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A bstract

Empirical likelihood is a nonparametric method of statistical inference which 
was introduced by Owen. It allows the data analyst to use it without making 
distribution assumptions. Empirical likelihood method has been widely used 
not only for nonparametric models but also for semi-parametric models, with 
the effectiveness of the likelihood approach and good power properties. How­
ever, when the sample size is small or the dimension is high, the method is 
poorly calibrated, producing tests that generally have a higher type I error. In 
addition, it suffers from a limiting convex hull constraint. Many statisticians 
have proposed methods to address the performance. We explore the method 
proposed by Chen which makes an adjustment on empirical likelihood method. 
This thesis derives an adjusted empirical likelihood-based method for compar­
ing two treatment effects in a linear model setting. We use the adjusted empir­
ical likelihood-based method to make inference for the difference by comparing 
the parameters in two linear models. Our method is free of the assumptions of 
normally distributed and homogeneous errors, and equal sample size. In addi­
tion, the adjusted empirical likelihood method is Bartlett correctable. We apply 
the Bartlett correction procedure to further improve the coverage of our pro­
posed method. Simulation experimental are used to illustrate that our method 
outperforms the published ones and also empirical likelihood-based method. 
This method can be extended into multiple treatment effects comparison.
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1 Introduction

1.1 W hat is empirical likelihood?

Likelihood methods are very effective and flexible. They can be used to And effi­

cient estimators, to construct tests with good power properties and to offset or even 

correct for data problems such as incompletely observed, distorted, or sampled with 

a bias. Likelihood can be used to pool information from different data sources. In 

parametric likelihood methods, we assume that the joint distribution of ah available 

data has a known form, apart from one or more unknown quantities. But a problem 

with parametric likelihood inferences is that we might not know which parametric 

family to use. And there is no reason to suppose that a newly encountered data set 

belongs to any of the well studied parametric families. This misspeciflcation may 

cause likelihood-based estimates to be inefficient, even the corresponding confidence 

intervals and test may have high type-I error and low power.

Many statisticians have chosen nonparametric inferences to avoid specifying a 

parametric family for the data. These methods include the jackknife, the infinitesimal 

jackknife, several versions of the bootstrap, and especially, empirical likelihood. These 

nonparametric methods give confidence intervals and tests with validity not depending 

on strong distributional assumptions. The use of nonparametric methods is in line 

with John Tukey’s quote “It is better to be approximately right, than exactly wrong” . 

But when we contemplate replacing a parametric method by a nonparametric one, we 

need to consider that sometimes the improved generality comes at a cost of reduced 

power. Among these methods mentioned above, empirical likelihood arises because 

it combines the reliability of the nonparametric methods with the flexibility and 

effectiveness of the likelihood approach. It can be combined effectively with bootstrap 

and as well as parametric on some problems.
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Empirical likelihood(EL) is a nonparametric method of statistical inference which 

was introduced by Owen (1988,1990). He extended earlier work of Thomas and 

Grunkemeier (1975) who employed a nonparametric likelihood ratio idea to construct 

confidence intervals for the survival function. That work in turn builds on nonpara­

metric maximum likelihood estimation which has a long history in survival analysis. 

Owen proposed this method for the univariate mean and some other statistics such as 

for multivariate mean, for quantiles, for Kernel smooths, for right censoring as well as 

others. For example, given a random variable Xi ~  F(x, 0) with a parameter 9 G 0, 

let uji be the weight that F  places on observation Xi, then an empirical likelihood 

ratio for testing the null hypothesis H0 : /jlq(F) = fi, where Ho(F) is the expectation 

with respect to the distribution F, can be written as follows:

R(n) — max
n

Y\nuji
7=1

^   ̂^iX{ 
i=  1

> 0 , J >  =  1
7=1

( l . i )

According to his univariate empirical likelihood theorem (Univariate ELT), if 0 < 

Var(Xi) < oo, then — 2 log(i2(/z0)) converges in distribution to xl  as n —>■ oo, where 

Ho = E(Xi).

EL is a data-driven technique with the advantage of automatically determining 

shape of confidence region. We use the following example with data from Larsen and 

Marx (1986) by Owen (1990) as an illustration. Eleven male ducks, each a second 

generation cross between mallard and pintail, were examined. Their plumage was 

rated on a scale from 0 (completely mallardlike) to 20 (completely pintaillike) and 

their behavior was similarly rated on a scale from 0 (mallard) to 15 (pintail). Figure 

1 shows the data, together with nested empirical likelihood confidence contours for 

the mean. The confidence contours are presented for nominal confidence levels: 0.50, 

0.90, 0.95, 0.99, taken from 20/9 times the F2,9 distribution. An asterisk marks the



sample mean. Figure 2 shows the same data with the contours taken from a scaled 

F2i9 distribution for Hotelling’s T 2 statistic. These are parametric likelihood ratio 

contour assuming a bivariate normal distribution with unknown mean and variance.

Plumage
Confidence Levels: 50% 90% 95% 99%

Figure 1: Empirical likelihood contours

Suppose we have aq, £2, xn as a random sample from a nonparametric popula­

tion F(x) such that x 6 Rm with dimension m. The problem of interest is inference on 

the p-dimensional parameter 6 = 9(F). Assume that the general estimating equations 

is defined by

E(g(X-,0)) = 0 (1.2)

for a ^-dimensional estimating function g and a p-dimensional parameter 9. Let Pi 

be the probability that distribution function F  assigned to each point x*, then the

9



Plumage
Confidence Levels: 50% 90% 95% 99%

Figure 2: Normal likelihood contours 

empirical likelihood function of 6 is defined as

{n  n n  x

l i f t  : Pi -  =  1^ P ^ ( xi’P) =  0 [• (F3)
i=  1 i=  1 i=  1 '

And the empirical log-likelihood ratio function is defined to be

ik(0) =  -21og (nn x L n(8)).(1.4)

It converges to a chi-square distribution with q degrees of freedom (Owen 2001, and 

Qin and Lawless 1994).

