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Abstract

FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL
by Lei Zheng

Phosphorus (P) is a major nutrient present in municipal wastewater. Without proper
treatment and management, residual P in treated wastewater finally enters into natural receiving
water bodies. Nutrient pollution resulting from excessive P, together with the other nutrient, i.e.
nitrogen (N), is a leading cause of eutrophication, a ubiquitous U.S. water quality issue. An
overgrowth of algae during eutrophication brings extremely adverse impacts on the water
quality. The algal bloom can rapidly deplete dissolved oxygen, lead to the death of aquatic life,
increase water turbidity, and cause taste and odor issues. Moreover, some harmful algal boom
can produce toxins to give rise to various illnesses in human and animals. The aforementioned
challenges are of particular concern when eutrophication occurs in drinking water sources.
Although existing wastewater treatment technologies can remove P, to different extents, they are
restricted by technical difficult to achieve a very low P concentration and/or poor removal
capability for organic P in wastewater. On the other hand, the regulations on the P discharge
from municipal wastewater treatment facilities are increasingly stringent, particularly for highly
nutrient sensitive water bodies. Therefore, there is an urgent research demand to develop
innovative, reliable, and efficient treatment technologies for elimination of phosphorus in
municipal wastewater.

The primary objective of this dissertation is to evaluate the treatment performance of
ferrate(VI) for removal of different phosphorus species at different wastewater treatment stages
and elucidate the underlying reaction mechanisms. Two treatment scenarios were tested, i.e.
chemically enhanced primary treatment (CEPT) and advanced wastewater treatment. The central

hypothesis is that ferrate(VI) is capable of effectively removing inorganic phosphate through
v



precipitation and/or adsorption due to the formation of iron (hdyr)oxides and alleviating organic
phosphorus via chemical oxidation and precipitation/adsorption mechanisms. Laboratory sale
tests were carried out to sequentially implement four tasks for achieving the objective.

In Task 1, ferrate(VI) treatment was applied to CEPT with a particular focus on the removal
of phosphorus in wastewater. Results show that ferrate(VI) enabled CEPT could effectively
remove total phosphorus by up to 87%. The most majority of phosphorus removed was
particulate phosphorus. The removal was primarily ascribed by gravity-driven sedimentation. In
contrast, ferrate(VI) CEPT poorly removed organic phosphorus present in municipal wastewater.
Accompanied by the alleviation of phosphorus, ferrate(VI) addition improved the removal of
particles and particulate organic matter in wastewater. In Task 2, ferrate(VI) removal of
orthophosphate was investigated in a secondary effluent matrix at an advanced treatment
scenario. Results show that ferrate(VI) could effectively alleviate phosphate (a majority of
inorganic phosphorus) from secondary effluent primarily due to the adsorption mechanisms.
Ferrate(VI) resultant particles comprised both amorphous and crystalline (hematite) iron
(hydr)oxides. Effluent organic matter (EfOM) could inhibit the phosphate removal. Task 3 aimed
to remove organic phosphorus for advanced wastewater treatment. Ferrate(VI) exhibited an
excellent capability for abating of organic phosphorus in in secondary effluent. The presence of
phosphate could suppress ferrate(VI) removal of organic phosphorus. In order to understand the
underlying mechanisms, the reactions between ferrate(VI) and six organic phosphorus model
compounds were separately investigated. Results show that ferrate(VI) degraded the model
compounds into daughter P-containing molecules, followed by adsorption of the transformation
compounds by the resultant iron (hdyr)oxide particles. Ferrate(VI) oxidation insufficiently

decomposed the organic phosphorus into inorganic phosphorus. Of note, the treatment



performance of ferrate(VI) for removal of phosphorus during the CEPT or advanced treatment
relied heavily on ferrate(VI) dose and pH. In Task 4, a preliminary cost analysis was made.
Although ferrate(VI) addition was more costly than traditional phosphorus removals with ferric
slats, ferrate(VI) treatment brings many unmatched benefits such as the removal of organic
phosphors. Finally, the impacts of ferrate(VI) technologies on urban water management,
environment, and society were discussed, and future research directions were identified.

This dissertation research clearly demonstrates that ferrate(VI) treatment is a promising
technology for elimination of different phosphorus species in municipal wastewater and
abatement of other wastewater contaminants. Besides mitigation of phosphorus, organic matter,
and particles in wastewater, ferrate(VI) has proven highly effective for degradation of micro-
pollutants and inactivation of pathogens in water and wastewater. In this dissertation research,
ferrate(V1) can be resiliently applied for CEPT or advanced treatment for improving wastewater
quality. At the first scenario, the ferrate(VI) enabled technology can enhance the performance of
traditional secondary wastewater treatment facilities. It can also be a standalone wastewater
treatment process for many developing countries with the primary treatment only. At the second
scenario, ferrate(VI) treatment as a post-treatment step is expected to dramatically improve water
quality through the removal of persistent contaminants such as organic phosphorus and emerging
contaminants. Implementation of ferrate(VI) technologies for wastewater treatment has profound
impacts on the wastewater industry, environment, and society.

Keywords: Ferrate(VI), Wastewater treatment, Phosphorus, Adsorption, Coagulation, Oxidation
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Chapter 1 Introduction and Objectives
1.1 Phosphorus Element

Phosphorus (P), with an element symbol of P, has the atomic number of 15 in the periodic
table of the elements. Because P is highly reactive, free elemental P does not exist in nature.
Among different elements, P ranks No. 11 in the Earth’s crust and No. 13 in seawater in terms of
abundance (Smil, 2000). The unique element plays a critically important role to support the life
on the Earth and human activities.

P is an essential element for supporting all the living organisms in the world. For example,
both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are nucleic acids and genetic
materials of every life on the Earth. DNA stores all the genetic information, which organisms
need to develop, function, and reproduce, to be transferred to the next generations. On the other
hand, RNA guides protein synthesis to perform specific functions. P as a key structural element
behaves like a bridge between mononucleotide units in DNA and RNA. In another example,
adenosine diphosphate (ADP) combined with a phosphate forms adenosine triphosphate (ATP),
which can release the stored energy through hydrolysis to drive many biochemical processes in
living cells (Smil, 2000). In addition, P is a major element for the bones and teeth of vertebrate
animals (E. N. M. C. T. T. Martin, 1998). Hydroxyapatite (Cai0(PO4)s(OH)>, a P-containing
organic chemical, contributes to almost 60% of bone and 70% of teeth on the basis of mass (E.
N. M. C. T. T. Martin, 1998; Smil, 2000). Therefore, P is indispensable for all the life on the
Earth.

A variety of human activities also need phosphorus. P is substantially consumed for
agriculture, which is the practice of farming, from the crop growing in the soil to the rearing of

animals, for providing the human with food, cotton, wool, and other products. P is a key element
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for the growth of both plants and animals. Currently, over 90% of human-mined phosphorus
goes to agriculture as fertilizers (Yuan et al., 2018). Phosphorus also has an important role in the
building and construction field. Asphalt is a mixture of bituminous with sands or gravels for
paving and roofing. In order to make asphalt stronger and more durable, polyphosphoric acid
(PPA), a P-containing polymer, is often added to modify the properties of asphalt (Baumgardner,
Masson, Hardee, Menapace, & Williams, 2005). Moreover, P is a major element in the
detergents used in the car wash and automatic dishwashing industry. Besides, P can be used as an
inhibitor to control lead release in water distribution systems (Edwards & McNeill, 2002;
Hozalski, Esbri-Amador, & Chen, 2005).
1.2 Phosphorus Cycle
The phosphorus cycle, different from the cycles of other elements such as carbon, nitrogen,
and sulfur on the Earth, is poorly understood. However, the phosphorus cycle has gained much
attention (Smil, 2000; Yuan et al., 2018). Rather than other common elements, P is not relatively
active to form a stable gaseous chemical species. Therefore, the phosphorus cycle does not have
significant interactions via the atmosphere, even though little P can exist in the atmosphere as an
element in dusts and aerosols (the quantity is low as compared to the amount in other reservoirs).
In contrast, lithosphere, oceans, riverine systems, and biota are major pools of P on the Earth.
Ruttenberg (2003) proposes that the global phosphorus cycle comprises four major components
between these pools, as follows.
1) The uplifting tectonic process makes phosphorus-rich mineral rocks exposed to
various weathering forces.
2) After the formation of soil, the erosion and chemical weathering bring dissolved and

particulate phosphorus to the riverine system.
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3) Dissolved and particulate P in the riverine system either becomes part of river
sediment or enters into the oceans.

4) Phosphorus becomes part of the sediments in the ocean.

1.2.1 Phosphorus Cycle in the Terrestrial Environment

In the terrestrial environment, P mainly exists in the Earth’s crust, surface soil, and biota.
Apatite (Caio(PO4)s(OH, F, Cl),) is the most abundant primary phosphorus mineral, which can
be exposed to various weathering processes. Physical weathering, such as freeze-thaw and
exfoliation, can break apatite into fine minerals, but they are unavailable for uptake and
assimilation of terrestrial plants. Afterwards, chemical weathering, e.g., corrosion with acids
derived from microbial activities (Ruttenberg, 2003), solubilizes these small minerals for direct
utilization for plants. Besides, part of P can exist in soil. For example, it is reported that P
retention in soil plays a significant role in the fate and transport of phosphorus, because soluble
P is easily bonded with different soil components, particularly iron and aluminum oxyhydroxides
(Lajtha & Harrison, 1995). As a result, soluble P is uptaken by plants or bonded in soil.

Once entering into plants via roots, P is subject to different biochemical transformations to
form various organic P (e.g., DNA, RNA, and ATP), which play a critical role in photosynthesis
and metabolism. After the plant death, the litterfall, primarily in the form of organic phosphorus,
returns to the topsoil, which is gradually released as phosphate through self-decomposition and
biochemical oxidation initiated by bacterial and fungal communities (Bucher, 2007). The
phosphorus is barely lost due to the high recycle efficiency of plants (Lajtha & Harrison, 1995;
Ruttenberg, 2003; Vitousek et al., 1997).

On the other hand, the phosphorus in soil can be present in different phases. As

aforementioned, iron and aluminum oxyhydroxides can bind phosphate, due to their large
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specific surface area, abundant active moieties, and high binding capacity (Filippelli, 2002).
Meanwhile, soluble P can exist in pore water in soil or sorb to the surface of soil particles, which
can serve as a source of phosphorus loss during the following soil erosion. After well developed,
P in the soil may reach a balance that the rate of phosphorus loss equals to the rate of newly
generated phosphorus from apatite weathering (Filippelli, 2008). In the cycle, P exists primarily

in refractory minerals and organic phosphorus (Ruttenberg, 2003; Walker & Syers, 1976).

1.2.2 Phosphorus Cycle in the Riverine Environment

Riverine phosphorus, particulate or dissolved, mainly derives from soil erosion and surface
runoff. Particulate P accounts for more than 90% of total riverine phosphorus (Ruttenberg,
2003). As an active element, dissolved phosphate can be easily captured by metal oxyhydroxides
and transformed to a solid phase. The particulate P is barely released at normal river conditions.
It becomes either part of river sediments or the source of oceanic phosphorus, without
participation in biological processes in the riverine system. Chemical forms of particulate P vary,
depending on such factors as soil development, river conditions, and land use. Ruttenberg (2003)
states that approximately 20-40% of the P associated with particles is organic phosphorus.

