Polar Effects Control the Gas-Phase Reactivity of Para-Benzyne Analogs

Huaming Sheng
Merck

Xin Ma
Purdue University

Hao Ran Lei
Purdue University

Jacob Milton
Purdue University

Weijuan Tang
Purdue University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.montclair.edu/chem-biochem-facpubs

MSU Digital Commons Citation

Sheng, Huaming; Ma, Xin; Lei, Hao Ran; Milton, Jacob; Tang, Weijuan; Jin, Chunfen; Gao, Jinshan; Wittrig, Ashley M.; Archibald, Enada F.; Nash, John J.; and Kenttämaa, Hilkka I., "Polar Effects Control the Gas-Phase Reactivity of Para-Benzyne Analogs" (2018). *Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works*. 500.
https://digitalcommons.montclair.edu/chem-biochem-facpubs/500

This Article is brought to you for free and open access by the Department of Chemistry and Biochemistry at Montclair State University Digital Commons. It has been accepted for inclusion in Department of Chemistry and Biochemistry Faculty Scholarship and Creative Works by an authorized administrator of Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.
Authors
Huaming Sheng, Xin Ma, Hao Ran Lei, Jacob Milton, Weijuan Tang, Chunfen Jin, Jinshan Gao, Ashley M. Wittrig, Enada F. Archibold, John J. Nash, and Hilkka I. Kenttämaa
Polar Effects Control the Gas-Phase Reactivity of \textit{para}-Benzyne Analogs

Huaming Sheng, Xin Ma, Hao-Ran Lei, Jacob Milton, Weijuan Tang, Chunfen Jin, Jinshan Gao, Ashley M. Wittrig, Enada F. Archibold, John J. Nash, and Hilkka I. Kenttämaa

We report herein a gas-phase reactivity study on a \textit{para}-benzyne cation and its three cyano-substituted, isomeric derivatives performed using a dual-linear quadrupole ion trap mass spectrometer. All four biradicals were found to undergo primary and secondary radical reactions analogous to those observed for the related monoradicals, indicating the presence of two reactive radical sites. The reactivity of all biradicals is substantially lower than that of the related monoradicals, as expected based on the singlet ground states of the biradicals. The cyano-substituted biradicals show substantially greater reactivity than the analogous unsubstituted biradical. The greater reactivity is rationalized by the substantially greater (calculated) electron affinity of the radical sites of the cyano-substituted biradicals, which results in stabilization of their transition states through polar effects. This finding is in contrast to the long-standing thinking that the magnitude of the singlet-triplet splitting controls the reactivity of \textit{para}-benzenes.

\textit{para}-Benzyne and its analogs have received considerable attention since some \textit{para}-benzyne analogs were reported to act as the biological “warhead” of enediyne natural products (e.g. calicheamicins, esperamicins and dynemicins) that show high antitumor activity.[1–4] The enediyne unit can undergo Bergman-cyclization in vivo to form a highly reactive \textit{para}-benzyne intermediate that can irreversibly cleave double-stranded DNA through hydrogen atom abstraction from each DNA strand, ultimately leading to cell apoptosis.[1–4] Unfortu-
group (12) or a cyano-group at the 1-, 4- or 5-position (6, 8 and 10: Table 2). All monoradicals exclusively abstract a H atom from cyclohexane and a SCH$_3$ group from dimethyl disulfide, as expected.$^{[16]}$ The monoradicals with the radical site at the 2-position (C-2) are more reactive than those with the radical site at the 3-position (cyclohexane: 46–89% vs. 20–50%; dimethyl disulfide: 90–100% vs. 83–90%, respectively; Table 2). This can be explained by the differences in their electrophilicities, quantified here by their (calculated) EA$_v$ values. The greater the EA$_v$, the more polar the transition state, and the lower its energy.$^{[17]}$ Previous calculations suggest that the EA$_v$ of analogous monoradicals with the radical site at the 2-position is larger than for radicals with the radical site at the 3-position,$^{[17]}$ thus leading to greater reactivity.$^{[16]}$ The cyano-substituent