Empirical likelihood method has many nice statistical properties. It allows the 

data analyst to use likelihood methods, without having to assume that the data come 

from a known family of distributions, as long as it is independent and identically
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distributed. In particular, EL method does not involve asymptotic variance estima­

tion. which may be complicated in nonparametric or semi-parametric models. The 

confidence region has a data-determined shape, thereby better reflecting the true 

shape of the underlying distribution. It performs well even when the distribution is 

asymmetric or censored. EL methods are also useful since they can easily incorporate 

constraints and prior information. This method provides a versatile approach that 

may be applied to perform inference for a wide variety of functionals of interest. It has 

been employed in a number of different areas of statistics. A brief examination of the 

literature on empirical likelihood produces applications including quantiles of weakly 

dependent processes by Chen and Wong (1993), inference in missing data problems by 

Qin and Zhang (2007), estimation of variogram model parameters by Nordman and 

Caragea (2008), empirical likelihood for regression by Chen and Keilegom (2009), em­

pirical likelihood for comparison of treatment effects by Su and Liang (2009). Many 

recent applications of EL in a variety of situations such as construction of simulta­

neous confidence band for right censored data, regression analysis, weighted EL, can 

be found in Owen (2001), Wang and Rao (2001, 2002), McKeague and Zhao (2002, 

2006), Li and Wang (2003), Zhao (2005, 2010), Glenn and Zhao (2007), Zhao and 

Chen (2008). The flexibility and effectiveness of the empirical likelihood approach, 

as well as its relationship to many standard parametric procedures, make it a useful 

and interesting tool for many problems.

1.2 W hat is adjusted empirical likelihood?

The advantages of the EL methods over normal approximation (NA) based method 

have been demonstrated in the Chapter 1.1. However, when the sample size is small, 

or the dimension of the accompanying estimating function is high, the coverage prob­

abilities of the EL confidence regions are often lower than the nominal value (under-
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coverage problem; DiCiccio, Hall, and Romano (1991); Owen (2001); Chen and Lin 

(2010)). Computing a profile empirical likelihood function involves constrained max­

imization and it is a key step in applications of empirical likelihood. Yet in some 

situations, there is no solution to the required numerical problem. In this case, the 

convention is to assign a zero value to the profile empirical likelihood. This strategy 

has at least two limitations. First, it is numerically difficult to determine that there 

is no solution; secondly, no information is provided on the relative plausibility of the 

parameter values where the likelihood is set to zero.

The adjusted empirical likelihood (AEL) proposed by Chen and Variyath and 

Abrasham (2008) tackles the low precision of the chi-square approximation with small 

sample size and also the empty set problems simultaneously. They proposed a novel 

adjustment to the empirical likelihood that retains the optimality properties, and 

guarantees a sensible value of the likelihood at any parameter value. The adjusted 

empirical likelihood is obtained by adding a pseudo-observation into the data set. 

This approach offers several key benefits in both ease of computation and accuracy. 

Its principal utility is to overcome the difficulty arising when the estimating equations 

have no solution; a solution is required in the EL approach. By using a conventional 

level of adjustment, Chen, Variyath and Abrasham found the AEL improves the 

approximation precision of the chi-square limiting distribution.

Figure 3 is a simple example to illustrate the convex hull problem and the ad­

justment from Chen et al. (2008). There are 50 observations generated from an 

independent bivariate standard normal distribution. They compute the profile like­

lihood at (1 1 1 , 112) = (2, 2). The left side of Figure 3 gives the plot of g values and it 

is seen that the convex hull does not contain 0. The right side of Figure 3 gives the 

plot of g values with an artificial observation gn+i = —angn, where an = log(n)/2. 

The convex hull is expanded and 0 is an interior points.

12



Figure 3: Convex hull (left) and adjusted convex hull with an — login) /2 (right). 
The bold dot is (0,0).

Many statisticians looked into the level of adjustment to empirical likelihood. 

Emerson and Owen (2009) discussed the level of adjustment for inference on mul­

tivariate population mean. Their simulation studies show that the AEL has better 

precision, and especially under linear and asset-pricing models. Chen and Liu (2010) 

showed that with a specific level of adjustment, the adjusted empirical likelihood 

achieves the high-order precision of the Bartlett correction. In addition, their simula­

tion results indicated that the confidence regions by the adjusted empirical likelihood 

have the comparable coverage probabilities or substantially more accurate than the 

original empirical likelihood enhanced by the Bartlett correction. Wang, Chen and Pu 

(2015) showed that the general AEL is Bartlett-correctable and proposed a two-stage 

procedure for constructing accurate confidence regions.

1.3 M otivation

In clinical trials, related medical studies and biomedical studies, physicians and medi­

cal researchers are often interested in evaluating the difference between two treatments
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in order to justify the effect of a new medicine or a new cure. Statistical analysis usu­

ally provides important reference to the quantitative evaluation of medical advantages 

of one treatment over another. Many methods have been proposed to evaluate the 

difference in special cases. For example, Behrens-Fisher problems (1974) is a powerful 

and popular tool to study the difference between the means of two independent and 

normally distributed populations. However, in some situations, comparison of the re­

sponse means from two populations ignores the fact that two populations may not be 

identical and may not normally distributed. Measuring a treatment effect may need 

to take into account the effect of other covariates. Bhuyan and Majumder (1996) gave 

another simple example. Such concern gives rise to a comparison of coefficients in lin­

ear regression models. Comparisons of treatment effects in linear regressions are quite 

popular since the comparison controls other covariates through the regression model. 

In Su and Liang’s (2009) paper, they proposed an empirical likelihood-based method 

for comparing treatment effects by testing equality of coefficients in linear models. 

This method shows advantages in terms of power over other methods such as the 

normal approximation-based method, Weerahandi test, Dupont and Plummer test. 

The advantages of AEL method in chapter 1.2 triggered our research interest to focus 

on the development of improving the coverage probability to Su and Liang’s (2009) 

research by using adjusted empirical likelihood-based method to compare treatment 

effects. We also planned to use Bartlett correction to improve AEL method.