Dissolved phosphorus in the riverine system is more complicated than its particulate
counterpart, because of its strong reactivity toward particles (Withers & Jarvie, 2008) and
participation in the biotic cycle in the riverine system. The interactions between dissolved
phosphorus and particles in the riverine system mainly include sorption and precipitation.
Suspended particles, such as clays (House, Jickells, Edwards, Praska, & Denison, 1998) and
metal oxides and hydroxides (Withers & Jarvie, 2008), can adsorb dissolved phosphorus either
onto particle surface or into solid phase through diffusion. Many mechanisms govern this

process, such as ligand-exchange and electrostatic attraction, which is influenced by many
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factors such as pH, redox conditions, and the presence of particle-organic matter complexes
(Froelich, 1988; Kadlec, Flaig, & Gale, 1999; Withers & Jarvie, 2008; Zhou, Tang, & Wang,
2005). Dissolved phosphorus interacts with minerals in the river to form precipitation,
facilitating the fixation of P in sediment. Neal et al. (2002) reports that dissolved phosphorus can
co-precipitate with calcite in water columns. Meanwhile, aluminum and iron in the river water
can precipitate dissolved phosphorus by forming unsolvable chemicals, such as aluminum and
iron(III) phosphate. Moreover, dissolved phosphorus is a key element in the biotic cycle in the
riverine system. Phytoplankton assimilate dissolved phosphorus through photosynthesis,
converting inorganic P to organic P and enabling phosphorus to enter into the food web in the
riverine system. Previous studies suggest that around 10-15% dissolved phosphorus is assigned
to phytoplankton communities (Withers & Jarvie, 2008). After the death of biota, bacteria and
fungi in the riverine system decompose organic matters and release phosphorus back to water,
making phosphorus available again for phytoplankton assimilation. Meanwhile, bacteria and
fungi can change pH and redox conditions on the water-sediment surface, resulting in

phosphorus adsorption on or desorption from the sediment (McDowell, 2003).

1.2.3 Phosphorus Cycle in the Oceanic Environment

After the transportation via the riverine system, phosphorus reaches oceans. Atmospheric
deposits, such as aerosols and mineral dusts, also contribute to oceanic phosphorus, particularly
for the remote ocean (Paytan & McLaughlin, 2007). Most of the particulate phosphorus deposits
in the estuarine and coastal shelf environments (Paytan & McLaughlin, 2007), which will be
geologically uplifted. On the other hand, part of adsorbed phosphorus to soil particles may
desorb back to the sea water when physical and chemical conditions of the water (e.g., pH and

salinity) change, contributing to phosphorus in the open ocean. Dissolved inorganic phosphorus
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can participate in the biological processes in the coastal environment, supporting the food web
for the coastal ecosystem. Part of dissolved organic P can be trapped through flocculation and
then settle to the sediment, while the other dissolved organic phosphorus can be photo-
hydrolyzed and then transform to phosphate. Paytan and McLaughlin (2007) report that around
99% of particulate P and 25% of dissolved P enter into the coastal environment. Similar to
phosphorus in the riverine system, some particulate phosphorus settle in the sediments. Part of
dissolved phosphorus degrades to phosphate by bacteria and fungi, participating in primary
production. Death of biota brings organic phosphorus back to microorganisms for closing the
phosphorus cycle.

To sum up, the global phosphorus cycle begins from the weathering of phosphorus-enriched
minerals, sustains in the biosphere, and ends with deposition in the sediments. It takes
approximately 107-108 years to complete a cycle due to the inclusion of geological uplifting
(Smil, 2000). Considering that the human civilization has a much shorter history (less than
10,000 years), phosphorus, which flows one direction, is acknowledged as a non-renewable
resource.

1.3 Eutrophication
1.3.1 Definition

Eutrophication is the over richness of nutrients in natural water bodies to cause the excessive
growth of plants and algae. Two major nutrients include nitrogen and phosphorus. Le Moal et al.
(2019) suggests that eutrophication is an imbalance in quantity, relative proportion or chemical
forms of nitrogen and phosphorus in aqueous ecosystems. Eutrophication can occur in lakes,
streams, estuaries, and coastal environments. Previous investigations suggest that nitrogen is the

limiting nutrient for eutrophication in estuaries and coastal areas, while phosphorus is for
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eutrophication in freshwater ecosystems (Howarth & Marino, 2006; Schindler et al., 2008; Yuan
et al., 2018). Besides the quantities of these nutrients, other conditions of aqueous ecosystems
can affect eutrophication, including hydraulic residence time, temperature, and light (Le Moal et
al., 2019). Due to the acceleration of nutrient loss from human activities, aqueous ecosystems
receive excessive input of nitrogen and phosphorus in a short time period, causing
overproduction of plants and algae. Anthropogenic eutrophication caused by human activities
has similar mechanisms with natural eutrophication. However, they occur on quite different time

scales and bring totally different environmental and social impacts (Le Moal et al., 2019).

1.3.2 Adverse Effects

Anthropogenic eutrophication brings multiple adverse impacts on aqueous ecosystems. As a
result of the substantial input of nutrients, the fast growth of phytoplankton and algae species is
triggered. Consequently, water turbidity increases and water transparency declines, preventing
sunlight from penetrating to deep water. Lack of sunlight causes the shift of biodiversity in
aqueous ecosystems. Meanwhile, the decomposition of excessive phytomass significantly
consumes dissolved oxygen, resulting in hypoxia or dead zones, which kill fishes and decrease
biodiversity in the aqueous ecosystem. To the extreme condition, eutrophication may turn into
harmful algal blooms (HABs) that can produce toxins. Eutrophication-induced HABs caused
serious drinking water crises in the cities near Lake Tai in 2008 and Lake Erie in 2014 (Jetoo,
Grover, & Krantzberg, 2015; B. Qin et al., 2010; Yuan et al., 2018). Eventually, the anaerobic
condition leads to the formation of offensive taste and odors. Therefore, the degradation of water
quality can bring adverse effects on the fishery industry, pose a potential threat to public health
due to the production of toxin in recreational water or drinking water sources, and affect tourism

resources.
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1.3.3 The Extent Development of Eutrophication

The extent of eutrophication in the past decades becomes increasingly severe. After the
World War II, the expansion of the world economy and population, in addition to the wide use of
phosphate detergents, led to the occurrence of an increasing number of eutrophication events
(Ashley, Cordell, & Mavinic, 2011). In the 1950s, the eutrophication in the Great Lakes of North
America caused the negative environmental consequences due to phosphorus enrichment in
freshwater (Yuan et al., 2018). Later on, the initiation of phosphorus detergent ban and
requirements of industrial and domestic pollution treatment dramatically reduced phosphorus
discharge from wastewater treatment plants, resulting in gradual abatement of eutrophication (Le
Moal et al., 2019). However, the recurrence of eutrophication at multiple locations, such as the
Chesapeake Bay and the Gulf of Mexico, again attracted public attention to the nutrient
contribution from non-point pollution sources, especially in agriculture and urbanized areas. In
the past two decades, the number of eutrophication-caused hypoxic areas has increased
approximately by 300%. More importantly, the occurrence of HABs has become worse in size,

frequency, diversity and geographical extent (Diaz & Rosenberg, 2008; Le Moal et al., 2019).

1.3.4 Phosphorus Sources to Eutrophication

Excessive phosphorus comes from both point and nonpoint pollution sources. Point sources
are single pollution ones that can be identifiable, such as discharge from wastewater treatment
plants and combined sewer overflow (CSO). Nonpoint sources are diffuse sources that are not
identifiable and usually happen over a large area without attributing to a single source. Nonpoint
sources mainly include various runoffs and groundwater, such as urban runoff, farmland runoff,
and groundwater flow. Withers and Jarvie (2008) summarized probable human-induced

phosphorus sources (Table 1). As shown, non-point sources discharge various types of
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phosphorus, and the discharges occur episodically with a high dependency on rainfall besides
land surface conditions, the frequency and intensity of rainfalls can substantially affect
phosphorus discharge amount from non-point sources. In contrast, point sources discharge
concentrated phosphorus continuously with very low dependency on rainfall. Generally, except
agricultural runoff, other non-point sources have relatively low total phosphorus ranges and
mean concentrations in comparison with point sources. Among the different types, wastewater
treatment plants and farmland discharges are the major phosphorus sources of point and non-
point routes, respectively.

Currently, both point and non-point sources are monitored under relevant regulations, but this
cannot prevent the occurrence of new issues. As two major components of non-point sources,
livestock wastewater and agricultural runoff are well managed. As mentioned previously, human
diet preference change to meat boosts the development of the livestock industry, which is
becoming more and more centralized for better management and lower cost. Since 1995, United
States Environmental Protection Agency (USEPA) has started to regulate concentrated animal
feeding operations (CAFOs) and required CAFOs under the National Pollutant Discharge
Elimination System (NPDES), which uses permits to control phosphorus discharge (Litke, 1999).
Meanwhile, USEPA encourages the management of agricultural runoff by the development of
local best management practices (BMPs), which are funded through Section 319 of the Clean
Water Act (Litke, 1999). The primary functions of BMPs are to minimize the generation of
runoff, prevent the transportation of runoff pollutants, and safeguard water quality. However,
complicated and voluntary BMPs are highly restricted by local hydrological and environmental

conditions, so that the performance of BMPs is highly site specific.
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More attention has also been paid to the treatment and reuse of agricultural wastewater using
the technologies such as constructed wetlands, bioreactors, reed bed system and harvest for re-
irrigation, which can significantly reduce runoffs and nutrient release to surface water bodies
(Jiménez, 2005; Kern & Idler, 1999; Vymazal, 2010). Although non-point source pollutions are
considered as the major source of phosphorus, their discharge and frequency are relatively low
and episodic. Moreover, the application of BMPs as well as the treatment and reuse of
agricultural wastewater can reliably mitigate the impact of phosphorus release from agricultural
runoff. Thus, phosphorus release from point sources, particularly wastewater treatment plants, is
considered as a major way for phosphorus pollution to the environment.

1.4 Phosphorus in Municipal Wastewater

1.4.1 Phosphorus Sources to Municipal Wastewater

Globally, approximately 20-30% of mined P ends up in sewer systems based on various
estimations (Brunner, 2010; Kazuaki Shimamura, Homma, Watanabe, & Tanaka, 2003). The P
primarily originate from either municipal or industrial wastewater. Typically, industrial
wastewater contains highly concentrated phosphorus compounds, so that special treatment
processes are needed for onsite purification, rather than direct discharge into municipal
wastewater treatment plants. Municipal wastewater has a relatively low phosphorus
concentration. Based on the literature data, P in municipal wastewater originates principally from
PPCPs, detergents, drinking water supply, human excreta, and food waste (Comber, Gardner,
Georges, Blackwood, & Gilmour, 2013).

Comber et al. (2013) pointed out that cocamidopropyl PG-dimonium chloride phosphate and
sodium diethylenetriamine pentamethylene phosphate are two commonly used forms of P in

personal care products, such as hair shampoo, conditioner, show gel, hand soaps, and body
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lotions. Meanwhile, tetra sodium pyrophosphate, dicalcium phosphate, pentasodium
triphosphate, and disodium phosphate are contained in most toothpaste brands and contribute 22
mg phosphorus per person per day to sewer systems, based on the assumption that every person
consumes 5 g toothpaste everyday (Comber et al., 2013).

About 5% of mined P is worldwide used for detergents in which pentasodium triphosphate is
a major chemical form (P. A. Gilbert & De Jong, 1978). Since the occurrence of eutrophication
in the Great Lakes of North America in the 1950s, detergent ban has dramatically reduced the
use of P in household detergents. However, the use of phosphorus in automatic dishwashing area
is not restricted by the detergent ban, because of the difficulty to find a cost-effective detergent
alternative. It is estimated that automatic dishwashing phosphorus contributes about 175 mg-P
per person per day to sewer systems (Comber et al., 2013).

Phosphate is used in water supply systems as a corrosion inhibitor to prevent the unintended
leaching of lead and copper from water distribution pipes (Edwards & McNeill, 2002; Hozalski
et al., 2005). The addition of orthophosphate forms a protective coating of insoluble mineral
scale, which serves as a liner for preventing dissolution of unwanted heavy metals from the pipe
materials. Water crisis happened in Flint, Michigan in 2014 due to the leaching of lead from
water pipes into drinking water, making over 100,000 local residents exposed to potential lead
poisoning. However, only part of the dosed orthophosphate finally becomes the coating on the
inside surface of pipes, while the remaining P in water can potentially contribute phosphorus into
municipal wastewater after the use. Contribution of P from a residual water system to the sewage
is estimated to be 130 mg-P per person per day, while a greater contribution is expected from

office, industrial, and commercial areas (Comber et al., 2013).
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Human needs a certain amount of phosphorus for daily requirements, but extra intake of
phosphorus is excreted through feces and urine. The excreted quantity of P depends heavily on
the diet and ages of different persons. Urine and feces are estimated to contribute 900 mg-P per
person per day and 500 mg-P per person per day, respectively (Comber et al., 2013). The overall
contribution from this source is expected to rise with time due to the increase of the world
population and because more people will become connected to sewer systems.

