
Montclair State University Montclair State University 

Montclair State University Digital Montclair State University Digital 

Commons Commons 

Theses, Dissertations and Culminating Projects 

5-2020 

Control of Secondary Extinctions in Stochastic Food Webs Control of Secondary Extinctions in Stochastic Food Webs 

Dunia M. Fernandez 
Montclair State University 

Follow this and additional works at: https://digitalcommons.montclair.edu/etd 

 Part of the Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Fernandez, Dunia M., "Control of Secondary Extinctions in Stochastic Food Webs" (2020). Theses, 
Dissertations and Culminating Projects. 480. 
https://digitalcommons.montclair.edu/etd/480 

This Thesis is brought to you for free and open access by Montclair State University Digital Commons. It has been 
accepted for inclusion in Theses, Dissertations and Culminating Projects by an authorized administrator of 
Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu. 

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.montclair.edu%2Fetd%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/etd/480?utm_source=digitalcommons.montclair.edu%2Fetd%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu


Abstract

Studies on both model-based and empirical food webs have shown that per-
turbations to an ecological community can cause a species to go extinct, often
resulting in the loss of additional species in a cascade of secondary extinctions.
These effects can seriously debilitate a food web and threaten the existence of
an ecosystem. Here, we consider niche model-based food webs with internal
noise and investigate the effects of a control on a secondary extinction cas-
cade triggered by a noise-induced extinction. We show that the forced removal
of a nonbasal species immediately after a primary extinction can extend the
mean time to extinction of individual nonbasal species as well as that of the
complete extinction cascade. An analysis of numerical and statistical results
illustrates the effectiveness of a control in delaying the mean time to extinction
for endangered species in stochastic food webs.
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1 Introduction

For years, one of the main focuses of biological and ecological research has been
to better understand the complex living communities that make up the living world.
Numerous studies have been done, at various scales, in order to accurately capture and
quantify the characteristics and behaviors of different ecological communities [1–3]. In
particular, food webs are of great interest to ecologists. These systems are comprised
of a number of species along with all the observed interaction links and rates [4, 5].
The interconnected network of effects that species have on one another’s populations
is what ecologists aim to encapsulate in what is called a community matrix [6]. These
matrices provide much insight when studying community structure, stability, and
resilience. The question of how these large and complex ecological systems function,
persist, and respond to perturbations remains at the center of many modern scientific
projects.

It is expected that in a perfectly stable, non-noisy, and undisturbed environment,
a theoretical ecological community will thrive and persist, following the laws of its
prescribed dynamics, forever [7]. However, this is not the case for actual systems
found in the real world. It is well known that noise can significantly impact the
behavior of biological systems [8,9]. Stochasticity can arise in these systems in many
different ways, both internally and externally. In particular, noise can present itself
in ecological communities as a result of environmental factors, inter- and intraspecific
competition and interactions, or demography [8, 10]. Different radical events like
climate change, habitat destruction, disease, invasion, and many others often cause
species extinctions within large ecosystems [11–18]. The initial loss of one species in
a food web often triggers a cascade of secondary extinctions, thereby threatening the
overall stability and survival of the ecosystem in question [19,20]. Despite the inherent
robustness of these systems, the extinction of one species can propagate through the
network over time as the system evolves to a new equilibrium, potentially having long-
term devastating effects on the community. The consequences of a single extinction
event are usually unpredictable given the great structural and mechanical complexity
exhibited in ecological communities [19,20]. Such uncertainty poses sizable challenges
to ecosystem management and conservation efforts.

Some studies have been done on the analysis of secondary extinction cascades in
both deterministic and stochastic settings [19], and some have successfully attempted
to implement controls on strictly deterministic food webs [20]. However, no work has
been done to implement and study the success of a control method on a secondary
extinction cascade triggered by a primary noise-induced extinction. Although popu-
lation extinction events are considered rare, it is necessary to study how food webs,
under the influence of noise, respond to species loss and mitigation efforts. Here, we
consider dynamic, synthetic food webs with internal noise that are evolved over time
until a natural extinction occurs and a cascade of secondary extinctions is observed.
We then investigate the effects of forcing the removal of a species immediately after
the primary extinction occurs in order to extend the mean time to extinction of the
rest of the species in the cascade as well as the mean time to extinction for the entire
cascade.
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To investigate the consequences of stochastic primary extinctions and analyze the
effects of different intervention efforts, we generate synthetic food webs and define
the population dynamics of the systems. It is known that the structure of natural
food webs is not arbitrary. In fact, a number of models exist that describe food
web structure with varying degrees of success (cascade [21], niche [22], and nested
hierarchy [23] to name just a few). The accuracy of these models is based on how well
the structure of the resulting model food webs compares to the structure of empirical
food webs, i.e. the resulting food webs have a realistic number of interaction links,
they exhibit a hierarchical structure with different trophic levels, etc. In our studies,
we consider synthetic food webs generated following the niche model framework. Some
of the advantages of using the niche model are that it requires few initial constraints
and that it allows for certain ecological mechanisms like looping and cannibalism to
be present in the webs [22]. The population dynamics of the food webs are described
by the competitive Lotka-Volterra predator-prey model [24–27] which accounts for
species birth/death, self-regulation, and interactions with other species.