This thesis is organized as follows. In Chapter 2, we review the treatments com­

parison using empirical likelihood-based test and derived the adjusted empirical like­

lihood method for the treatments comparison. Chapter 3 reports the results of sim­

ulation experiments. Chapter 4 presents the results of the proposed method on a 

drug study. Chapter 5 discusses the improvement and conclusion. The proof of the 

theoretical result is given in the Appendix.
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2 Treatment Effects Comparison Test

2.1 Background

The difference between two treatments can be described as the difference of the pa­

rameters in two linear models as shown in Su and Liang (2009). Many methods have 

been proposed to evaluate the equality of linear regression models. A pioneering work 

on testing linear regression equality was done by Chow (1960), in which he proposed a 

statistical ratio to conduct the hypothesis test where the difference between the sum 

of residual squares assuming equality as numerator and the sum of residual squares 

without assuming equality as denominator. Under the null hypothesis, the resulting 

ratio was shown to follow an F distribution. However, the significance level of the 

test is considerably affected by even moderate heteroscedasticity when both sample 

sizes are small. Since then, a number of authors have been proposed the various ver­

sions of the Chow test. Schmidt and Sickles (1977) provided a formula to calculate 

the exact tail probability of the Chow test under the known ratio of two variances. 

Ali and Silver (1985) proposed two relatively robust tests on the basis of the Chow 

test and likelihood ratio statistics. However, the distribution of their tests need to 

be approximated using the moments of statistics under the null hypothesis since un­

known distributions. Cornerly and Mansfield (1998) presented an approximate test. 

Their method provides an alternative for comparing heteroscedastic regression mod­

els. They replaced the pooled residual variance in the denominators with a weighted 

average of the residual variances from each group in Chow statistic. Dupont and 

Plummer (1998) developed an intuitive test by comparing slopes of two linear regres­

sions to calculate sample size and power function, which has been applied to clinical 

trials, and qualified its applicability when the two error terms have the same variance. 

Yang and Zhao (2007) proposed a test of treatment effect using weighted log rank

15



tests with empirical likelihood method.

All the tests mentioned above were derived from the likelihood principle and there­

fore need assumptions on distributions. The results of these tests were obtained sub­

ject to additional information about the ratio of the variances, that is, either the 

ratio is known, or the magnitude of the variance is of the same order. These assump­

tions are not always satisfied or at least need to be diagnosed. Su and Liang (2009) 

proposed an empirical likelihood-based method to make inference for the difference. 

Their test is free of these assumptions on the basis of the empirical likelihood prin­

ciple and is shown to perform better than other normal-based tests. In this chapter, 

we will review the empirical likelihood-based test and derive the adjusted empirical 

likelihood-based test. Since Su and Liang (2009) already proved that EL is better 

performed than other methods such as empirical t-test, Weerahandi test and Dupont 

and Plummer test, we will just compare the AEL method with EL method.

2.2 Empirical likelihood-based test

Suppose that we observed samples of independent observations from the models

( Vi =  X i P i  + £ i ,  , .
(2 .1)

y2 = xTz(32 +£2,

where £ L and e2 are two independent random errors with a mean of zero and variances 

o\ and o\ respectively, and f3\ and (32 are two unknown parameter vectors of length 

p, which indicate the treatment effects. We were interested in testing the hypothesis

Ho : fa = P2 against H1 : fii ± (32.

Let (xn, 1/11),..., (xlni,y lni), (̂ 21,2/21), •••, (■x2n̂ y 2n2) be the independent samples 

from model (2.1), where each yi is regarded as the response of variable X{. Let X\
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= ( # 1 1 , Xini)T, X 2 = (#2 1 , £ 2 n2)Ti and similarly for Y\ and Y2, E\ and e2, then 

model (2.1) can be written in the form of

(2.2)
 ̂ y~ 2 y 0 X 2 y y ( 3 2  J  y £ 2  J

Let Y  = (y /1, Y2 )t , X  be the block diagonal matrix diag(Xi, X2), (3 — (¡3j, ^ ) T, 

and £ — (£f,£^)T. Model (2.2) can futher be expressed as

Therefore, null hypothesis H0 is equivalent to (3* = 0. We now treat f32 as a 

nuisance parameter. Our estimation method, motivated by partial regression plots, 

is to form partial residual vectors adjusting the influence of X J, that is, Y  - E(Y\X%) 

and X* - E(X*\X%). It follows from (2.3) that

If E(Y\X%) and E(X* |X |) are known, we can define estimates of (3* in a standard 

way. We denote S — S  - E(S\X%) and S = S  - E(S\X%) for any vector S. So, Y  = 

Y  - E(Y\X*) and Y  = Y  - E{Y\X*).

Let E(Y\X%) and E(Xl\X^)  be the least square estimates of Eiy lX^)  and 

E(X*\X%) respectively. We may estimate (3{ by solving the estimating equation

Y  = X{(31 + X2*ft + e, (2.3)

where = (X f ,0 ) r , X2* = (Aft, Aftft, and f t  = f t  - f t.

{Y -  E(Y\Xi)}  = {AT, -  E (X r|X 2*)}ft* + £. (2.4)

17



as E[X{T {Y — X*/3l)] = 0. This statement leads to the definition of Su and Liang’s 

(2009) empirical likelihood ratio as follows.

Let F  be the distribution function which assigns probability pi at points (1 ,̂ X{^ 

XJf). The empirical likelihood ratio function for /3J is therefore defined as

Rn{(3l) = S l i p

2=  1

(2.5)

2.3 Our proposed adjusted empirical likelihood-based test

For any given 9 , the likelihood ratio function Rn(9) is well defined only if the convex 

hull of

{g(xp6) : i = 1, 2,..., n)  (2.6)

contains the g-dimentional vector 0. When n is not large, or when a good candidate 

value of 9 is not available, this convex hull often fails to contain 0. Blindly setting 

Ln(9) = 0 as suggested in the literature fails to provide information on whether 9 is 

grossly unfit to the data or is in fact only slightly off an appropriate value.