Finally, P in wastewater can come from food waste. Kitchen sinks and toilets are two
common locations to dispose of food waste, which can introduce P into municipal wastewater.
Carbonated drinks, milk, cereals, gravy, puddings, and fruit drinks are the main food waste
disposed into sewer systems, according to the recent report of Waste Resources Action Program
(WRAP) (Comber et al., 2013). It is estimated that 30 mg-P per person per day is added into

sewers through food waste in developed countries (Comber et al., 2013).

1.4.2 Different Phosphorus Species

In municipal wastewater, phosphorus species can be grouped into three major categories,
including orthophosphate, polyphosphates, and organic phosphates, according to a well-known
phosphorus extraction method established by the American Public Health Association (APHA).
Each type of phosphorus can be present in either particulate or dissolved form (Parsons & Smith,
2008). This speciation method has been widely used in the literature related to the measurement
and treatment of phosphorus in wastewater (Duenas, Alonso, Rey, & Ferrer, 2003; Pastor, Marti,
Bouzas, & Seco, 2008; K. Shimamura, Ishikawa, Mizuoka, & Hirasawa, 2008; Zeng, Yuan, Shi,
& Qiu, 2010). Figure 1-1 shows how to differentiate phosphorus species in details.

Phosphorus species can be differentiated into dissolved and particulate forms. Dissolved P is

the phosphorus in water passing through 0.45 um microfiltration filters, while particulate P is
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retained by 0.45 pum filters. Based on their reactivity, phosphorus species can also be
differentiated through hydrolysis and oxidative digestion processes. Reactive phosphorus refers
to the orthophosphates that respond to the colorimetric tests without hydrolysis and oxidative
digestion. Orthophosphates are a group of phosphorus species that have phosphoric acid in the
chemical forms, including H3PO4, HPO4", HPO4>, and PO4>, which are bioavailable (Zeng et
al., 2010). Acid-hydrolyzable phosphorus (AHP) is the condensed phosphates that can be
transformed into reactive phosphorus through acid digestion. These species contain two or more
phosphorus atoms sharing an oxygen atom in their molecules and are very stable in water over a
wide range of pH and temperatures (Rao, Gomez-Garcia, & Kornberg, 2009). However, such
species can be easily transformed into orthophosphates by bacterial enzymes (Kuroda et al.,
2002). Organic phosphorus is determined by the difference of total phosphorus and acid-
hydrolyzable phosphorus through further vigorous digestion processes. Organic compounds that
contribute organic phosphorus to wastewater include nucleic acids, phospholipids,
phosphoramides, sugar phosphates, and amino phosphoric. Typically, organic phosphorus does
not account for a major proportion in the total phosphorus in municipal wastewater, but its

faction may be significant in microorganism-rich wastewater.

1.4.3 Phosphorus Removal

Total phosphorus in municipal wastewater typically varies between 5 and 20 mg-P/L, of
which 50% is in the form of orthophosphates, while the remaining ones include polyphosphoric
(35%) and organic phosphorus (15%) (Duenas et al., 2003). Duefias et al. (2003) investigated
phosphorus removal in wastewater treatment plants (Figure 1-2). As seen, most of the
particulate phosphorus in the influent can be removed after the clarifiers. After the primary

sedimentation, about 5-10% of the total phosphorus is removed (Smil, 2000). Without any
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phosphorus-focused treatments, conventional secondary treatment (e.g., the activated sludge
process) can only remove 1-2 mg-P/L. Therefore, there is still a large amount of phosphorus in
the effluent, which is much higher than one mg-P/L. Thus, specific phosphorus treatments are
needed during the wastewater treatment to meet federal and local phosphorus discharge
standards.
1.5 Phosphorus Removal Technologies in Municipal Wastewater Treatment

The removal of phosphorus from municipal wastewater can be achieved through physico-
chemical processes, biological treatments, or combination of the both (Yeoman, Stephenson,
Lester, & Perry, 1988). It should be noted that each treatment option has its advantages and

disadvantages.

1.5.1 Physico-chemical Methods

Physico-chemical methods have been commonly used for phosphorus removal over many
decades due to the technical reliability and effectiveness. Specifically, the treatment category
includes precipitation, adsorption, and ion exchange (Bunce, Ndam, Ofiteru, Moore, & Graham,
2018).
1.5.1.1 Precipitation

Chemical precipitation process mainly targets at the removal of inorganic phosphorus
(mostly phosphates) by adding a coagulant to mix with wastewater, forming solid residuals, and
solid-liquid separation by settling or filtration. The widely used coagulants are calcium,
aluminum and iron-based salts (Bunce et al., 2018).

Calcium is usually added as lime Ca(OH),. Initially, lime reacts with the natural alkalinity in

wastewater to form calcium carbonate (Eq.1-1). With the addition of lime, the pH of wastewater
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continuously increases. Calcium ions can precipitate phosphates to form hydroxylapatite at pH
over 10 (Eq. 1-2).

Ca(HCO;3)? + Ca(OH), «» 2CaCO3 |+ 2H,0 (1-1)

10 Ca?" + 6 PO4* + 2 OH™ <> Caio(PO4)-6(OH): | (1-2)

Since lime first reacts with alkalinity in wastewater, the required dose of lime for phosphorus
removal is more than the concentration required to stoichiometrically precipitate all phosphates
in the wastewater. Therefore, the lime dose relies on the concentrations of both alkalinity and
phosphate. Moreover, neutralization is needed after the treatment. The commonly used pH
adjustment method is injection of carbon dioxide (i.e. recarbonation). Owen (1953) found that
the addition of lime could remove phosphorus in sewage samples by up to 99% in the laboratory
studies, but by only 77% in a plant-scale test.

Alum (aluminum sulfate) is also a widely used multivalent salt for precipitating phosphates
to form aluminum phosphates as Eq. 1-3.

AP + H,PO4" <> AIPO4 +nH" (1-3)

This reaction can be affected by many factors, such as the competition between hydroxyl and
phosphates ions, alkalinity, and pH. Alum dose depends on the phosphate concentration in
wastewater. In the most cases, it can remove 90% or greater of total phosphorus in wastewater.
The removal efficiency typically decreases as the phosphate concentration decreases. Banu, Do,
and Yeom (2008) applied alum to remove phosphorus in a secondary effluent with a low
alkalinity. The optimal removal was achieved at 80 mg/L alum, beyond which a further increase
in the alum dose led to a decreasing removal efficiency.

Iron salts are also commonly used for phosphorus precipitation. The widely used chemicals

include ferric chloride, ferric sulfate, and ferrous sulfate. The benefits of iron salts for
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phosphorus removal include a low cost and a short treatment time in comparison with alum
(Ramasahayam, Guzman, Gunawan, & Viswanathan, 2014). The basic reaction is as follows:

Fe** + HoPO4*" <> FePO4 + nH' (1-4)

Different from alum, iron salts react slowly with alkalinity in wastewater and decrease pH.
Therefore, the addition of coagulant aids such as lime is commonly used to raise the pH to
enhance the performance.

Magnesium salt is a novel agent for removing phosphorus from wastewater. Besides
phosphorus, the addition of magnesium ions can remove ammonia nitrogen to produce struvite
(MgNH4PO4:6H20) as follows.

Mg?*(aq)+ NH* (aq)+ HPO4>(aq)+ 6H.0 — MgNH4PO4-6H,0 |+ H* (1-5)

H. M. Huang, Song, and Xu (2011) reprot that the formation of struvite can be influenced by
many factors, including pH, the Mg?*:PO4* :NH*" molar ratio, the extent of super-saturation,
temperature, and the presence of co-existing metal ions capable of reacting with phosphate to
form insoluble compounds.

Chemical agents can be dosed at three locations (Figure 1-3): before the primary settling
tanks; before the biological treatment tank (co-precipitation); and in the secondary effluent (post-
precipitation) (Cornel & Schaum, 2009). Dosing salts before the primary settlement tank is also
called chemically enhance primary treatment (CEPT), in which chemical salts are added to
initiate coagulation and flocculation processes, facilitating aggregation of suspended particles.
Along with phosphorus removal by up to 90%, CEPT can improve the removal of biological
oxygen demand (BOD) and suspended solid (SS). In the second situation, co-precipitation
process can provide a complementary treatment for biological wastewater treatment originally

designed for the removal of dissolved BOD. The addition of coagulant salts can enable the
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concurrent occurrence of coagulation-flocculation and adsorption for removal of other
wastewater pollutants such as phosphorus. However, the addition of chemical salts should not
influence microbial community for the biological wastewater treatment. In practice, alum and
iron salt are the commonly selected coagulants. In the third scenario, the post-precipitation is an
advanced treatment process to remove nutrient by adding coagulant salts. This process may
provide the highest phosphorus removal efficiency (> 95%). Because microorganisms in a
biological treatment step may release phosphorus into effluent, post- precipitation typically has a
better P removal than co-precipitation.

Physico-chemical precipitation methods may be restricted due to two disadvantages. First,
the phosphorus-rich sludge produced, particularly aluminum and iron sludge, is technically
difficult to be used for phosphorus recovery (Le Corre, Valsami-Jones, Hobbs, & Parsons, 2009).
Second, the physico-chemical approach has proven effective for orthophosphates in wastewater,
but poorly removes poly- and organic phosphorus. Bunce et al. (2018) reported that conventional
gravity settling could achieve 1mg/L phosphorus in the effluent, but the conventional design
rarely accomplished a lower phosphorus concentration in the treated wastewater, unless more

sophisticated separation techniques are used.

1.5.1.2 Adsorption

Adsorption is another option to remove wastewater phosphorus using adsorbent materials
(Bunce et al., 2018; Drizo, Forget, Chapuis, & Comeau, 2006; Gustafsson, Renman, Renman, &
Poll, 2008; Herrmann, Nordqvist, Hedstrom, & Viklander, 2014; Shilton et al., 2006).
Adsorbents for P removal may originate from natural products (e.g., apatite, bauxite or
limestone), industrial waste products (e.g., flyash, ochre, steel slag, and water treatment

residuals) or man-made products (e.g., Filtralite™) (Bunce et al., 2018). Phosphorus in
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wastewater is sorped onto the surface of or inside the adsorbents (Brix, Arias, & del Bubba,
2001). Therefore, the P removal performance depends on physical and chemical properties of
adsorbents, solution chemistry, and operation conditions (e.g., the adsorbent dose). For example,
Renman and Renman (2010) used Polonite for removal of 91% phosphate in municipal
wastewater. In another example, oyster shells as the source of lime were mixed with clay to

immobilize more than 90% of phosphorus from wastewater (Chen, Cai, Clark, & Yu, 2013).