In this work, we present a novel investigation of stochastic extinction and sec-
ondary extinction cascades in food webs. We hope that the findings here illustrate
the importance of considering stochastic dynamics and noise-induced extinctions in
the field of ecology and beyond as it pertains to control and conservation.

2 Generating Model-Based Food Webs

In a real ecological community, both community dynamics and trophic structure are
important. Therefore, it is necessary to consider structural and dynamical models
that offer to explain these properties when attempting to study ecological systems
from a mathematical perspective. The process of modeling and analyzing food web
characteristics and behavior begins with generating synthetic networks with struc-
tures that closely resemble those observed from natural food webs. This means that
the model-based food webs contain both basal and nonbasal species, which are non-
consumers and consumers, respectively; they exhibit a realistic balance of basal, in-
termediate, and top-level predators, distributed into different trophic levels; and the
interactions and mechanisms present are ecologically sound. Then, it is necessary to
determine the population dynamics of the food webs. The deterministic community
dynamics are modeled using differential equations that capture gain-loss processes
like growth and death, as well as species gain and loss from predation. The following
sections will discuss how the static network structure of a synthetic food web is gen-
erated following the niche model as well as how the competitive Lotka-Volterra model
is used to make qualitative predictions about the long-term behavior of an ecological
system. The need for deterministic and stochastic models, as well as the advantages
and disadvantages of both, will also be discussed.
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2.1 The Niche Model

Our initial synthetic food webs are constructed according to the rules of the niche
model. In order to generate the network structure, we first determine the number
of species in the food web S and the empirical directed connectance C, defined as
the estimated fraction of all possible directed interaction (predation) links realized in
the food web simulations. For any food web without restrictions, the total number
of possible links is S2. In all of our simulations, the initial construction of the food
web using the niche model uses S = 50 and C = 0.2. This choice of C is within
the range of connectance observed for real food webs, and a starting community size
of 50 ensures that the resulting persisting webs (discussed in Section 2.2.1) have 10-
15 species. Every species in the network is then assigned a niche value, ni, drawn
uniformly on the interval [0, 1]. These values serve to hierarchically position all species
on a one-dimensional axis from 0 to 1.

Figure 1: Diagram of the niche model (as presented by Williams and Martinez [22]).
In this example, inverted triangles represent species, and species j, standing in its
niche position nj, is the only prey of species i.

All species i prey on all species j whose positions on the niche axis, nj, fall inside
of i’s feeding range. We denote the width of this range ri and compute ri = xni,
where x ∈ [0, 1] is randomly drawn from a beta distribution with an expected value
equal to 2C; in our simulations E[X] = 0.4. We chose α = 1 and β = 1.5 to be
the shape parameter values of the beta distribution in order to obtain the desired
expected value. To guarantee that the number of basal species in the web is greater
than or equal to unity, ri = 0 is assigned to the species with the smallest niche
value. The location of every feeding region is then determined by a center value, ci,
drawn uniformly from the interval [ri/2, ni]; this choice of interval allows for certain
ecological interactions like cannibalism and looping to be present in our food webs
though it is far more likely that a species will consume others lower in the niche
hierarchy. Figure 1 shows a general example of a niche model diagram.

In order to simplify the process of generating interaction rates for the predator-
prey equations (discussed later in Section 2.2), we chose to eliminate instances of
mutual predation (species i and j prey upon each other) from our networks. The
direction of predation that remains is randomly selected: two random numbers are
drawn uniformly from (0, 1); the direction corresponding to the largest random num-
ber is kept, the other is removed.

The food webs that result from following the niche model framework are entirely
static. This means that the model does not consider the dynamical aspects of each
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node or those of the network as a whole. Consequently, the resulting initial food
webs are inherently unstable. In order to obtain stable and persisting networks, we
must apply predator-prey dynamics; in this particular case, the competitive Lotka-
Volterra model dynamics. Figure 2 presents an example of one niche model food web
realization.

Figure 2: Realization of a niche model-based food web of 50 species.