Chen, Variyatli and Abraham (2008) proposed adjusted empirical likelihood to 

the above issue by adding a pseudo observation. Let pi — g(xp 6), i = 1,..., n, and

n

9n+1 ttriSIn ^   ̂Qi (2.7)
¿=1

for some an > 0. They recommend to take an = log(n)/2. The adjusted empirical 

likelihood is then defined as

{ n + l  n+ 1  n + 1  n

:Pi ~  = ° c  (2-s )
2=1 2=1 2=1 '

18



and the adjusted empirical likelihood ratio function as

Rn(6:an) = - 2  log (n + l)n+lLn(6; an).

Applying the adjusted empirical likelihood method in the treatment comparison 

case described in Chapter 2.2, the empirical likelihood ratio function for f t  is therefore 

defined as

{
77+ I  n + 1  7 i + l  n

Y [ ( n + l ) p i  ^ 2 p i g i = Oi ^ 2 p i  = l ip i > o \

7=1 7=1 7=1 '

(2.9)

where <?,(/?) =  JC j(Yt -  for 1,2,

- a ^ X l K Y ,  -  X'uf i )  = =%&■ E t r  9i =

•••>» and gn+i(/3) =  1 E"=i 9« =

-  XlUl)  for i =  n +  1.

Then the model (2.9) can be rewritten as

7̂7 (ft) = SUP

77 i / \ 77 77 +  1

-  T + n  -  P"+i-2| r  £  $  -  w a *) = o, £ ? ,  = 1.^ > o
7=1 7=1 7=1

(2.10)

Theorem l. Assuming that £'(||X/C||4) < oo, E(\\Xp\\2Y^) < oc and E(X^Xk)  are 

nonsingular for k =  1, 2, then —2 log jRn(ft) converges in distribution to a chi-squared 

distribution with p degrees of freedom.

Based on Theorem 1, we can obtain an estimate of f t  and the associated 100(1 — 

a)% confidence region:

{ft : - 21og{tfn( f t* )K c a}, (2.11)

where ca is the 1 — a quantile of the x 2p distribution satisfying P{x2p < cQ) = 1 — a. 

The proof of theorem 1 is given in the appendix.
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2.4 B artlett correction on EL and AEL

Bartlett (1937) pioneered the correction to the likelihood ratio statistic in the context 

of comparing the variances of several populations. For regular problems, Lawley 

(1956), through a heroic series of calculations, obtained a general formula for the 

null expected value of likelihood ratio and demonstrated that all cumulants of the 

Bartlett-corrected statistic for testing a composite hypothesis agree with those of the 

reference y2 distribution with error of order n~3R. Alternative expressions for the 

Bartlett corrections were developed by DiCiccio and Stern (1993), McCullagh and 

Cox (1986), and Skovgaard (2001).

The empirical likelihood confidence regions have data-driven shape and are Bartlett- 

correctable (DiCicco, Hall and Romano (1991)). To improve the precision of the cov­

erage probability when sample size is not large, we may replace chi-square distribution 

by bootstrap calibration or by high-order approximation via the Bartlett correction 

(Chen and Cui (2006,2007)).

Chen and Liu (2010) proved that AEL is also Bartlett-correctable. With the 

Bartlett correction factor BC) we can obtain an approximate 100(1 — a) % EL confi­

dence region of 0

^ bcel(0) = {9 : Wn(9) ^  cQ}, (2.12)

where Wn{6) =  Rn(9) — infoRn{6)< Rn(0) is defined in equation (1.4), and ca is the 

(1 — a)th  quantile of y2 distribution.

In other words, by applying the Bartlett correction into formula (2.12), we have: 

Pr(-21og{Rn(/31*)} < cQ(1 + n~1Bc)) =  1 -  a + 0(n~b),b G (1,2].

They specified the level of adjustment and proposed estimation of the Bartlett cor-

20



rection factor Bc as

Br
O 4

2ol\
^3 (2.13)

where 02 — Eg(X;0)2, 03 = Eg(X\6)3 and «4 = Eg(X;6)4. The estimators given in 

the following table were used to construct an estimator of Bc:

Parameter Estimator

O' 2 0 2

O 4 O 4

Oi\ 022

O 3 0 3

« 3 0 3 3

« 2 0222

Expression

710:2/(n — 1) 

(naq — 6d i) /(n  — 4) 

¿*2 — 04/n 

nas/(n — 3)

¿3 -  (b6 -  d |)/n

In this thesis, we use equation (2.13) and the estimation table above to estimate 

Bartlett correction factor Bc.
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3 Simulation Study

In this Chapter, we report results from extensive simulation experiments to evaluate 

the performance of the proposed methods with finite sample sizes. For comparison 

purposes, we carry out simulation based on model (2.1) for empirical likelihood-based 

method and adjusted empirical likelihood-based method since Su and Liang (2009) 

already proved that empirical likelihood-based method is better than other methods. 

To improve our proposed method, we also carry out Bartlett corrected AEL-based 

method in our simulation. The coverage probability of the true ¡3* was reported by 

using EL method, AEL method, and the Bartlett corrected AEL method.

We set the confidence interval to be 95% with type-I error a = 0.05 and ran 

each simulation 1000 times, with the results being the percentage of confidence inter­

vals derived from EL, AEL and bartlet corrected AEL covering true /3* of the 1000 

simulations. We then compare the performance of the proposed test with empirical 

likelihood-based test.

Example 1. X\  and X 2 are generated as follows. Let U\ ~  U( 1,10) and u2 ~  

U{ 1,10), then X\ — Exp(wi/4) + ei and X 2 =  Exp(n2/4) + e2, where 6j ~  7V(0, 4). 

Let Yj = 1 +  Xj/3j + £j, where £j are the error terms with a mean of 0 and a variance 

of (Tj. Sample sizes are ri\ = 15 and n2 = 15. We conduct simulations, for seven 

different 5 , the true difference between (3\ and /32 : 0, 0.05, 0.10, 0.15, 0.20, 0.25, 

0.30. We consider the following ten cases for the error terms £j. Cases 1 - 5  are 

having equal variances o\ = o\ =  1 for two independent errors and cases 6 - 1 0  are 

having different variances, o\ — 1 and a\ = 5.

Case 1: E\ and e2 independently follow Ar(0, cr|),j =  1, 2.0̂  — a\ = 1. This is to 

check the proposed method under normality assumption.

