 More Properties on Q(Tn,x)

The interlace polynomial Q(rn,a:) is a lot more complicated from the original graph 

polynomial we created. I would like to further study the change in coefficients for 

this graph polynomial and try to relate them as I did for the coefficients of r n(:r). 

Hopefully I can lead myself into a better understanding of the graph polynomial itself 

and in turn more properties about the graph itself.
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