Table 1. Reaction efficiencies$^{[a]}$ (eff.) and product branching ratios$^{[b,c]}$ for reactions of biradicals put these numbers in bold $> 1–4^{[b]}$ with cyclohexane and dimethyl disulfide, and their calculated$^{[e]}$ vertical electron affinities (EA$_v$) and S–T splittings (ΔE$_{S–T}$), as well as the proton affinities (PA) of their conjugate bases.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>EA$_v$ [eV]</th>
<th>ΔE$_{S–T}$ [kcal mol$^{-1}$]</th>
<th>PA [kcal mol$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S$_2$H$_3$</td>
<td>7.18</td>
<td>7.18</td>
<td>164.2</td>
</tr>
<tr>
<td>H Abs</td>
<td>100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>H Abs</td>
<td>100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>SCH$_3$ Abs</td>
<td>100%</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>SCH$_3$ Abs</td>
<td>100%</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

[a] Reaction efficiency (eff.; % of collisions leading to reaction) = k$_{reaction}$/k$_{collision}$ × 100; precision +/− 10%; accuracy > /− 50%. < or use the same style as in Table 2 (b) abs = abstraction. (c) Secondary products are listed below the primary product that is put these numbers in bold, and indicated by $^{[c]}$. Experimental data for 11 taken from ref. 14. [d] All values calculated at the CASPT2/CASSCF(m,n)/cc-pVTZ//CASSCF(m,n)/cc-pVTZ level of theory. Singlet–triplet splittings and proton affinities corrected to 298 K by using the (unscaled) UB3LYP/cc-pVTZ frequencies. Proton affinities calculated by using an isodesmic reaction involving proton transfer to pyridine. (f) Experimental value from ref. 19.
increases the reactivity of all these radicals when compared to their unsubstituted counterparts by increasing their EA, (Table 2).

All cyano-substituted para-benzene analogs are substantially less reactive than the analogous monoradicals. This finding is in agreement with their singlet ground states hindering radical reactivity.[15] The reactivity observed for para-benzene analogs 1–4 shows similarities but also differences when compared to the analogous monoradicals. For example, instead of a single H atom abstraction from cyclohexane, the biradicals abstract two H atoms from one cyclohexane molecule (Table 1). The first H atom abstraction can also be accompanied by electron transfer (Table 1),[16] resulting in a product that appears to arise from hydride abstraction. In addition to H atom abstraction and electron transfer, the first H atom abstraction can be followed by radical-radical recombination, yielding a stable adduct as the final product. Proposed mechanisms for these reactions are shown in Scheme 1.

Observation of two H atom abstractions is consistent with para-benzenes containing two radical sites (i.e., they have not undergone retro-Bergman ring-opening). This reaction has been calculated (at the RHF-BCCD(T)/cc-pVTZ//UB3LYP/cc-pVTZ level of theory) to be highly exothermic for 1 (~84 kcal mol$^{-1}$).[17] The lowest reactivity was observed for the unsubstituted analog 1. This biradical has a S–T splitting that is similar to that of the cyano-substituted biradical 2 (~5.3 vs. ~4.8 kcal mol$^{-1}$, respectively; Table 1). However, 2 reacts 20 times faster with cyclohexane than 1 (Table 1). This finding indicates that the critical rate-controlling parameter here is not the S–T splitting, as has been suggested.[18] On the other hand, the EA values of 1 and 2 are significantly different (6.65 eV and 7.25 eV, respectively; Table 1). Thus, the greater EA likely explains the greater reactivity of 2. Further support for this hypothesis is provided by the observation of essentially identical reaction efficiencies for 2–4 (1–2%; Table 1), all with a similar EA.

The cyano-substituted biradicals are also more reactive toward dimethyl disulfide than the unsubstituted biradical (Table 1), as expected based on above discussion. Two consecutive abstractions of a SCH$_3$ group from two dimethyl disulfide molecules were observed for all four biradicals (for likely mechanisms, see Scheme 2). The primary abstraction likely occurs at the more reactive radical site (C-2; see discussion above), and the secondary reaction quenches the remaining radical site at C-5. This reaction sequence dominates or is among the two dominant reactions for 1, 3 and 4 but not for 2 (Table 1). The reasons for this behavior are not clear at this time.