Case 2: £i and e2 independently follow U(—1, l)\/3 (ij,j — 1, 2.erf = a\ — 1. This
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is to check the proposed test when the normal distribution assumption is violated.

Case 3: gq and £2 independently follow (xq) -  1) * cy, j  = 1, 2.o\ = o\ — 1. This 

is to check the proposed test when errors follow \ 2 distribution.

Case 4: eq and e2 independently follow t(5) * oj, j  = 1,2.erf = o\ — 1. This is to 

check the proposed test when errors follow t distribution.

Case 5: gq and £2 independently follow (Exp(l) — 1) * or  j  =  1,2.af = cr\ = 1. 

This is to check the proposed test when errors follow Uxp distribution.

Case 6: £\ and £2 independently follow N (0,0?) for j  = 1, 2. oq and cr2 are 

different with u\ = 1 and cr.f — 5. This design is to check the performance of the 

proposed test when the variances of two errors are unequal.

Case 7: gq and c2 independently follow U(—1, l)y/S&j,j = 1,2. af — 1 and o\ — 5.

Case 8: eq and independently follow (x ^  -  1) * = 1,2. af = 1 and <j \ — 5.

Case 9: £i and £2 independently follow f(5) * aj , j  = 1, 2. o\ =  1 and ccj =  5.

Case 10: £\ and £2 independently follow (Exp(l) — 1) * crr j  — 1, 2. o\ — 1 and 

o\ =  5.

Table 1 lists the coverage probability for empirical likelihood-based test, adjusted 

empirical likelihood-based test and Bartlett corrected AEL-based test under different 

error cases 1 -5  with equal variance cr\ = o\ — 1. Under the equal variances condition 

and small sample sizes, we observe that AEL shows higher coverage probability than 

EL method, but both methods are not close to the nominal level. The Bartlett 

corrected AEL method further improves the AEL coverage probability and is closer 

to the nominal 95% level.

Table 2 lists the simulation results under different variances of the model error for 

cases 6 - 10. Here af = 1 and = 5. From Table 2, it is observed that the adjusted 

empirical likelihood-based test has higher coverage probabilities. Bartlett corrected 

AEL coverage probability further improved the AEL coverage probability and are the
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Table 1: Simulation results of coverage probability for rq = n2 = 15, cr\ = o\ = 1. 
EL-empirical likelihood based test; AEL- adjusted empirical likelihood based test; 
BcAEL-Bartlett corrected adjusted empirical likelihood.
Case Method

0 0.05 0.1
A*

0.15 0.2 0.25 0.3
1-Normal EL 0.880 0.896 0.877 0.891 0.883 0.884 0.868

AEL 0.906 0.922 0.903 0.914 0.906 0.902 0.892
BcAEL 0.929 0.942 0.947 0.935 0.933 0.933 0.915

2-Uniform EL 0.902 0.901 0.888 0.900 0.899 0.915 0.908
AEL 0.921 0.919 0.915 0.923 0.916 0.933 0.930
BcAEL 0.941 0.938 0.950 0.946 0.933 0.949 0.942

3-Chisquare EL 0.870 0.867 0.856 0.866 0.855 0.861 0.837
AEL 0.898 0.901 0.892 0.904 0.876 0.891 0.877
BcAEL 0.953 0.951 0.940 0.940 0.928 0.958 0.932

4-t EL 0.873 0.889 0.859 0.883 0.885 0.864 0.900
AEL 0.899 0.910 0.885 0.912 0.912 0.891 0.923
BcAEL 0.935 0.938 0.939 0.946 0.952 0.931 0.951

5-Exponential EL 0.874 0.865 0.867 0.857 0.859 0.857 0.848
AEL 0.894 0.898 0.889 0.883 0.894 0.886 0.876
BcAEL 0.943 0.934 0.948 0.939 0.930 0.925 0.925

closest to nominal level among the three methods for all error cases and true (3{.

Example 2. We generated X \ and X 2 same as Example 1 but with different 

sample size rq — 25 and n2 = 15. We considered all the ten error cases in Example 1.

Table 3 lists the coverage probability for empirical likelihood-based test, adjusted 

empirical likelihood-based test and Bartlett corrected AEL-based test with different 

sample size, under different error cases 1 -5  with equal variance af — cr$ = 1. Similar 

results were observed, Bartlett corrected AEL method gave the much better coverage 

probability comparing to AEL and EL methods.

Table 4 lists the similar simulation results under respective different error cases 

6 - 1 0  but with g\ — 1 and o\ — 5, when sample sizes are different ?q — 25 and 

n2 = 15. Again, simulation results shows that AEL performs better than EL but not 

is as good as Be AEL. Also we notice that the performance of the Bartlett corrected
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Table 2: Simulation results of coverage probability for n\ = n2 = 15, o\ = 1, g\ =  5. 
EL-empirical likelihood based test; AEL- adjusted empirical likelihood based test; 
BcAEL-Bartlett corrected adjusted empirical likelihood.___________
Case Method

0 0.05 0.1
A*

0.15 0.2 0.25 0.3
6-Normal EL 0.885 0.884 0.858 0.890 0.934 0.927 0.926

AEL 0.907 0.905 0.881 0.907 0.946 0.944 0.942
BcAEL 0.926 0.934 0.923 0.933 0.967 0.956 0.959

7-Uniform EL 0.917 0.900 0.870 0.893 0.938 0.931 0.915
AEL 0.929 0.916 0.887 0.913 0.958 0.947 0.936
BcAEL 0.939 0.941 0.916 0.937 0.968 0.962 0.951

8-Chisquare EL 0.846 0.844 0.817 0.840 0.892 0.874 0.877
AEL 0.877 0.870 0.843 0.869 0.913 0.903 0.904
BcAEL 0.918 0.902 0.880 0.891 0.955 0.944 0.948

9-t EL 0.904 0.893 0.877 0.874 0.900 0.910 0.905
AEL 0.922 0.913 0.899 0.904 0.921 0.934 0.930
BcAEL 0.944 0.949 0.942 0.944 0.938 0.962 0.955

10-Exponential EL 0.871 0.870 0.842 0.861 0.899 0.904 0.879
AEL 0.896 0.891 0.875 0.884 0.919 0.920 0.903
BcAEL 0.921 0.922 0.913 0.909 0.954 0.952 0.945

method seems to work better when the error distribution is symmetric than skewed 

distribution. This may be due to the different sample sizes (both are small) from the 

two models in this simulation setting.