1.5.1.3 Ion Exchange

Ion exchange (IX) is a well-established treatment process for municipal and industrial water
treatment, such as desalination of sea water (Awual & Jyo, 2011). However, IX is less studied
for removal of wastewater phosphorus than the two aforementioned technologies. B. D. Martin,
Parsons, and Jefferson (2009) report that phosphate ions can reversibly interchange between
wastewater and solid ion exchanger, making desorption possible during the phosphorus removal.
Further investigations reveal that the pre-treatment of ion exchangers can improve phosphate
removal efficiency (Bunce et al., 2018; B. D. Martin et al., 2009; Seo et al., 2013). However,
three issues challenge the IX treatment. First, many wastewater matrix constituents, such as
sulfate, chloride, and sewage organic matter, can compete with phosphate for the active sites on
ion exchangers, so that the use efficiency is low. Second, application of ion exchangers for
wastewater treatment is prohibitive due to the high cost of ion exchangers. Third, the regenerant

produced from regeneration of ion exchangers requires appropriate treatment and management.
1.5.2 Biological Methods

1.5.2.1 Enhanced Biological Phosphorus Removal (EPBR)
Enhanced biological phosphorus removal (EPBR) (Figure 1-4), consisting of an anaerobic

tank and an aeration tank, has been widely studied over the past decades. EPBR is considered to
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be an environmentally sustainable and cost-effective alternative for chemical treatment (Acevedo
et al., 2012; Bunce et al., 2018; Nguyen, Ngo, & Guo, 2013). During the EPBR, microorganisms
uptake phosphorus in wastewater and transform it into biomass that is removed in the
downstream treatment as waste sludge. Among the different microorganism species in an
activated sludge system, phosphorus-accumulating organisms (PAO) can uptake more
phosphorus than others. At the anaerobic conditions, PAO hydrolyzes the internally stored
polyphosphate to generate ATP for energy. The breakdown of polyphosphate releases
orthophosphate into wastewater (Smolders, van der Meij, van Loosdrecht, & Heijnen, 1994). In
contrast, at an aerobic environment, PAO utilizes phosphate in wastewater to form
polyphosphate stored in cells. The difference between uptaken and released phosphate at the two
different conditions is the removed phosphorus from the wastewater. The performance of
biological removal of phosphorus is directly related to the proportion of PAO present in the
microorganism communities (Bunce et al., 2018). EBPR can be incorporated into membrane
bioreactors (MBR), granular sludge reactors, and sequencing batch biofilm reactors (SBRs) for
removing 70-97% phosphorus in wastewater (Bunce et al., 2018). The potential drawbacks of
EBPR include: 1) the treatment efficiency of EBPR may highly fluctuate; 2) highly skilled
operators are needed for reliable performance; and 3) the underlying mechanisms remain poorly
understood, making the system optimization difficult (Seviour, Mino, & Onuki, 2003).
1.5.2.2 Algal Phosphorus Removal

Phosphorus is an essential nutrient for algal growth. Therefore, algae are capable of uptaking
excessive phosphorus beyond their growth requirements (Larsdotter, 2006; Powell, Shilton,
Chisti, & Pratt, 2009). Algae-based systems for treatment of wastewater have been well

established (Martinez, Sanchez, Jiménez, El Yousfi, & Muiioz, 2000; Shi, Podola, & Melkonian,
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2007). During the treatment, algae can capture excessive orthophosphate and store it as
polyphosphate granules for future use at a phosphorus deficient environment (Bunce et al.,
2018). Larsdotter (2006) reported that when orthophosphate was unavailable, algae might
convert organic phosphorus to orthophosphate on the cell surface using the enzyme phosphatase.
Although algae systems have shown promising results for phosphorus removal from wastewater
(de Godos, Gonzalez, Becares, Garcia-Encina, & Mufioz, 2009), this technology remains in a
lab-scale study. Larger scales tests are required to demonstrate robust and reliable treatment
performance.

1.6 Ferrate(VI) Technology

1.6.1 Ferrate(VI) chemistry and its application to water and wastewater treatment
Ferrate(VI), i.e. FeO4>", is the oxyanion containing iron in +6 oxidation state (Figure 1-5). It
has a tetrahedral structure in which four F-O bonds are equivalent with covalent character
(Hoppe, Schlemper, & Murmann, 1982). The first ferrate(VI) synthesis was reported in 1702
(Stahl, 1715). Later on, ferrate(VI) was mostly studied by chemists (Schreyer & Ockerman,
1951; Thompson, Ockerman, & Schreyer, 1951; Wagner, Gump, & Hart, 1952; Williams &
Riley, 1969; Wood, 1958). The ability of ferrate(VI), mostly as a chemical oxidant, for water and
wastewater treatment was explored in the 1970s (M. Gilbert, Waite, & Hare, 1976; T.D. Waite,
1979; T.D. Waite & Gilbert, 1978). Since then, ferrate(VI) for removal of different water
contaminants has been increasingly studied (J. Q. Jiang, 2007; J. Q. Jiang & Lloyd, 2002; Y.
Lee, Cho, Kim, & Yoon, 2004; Sharma, Chen, & Zboril, 2015; Sharma, Zboril, & Varma, 2015).
The most frequently used ferrate(VI) salts include potassium ferrate(VI) (KoFeO4) and
sodium ferrate(VI) (Na2FeOs). Once dosed to water, Fe(VI) in ferrate(VI) gains electrons to be

reduced to intermediate high valence iron species — more reactive Fe(V) and Fe(IV) - and
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eventually to stable Fe(IIl) (J. Q. Jiang, 2007; J. Q. Jiang & Lloyd, 2002; Y. Lee, Kissner, & von
Gunten, 2014; Sharma, Yngard, Cabelli, & Baum, 2008). The reduction of Fe(VI) to Fe(Ill) is
achieved through three major pathways, including ferrate(VI) reaction with water, traditionally
recognized as ferrate(VI) self-decay; chemical oxidation of water matrix constituents (e.g.
natural organic matter (NOM)); and chemical oxidation of target pollutants, e.g. mircopollutants
(Deng, Jung, Liang, Goodey, & Waite, 2018). The overall self-decomposition reaction of
ferrate(VI) is as follows.

2Fe04* + 5 HO — 2Fe** + 1.50, + 10 OH (1-6)

With the decreasing Fe(VI) concentration, an equivalent amount of iron precipitate is
gradually formed. At typical water and wastewater treatment related conditions, the in-situ
produced Fe(III) may initiate coagulation for destabilization of colloidal particles (Lv, Zheng,
Zhang, & Deng, 2018), precipitate soluble contaminants (e.g. toxic metals) (Robert Prucek et al.,
2015), and adsorb inorganic and organic pollutants due to the formation of iron (hdyr)oxides
from Fe(III) hydrolysis (T. Yang et al., 2018). Of note, some Fe(IIl) may remain in a soluble
state in water, depending on the solution chemistry and water treatment conditions (Cui, Zheng,
& Deng, 2018; Goodwill, Jiang, Reckhow, Gikonyo, & Tobiason, 2015). After the treatment, the
final product is ferrate(VI) treatment residuals, primarily comprising iron (hydr)oxide solids
(Graham, Khoi, & Jiang, 2010).

Ferrate(VI)-driven oxidation. Fe(VI) was mostly investigated as a chemical oxidant with
unique properties as discussed below. First, its reactivity and stability are acutely pH dependent.
Ferrate(VI) in water exists in four individual protonated forms (HsFeO4", HoFeOs, HFeOy4, and
FeO4*) with pK; = 1.6 (Rush, Zhao, & Bielski, 1996), pK, = 3.5 (Carr et al., 1985; Rush et al.,

1996), and pK3 = 7.3 (Rush et al., 1996) or 7.8 (Carr et al., 1985). Under a typical water
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treatment pH condition (pH 6-8), the reduction potential of Fe(VI) ranges between +2.2 V
(HFeOx') at an acidic condition and +0.7 V (FeO4*) in alkaline solution (Cyr & Bielski, 1991; Y.
Lee, Yoon, & Von Gunten, 2005; Wood, 1958). Moreover, Fe(VI) is unstable at an acidic-
neutral condition but relatively stable at higher pH. For example, the half-life of Fe(VI) is
reported to be ~ 3 min at pH 7.1, but increases to 2 hrs at pH 9.2 (Li, Li, & Graham, 2005).
Second, ferrate(VI) oxidation is selective. Similar to many other selective oxidants (e.g. ozone),
ferrate(VI) preferentially reacts with electron-rich organic moieties (ERM), such as activated
aromatic compounds (e.g., phenol, aniline, and polycyclic aromatics), organosulfur compounds,
and deprotonated amines (Y. Lee & von Gunten, 2010; B. Yang et al., 2012). It also favorably
attacks olefins. Although the selective nature may restrict its application to removal of certain
organic pollutants, ferrate(VI) is more efficient than nonselective oxidants (e.g., OH-) for
transforming ERM-containing pollutants, because less ferrate(VI) is wasted (Y. Lee & von
Gunten, 2010).

Ferrate(VI) coagulation. In contrast, insufficient attention has been paid to ferrate(VI)-
driven coagulation. Ferrate(VI) was reported to perform better than ferric salts in the coagulation
performance or enhance particle removals in the following coagulation. Jiang et al (J. Q. Jiang,
Lloyd, & Grigore, 2001) found that ferrate(VI) was advantageous over ferric sulfate (2-12 mg/L
Fe) during treatment of an upland colored water. The ferrate(VI) coagulation removed almost all
the turbidity at pH 7.5. Ma and Liu (Ma & Liu, 2002a, 2002b) reported that the pre-oxidation
with ferrate(VI) improved an ensuing coagulation for removal of algal cells. Goodwill et al
(Goodwill, Jiang, Reckhow, & Tobiason, 2016) also reported that ferrate(VI) pre-oxidation
improved the turbidity removal for a downstream dual-media filter in the treatment of two U.S.

Northeast surface waters.
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However, other studies reported that ferrate(VI) could not offer better coagulation than
ferric salts. Tien and Graham (Tien & Graham, 2011) compared coagulations with ferrate(VI)
and Fe(III) in a kaolin suspension solution in the absence of NOM. They used a photometric
dispersion analyzer (PDA) instrument to observe changing particle suspensions. The PDA
technique analyses the light transmitted through a flowing suspension (Graham et al., 2010).
They found that sweep coagulation occurred with ferrate(VI) or Fe(Ill) (2.8-11.2 mg/L Fe) at pH
6.0 - 8.0. Moreover, the magnitude of floc formation with Fe(IlI) was superior to that with
ferrate(VI). The same group (Graham et al., 2010) also studied the formation of ferrate(VI)-
induced floc in a humic acid solution without particles. They reported that ferrate(VI)
accomplished comparable, or better, floc formation to Fe(IIl). The group (Yu, Yang, & Graham,
2016) recently carried out another study to compare coagulation behaviors of ferrate(V) and
Fe(III) in an artificial raw water with PDA. In this study, flocculation index (FI) was used to
indicate the change of floc size with time as an indicator of floc growth. Results show that FI of
Fe(IIT) coagulation was higher than that of Fe(VI) at 0.02 — 0.30 mM as Fe. Lv et al. (Lv et al.,
2018) further compared ferrate(VI) and ferric salts in coagulation of kaolin particles in a
simulated natural water. They noticed that lower minimum effective iron doses (MEIDs) were
observed for ferrate(VI) coagulation than for direct Fe(IIl) coagulation at pH 6.5 and 7.5 (DOC =
2.00 mg/L).

Mechanisms of ferrate(VI)-driven coagulation appears to depend on solution chemistry
conditions and operating conditions (e.g., pH and ferrate(VI) dose). Charge neutralization and
sweep coagulation were reported to be responsible for the particle removals in literature (Deng et

al., 2017; Lv et al., 2018; H. Zhang, Zheng, Li, Pi, & Deng, 2020).
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In recent years, ferrate(VI)-induced particles, particularly nano or micro-sized ones, in water
have gained much attention (Goodwill et al., 2015; Radina P Kralchevska et al., 2016; Lv et al.,
2018; T. Yang et al., 2018; Zheng & Deng, 2016). Goodwill et al. (Goodwill et al., 2015)
reported that ferrate(VI) and ferric resultant particles had different size distributions and
morphologies in laboratory buffered water and reservoir water at pH 6.2. The ferrate(VI)
resultant particles contained crystalline Fe>O3, which was not found in the Fe(III) resultant
particles. Prucek et al. (R. Prucek et al., 2013; Robert Prucek et al., 2015) found that the
ferrate(VI) resultant iron (hydr)oxide particles possessed a unique two layer structure comprising
the core (y-Fe203) and shell (y-FeOOH). Cui et al.(Cui et al., 2018) investigated the size
distribution and coagulation of particles after ferrate(VI) treatment. In the study, ferrate(VI) dose
was believed to play a key role in the particle characteristics. As the ferrate(VI) dose was
increased, the fractions of soluble and colloidal iron went up, but the portion of large-sized
particulates decreased. Zheng and Deng (Zheng & Deng, 2016) also evaluated settleability of
ferrate(VI)-induced particles in a biologically treated municipal wastewater. Of surprise, a vast
majority of ferrate(VI) particles remained suspended in the secondary effluent, suggesting the
poor aggregation of these small particulate matters.

Potential of ferrate(VI) for water and wastewater treatment. Ferrate(V]) is preferred as a
promising agent for water and wastewater treatment due to multiple treatment mechanisms,
safety without production of known disinfection byproducts (DBPs) at typical water treatment
conditions, formation of non-toxic final products (i.e. iron sludge), and selective oxidation
capability (X.; Huang & Deng, 2014; Xin Huang et al., 2016; Y. Jiang, Goodwill, Tobiason, &

Reckhow, 2016; Sharma, Chen, et al., 2015; Sharma, Zboril, et al., 2015). The unique traits
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allows ferrate(VI) to achieve multiple treatment functions within a reactor at one step (T. D.
Waite, 2012; H. Zhang et al., 2020).