2.2 Competitive Lotka-Volterra Equations

The population dynamics of our food webs are modeled by the competitive Lotka-
Volterra equations. This model captures the population dynamics of species compet-
ing for common resources and is widely used to describe the dynamics of predator-prey
systems. The equations are expressed as:

dXi

dt
= Xi

(
bi +

S∑
j=1

aijXj

)
, for i = 1, ..., S. (1)

For a system of S species, the population densities (number of individuals per
unit of area) of all species in the community are denoted by the state vector X =
(X1, ..., XS), where each density Xi is drawn uniformly on (0, 1). The first term on
the right-hand side of (1) accounts for natural growth (death) if i is basal (nonbasal);
here, bi represents the positive birth rate for basal species and negative death rate for
all nonbasal species, and it is drawn uniformly on (0, 1) when i is basal, and (−1, 0)
otherwise. In the summation in (1), the self-regulating (intraspecific competition,
cannibalism, etc.) term is accounted for when i = j and the self-regulation rate aii is
a uniformly selected value in (−1, 0). Similarly, all interactions (gain from predation
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and loss from being preyed upon) with other species in the system are considered and
the predator-prey interaction rates are denoted aij, i 6= j. The values of these rates are
determined according to the following constraints; if j feeds on i, then aij is randomly
selected from a uniform distribution in the interval (−1, 0) and aji = −eaij, where e
is the efficiency parameter, a measure of the amount of preys required to produce a
predator. In our simulations we define e = 0.1. If species i and species j do not share
any direct link between them, then aij = aji = 0. The matrix A = a(ij) represents
all of the interactions and feeding relations present in the food web.

2.2.1 Deterministically Stable Food Webs

As mentioned previously, the large (50 species) food webs that result from the niche
model without mutual predation are dynamically unstable. In order to obtain smaller
but deterministically stable webs, we apply the competitive Lotka-Volterra dynamics
to the niche model network and evolve the system over a period of time (our simula-
tions evolve the system until time t = 1000). Many of the species will die off and the
resulting small stable food webs will have anywhere from 10-15 species.

In our deterministic simulations, we consider a population density minimum thresh-
old of 10−3. Populations that fall below the threshold immediately go extinct. We let
the vector of densities X* = (X∗

1 , ..., X
∗
S∗) denote the equilibrium state of the smaller

webs where S∗ is the number of species remaining in the stable system. These densities
will be used for the initial conditions in the deterministic and stochastic simulations
discussed later in this thesis. Figure 3 shows the stable food web of 12 species that
results from applying the competitive Lotka-Volterra dynamics onto the 50-species
network shown in Figure 2.

Figure 3: Persisting food web complete with a top predator (blue), nonbasal species
(red), and basal species (green).
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2.3 Deterministic versus Stochastic Models

To mathematically model the dynamics of an ecological community, there are two
broad approaches that one can consider. The traditional approach, and the one
used by most ecologists and mathematicians over many years, is a deterministic ap-
proach. A deterministic predator-prey model, specifically the competitive Lotka-
Volterra model, is given by a finite set of first-order nonlinear differential equations
whose solution determines the exact state of the community over time. However,
food webs existing in the real world are constantly influenced by noise. Hence, there
is a need for a different approach which is a stochastic approach. For internal noise,
which is inherent in the food web itself and is caused by the random interactions be-
tween individuals and random natural birth and death events, the stochastic model
consists of a very large (possibly infinite) set of differential equations, known as the
master equation, that gives the probability of the system having a particular number
of individuals for each species at any given time [8].

In the deterministic model, a large finite population is comprised of different
compartments, each one representing a species group in the food web. The population
size or density in each species compartment changes over time, deterministically,
according to the birth/death and interaction rates and choice of initial conditions.
Because there is no randomness accounted for in the deterministic model, for any
prescribed set of parameter values and initial conditions, the solution will be the
same every time the equations are solved. If the initial conditions of the system are
close enough to a non-extinct equilibrium state, then the community will persist. In
other words, in a deterministic setting, all of the species present at the start will
coexist in the long term as long as no species is removed.

Due to the stability of the coexisting equilibrium state, in the deterministic ap-
proach there is no chance for a species to go extinct. However, species extinctions are
often observed in real-life ecosystems, and in order to capture these extinction events
mathematically, we must consider a stochastic model that takes into account the ran-
domness and noise in the ecological system. The internal noise, which is captured in
the stochastic model, often times can lead to a large and rare fluctuation that causes
a certain species to go extinct. These types of extinctions are commonly referred to
as noise-induced or natural extinctions [8].