Example 3. We generated X\ and X 2 same as Example 1 but with larger sample 

size 721 = 50 and n2 = 30. We considered all the ten error cases in Example 1.

Table 5 lists the coverage probability for empirical likelihood-based test, adjusted 

empirical likelihood-based test and Bartlett corrected AEL-based test with different 

but larger sample size, under different error cases 1 - 5  with equal variance <j \ —

a2 = I-

Table 6 lists the similar simulation results under respective different error cases 6 

-10 but with o\ = 1 and o\ = 5.

Simulation results in Table 5 and Table 6 show that AEL performs better than
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Table 3: Simulation results of coverage probability for n\ — 25, n2 = 15, o\ — o\ =  1. 
EL-empirical likelihood based test; AEL- adjusted empirical likelihood based test; 
BcAEL-Bartlett corrected adjusted empirical likelihood.

Case Method
0 0.05 0.1

A*
0.15 0.2 0.25 0.3

1-Normal EL 0.896 0.866 0.887 0.896 0.901 0.858 0.905
AEL 0.918 0.893 0.914 0.924 0.916 0.883 0.926
BcAEL 0.953 0.908 0.939 0.948 0.937 0.929 0.948

2-Uniform EL 0.895 0.906 0.904 0.885 0.921 0.883 0.899
AEL 0.908 0.924 0.920 0.915 0.933 0.901 0.911
BcAEL 0.929 0.937 0.937 0.934 0.932 0.931 0.934

3-Chisquare EL 0.844 0.869 0.867 0.873 0.869 0.860 0.861
AEL 0.872 0.892 0.884 0.895 0.891 0.894 0.887
BcAEL 0.910 0.937 0.932 0.938 0.926 0.945 0.926

4-t EL 0.895 0.891 0.886 0.886 0.901 0.895 0.894
AEL 0.912 0.916 0.904 0.896 0.917 0.916 0.912
BcAEL 0.947 0.943 0.940 0.924 0.937 0.951 0.948

5-Exponential EL 0.878 0.865 0.857 0.863 0.868 0.850 0.857
AEL 0.901 0.885 0.885 0.885 0.891 0.875 0.883
BcAEL 0.931 0.939 0.920 0.930 0.917 0.925 0.928

EL but not as good as Be AEL. In addition, when the sample size difference is larger, 

the Bartlett corrected AEL coverage probability is a little off from the nominal level.

Based on the simulation results with small samples, it can be seen that AEL-based 

method improves the coverage probability over EL method and Bartlett correction 

further improves the coverage probability of AEL method.

We also noticed that both the AEL method and BcAEL method have the coverage 

probability closer to nominal level when the error has a symmetric distribution such as 

Normal distribution, Uniform distribution and t distribution than the cases when the 

error has a skewed distribution like chi-square and exponential distributions. Also the 

proposed method perform better when the two sample sizes are similar. This could 

be due to the small sample sizes in our simulation experiments.

Overall under all the error distribution in our simulation, combined with different
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Table 4: Simulation results of coverage probability for n\ = 25, n2 = 15, o\ = 1, o\ =  
5. EL-empirical likelihood based test; AEL- adjusted empirical likelihood based test; 
BcAEL-Bartlett corrected adjusted empirical likelihood.________
Case Method

0 0.05 0.1
f t

0.15 0.2 0.25 0.3
6-Normal EL 0.883 0.890 0.856 0.886 0.896 0.899 0.882

AEL 0.901 0.908 0.874 0.899 0.915 0.910 0.903
BcAEL 0.934 0.937 0.925 0.928 0.942 0.939 0.928

7-Uniform EL 0.893 0.911 0.845 0.886 0.907 0.914 0.922
AEL 0.911 0.925 0.861 0.902 0.923 0.929 0.930
BcAEL 0.928 0.943 0.901 0.926 0.936 0.950 0.951

8-Chisquare EL 0.856 0.820 0.792 0.833 0.856 0.858 0.851
AEL 0.870 0.844 0.813 0.856 0.876 0.871 0.868
BcAEL 0.899 0.874 0.855 0.888 0.912 0.902 0.903

9-t EL 0.889 0.892 0.836 0.882 0.872 0.897 0.889
AEL 0.902 0.907 0.861 0.907 0.896 0.912 0.902
BcAEL 0.942 0.947 0.932 0.942 0.930 0.949 0.938

10-Exponential EL 0.857 0.871 0.802 0.856 0.880 0.877 0.872
AEL 0.878 0.880 0.822 0.876 0.902 0.893 0.890
BcAEL 0.898 0.910 0.877 0.903 0.924 0.920 0.915

sample sizes or equal sample sizes, equal variances or unequal variances, the BcAEL 

gives the best coverage probability. Thus we recommend the Bartlett corrected AEL 

method in these situations.
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Table 5: Simulation results of coverage probability for n\ — 50, n2 — 30, o\ — o\ — 1. 
EL-empirical likelihood based test; AEL- adjusted empirical likelihood based test; 
BcAEL-Bartlett corrected adjusted empirical likelihood.
Case Method

0 0.05 0.1
PI

0.15 0.2 0.25 0.3
1-Normal EL 0.904 0.917 0.888 0.912 0.905 0.907 0.912

AEL 0.913 0.930 0.901 0.919 0.911 0.916 0.928
BcAEL 0.925 0.941 0.923 0.936 0.923 0.932 0.934

2-Uniform EL 0.904 0.923 0.919 0.901 0.903 0.910 0.898
AEL 0.916 0.932 0.930 0.911 0.930 0.920 0.908
BcAEL 0.928 0.942 0.936 0.930 0.943 0.933 0.915