A large number of studies have demonstrated the effectiveness of ferrate(VI) for removal of
a broad range of water matrix constituents and contaminants in aqueous solution, including
NOM (Graham et al., 2010; J. Q. Jiang & Wang, 2003; Lim & Kim, 2009; Qu, Liu, Liu, & Lei,
2003; Song, Deng, & Jung, 2016), sewage organic substances (Alsheyab, Jiang, & Stanford,
2010; Eng, Sharma, & Ray, 2006; J. Q. Jiang, 2007; J. Q. Jiang & Lloyd, 2002; J. Q. Jiang,
Panagouopoulos, Bauer, & Pearce, 2006; J. Q. Jiang, Stanford, & Alsheyab, 2009; J. Q. Jiang,
Stanford, & Mollazeinal, 2012; Sharma, Zboril, et al., 2015; Yngard, Sharma, Filip, & Zboril,
2008), phosphorus, organic pollutants, toxic inorganic substances (e.g. arsenic and cyanides)
(Costarramone, Kneip, & Castetbon, 2004; Fan, Brown, & Huang, 2002; Y. Lee, Um, & Yoon,
2003; Lim & Kim, 2010; R. Prucek et al., 2013; Sharma, 2010; T. Yang et al., 2018), algae
(Deng et al., 2017; Radina P Kralchevska et al., 2016; Ma & Liu, 2002a), pathogen and pathogen
indicators/surrogates (Hu et al., 2012; Jessen, Randall, Reinhart, & Daly, 2008; J. Q. Jiang,
Wang, & Panagoulopoulos, 2006, 2007; Manoli et al., 2019; Schink & Waite, 1980), as well as
emerging pollutants such as PPCPs, EDCs (Anquandah, Sharma, Knight, Batchu, & Gardinali,
2011; Anquandah et al., 2013; Feng et al., 2019; Luo, Feng, Sharma, & Huang, 2019), NDMA
precursors (C. Lee, Lee, Schmidt, Yoon, & Von Gunten, 2008), and microcystins (de Luca,
Pegorer, & de Luca, 2010; Deng et al., 2017). Bench- and pilot--scale experiments have been
conducted to test Fe(VI) for treatment of drinking water (Cashman et al., 2014; Deng et al.,
2017; J. Q. Jiang et al., 2001; J. Q. Jiang, Wang, et al., 2006; Lim & Kim, 2009; Qu et al., 2003;
H. Zhang et al., 2020), sewage (Alsheyab et al., 2010; Bandala et al., 2009; Cekerevac, Nikolic-

Bujanovic, Mirkovic, & Popovic, 2010; E. Gombos et al., 2013; J. Q. Jiang, Panagouopoulos, et
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al., 2006; J. Q. Jiang et al., 2012; J. Q. Jiang, Wang, et al., 2006; J. Q. Jiang et al., 2007; T.D.
Waite, 1979), industrial wastewater(Ciabatti, Tognotti, & Lombardi, 2010), ballast water (Gillis,
Walters, Yeargain, & Reinhart, 2005; Jessen et al., 2008), landfill leachate (Batarseh, Reinhart,
& Daly, 2007; Gravesen, 2013), and biosolids (X. H. Zhang et al., 2012).

Ferrate(VI) application to water and wastewater was extremely restricted, because synthesis
of a dry or powder high-purity ferrate product, with sufficient stability to be shipped and
handled, is prohibitively expensive (> $130/kg) (T. D. Waite, 2012). However, recent advances
in ferrate(VI) production can commercially produce ferrate(VI) solution on site, thereby
significantly reducing the cost to < $10/kg (< 8% of previous costs) (J. Q. Jiang et al., 2009; J. Q.
Jiang et al., 2012; T. D. Waite, 2012). Such advances have opened new opportunities for making

ferrate(VI) treatment feasible.

1.6.2 Ferrate(VI) and Phosphorus in Wastewater Treatment

Currently, chemical precipitation using Fe or Al slats is the most popular method to remove P
from wastewater. Compared with Al salts, Fe salts are usually preferred due to a lower cost. In
the near future, Fe will play an essential role in the next-generation wastewater treatment plants
that will adopt an A-B process, i.e., a high loaded biological treatment (A stage) followed by a
bio-oxidation or B stage for N recovery (Wilfert, Kumar, Korving, Witkamp, & van Loosdrecht,
2015). In the A stage, Fe addition is the most cost-efficient option for reduction of colloidal and
particulate COD and elimination of P.

Ferrate(VI) with multiple functions has a potential to effectively remove total phosphorus in

wastewater.
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In-situ produced Fe(IIl) from ferrate(VI) has the potential to bond with phosphate ions and
form precipitates. Or ferric oxide nanoparticles can absorb phosphorus from wastewater. last
ferrate(VI) may oxidize organic phosphorus to transform the molecule so that organic
phosphorus can be absorbed and removed. However, by far, there is only a few publications
mention ferrate(VI)’s capabilities of phosphorus removal from aqueous solutions.

Y. Lee, Zimmermann, Kieu, and von Gunten (2009) report that a ferrate(VI) dose of 7.5 mg
Fe/L could remove around 80% of phosphate in water, exhibiting a similar treatment efficiency
like Fe(II) but a slightly better performance than Fe(IlI). The difference was ascribed to the
reason that ferrate(VI) resultant particles had a higher specific surface. Erzsébet Gombos et al.
(2013) report in a similar way that ferrate(VI) treatment of secondary effluent could achieve a
total phosphorus removal by 97.3%. Kwon, Kim, Park, Kim, and Cho (2014) and Gandhi, Ray,
Sharma, and Nakhla (2014) also report total phosphorus removal using ferrate(VI). However, all
the studies did not further explore the underlying reaction mechanisms for ferrate(VI) removal of
phosphorus. Rather, Radina P. Kralchevska et al. (2016) investigated the mechanisms for
ferrate(VI) reactions with phosphate ions in aqueous solutions. This study revealed that after
ferrate(VI) treatment phosphate could be adsorbed onto the surface of ferrate(VI) resultant
oxide/oxyhydroxide nanoparticles. The removal efficiency could be 100% at a sufficiently high
ferrate(VI) dose.

It should be noted that the most studies focused on the removal of phosphate, but much less
efforts were made to investigate alleviation of polyphosphate and organic phosphorus in
wastewater. C. Qin et al. (2015) highlights that in order to meet a strict phosphorus discharge

limit (< 0.1 mg /L total phosphorus), a high removal efficiency for phosphate is insufficient,
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because organic phosphorus accounts for a substantial fraction in the treated effluent.
Unfortunately, conventional phosphorus treatment methods poorly remove organic phosphorus.
1.7 Objectives and Hypothesis

The long-term goal of this study is to develop innovative wastewater treatment technologies
for more effectively, efficiently, and economically removing phosphorus present in municipal
wastewater. The primary objective of this dissertation is to evaluate the treatment performance of
ferrate(VI) for removal of different phosphorus species at different wastewater treatment stages
and elucidate the underlying reaction mechanisms. The central hypothesis is that ferrate(VI) is
capable of effectively removing inorganic phosphate through precipitation and/or adsorption due
to the formation of iron (hdyr)oxides and alleviating organic phosphorus via chemical oxidation
and precipitation/adsorption mechanisms. To achieve the overall objective, the following four
specific objectives were pursued:

Objective I: To investigate ferrate(VI) for chemically enhanced primary treatment for
removal of phosphorus during the primary treatment and elucidate the fundamental reaction
mechanisms.

Objective II: To evaluate the performance of ferrate(VI) removal of inorganic phosphorus in
secondary effluent during the advanced wastewater treatment and explore the reaction pathways.

Objective III: To evaluate the performance of ferrate(VI) removal of organic phosphorus in
secondary effluent during the advanced wastewater treatment and explore the reaction pathways.

Objective IV: To comprehensively assess the implications of the innovative ferrate(VI)

technologies for water resources management, environment, and society.
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Table 1-1 Anthropogenic Phosphorus Sources (Withers & Jarvie, 2008)

Delivery TP
Source type/source Db Rainfall  Chemical composition Range (mg/L) Mean (mg/L)
dependency

Wastewater

STW/industry Continuous Low Concentrated 0.2-17.1 6.63
CSOs Episodic High Concentrated n.d n.d
Septic tanks Episodic to semi-continuous  Low Vatiable 1.0-22.0 10.2
Impervious surfaces

Road/track runoff Episodic High Variable (High SS) 0.11-16 2.39
Farmyards Episodic to semi-continuous ~ Low-High Vatiable 0.02-247 30.8
Pervious Surfaces

Field surface runoff Episodic High Variable (High SS) 0.17-6.8 1.29
Field tile drains Episodic to semi-continuous ~ Low-High Vatiable 0.02-6.2 0.76
Field sub-surface runoff  Episodic High Dilute n.d n.d

STW, Sewage Treatment Works; CSOs, Combined Sewer Overflows; SS, Suspended Solid; n.d, no data.
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Figure 1-1 Phosphorus Speciation Method (APHA 2006)
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Figure 1-3 Three Strategies to Perform Phosphorus Precipitation
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Figure 1-4 Enhanced Biological Phosphorus Removal Process
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Figure 1-5 Chemical structure of ferrate(VI) (FeOs%)
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Chapter 2 Chemically Enhanced Primary Treatment (CEPT) With Ferrate(VI)

2.1 Introduction and Objectives
2.1.1 Chemically enhanced primary treatment

Primary treatment is in the initial stage at a municipal wastewater treatment facility, typically
comprising pretreatment (e.g. bar racks, grit chambers, and equalization basins) and gravity-
driven primary sedimentation basins (Deng, 2015; Tchobanoglous et al., 2014). Pretreatment
aims to remove large objects (e.g. rags and logs), inert materials (e.g. sands), dampen the
variations of inflow rates for the protection of downstream treatment equipment. The ensuing
primary sedimentation basins primarily target at the removal of settable or floatable pollutants,
rather than soluble ones (Tchobanoglous et al., 2014). The primary settling is characterized by
Type II sedimentation, in which the size and settling velocity of particles are increased due to the
occurrence of particle flocculation (Davis & Cornwell, 2008). After a typical primary treatment,
approximately 60% total suspended solids (TSS) and 35% 5-day biochemical oxygen demand
(BODs) are reduced. However, soluble pollutants are poorly removed (Davis & Cornwell, 2008).

In order to improve the treatment efficiency of the primary treatment, the conventional
primary treatment can be enhanced through the introduction of specific chemical compounds
(e.g. metal salts and organic polymers) (Chagnon & Harleman, 2005). The so-called chemically
enhanced primary treatment (CEPT) was early practiced in England in 1870 and in the United
States from the 1890s to early 1900s prior to the development of biological wastewater treatment
(Parker, Barnard, Daigger, Tekippe, & Wahlberg, 2001). Thereafter, the CEPT technology has
evolved for addressing different issues such as the reduction of wastewater phosphorus for
controlling the occurrence of eutrophication in receiving water bodies (Parker et al., 2001) and

coupling with biological treatment for maximizing the downstream nitrification (Horstkotte,
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Niles, Parker, & Caldwell, 1974). Different chemical agents have been employed with the
development of CEPT. Lime was early used for CEPT to result in a high primary effluent pH.
Acid production and CO; production in ensuing biological treatment (e.g. an activated sludge
process) sufficiently reduce pH to a neutral pH condition (Parker et al., 2001). Interest was later
transitioned to coagulants widely used for coagulation in drinking water treatment, such as ferric
chloride, alum, and polymers (Johnson et al., 2008; Neupane, Riffat, Murthy, Peric, & Wilson,
2008; Odegaard, 1998; Poon & Chu, 1999; Wang, Li, Keller, & Xu, 2009). Recently, new
chemicals have been tested, such as recovered coagulant sludge produced from drinking water
treatment (Xu, Yan, Wang, & Li, 2009; Xu, Yan, Wang, & Wang, 2009).