Stochastic models involve random processes, and therefore the outcomes are un-
predictable. In this approach, a single set of parameters and initial conditions will
lead to a wide range of different outcomes upon observing a number of realizations
of the system. In order to properly study the effects of stochasticity on food web
modeling, it is necessary to consider a statistical framework for analyzing the results
of the stochastic model. A statistic of particular interest in these stochastic food web
models is the mean time to extinction (MTE) of a species. In the results presented
here, the MTE is found by averaging the extinction times of a species over a number
of noise realizations.
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3 Stochastic Modeling

It is possible to perform a theoretical analysis for the simplest stochastic problems
in order to obtain a solution. Often times, however, stochastic models are far too
complex and it becomes impossible to derive an analytical solution. To overcome
this, we must turn to numerical simulations of the stochastic systems in order to
perform a statistical analysis and gain insight to the system’s underlying behavior.
The following sections detail a brief presentation of the theoretical framework along
with the numerical simulation algorithm and studies, which make up the bulk of this
work.

3.1 General Theory and Master Equation

In order to study the effects of internal noise on a population, it is necessary to
consider a stochastic model. Given that the transitions between states are short and
uncorrelated, then we can describe the probability evolution of the system, which is
a Markov process, by a master equation.

The time evolution of ρ(X, t), the probability of the system taking on a particular
state X at a given time t, is expressed as:

dρ(X, t)

dt
=
∑
r

[W (X − r; r)ρ(X − r, t)−W (X; r)ρ(X, t)], (2)

where W (X; r) is the transition rate associated with the event of transitioning from
state X to X + r, with r a positive or negative integer. In our model, X indicates
the number of individuals present for a certain species at a particular time, and all of
the transitions are single-step transitions. Hence, the increment r only takes on the
values of ±1.

The stochastic model we consider fully characterizes the competitive Lotka-Volterra
model that accounts for random noise. The model captures interactions between the
species as stochastic transitions that occur at specified transition rates. Each of these
transitions represents a random event (birth, predation, self-regulation, etc.) that
can occur in the population. Table 1 quantifies the possible transition events and
associated rates.

Event W(X;r)

Birth/death W (Xi;±1) = | ± bi|Xi

Self-regulation W (Xi;−1) = |aii|X2
i

Prey death from predation W (Xi;−1) = |aij|XiXj

Predator growth from predation W (Xj; +1) = −eaijXiXj = ajiXiXj

Table 1: Stochastic predator-prey population model events and associated transition
rates.
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3.2 The Individual-Based Stochastic Predator-Prey Model

In taking a stochastic approach to modeling food web dynamics, we deal with a finite
population that occupies a finite area which we will denote by Ω. The number of
individuals in each species compartment at any time is given by the state vector
X̂ = (X̂1, ..., X̂S∗). The simulation of a single stochastic realization starts with the
stable food web community at equilibrium. In other words, the initial conditions of
the system is taken to be the floor value of ΩX*, where X* is the vector of steady
state population densities in the deterministic setting.

In our simulations, Ω = 103 (unit of area). For the stochastic model, the inter-
action rates in matrix A must be scaled accordingly so that the interaction rates of
the food web community contained in a finite area are defined by the scaled matrix
Â = A/Ω.

The stochastic realizations of the community dynamics are simulated until a pri-
mary extinction is observed along with any resulting secondary extinctions. In our
work, the primary extinction occurs naturally as opposed to as a result of interven-
tion (forced removal). Given that the starting food web is persistent in a strictly
deterministic setting (all species are expected to coexist for an indefinite amount of
time), we know that the primary extinction is entirely noise-induced. Any extinctions
observed after the first extinction are either noise-induced rare events or direct results
of the deterministic predator-prey dynamics. However, the distinction is not clear.

It is important to note that in these simulations, a species is considered effectively
extinct when only a single individual is left in its group, i.e. X̂i = 1. This decision is
made based on the notion that a single individual cannot reproduce on its own. The
numerical simulations are performed using the Gillespie algorithm described in the
following section.

3.2.1 Gillespie Algorithm

To generate a solution of a stochastic equation where the noise is internal to the
system we use the Gillespie algorithm or Gillespie’s stochastic simulation algorithm
(SSA) [28]. The algorithm is a type of Monte Carlo method that was originally pro-
posed by Kendall [29] for simulating birth-death processes and was popularized by
Gillespie [28] as a useful method for simulating chemical reactions based on molecular
collisions. The results of a Gillespie simulation is a stochastic trajectory that repre-
sents an exact sample from the probability function that solves the master equation.
Therefore the method can be used to simulate population dynamics where molecular
collisions are replaced by individual events and interactions including birth, death,
and infection [8].

Let X = (X1, . . . , Xn)T denote the state variables of a system, where Xi provides
the number of individuals in state Xi at time t. The first step of the algorithm is
to initialize the number of individuals in the population compartments X0. For a
given state X of the system, one calculates the transition rates (birth rate, death
rate, contact rate, etc.) denoted as ei(X) for i = 1 . . . l, where l is the number of
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transitions. Thus the sum of all transition rates is given by e0 =
l∑

i=1

ei(X).