3-Chisquare EL 0.876 0.887 0.864 0.875 0.890 0.889 0.878
AEL 0.888 0.895 0.883 0.891 0.898 0.901 0.896
BcAEL 0.918 0.935 0.910 0.920 0.924 0.927 0.926

4-t EL 0.907 0.899 0.912 0.915 0.907 0.891 0.892
AEL 0.921 0.908 0.919 0.920 0.914 0.905 0.904
BcAEL 0.942 0.928 0.937 0.938 0.932 0.930 0.923

5-Exponential EL 0.876 0.873 0.902 0.871 0.885 0.875 0.877
AEL 0.883 0.885 0.910 0.882 0.890 0.885 0.890
BcAEL 0.907 0.913 0.932 0.904 0.918 0.916 0.909

Table 6: Simulation results of coverage probability for n\ = 50, n2 = 30, o\ — 1, cr.f = 
5. EL-empirical likelihood based test; AEL- adjusted empirical likelihood based test; 
BcAEL-Bartlett corrected adjusted empirical likelihood.____________________
Case Method

0 0.05 0.1
Pt

0.15 0.2 0.25 0.3
6-Normal EL 0.896 0.897 0.912 0.925 0.904 0.914 0.914

AEL 0.910 0.906 0.918 0.931 0.912 0.919 0.923
BcAEL 0.939 0.937 0.939 0.951 0.929 0.939 0.939

7-Uniform EL 0.915 0.914 0.925 0.924 0.917 0.904 0.921
AEL 0.923 0.926 0.934 0.930 0.926 0.910 0.930
BcAEL 0.940 0.948 0.947 0.946 0.935 0.932 0.944

8-Chisquare EL 0.874 0.855 0.870 0.855 0.885 0.881 0.882
AEL 0.883 0.867 0.885 0.867 0.896 0.888 0.888
BcAEL 0.901 0.896 0.914 0.899 0.919 0.908 0.909

9-t EL 0.897 0.907 0.919 0.899 0.904 0.908 0.897
AEL 0.903 0.923 0.929 0.908 0.912 0.917 0.908
BcAEL 0.937 0.952 0.950 0.932 0.936 0.937 0.940

10-Exponential EL 0.865 0.860 0.894 0.897 0.879 0.900 0.903
AEL 0.870 0.870 0.905 0.908 0.886 0.909 0.915
BcAEL 0.906 0.906 0.931 0.926 0.902 0.925 0.931
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4 Drug Study

In this chapter, we present an illustrative analysis with a real-data example from 

Hocking (2003) which is a medical experiment involving four drugs to measure their 

effects on the response y to a particular stimulus. Since the individuals in this study 

may not be identical in their responses to the drugs, their response x to the stimulus

prior to taking the drug was measured. For each drug, there are 9 observations (x, y).
/

Figure 4 shows these records, together with the linear model fitting of each drug. It 

can be seen that squares, octagons, triangles, and diamonds indicate the observed 

values with regard to drugs A, B, C, D respectively and the solid, slashed, dotted, 

and broken-dotted lines correspond to the linear model fitting for drugs A, B, C, and 

D respectively.

Be observing y values in the four treatments, one may see that the treatment 

effects in Groups A and C are stronger than those in Groups B and D. We are 

interested in whether these effects are significant and how we can provide a statistical 

justification for them.

We therefore fit the model yij =  oq + Xij(3j and apply the three tests to this 

data set for a pair comparison. We obtain the linear regression, empirical likelihood- 

based, adjusted empirical likelihood-based and Bartlett corrected adjusted empirical 

likeliliood-based confidence intervals for the difference of the treatment effects for 

each pair in Table 7.

These result shown in Table 7 indicate that the differences between drug A and 

B, A and D, C and D are statistically significant since 0 is not included in the 95% 

confidence interval. This result is consistent with Figure 4 and Su and Liang’s (2009) 

paper result. Although the results from the three tests are all the same, the results 

from the Bartlett corrected AEL should be considered more reliable than the others
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Dose level

Figure 4: Data from a drug study. Responses of treatment effect against dose level 
for four treatment agents: A(square), B(circle), C(triangle), D(diamond), and the 
associated four linear model fittings.
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Table 7: Confidence interval of comparing treatment effects against dose level for 
four treatment using empirical likelihood test (EL), adjusted empirical likelihood test 
(AEL) and Bartlett corrected AEL method.

Confidence
Interval EL

Test
AEL BcAEL

A vs B (0.061 0.266) (0.050 0.277) (0.039 0.289)
A vs C (-0.130 0.183) (-0.155 0.207) (-0.163 0.216)
A vs D (0.078 0.268) (0.062 0.279) (0.062 0.294)
B vs C (-0.295 0.008) (-0.309 0.008) (-0.331 0.008)
B vs D (-0.040 0.098) (-0.048 0.109) (-0.052 0.112)
C vs D (0.041 0.323) (0.041 0.343) (0.041 0.363)

based on our simulation results.
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5 Discussion and Conclusion

In this thesis, we derived adjusted empirical likelihood-based method and Bartlett cor­

rection of AEL-based method for comparing treatment effects by testing equality of 

coefficients in linear regression models. Our simulation results indicate that the con­

fidence intervals constructed by the adjusted empirical likelihood have coverage prob­

abilities comparable to or more accurate than the original empirical likelihood. And 

our proposed Bartlett corrected adjusted empirical likelihood-based method shows 

the best performance.

We have shown that the BcAEL method for comparison of treatment effects in a 

linear model setting is reliable in detecting the difference of the parameters of interest. 

The computation of the proposed test is simple, and the theoretical results do not 

need any distribution assumption nor the homoscedasticity assumption. This makes 

it applicable to real studies in detecting and comparing two treatment effects.

Bartlett correction factor can also be estimate from bootstrap. In the future, we 

can use the bootstrap to get the factor Bc and compare with the estimate recom­

mended by Chen and Liu (2010) to find out a better performance.