Large amounts of proton transfer products were observed for the three cyano-substituted biradicals when allowed to react with dimethyl disulfide. This reactivity reflects the low (calculated) proton affinities (PA) of their conjugate bases (<188 kcal mol$^{-1}$; Table 1) relative to that of dimethyl disulfide.[19] (PA = 194.9 kcal mol$^{-1}$). On the other hand, the unsubstituted biradical 1 shows no proton transfer, as expected, since this reaction would be endothermic (PA1 = 198.9 kcal mol$^{-1}$; Table 1). The same is true for the cyano-substituted monoradicals: for example, the (calculated) PA of the conjugate base of the 3-cyano-2-dehydropyridinium cation is 197.1 kcal mol$^{-1}$ (same level of theory as described in Table 1). Endothermic bimolecular reactions do not generally occur under the conditions employed here. The experimental results demonstrate that exothermic proton transfer can dominate over fast radical reactions for protonated para-benzynes, which is not surprising because the proton transfer reactions are likely to be barrierless while the radical reactions are not.

Comparison of the reactivities of the unsubstituted (1) and cyano-substituted biradicals (2–4) toward dimethyl disulfide is complicated by the fact that most of the substituted species undergo predominant proton transfer and not radical reactions. However, biradical 4 shows equally fast SCH$_3$ group abstraction and proton transfer. Therefore, one may consider approximately half of the reaction efficiency (41%) to correspond to the radical reaction. This is still about 26 times greater efficiency than that measured for 1, again supporting the hypothesis that EA, is the reactivity-controlling factor for these para-benzynes.

In conclusion, the reactivity of a para-benzene analog (1) and its three cyano-substituted derivatives (2–4) toward cyclohexane and dimethyl disulfide was studied in a modified dual-linear quadrupole ion trap. The presence of two radical sites in all biradicals was confirmed through observation of two atom or group abstraction reactions. All cyano-substituted biradicals react substantially faster than the unsubstituted analog, which is rationalized by their greater (calculated) EA, rather than by differences in their S–T splittings. The greater EA is likely to lead to a more stable transition state due to stabilization of a dritterionic resonance structure (charge transfer resonance structure; for example, see Scheme 3), just like for polar monoradicals.[17,22]
Fast proton transfer to dimethyl disulfide was observed for the cyano-substituted biradicals, which demonstrates that exothermic proton transfer can compete with fast radical reactions for acidic para-benzyne cations. Finally, the reactivity of all the biradicals is substantially lower than that of the related monoradicals. This finding is consistent with the hypothesis that singlet ground states of biradicals hinder radical reactions.[7,8]

Experimental Section

2,5-Dilodopyridine and all monoradical precursors were purchased from commercially available sources and used without further purification. The other biradical precursors were synthesized from commercially available compounds. Detailed synthesis procedures, \(^1H \) and \(^{13}C \)-NMR and MS data as well as X-ray structures are provided in the Supporting Information. All gas-phase reactions were carried out in a differentially pumped dual-LQIT tandem mass spectrometer[13] (DLQIT) equipped with a manifold for reagent introduction designed based on a previously described apparatus.[21] This instrument consists of two differentially pumped Thermo Scientific linear quadruple ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Radical and biradical precursors were introduced and ionized by protonation via atmospheric pressure chemical ionization (APCI) and the radical sites were formed by homolytic cleavage of carbon-iodine bonds induced through in-column collision-activated dissociation with nitrogen collision gas. The (b)radicals were transferred into the first linear quadruple ion trap and allowed to react with each reagent for varying periods of time to determine reaction products and efficiencies, as previously described for FT-ICR instruments.[11] The product branching ratios are product distributions at short reaction times where secondary reactions do not yet take place. Secondary products were confirmed by re-isolating primary products and allowing them to undergo further reactions with the reagent of interest.

Acknowledgements

The National Science Foundation is acknowledged for funding this research (Grant CHE-1464712).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Biradical - electron affinities - gas-phase reactions - mass spectrometry - para-benzyne