Random numbers are generated to determine both the next event to occur as well
as the time at which the next event will occur. One simulates the time τ until the
next transition by drawing from an exponential distribution with mean 1/e0. This
is equivalent to drawing a random number r1 uniformly on (0, 1) and computing
τ = (1/e0) ln (1/r1). During each random time step exactly one event occurs. The
probability of any particular event taking place is equal to its own transition rate
divided by the sum of all transition rates ei(X)/e0. A second random number r2
is drawn uniformly on (0, 1), and it is used to determine the transition event that
occurs. If 0 < r2 < e1(X)/e0, then the first transition occurs; if e1(X)/e0 < r2 <
(e1(X) + e2(X))/e0, then the second transition occurs, and so on. Lastly, both the
time step and the number of individuals in each compartment are updated, and the
process is iterated until the disease goes extinct or until the simulation time has been
exceeded.

4 Control of Secondary Extinction Cascades

It is common to see species extinctions in real food webs, and these sorts of pertur-
bations are mathematically interesting because they often lead to unexpected com-
munity responses. Often times, the loss of a single species in a food web will cause a
secondary extinction cascade. Here, we consider a cascade to be the group of species
that has gone extinct following the very first extinction in the community, and the
cascade is ordered according to the extinction times. This sort of response can sig-
nificantly weaken an ecological community and threaten its existence. Therefore,
we look for effective control mechanisms that can save otherwise threatened species
downstream the cascade.

Previous studies done by others have shown that it is possible to lessen the severity
of secondary extinction cascades in deterministic food webs. There are a number
of compensatory perturbations we can consider: immediate removal, mortality rate
increase, or growth suppression of a target species. Here, we only consider a control
that removes an entire species population.

Note that in this work, we focus on studying control mechanisms in a stochastic
food web. This is a novel approach that requires a statistical analysis to be discussed
later. In the stochastic setting, primary extinctions are noise-induced, not forced, and
a control is implemented in effort to extend the mean time to extinction of individual
nonbasal species as well as the mean time to extinction of the entire cascade. This
is based on the idea that in a stochastic environment, all species is a system will go
extinct if you wait long enough.

4.1 Deterministic Control

We’ve discussed previously that in the deterministic setting, no species in a persistent
food web will go extinct on its own. So, in order to see what the effects of a primary
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extinction will be on the rest of the food web, we must force the removal of a species
in the web. Potential species candidates for the forced primary extinction are those
that eventually go extinct in the secondary cascade. Some removals will trigger a
cascade of secondary extinctions; others will only cause the remaining species to go
to a new non-extinct equilibrium state.

The process of identifying an effective deterministic control goes as follows: (i)
force a nonbasal species to go extinct; (ii) identify the species that vanish in the sec-
ondary extinction cascade; (iii) test the impact of removing a species that eventually
goes extinct in the non-controlled secondary extinction cascade immediately after the
primary extinction. A control is successful if the total number of species lost after
implementing the control (including the control species) is less than the number of
species that go extinct without a control.

4.2 Stochastic Control

In the case of stochastic food webs, the primary extinctions we consider are noise-
induced. Therefore, the random processes that occur in the system are simulated,
employing the Gillespie algorithm, until a natural extinction occurs. It is likely, that
the first extinction will be followed by a series of secondary extinctions that are either
noise-induced or a result of the dynamics. In our food webs, a complete cascade of
extinctions can be captured in a simulation of 8×106 iterations. The remaining basal
species are persisting about a steady state at the end of the computations.

Figure 4 shows the results of the same primary extinction in both the stochastic
and deterministic setting. In the inset of Figure 4a, we see species 41 goes extinct just
before time t = 20, and it is followed by the five other nonbasal species going extinct
after some time. To evaluate the effect of noise on the cascade size and pattern of a
web, we switch to the deterministic setting, where we take the primary noise-induced
extinction in the stochastic simulation and force it to go extinct at the same time in
the deterministic case. For this example, we see that by forcing 41 to go extinct in
the deterministic web, only 45 goes extinct afterwards.

In order to identify the existence of an effective stochastic control, we do the fol-
lowing: (i) simulate the stochastic food web until a noise-induced primary extinction
occurs; (ii) identify the species that go extinct in the secondary extinction cascade
and record the extinction times; (iii) test the impact of removing a species that even-
tually goes extinct in the non-controlled secondary extinction cascade immediately
(at the next time step) after the primary extinction. In the context of this problem,
an effective stochastic control extends the mean time to extinction of every nonbasal
species and the complete secondary cascade.