Chemical addition promotes the aggregation of suspended particulates in wastewater via the
processes of coagulation and flocculation, thereby increasing the settling velocity of these
particles and enhancing the removals of TSS, particulate organic matter, and nutrient (Olive,
2002). Olive (2002) reported that CEPT could improve the TSS removal from 60% to 85%,
BODs removal from 35% to 57%, and P reduction from 20% to 80%, in comparison with the
conventional primary treatment. On the other hand, after the conventional primary treatment is
replaced with CEPT, the size of primary settling tanks can be significantly reduced for a constant
wastewater inflow rate, or the surface overflow rate can be increased when the reactor size is
maintained (Neupane et al., 2008).

Besides the improvement of the performance at a traditional biological secondary treatment
facility, CEPT is a possible alternative for secondary treatment, which can effectively remove
dissolved and colloidal BODs and further reduce TSS, for many regions in developing countries,
in which only primary treatment facilities are available, but costly secondary treatment cannot be

afforded (Harleman & Murcott, 2001b; Olive, 2002). Although CEPT removes less BODs than
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biological secondary treatment, it may provide a comparable TSS removal and a much better
phosphate reduction. The P removal is ascribed to addition of the metallic (e.g. iron) salts
capable of precipitating phosphate in wastewater. Furthermore, CEPT may produce less sludge
required for further disposal than biological secondary treatment, and can be easily implemented
over existing infrastructure and operated at a much lower cost than secondary treatment
(Harleman & Murcott, 2001a, 2001b).

Iron-based metallic coagulants have been successfully employed for CEPT. One such
example is ferric chloride. It is of great interest whether other iron-base coagulants can also serve
for CEPT to provide an equivalent or better treatment efficiency, such as ferrate(VI). Ferrate(VI),
FeO.*, is the oxyanion containing iron in its +6 oxidation state (Virender K Sharma, Zboril, &
Varma, 2015). Once dosed to water, ferrate(VI) tends to gain electrons, thereby being a strong
chemical oxidant with a reduction potential of up to 2.20 V (Yunho Lee, Min Cho, Jee Yeon
Kim, & Jeyong Yoon, 2004). Fe(VI) can be reduced to Fe(III) via self-decomposition and
reactions with reductants in water (Deng, Jung, Liang, Goodey, & Waite, 2018; Y. Song, Y.
Deng, & C. Jung, 2016). The in-situ formation of Fe(III) can subsequently initiate coagulation
for the removal of colloids in water (Graham, Khoi, & Jiang, 2010; Lv, Zheng, Zhang, & Deng,
2018; Tien & Graham, 2011) and eliminate phosphate in wastewater through precipitation and/or
adsorption (Radina P Kralchevska et al., 2016; Yunho Lee, Zimmermann, Kieu, & von Gunten,
2009). The multiple treatment mechanisms of ferrate(VI) enables it to be potentially
advantageous over ferric chloride, because it is capable of removing multiple pollutants of
concern in raw municipal wastewater. For example, coagulation can remove suspended particles,
chemical oxidation can inactivate pathogens and degrade dissolved organic matter as well as

emerging micropollutants, and precipitation/adsorption can abate phosphorus in wastewater.
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2.1.2 Objectives
The objective of this chapter was to evaluate the treatment performance of and elucidate
mechanisms of ferrate(VI) for chemically enhanced primary treatment of municipal wastewater
for removal of phosphorus and other wastewater pollutants including TSS, BODs, and COD. To
achieve the objective, the following three questions would be investigated:
1) What is the performance of ferrate(VI) enabled CEPT for removal of various phosphorus
species in municipal wastewater?
2) What are the reaction mechanisms behind the phosphorus removal during the ferrate(VI)
enabled CEPT?
3) How does ferrate(VI) enabled CEPT alter other quality indicators in municipal
wastewater?
2.2 Material and Method
2.2.1 Wastewater samples and reagents
All the reagents used were at least analytical grade, except as noted. Potassium ferrate
(KoFeO4) (> 96%) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Untreated
municipal wastewater was collected from a local sewage treatment plant (Verona, NJ, USA). The
treatment facility received 9,464 m?/day wastewater from residual areas. The raw wastewater
was sampled after the grit chambers and before a primary sedimentation tank. Once collected,
the sample was delivered to the Montclair State University’s Water Treatment and reuse
Laboratory and then stored at 4°C in a refrigerator until use. Quality parameters of the untreated
municipal wastewater are as follows: pH 7.43, total suspended solids (TSS) = 108.9 mg/L, 5-day
biochemical oxygen demand (BODs) = 209 mg/L, total chemical oxygen demand (TCOD) = 293

mg/L, dissolved COD (DCOD) = 85 mg/L, particulate COD (PCOD) =208 mg/L, total
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phosphorus (TP) = 12.920 mg/L, particulate phosphorus (PP) =9.021 mg/L, dissolved
phosphorus (DP) = 3.899 mg/L, dissolved inorganic phosphorus (DIP) = 3.541 mg/L, dissolved
organic phosphorus (DOP) = 358 ng/L, total nitrogen (TN) = 39.47 mg/L, dissolved nitrogen
(DN) =31.05 mg/L . Concentrated ferrate(VI) (200 mg/L as Fe) stock solution was prepared by
dissolving appropriate weights of KoFeOs in ultrapure water produced from a Milli-Q water
purification system (Milli-Q Direct 8). Fe(VI) in the ferrate(VI) stock solution was confirmed
with the ABTS method (Y. Lee, Yoon, & von Gunten, 2005). The stock solution was prepared
immediately before the treatment tests.
2.2.2 CEPT Experiments

CEPT tests were carried out in 1 L glass beakers containing 800 mL well-mixed untreated
municipal wastewater on a four-paddle programmable jar tester (Phipps and Bird - 7790-950) at
room temperature (20 + 1 °C) and under atmospheric pressure. Initial solution pH was adjusted
to 6.0 or 7.5 with 1 N NaOH or 0.5 M H2SO4 solution. The treatment was initiated once an
appropriate volume of ferrate(VI) stock solution was dosed. For the CEPT with Fe(VI), the iron
dose was 1.0, 3.0, 5.0, 7.0, or 9.0 mg/L. Within the first minute, the solution was rapidly mixed
at a velocity gradient of 241 s! to completely disperse the added iron. During the following 59
minutes, the solution was gently stirred at a velocity gradient of 21 s™! for the growth of flocs.
During the treatment, pH was not controlled or additionally buffered, but monitored. Following
the slow mixing, gravity-driven sedimentation proceeded for 2 hours to simulate the primary
sedimentation at a municipal wastewater treatment facility. Subsequently, supernatant samples
were collected for analysis. Control tests were carried out with the identical experimental
procedure, except that any iron salt was not dosed. Results from the control group indicated the

treatment effect of conventional primary treatment.
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2.2.3 Sample Analyses

Ferrate(VI) was spectrophotometrically measured using the ABTS method (Y. Lee et al.,
2005). Solution pH was measured by a pH meter (Thermo Scientific Orion 5-Star Plus).
Unfiltered wastewater samples were used for the measurements of different total organic
indicators, total P, and total N. Dissolved organic parameters, P, and N were measured after the
wastewater was filtered through 0.45-pm syringe membrane filters (Thermo Scientific, cellulose
acetate (CA), 30 mm diameter). COD was measured calorimetrically following digestion (20—
1,500 mg/L range, HACH, Loveland, CO, USA). The measurements of TSS and BODs followed
the U.S. Environmental Protection Agency (EPA)-approved Standard Methods 160.2 and 5210
B, respectively. Total P was determined with an inductively coupled plasma-mass spectroscopy
(ICP-MS Thermo X-Series II, XO 472). Acid hydrolysable P was measured using the HACH
TNT reagent set and indicated the concentration of inorganic P in water. The concertation of
organic P was the difference between total and inorganic phosphorus. Particle sizes, size
distributions, and zeta potentials (ZPs) were determined using a Nano Zetasizer (Malvern, ZEN
3690) without any sample dilution. All the experiments were run in triplicates. All the analytical
results reported represent the mean of the three replicate samples. Error bars in the figures
indicate one standard deviation of these replicate measurements.
2.3 Results
2.3.1 Phosphorus

Initial pH 6.0. Concentrations of different P species in the supernatant after ferrate(VI)
CEPT at an initial pH of 6.0 are shown in Figure 2-1 (a)-(c). As seen in Figure 2-1(a), TP
narrowly varied between 9.50 and 10.10 mg/L PO+ at 0.0-9.0 mg/L Fe(VI), indicating that TP

was not significantly removed under the studied conditions. Specifically, we measured TIP and
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TOP, separately. As Fe(VI) dose was increased from 0.0 to 9.0 mg/L, TIP almost remained at
8.60-8.65 mg/L PO4*, while TOP slightly decreased from 1.45 to 1.20 mg/L PO4>".

In order to further understand the variation between dissolved and particulate P, we measured
IP and OP in dissolved and particulate states, as illustrated in Figure 2-1(b) and (c¢), respectively.
As shown, for the untreated wastewater, DP and PP were 8.35 and 1.75 mg/L PO4*, respectively,
indicating that the vast majority of P was in a soluble state (83% of TP). Of note, with the
increasing ferrate(VI) dose, DIP almost linearly decreased from 7.93 to 1.21 mg/L PO4*"
(residual DIP = 7.93 — 0.80 Fe(VI), R? = 0.98), while PIP linearly increased from 0.73 to 7.39
mg/L PO4> (residual PIP = 0.73 + 0.79 Fe(VI), R? = 0.98). Of note, the two model equations
representing the decrease of DIP and the increase of PIP, respectively, share a very similar slope
approximately at 0.80, thereby leading to a very stable residual TIP at the Fe(VI) dose of 0.0-9.0
mg/L as shown in Figure 2-1(a).

In contrast, we noticed that very limited removal was achieved for organic P at different
ferrate(VI) doses, regardless of the dissolved or particulate state. When Fe(VI) dose was
increased from 0.0 to 9.0 mg/L, DOP and POP slightly declined from 0.43 to 0.32 mg/L PO4*
and from 1.03 to 0.89 mg/L PO4>, respectively, corresponding to the removal of 26% DOP and
14% POP. Although organic P was slightly removed with the increase of ferrate(VI) dose, the
total P in the wastewater was stable after CEPT, irrespective of ferrate(VI) dose, because OP
accounted for a very small fraction of TP.

Initial pH 7.5. Concentrations of different P species in the supernatant after CEPT with
ferrate(VI) at an initial pH of 7.5 are shown in Figure 2-2 (a)-(¢). It should be noted that the
patterns of different P species with ferrate(VI) dose was very different between the initial pH 6.0

and 7.5. At the initial pH of 7.5, TP consistently decreased from 10.85 to 5.75 mg/L PO+ with
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the increasing Fe(VI) dose from 0.0 to 9.0 mg/L, corresponding to a removal of 47%. The
reduction of TP was ascribed to the decrease of both inorganic and organic P. Specifically, as
Fe(VI) dose was increased from 0.0 to 9.0 mg/L, TIP consistently declined from 9.35 to 5.20
mg/L PO4> with a 52% reduction. In contrast, TOP dropped from 1.50 to 0.55 mg/L PO4+* with
the increase of Fe(VI) dose from 0.0 to 5.0 mg/L, corresponding to a 63% removal; however, a
further increase of the Fe(VI) dose to 9.0 mg/L did not translate into any significant
improvement in the TOP removal.

IP and OP in dissolved and particulate states were measured in order to explore the
variation of these different P species at different ferrate(VI) doses, as illustrated in Figure 2-2(a)
and (b). For the untreated wastewater, DP and PP were 9.50 and 1.35 mg/L PO+, respectively,
again indicating that the vast majority of P was dissolved (88% of TP). As Fe(VI) dose was
increased from 0.0 to 9.0 mg/L, DIP went down from 8.55 to 0.79 mg/L PO4>". On the other
hand, residual PIP increased from 0.80 to 3.95 mg/L PO4>* with the increasing Fe(VI) dose from
0.0 to 3.0 mg/L. As Fe(VI) dose was further increased to 9.0 mg/L, PIP was marginally raised to
4.41 mg/L PO+*. Dramatically different from the DIP and PIP removal behaviors at the initial
pH of 6.0, the removal of DIP and PIP did not exhibit any linear pattern with ferrate(VI) dose.