In this thesis, we only studied the case of linear models. In the future, we may 

consider two partially linear models, both of which take the form

Y  = X T/3 + g(Z) +  e,

where g{.) is an unknown smoothing function and Z is a covariate, which nonlinearly 

contributes to Y . We may use the same idea to study the difference between two 

linear parameters(/3s).
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6 Appendix

Proof of Theorem 1

Suppose X* = 7o + X%ji + ci, which along with (2.4) indicates that Y  =  uq + 

XJzq +€i(3\ +£. Let 7  ̂ and vk be the least squares estimators of and vk for k = 0,1, 

respectively. Then E (X * |X2*) = y0 + X27i and E (Y |X2) = v0 +

Let 0, =  {X{, -  M x t t X ^ V l y i  -  m \X * 2i) -  {X{, -  E i X ^ X ^ m )  and 7  =

{**< ~ E(X{i\X2l*)}T[Yl -  E(Yt |XJ) -  {X-u -  E (X ’u \X ’2i)}0;} for i =  1.....n. A

standard simplification as in Owen (2001) yields that

Pi = n ( l  +  aTiA) ’

for z = 1 , n, where a is the solution of the equation

E t
i= 1

a
+ aTQ, = 0,

A direct calculation yields that

(A.l)

(A.2)

a  =  (Xu  -  X u f l f r  -  Yi) -  (Xu  -  Xu)Pl  +  ( E  -  X u ) P*]

+Xu[(Yi -  Yi) -  (Xu ~ Xu)p;  + (Yi -  X u)PI]

= + 0p(l). (A.3)

Mimicking the proof Theorem 3.2 of Owen (2001), we have ||a|| =  Op{n~1̂ 2) 

and m ax i^n ll^H  = op(nl/2). By (A.3), we have maa;i<»^n||i2j|| ^  ||£A|| + op( 1) = 

op(n1/2).
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Using the same argument as the proof of Theorem 4 in Liang et al.(2007), we have

n n

-2  log Rn{(3l) = y ^ Q i Q j a  + op( 1) = ^ ( a r ^ ) 2 + op( 1)
i=1 i=l

n  n  n

i= 1 i= 1 i=l

To show Theorem 1. We first show that n ^l/2 YllLi and n ^ 2 E S u  have the 

same limiting normal distribution, 2 J3”=n +1 and n^1/2 Y^=n +i ^  have the 

same limiting normal distribution, nj"1 f i^ F  and nE  ^ i^F  have the same

limiting value, and n21 E iSii+i ^h^F and n21 E lS ^+ i ^¿^F have the same limiting 

value. Without loss of generality, we will prove it for the first group, that is, for 

i = 1,..., rti. The second group, ¿ =  ni + l,...,n  +  l, can be proved similarly.

Note that — f\  can be decomposed as:

x m m \ X * 2l) -  E(Yi\Xi) -  {E(x u\x i )  -  E(X*U\Xi)}Pl] 

-{MXu\X*2l) -  E(X*U\ x ; j } T[E(Yi\Xi) -  E{Yi\Xi) -  {E(X'U\X*2i) -  E(X*U|X J)}« ]

H M x i i  |x j )  -  ^ W i|x j i)}T(yi -  l r ^ ) -  (a .4)

Note that
1 ni

—  ŶKHEWXI) -  E{Yi\
V"i i=i

n i   ̂ n i

=  \Am(z>i -  ^ l)— Y 'e i iX j i  +  VnT(A) -  ^o)— y F eii-n\ “  ni “2=1 2=1

The right hand side is of order op(l) since yTIKui — ^i) = Op(l) for k —

0 ,1, l / n i  en X 2i = op(l ) , and l/ni E"=i eH = oP(l).
It follows that n~l/2 E S i  -  £(U|X*Z) =  op(l).
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In the same way, we obtain the following statements.

'ni *J 2 x ;? { E (X u \x ; i) -  e=
i= 1

n  i

—  X m W P  -  E ( x i i \ x ; i) }T { E ( Y i \ x ;i)-  = 0p(i). 
V ” 1 ¿=1

^ n i

-  X ^ W ^ )  -  £ ( x 1*<|jf j)} r {^ (jfi1|x i )  -  = op(i).
2=1

n i
X i ^ W i T O  -  £'(X1*j|X2*i)}7yi = Op(l).
?'=1

ni
X ^ W ^ * ) -  E(X*U\X-%= Op(l).
2=1

These results imply that n ^ l/2 ^ * and 1/2 S S i  asymptotically have the

same normal distribution, and n [ l XaEi and ^ i~ l  Xa=i have the same 

limiting value.

In addition, we know that (r?71/2 ^¿)T(n f1 ^¿^D (n71/2 Z H i con­

verges to x l  in distribution. It follows that

ni n i n  i

( « 1 1/2 X 1 X]  1/2 XI
2=1 2=1 2=1

converges to in distribution. 

Furthermore, we have

v X J _ y ' n . + v ^ _ L  y
. /T fw: 2-^ ./T /77Tv ^ t r ’" C " v ^ t r  c ^ v ^ !=ni+1

which converges to a summand of two independent normal random variables with

two weights, that is, \ fiZ \  + v7! — £Z2, where £ = lim^oo n i/n . So we know that
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7^ E?=i converges to a normal distribution, N(Q, E), where E =  cov{Vt{). 

On the other hand,

-  E * W  = — — 'V ù i ù J  + — —  V  ù tù j  ->• +  (l -  o s  =  s .n ¿7^ n rii ^  n rin ^  1 v '

m n2 1

i — 1
n ni 2=1 n n2 z=ni + l

As a consequence, we conclude that

n n  n

( ” _ 1 /2  E  ^ ) r ( re' ' 1 E ) ( « _ 1 /2  E  ~  Xp-
2=1 2=1 2=1

Since n_1//2 ]C”=1 12* and n-1/2 ]C™=1 have the same limiting normal distribution, 

and n~1 i and n_1 ]C”=1 have the same limiting value.

With the dehnition of <&(/?) = (E -  X*^*) for i = 1,2, ...,n and gn+1(/3) = 

7 ■ 2^n E L i  3b we can follow the same procedure of proof in Chen, Variyath and 

Bovas (2008) to show that the — 2\ogHn((3{) converges to y2 as n —> oo. The proof 

is thus complete.
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