5 Controlled Stochastic Cascade Results

In order to further understand how these types of systems behave under the influence
of noise and see the effects of noise on extinction events and patterns, we consider
1000 stochastic realizations of the food web dynamics of our example network (see
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(a) Stochastic cascade (b) Deterministic cascade

Figure 4: (a) Introducing random noise to the system triggers a cascade of extinctions.
The initial loss of 41 causes 19, 49, 21, 27 and then 45 to go extinct. (b) In the
deterministic system, the primary removal of 41 causes only 45 to go extinct.

Figure 2 and Table 1). Provided in Table 2 are basic statistics like relative frequency
of each extinction cascade, mean time to extinction (MTE) for the entire cascade,
and MTE for each individual nonbasal species. The 1000 noise realizations resulted
in 23 different extinction cascade patterns; note all patterns begin with the extinction
of either species 19, 41, or 49.

We compute the relative frequency (number of occurrences divided by the number
of realizations) for each cascade and express it as a percentage. We can see that
cascades like type 7, 16, and 19 occurred significantly more often than the rest.
The MTE entered in the fourth column is an average measure of the time it takes
for all nonbasal extinctions to occur for a particular cascade type. This MTE is
found by averaging the times of the final extinction in the cascade, i.e., MTE =
1
k

∑k
i=1 t

finalExt
i , where k is the number of times the cascade occurred in the total

number of realizations. Finally, we calculate the MTE for each individual nonbasal
species in the web, independent of the cascade types, as MTE = 1

N

∑N
i=1 t

ext
i , where

N is the total number of realizations.
These statistical results serve as the foundation for the analysis done on the ex-

tinction cascades that result from the implementation of a control. Table 3 contains
the results of using every nonbasal species other than the primary extinction as a
control. The data is divided so that we first consider a particular primary extinction
(red), and then determine the success of a control (yellow) in extending the MTE of
all other nonbasal species in the web (blue) and the entire cascade (green). The MTE
given in parentheses take into account only the realizations with the corresponding
primary extinction. Each primary extinction, 19, 41, and 49, occurred 571, 19, and
410 times respectively. The entries listed under the rightmost section quantify the
relative change in MTE for the nonbasal species corresponding to the entry’s row
after implementing the column species as a control. For example, when 19 is the
primary extinction in the web, forcing 49 to go extinct significantly reduces the MTE
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of 49 but, we see improvement in the MTE for all other nonbasal species; the MTE
for 21, 27, 41, and 45 increase by 1.68%, 1.06%, 0.43%, and 0.73% respectively, and
the MTE for the entire cascade is extended by 0.75%.

It is necessary to analyze the cascade patterns that result from implementing a
forced secondary extinction. Because some of the nonbasal species are never the sec-
ond species to “naturally” go extinct in the non-controlled realizations, it is expected
that many of the cascade patterns that emerge with control are new. This means that
while there is no known MTE for such type of cascade without control, it is possible
to compare the resulting MTE of the cascade with control to the MTE found for
other choices of control. Tables 4, 5, and 6 contain the relative frequency and MTE
data for the extinction cascades (blue) generated by a particular primary extinction
(red) and choice of forced secondary extinction (yellow).

6 Summary and Remarks

In this study, we have used the well-studied niche model as a framework to generate
synthetic food webs that exhibit a realistic ecological structure. This model allowed
us to capture different predator-prey interactions in our webs, as well as different
ecological mechanisms like cannibalism, looping, etc. We introduced dynamics, pre-
scribed by the widely used competitive Lotka-Volterra equations, to our model-based
networks in order to deterministically predict the behavior of the food webs. Taken
together, both models provide an explanation of structural and dynamical properties
of food webs that are necessary to perform a mathematical analysis of response to
perturbations such as extinction.

To better understand and study the response of food webs with internal noise, we
considered a stochastic approach to food web modeling. In this setting, due to the
high-dimensionality and complexity of the system, it was necessary to approach the
problem from a numerical standpoint. In our stochastic simulations of the food web
dynamics, we observed noise-induced extinctions that were followed by a complete
secondary cascade of extinctions. A statistical analysis allowed us to determine the
MTE for all nonbasal species and extinction cascades. In order to determine the effects
of different controls on the stochastic extinction cascade, we computed a number
of descriptive statistics including percent change in MTE for individuals as well as
complete cascades.