Organic P, irrespective of a dissolved or particulate state, was appreciably removed at the
initial pH of 7.5 as the Fe(VI) dose was increased, different from the little OP removal at the
initial pH of 6.0. As shown in Figure 2-2 (b), DOP was decreased from 0.95 to 0.40 mg/L PO4*
with the increase of Fe(VI) dose from 0.0 to 3.0 mg/L, corresponding to a 58% removal.
However, the further increase of Fe(VI) dose to 9.0 mg/L did not evidently increase or decrease
residual DOP. As seen in Figure 2-2 (¢), Fe(VI) from 0.0 to 9.0 mg/L constantly reduced the

residual POP from 0.55 to 0.06 mg/L mg/L PO4> with an 89% removal.
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Overall, CEPT with ferrate(VI) better removed wastewater P at a weakly basic condition than
in a weakly acidic solution. Our results show that the overall removal of TP (up to 47%) was
achieved at the initial pH of 7.5, advantageous over the TP removal (<3%) at the initial pH of
6.0, in this study. To gain a comprehensive picture of variation of wastewater quality after CEPT
with ferrate(VI), we measured other water quality indicators, including final solution pH,
particulate matter, and organic matter.

2.3.2 Final solution pH

Final solution pH after CEPT at different ferrate(VI) doses is shown in Figure 2-3. Initial
wastewater pH was adjusted to 6.0 or 7.5. It should be noted that the final solution pH in the
control (without ferrate(VI) addition) was slightly increased to 6.44 and 7.68 at the initial pH of
6.0 and 7.5, respectively. As ferrate(VI) dose was increased to 9.0 mg/L, final solution pH was
slightly increased to 6.67 and 8.08 at the initial pH of 6.0 and 7.5, respectively. The extent of pH
increase was marginal under the studied conditions (the pH increase < 0.6 over 0.0-9.0 mg/L Fe
(VD). The pH increase with the increasing ferrate(VI) dose is ascribed to the release of hydroxyl
ions (OH") during ferrate(VI) self-decomposition in water. The overall reaction of ferrate(VI)
self-decay in water is as follows (Goff & Murmann, 1971):

2Fe04> + SH,0=2Fe(OH); + 40H + 1.50,71 (2-1)
2.3.3 Particulate matter (PM)

Photos of PM present in untreated and treated wastewater are shown in Figure 2-4.
Cloudiness was evidently observed in the untreated wastewater (Figure 2-4(a)), suggesting the
presence of much suspended PM originally present in the untreated wastewater. For either initial

pH, the supernatant became less cloudy with the increasing ferrate(VI) dose from 0.0 to 9.0
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mg/L. At any specific ferrate(VI) dose, the supernatant seemed to be more transparent in the
wastewater treated at the initial pH of 7.5 (Figure 2-4(c)) than 6.0 ((Figure 2-4(b))).

In order to quantitatively determine the PM removal during the CEPT, two water quality
indicators, i.e. turbidity and TSS, were measured before and after ferrate(VI) treatment at
different conditions, as shown in Figure 2-5 and 2-6, respectively. As seen in Figure 2-5,
residual turbidity in the supernatant after CEPT decreased from 32.5 NTU at 0.0 mg/L Fe(VI) to
22.3 NTU and 11.2 NTU at 9.0 mg/L Fe(VI) at pH of 6.0 and 7.5. respectively. At any specific
ferrate(VI) dose, the greater residual turbidity was observed in the sample treated at the initial pH
of 6.0 than 7.5.

Residual TSS after CEPT at different ferrate(VI) doses is illustrated in Figure 2-6. For the
initial pH of 6.0, residual TSS consistently increased from 37.29 mg/L at 0.0 mg/L Fe(VI) to
59.67 mg/L at 9.0 mg/L. In contrast, at the initial pH 7.5, TSS increased from 43.75 to 53.50
mg/L as the Fe(VI) dose increased from 0.0 to 1.0 mg/L, and then gradually declined to 20.63
mg/L as Fe(VI) dose was further increased to 9.0 mg/L. The different observations in the
patterns of residual turbidity and TSS with ferrate(VI) doses implied occurrence of complex
chemical and/or physical changes in the system, which will be discussed later.

2.3.4 Organic Matter

Residual total, dissolved, and particulate COD after CEPT are shown in Figure 2-7 (a), (b),
and (¢), respectively. At the initial pH of 6.0, TCOD was marginally removed over 0.0-9.0 mg/L
Fe(VI) with the maximum reduction of TCOD from 185.6 to 170.5 mg/L with 8% removal only
at 9.0 mg/L Fe(VI) (Figure 2-7(a)). The slight TCOD removal was due to the minor removal of
PCOD from 110.0 to 96.0 mg/L (Figure 2-7(c)), while DCOD remained around 75.6 mg/L,

regardless of ferrate(VI) dose.
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In contrast, at the initial pH of 7.5, TCOD was consistently decreased from 190.5 to 123.0
mg/L as Fe(VI) dose was increased from 0.0 to 9.0 mg/L with a 35% removal (Figure 2-7(a)),
exhibiting a much better capability for alleviating organic matter in wastewater. As illustrated in
Figure 2-7(b), DCOD narrowly varied between 77.0 and 84.5 mg/L over 0.0-9.0 mg/L Fe(VI),
indicating an insignificant removal of dissolved organic matter in wastewater. On the other hand,
PCOD was constantly decreased from 106.5 mg/L at 0.0 mg/L Fe(VI) to 43.0 mg/L at 9.0 mg/L
Fe(VI), highlighting that the overall COD removal was principally ascribed to the mitigation of
particulate organic matter during CEPT with ferrate(VI). To sum up, the removal of organic
matter in wastewater using CEPT with ferrate(VI) relies upon solution pH. The reduction of
COD, regardless of dissolved or particulate COD, was minor at a weakly acidic condition.
However, the removal becomes pronounced as the pH was increased to a weakly alkaline
condition primarily due to the removal of particulate organic matter.

Fractions of COD due to dissolved and particulate organic matter in the overall COD with
ferrate(VI) doses at the initial pH of 6.0 and 7.5 are shown in Figure 2-8 (a) and (b),
respectively. For the initial pH of 6.0 (Figure 2-8(a)), the fractions of DCOD and PCOD
narrowly varied at 39%-44% and 56%-61%, respectively, indicating that: 1) dissolved and
particulate organic matter both significantly contributed to COD at all the studied conditions, of
which the latter accounted for a slightly greater fraction in the overall COD; and 2) the relative
contributions of dissolved and particulate organic matter to the overall COD somewhat
stabilized, independent of ferrate(VI) dose. These findings are not surprising, because residual
DCOD and PCOD were not evidently altered over the studied ferrate(VI) dose at the initial pH of

6.5, as mentioned above.
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Nonetheless, at the initial pH of 7.5, as Fe(VI) dose was increased from 0.0 to 9.0 mg/L, the
fraction of DCOD grew up from 44% to 65%, while the PCOD portion declined from 56% to
35% (Figure 2-8(b)). The observation is due to the fact that CEPT with ferrate(VI) more readily
removed PCOD than DCOD as shown in Figure 2-7 (b) and (¢).

In order to examine the evolution of wastewater biodegradability after CEPT, BODs of
ferrate(VI) treated wastewater was measured, as illustrated in Figure 2-9 (a). As shown, BODs
went down from 130.7 mg/L at 0.0 mg/L Fe(VI) to 61.6 and 40.0 mg/L at 9.0 mg/L Fe(VI) at the
initial pH of 6.0 and 7.5, respectively. At any specific ferrate(VI) dose over 3.0-9.0 mg/L,
residual BODs at the initial pH of 7.5 was lower than that at the initial pH 6.0. Furthermore, we
determined BODs/COD, a well-recognized indicative of wastewater biodegradability, at different
pH and ferrate(VI) doses (Figure 2-9(b)). For the initial pH of 6.0 and 7.5, BODs/COD was
gradually decreased from the initial 0.70 to 0.36 and 0.32, respectively, as Fe(VI) dose was
increased to 9.0 mg/L, indicating that CEPT with ferrate(VI) decrease the biodegradability. The
reduction of BODs/COD with ferrate(VI) dose was primarily because the extent of BODs
removal was greater than the degree of COD decrease with the increasing ferrate(VI) dose, as
shown in Figure 2-7(a) and 2-9(a).

2.4 Discussion

This study represented the first investigation on ferrate(VI) application to CEPT in municipal
wastewater treatment. Results from the above experiments would be in-depth discussed in two
aspects, i.e. the removal of phosphorus in untreated wastewater and the impacts on other
wastewater quality indicators. Implications to the wastewater treatment industry would be finally

discussed.
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2.4.1 P Removal during CEPT with Ferrate(VI)

Ferrate(VI) removal of IP and OP in wastewater. Based on the residual concentrations of
different P in the supernatant at different treatment conditions (Figure 2-1 and 2-2), we noticed a
poor removal of TP at pH 6.0, regardless of ferrate(VI) dose. The ferrate(VI)-based CEPT could
not change the DOP and TOP concentrations, indicating the ineffectiveness of ferrate(VI) for
removal of organic phosphorus at the primary wastewater treatment conditions. In contrast, as
ferrate(VI) dose increased, the residual DP concentration dramatically declined, but the almost
equimolar PP increased, so that the net effect in the TP removal was marginal. The plausible
reason is that the removed DP was transformed or attached to particulates that had poor
settleability and finally remained in the supernatant.

However, when pH increased to 7.5, dissolved or particulate organic phosphorus was
somewhat removed with the increasing ferrate(VI) dose, suggesting that ferrate(VI) can alleviate
OP at a weakly acidic condition. For inorganic phosphorus, the increase in the ferrate(VI) could
translate into the removal of DIP, but slightly increased the PIP. It should be noted that the extent
of DIP removal was greater than that of PIP at pH 7.5, so that the overall residual IP was
decreased with the ferrate(VI) dose as shown in Figure 2-2(a).

Overall, when the removal of P occurs during ferrate(VI) CEPT, the major mechanism is
sedimentation in which particulate matter settles down to the bottom of the reactor by gravity,
because P, different from degradable organic matter, cannot be eliminated from the system.
Based on the results from the control groups, the particulate IP or OP could not effectively settle
down by itself. Therefore, ferrate(VI) removal of P in the untreated wastewater can proceed via
the following different pathways. For dissolved IP, Fe(IIl) produced from ferrate(VI) reduction

can precipitate phosphate (the major form of DIP) and/or form iron (hydr)oxides that
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subsequently adsorb phosphate (the further mechanistic investigation for ferrate(VI) reactions
with orthophosphate would be performed in Chapter 3). For particulate IP and OP, the
production of Fe(Ill) and the formation of iron (hydr)oxides increase the size and/or density of
particles, so that they can settle down in water. For dissolved OP, the removal may be due to 1)
transformation into IP through ferrate(VI) oxidation followed by the removal of IP; and/or 2)
direct adsorption to particles that later settle down. Whether ferrate(VI) can significantly oxidize
P-containing organic matter in wastewater or not would be further investigated in Chapter 4.

Evolution of particle size after ferrate(VI) treatment. In order to understand the size
evolution of particles during and after the CEPT, we used the dynamic light scattering (DLS)
technique to examine the change of particle size (Figure 2-10 (a)-(d)). The measurements were
made at two sampling time: 1) immediately after ferrate(VI) treatment (i.e. before settling); and
2) immediately after settling. The ferrate(VI) dose was fixed at 9.0 mg/L as Fe, while pH was 6.0
or 7.5. As shown, all the particle sizes were almost normally distributed.

At pH 6.0, for the control group, the particle sizes before settling varied at a narrower and
lower size range than those before settling, indicating that the original settleable particles in
wastewater had smaller sizes, while non-settleable particles were larger but had lower densities.
After ferrate(VI) treatment and before settling, we noticed that the particle size range became
narrower and lower than that in the control. The peak size was around 292 nm, suggesting that
these particles were in a range of colloidal particles. After the following sedimentation, the
particle size range was a little higher, but the peak particle size was still below 400 um,
suggesting that these particles remain in a colloidal state. It should be noted that very little
particulate P was removed at pH 6.0 and numerous particulate IP particles were suspended in

water under the studied conditions (Figure 2-1), indicating the poor settleability of these



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 71

particles. Therefore, at pH 6.0, ferrate(VI) addition produced many small particles associated
with phosphate, which remained in water to cause a poor P removal. We also measured zeta
potential of these particles before settling. The zeta potential was -15.1 mV, lower than the zeta
potential (-14.2 mV) of these original particles. This finding suggests that more negatively
charged surface due to the formation of ferrate(VI) resultant particles stabilizes the particles in
wastewater and thus inhibits the P removal due to particle sedimentation.