Our proof of concept and analysis provides a foundation for the study of noise-
induced extinction events and cascades in stochastic food webs. The results of our
numerical exploration suggest that effective extinction delay controls do exist for
stochastic extinction cascades in food webs. Our results also provide evidence that
noise plays an important role in food web modeling and it can heavily influence
the stability and behavior of model ecological systems. In the future, we will need
to investigate whether or not there exists an optimal time to implement a species
removal, and we will consider real food web data in order to draw comparisons between
empirical and model-based food webs.
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Type Cascade Relative Frequency MTE Species MTE

1 19-41-21-49-27-45 0.1% 129.11 19 11.65

2 19-41-49-21-27-45 5.6% 137.86 21 43.52

3 19-41-49-21-45-27 0.4% 157.98 27 69.54

4 19-41-49-27-21-45 1.1% 142.06 41 20.09

5 19-49-21-41-27-45 0.6% 135.44 45 142.06

6 19-49-27-41-21-45 0.1% 131.12 49 12.19

7 19-49-41-21-27-45 41.5% 141.96

8 19-49-41-21-45-27 1.9% 119.44

9 19-49-41-27-21-45 5.8% 135.05

10 41-19-49-21-27-45 0.8% 139.58

11 41-19-49-27-21-45 0.1% 142.42

12 41-49-19-21-27-45 0.6% 124.72

13 41-49-19-27-21-45 0.2% 135.54

14 41-49-21-19-27-45 0.2% 158.31

15 49-19-21-41-27-45 0.1% 175.37

16 49-19-41-21-27-45 22.8% 147.63

17 49-19-41-21-45-27 0.9% 123.84

18 49-19-41-27-21-45 3.9% 146.54

19 49-41-19-21-27-45 11.5% 147.00

20 49-41-19-21-45-27 0.2% 122.26

21 49-41-19-27-21-45 1.3% 125.49

22 49-41-21-19-27-45 0.2% 169.58

23 49-41-27-19-21-45 0.1% 157.61

Table 2: Results for 1000 stochastic realizations of the food web dynamics. Table
shows the 23 different types of extinction cascades that occurred along with the
relative frequency and mean time to extinction (MTE) for each. The MTE for each
individual nonbasal species is also given.
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Control (Forced Secondary Extinction)

Primary Extinction (MTE) Nonbasal Species (MTE) 21 27 41 45 49

21 (43.09) -83.80 -0.53 4.66 0.91 1.68

27 (70.03) -1.70 -90.03 -0.91 0.71 1.06

41 (20.09) 0.68 2.95 -65.24 -0.54 0.43

45 (139.47) 0.02 0.25 1.33 -94.99 0.73

49 (13.63) 0.22 0.31 5.50 1.11 -48.79

19
(6.98)

Nonbasal Cascade (140.11) -0.25 -0.21 1.07 -49.04 0.75

19 21 27 45 49

19 (23.86) -26.69 4.07 -8.08 7.92 4.28

21 (41.27) -3.59 -59.58 0.90 10.31 9.41

27 (67.80) 11.79 0.82 -74.21 6.05 6.84

45 (136.58) 6.92 7.89 9.39 -87.20 3.26

49 (20.49) 0.00 -0.02 -0.90 -0.03 -14.66

41
(17.49)

Nonbasal Cascade (136.58) 8.08 8.90 9.39 -46.58 3.26

19 21 27 41 45

19 (17.59) -44.32 2.11 -0.76 0.33 0.75

21 (44.12) -1.26 -77.80 -0.79 1.39 -0.55

27 (68.94) 2.88 2.79 -85.79 3.08 -0.65

41 (20.21) -0.10 0.02 1.56 -51.54 0.13

45 (145.93) -0.37 -0.50 -0.08 -0.82 -93.29

49
(9.80)

Nonbasal Cascade (146.203) -0.37 -0.45 -0.26 -0.54 -52.03

Table 3: Results for the same 1000 noise realizations presented in Table 2 after
implementing various controls (forced secondary extinctions). The entries in the
rightmost section show relative change in MTE (%) for all nonbasal species (excluding
the primary extinction) and the entire nonbasal cascade.
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Primary
Extinction

Control
(Forced Secondary

Extinction)
Cascades

Relative
Frequency

(%)

MTE MTE*
Relative Change

in MTE
(%)

19-21-41-49-27-45 12.08 - 137.53 -

19-21-41-49-45-27 0.53 - 119.35 -

19-21-49-27-41-45 0.18 - 124.28 -

19-21-49-41-27-45 85.26 - 140.64 -

21

19-21-49-41-45-27 1.93 - 121.85 -

19-27-41-49-21-45 12.43 - 135.70 -

19-27-49-21-41-45 0.70 - 127.46 -27

19-27-49-41-21-45 86.87 - 140.50 -

19-41-27-49-21-45 0.18 - 163.41 -

19-41-49-21-27-45 80.91 137.86 142.56 3.41

19-41-49-21-45-27 2.80 157.98 109.38 -30.76
41

19-41-49-27-21-45 16.11 142.06 142.25 0.13

19-45-21-41-49-27 0.18 - 37.81 -

19-45-41-21-49-27 0.35 - 71.27 -

19-45-41-27-49-21 0.18 - 34.46 -

19-45-41-49-21-27 11.91 - 72.05 -

19-45-41-49-27-21 2.10 - 51.91 -

19-45-49-21-41-27 0.18 - 99.99 -

19-45-49-41-21-27 75.31 - 74.35 -

45

19-45-49-41-27-21 9.81 - 52.85 -

19-49-21-41-27-45 0.18 135.44 153.87 13.61

19-49-27-41-21-45 0.18 131.12 130.34 -0.59

19-49-41-21-27-45 81.96 141.96 142.12 0.11

19-49-41-21-45-27 3.85 119.44 126.48 5.89

19

49

19-49-41-27-21-45 13.84 135.05 139.50 3.29

Table 4: Results for every extinction cascade (blue) triggered by the primary extinc-
tion of 19 (red) with the implementation of a control (yellow). MTE for the entire
cascade before the control (denoted MTE) and after the control (denoted MTE*) are
given, as well as the relative change in MTE. A dashed entry indicates the correspond-
ing cascade pattern did not occurr in the initial 100 realizations without control.
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Primary
Extinction

Control
(Forced Secondary

Extinction)
Cascades

Relative
Frequency

(%)

MTE MTE*
Relative Change

in MTE
(%)

41-19-49-21-27-45 78.95 139.58 141.88 1.64

41-19-49-21-45-27 10.53 - 114.01 -19

41-19-49-27-21-45 10.53 142.42 224.33 57.52

41-21-19-49-27-45 31.58 - 134.79 -

41-21-49-19-27-45 63.16 - 153.46 -21

41-21-49-19-45-27 5.26 - 175.79 -

41-27-19-49-21-45 26.32 - 151.93 -
27

41-27-49-19-21-45 73.68 - 148.51 -

41-45-19-49-21-27 42.11 - 75.83 -

41-45-19-49-27-21 10.53 - 58.18 -

41-45-49-19-21-27 36.84 - 79.67 -

41-45-49-19-27-21 5.26 - 41.44 -

45

41-45-49-21-19-27 5.26 - 64.32 -

41-49-19-21-27-45 84.21 124.72 143.09 14.73

41

49
41-49-19-27-21-45 15.79 135.54 130.09 -4.02

Table 5: Results for every extinction cascade (blue) triggered by the primary extinc-
tion of 41 (red) with the implementation of a control (yellow). MTE for the entire
cascade before the control (denoted MTE) and after the control (denoted MTE*) are
given, as well as the relative change in MTE. A dashed entry indicates the correspond-
ing cascade pattern did not occurr in the initial 100 realizations without control.
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Primary
Extinction

Control
(Forced Secondary

Extinction)
Cascades

Relative
Frequency

(%)

MTE MTE*
Relative Change

in MTE
(%)

49-19-21-41-27-45 0.98 175.37 142.85 -18.54

49-19-41-21-27-45 84.63 147.63 147.16 -0.32

49-19-41-21-45-27 2.20 123.84 124.29 0.37
19

49-19-41-27-21-45 12.20 146.54 139.31 -4.93

49-21-19-41-27-45 66.83 - 144.46 -

49-21-19-41-45-27 1.71 - 135.86 -

49-21-41-19-27-45 30.73 - 148.90 -

49-21-41-19-45-27 0.49 - 135.96 -

21

49-21-41-27-19-45 0.24 - 108.49 -

49-27-19-21-41-45 0.24 - 148.48 -

49-27-19-41-21-45 70.49 - 145.36 -

49-27-41-19-21-45 26.56 - 143.73 -
27

49-27-41-21-19-45 2.68 - 178.16 -

49-41-19-21-27-45 81.46 147.00 146.35 -0.44

49-41-19-21-45-27 3.41 122.26 132.23 8.15

49-41-19-27-21-45 12.20 125.49 145.27 15.77

49-41-21-19-27-45 1.46 169.58 139.14 -17.95

49-41-21-19-45-27 0.24 - 114.45 -

49-41-21-27-19-45 0.49 - 145.40 -

49-41-27-19-21-45 0.24 157.61 99.85 -36.65

41

49-41-27-21-19-45 0.49 - 142.09 -

49-45-19-21-41-27 0.49 - 65.11 -

49-45-19-41-21-27 55.85 - 72.69 -

49-45-19-41-27-21 10.00 - 54.28 -

49-45-41-19-21-27 28.05 - 73.70 -

49-45-41-19-27-21 4.39 - 51.12 -

49

45

49-45-41-21-19-27 1.22 - 70.97 -

Table 6: Results for every extinction cascade (blue) triggered by the primary extinc-
tion of 49 (red) with the implementation of a control (yellow). MTE for the entire
cascade before the control (denoted MTE) and after the control (denoted MTE*) are
given, as well as the relative change in MTE. A dashed entry indicates the correspond-
ing cascade pattern did not occurr in the initial 100 realizations without control.
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