In contrast, at pH 7.5, the particle size before settling was increased with a peak around 531
nm, greater than the peak sizes of these particles formed at pH 6.0, implying that a weakly
alkaline pH favors the growth of particles. After settling, the particle sizes slightly declined, but
became a litter broader.

Mass distributions of P and Fe after ferrate(VI) treatment. Phosphorus, different from
degradable organic matter, cannot be eliminated in the entire system during the CEPT with
ferrate(VI). Therefore, the total P mass remains constant over the treatment. However, P can be
transformed among the different species. Regardless of inorganic and organic P, the removal of
P from wastewater means that P does not exist in the supernatant after primary settling. Namely,
the removed P settles down to the bottom of the reactor. After ferrate(VI) treatment and before
the sedimentation, TP in the system can be categorized into dissolved P and particulate P, of
which the latter can be further split into P in settleable particulates (PPs) and P in non-settleable P
(PPxs), as follows.

PP = PP, + PPx (2-2)
Of note, the criterion for determination of “settleable” and “non-settleable” particulate

matters are arbitrary. In this study, settleable particles are defined as the ones that settle down



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 72

after 2-hr sedimentation following the CEPT, while non-settleable particles are ones that remain
in the supernatant after the 2-hr sedimentation.

In order to further obtain quantitative information on the P and Fe distributions, we measured
the concentrations of P and Fe in dissolved, settleable, and non-settleable states before and after
settling, as Figure 2-11 (a) and (b), respectively. Generally, the P and Fe distributions share a
similar pattern. Dissolved P and Fe accounted for a small fraction. On the other hand, between
settleable and non-settleable states, settleable P and Fe concentrations were greater at pH 7.5
than pH 6.0, in agreement with our findings in the size distribution. Moreover, the similar mass
distribution patterns of Fe and P highlight that the fate of P is highly related to the dosed iron
during the CEPT.

2.4.2 Other Wastewater Quality Indicators

Besides phosphorus, other wastewater quality indicators can also be influenced after
ferrate(VI) dose. Although ferrate(VI) self-decomposition can potentially increase water pH due
to the release of hydroxyl ions, we did not notice a marked change of water pH over the
treatment. The finding suggests that the typical acidity in the municipal wastewater sufficiently
maintained the water pH after ferrate(VI) dosing under the studied conditions.

We also noticed that turbidity after settling declined with the increasing ferrate(VI) dose.
Lower turbidity was observed at pH 7.5 than at pH 6.0 under identical treatment conditions,
which is in consistence with the effects of pH on the particle size and P/Fe mass distributions.
Moreover, the other parameter associated with particulate matter is TSS. The decrease of TSS
with ferrate(VI) was observed at pH 7.5. But a slight increase of TSS was noticed with the
increasing ferrate(VI) at pH 6.0. The disparity of residual turbidity and TSS at pH 6.0 is likely

caused by the different measurement methods of the two indicators. Turbidity is defined as the
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reduction in clarity of water caused by the scattering of visible light by particles (Crittenden,
Trussell, Hand, Howe, & Tchobanoglous, 2012), while TSS is the portion of the total solids
retained on a filter with a specified pore size, measured after being dried at a specified
temperature (105°C) (Tchobanoglous et al., 2014). Turbidity is an optical parameter that mass
cannot directly affect, but TSS is computed based on the mass of particles. Integration of iron,
with a high atomic weight, into particulate matter in wastewater can potentially increase the
particle density and mass. Therefore, it is not surprising to observe the increase in total
suspended solids with the increasing ferrate(VI) dose.

Ferrate(VI) removal of organic matter in wastewater is ascribed to settling of particulate
organics, rather than the degradation of dissolved organic matter. This can be validated by the
evidence that particulate COD declined but dissolved COD was almost constant with the
increasing ferrate(VI) dose. It is unexpected that dissolved organic matter was not significantly
degraded by ferrate(VI), because ferrate(VI) has a high oxidizing capacity. Generally, once
ferrate(V1) is dosed to water, Fe(VI) can be consumed through two pathways. First, ferrate(VI) is
subject to self-decomposition. Self-decay rate of ferrate(VI) is dramatically increased with the
pH decrease (Virender K Sharma et al., 2015). Second, ferrate(VI) reacts with reducing agents in
water, such as dissolved organic compounds. The aforementioned findings suggest that
ferrate(VI) might have been substantially lost due to self-decomposition without reactions with
dissolved organic compounds. The role of self-decomposition is particularly dominant at pH 6.0,
at which 9.0 mg/L Fe(VI) can completely decay within a few seconds.

2.4.3 Implication for the wastewater industry
Ferrate(VI) exhibited the potential for chemically enhanced primary treatment. Under the

optimal conditions, it can effectively remove inorganic and organic phosphorus, together with
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TSS and COD. The effective removals for different wastewater parameters are principally

attributed to the sedimentation mechanisms, because the ferrate(VI) introduction can enhance the

settleability of particulate matter. The findings are of significance to the wastewater industry in

two aspects.

1) For these developed countries that require a secondary treatment as the minimum

2)

wastewater treatment, the adoption of ferrate(VI) in primary treatment can significantly
reduce the pollutant loadings to ensuing biological treatment. For example, the highest
removals of P, COD, and TSS removals after the ferrate(VI) CEPT in this study were
greater than those typically reported in the traditional primary treatment. The alleviated
loading can improve the treatment efficiency and/or reduce the required biomass
concentrations in the downstream treatment. The latter can bring two benefits. The first is
the less dioxygen input. Given that oxygen supply is the major component of the
operating costs in a wastewater treatment plant, this is expected to lower the overall
wastewater treatment costs. Second, quantify of waste biomass, which needs costly
management and disposal, is reduced.

Many developing countries only require a primary treatment for wastewater management
due to the economical restriction. The poorly treated water, after discharged into the
environment, poses a serious threat to human and environmental health. Ferrate(VI)
technologies provide an innovative treatment alternative for enhanced wastewater
treatment. Compared with traditional primary treatment, ferrate(VI) methods can
considerably remove P to minimize the occurrence of algal blooms in receiving water

bodies. Moreover, ferrate(VI) is a potent disinfectant. If ferrate(VI) is adopted in primary
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treatment, additional chlorination for inactivation of water-borne pathogens is not needed,

thus reducing the treatment costs and system complexity.

3) Although ferrate(VI) can produce additional particles, settleable or non-settleable, an
additional liquid-solid separation unit is not required. The settleable particles can be
removed within the primary settling tanks, while the non-settleable particles can be most
likely removed in the following biological treatment unit and/or in a secondary settling
tank.

2.5 Conclusion

This study aimed to evaluate the feasibility of ferrate(VI) for chemically enhanced primary
treatment of municipal wastewater. Particular attention was paid to the removal of phosphorus in
wastewater. The treatment mechanisms behind the observations were also explored. Major
conclusions can be made as follows.

1) Ferrate(VI) CEPT is an effective treatment method to early remove total phosphorus
in wastewater with a removal of total phosphorus as high as by 87%.

2) Removal of phosphorus by ferrate(VI) CEPT is influenced by ferrate(VI) dose and
pH. Generally, higher ferrate(VI) dose and a weakly alkaline pH favor the phosphorus
removal.

3) The phosphorus removal by ferrate(VI) is ascribed to the sedimentation mechanism.
Therefore, the formation of settleable particles is key. Fe(IlI) produced from
ferrate(VI) and subsequently formed iron oxide can capture dissolved phosphate, the

vast majority of P in wastewater.
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4) Ferrate(VI) addition to wastewater can also remove particles originally present in
wastewater as well as particulate organic matter, thereby improving the quality of

treated wastewater
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Figure 2-1 Concentrations of different P species in the supernatant after CEPT with ferrate(VI)
at an initial pH of 6.0: (a) total P; (b) dissolved P; and (c) particulate P (P is expressed as mg/L

PO.*; and Fe(VI) dose = 0.0 - 9.0 mg/L as Fe)
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Figure 2-2 Concentrations of different P species in the supernatant after CEPT with ferrate(VI)
at an initial pH of 7.5: (a) total P; (b) dissolved P; and (c) particulate P (P is expressed as mg/L
PO.*; and Fe(VI) dose = 0.0 - 9.0 mg/L as Fe)
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Figure 2-3 Final solution pH after CEPT with ferrate(VI) (initial pH = 6.0 and 7.5; and Fe(VI) =
0.0 -9.0 mg/L)
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Figure 2-4 Visualization of PM in wastewater before and after ferrate(VI) treatment: (a)
untreated wastewater; (b) CEPT at the initial pH of 6.0; and (c) CEPT at the initial pH 7.5
(Fe(VI) dose: 0.0, 1.0, 3.0, 5.0, 7.0, 9.0 mg/L as Fe from left to right)
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Figure 2-5 Residual turbidity after CEPT at different Fe(VI) doses (initial pH = 6.0 and 7.5; and
Fe(VI) =0.0 -9.0 mg/L)
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Figure 2-7 Residual COD after CEPT at different Fe(VI) doses: (a) TCOD; (b) DCOD; and (c)
PCOD (initial pH = 6.0 and 7.5; and Fe(VI) = 0.0 -9.0 mg/L)



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 87

90%
80% ®mDCOD (initial pH 6.0)
®PCOD (initial pH 6.0)
a 70%
8 60%
= 50%
S 40%
‘g 30%
S
= 20%
10%
0%
0.0 1.0 3.0 5.0 7.0 9.0
Fe(VI) (mg/L)
(a)
90%
80% ®DCOD (initial pH 7.5)
® PCOD (initial pH 7.5)
a 70%
8 60%
= 50%
S 40%
‘g 30%
1S
= 20%
10%
0%
0.0 1.0 3.0 5.0 7.0 9.0
Fe(VI) (mg/L)
(b)

Figure 2-8 Fractions of dissolved and particulate COD after CEPT at different Fe(VI) doses: (a)
initial pH of 6.0; and (b) initial pH 7.5 (Fe(VI) = 0.0 -9.0 mg/L)
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Figure 2-9 Evolution of wastewater biodegradability after CEPT at different Fe(VI) doses: (a)

BODs; and (b) BODs/COD (initial pH = 6.0 and 7.5; and Fe(VI) =0.0 -9.0 mg/L)
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Figure 2-10 Hydrodynamic size of particles at 1-hr mixing and at ensuing 2-hr settling after
CEPT: (a) initial pH 6.0, after 1-hr mixing; (b) initial pH 6.0, after 2-hr settling; (c) initial pH
7.5, after 1-hr mixing (i.e., before settling); and (d) initial pH 7.5, after 2-hr settling (no Fe(VI)
dosing for the control group; and Fe(VI) = 1.0 or 9.0 mg/L)
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Chapter 3 Phosphate Removal from Secondary Effluent Using Ferrate(VI) Treatment

3.1 Introduction and Objectives

3.1.1 Phosphate and Eutrophication

Phosphorus is an essential element to sustain life. In the aqueous environment, phosphate is
the primary form of phosphorus that can be readily uptaken by plants and other organisms.
Concentrations of available phosphate, together with nitrogen, in an aqueous environment limits
its primary production. However, an exceedingly high phosphate concentration can lead to
eutrophication, which can cause harmful algal blooms (HABs) to deplete dissolved oxygen and
increase mortality of biota in the aqueous ecosystems (Maier, Nimmo-Smith, Glegg, Tappin, &
Worsfold, 2009; Withers, Neal, Jarvie, & Doody, 2014; Worsfold, McKelvie, & Monbet, 2016).
As a result, water quality is severely degraded due to the production of taste and odor
compounds, the release of toxic algal toxins, and the increase of turbidity. The environmental
quality degradation poses a serious threat to public health, particularly when the water serves as a
drinking water source. For example, eutrophication-derived HABs caused a drinking water crisis
in the cities adjacent to the Lake Tai (China) in 2008 and the Lake Erie (USA) in 2014 (Jetoo,
Grover, & Krantzberg, 2015; B. Qin et al., 2010; Yuan et al., 2018). Currently, eutrophication
has become a major global issue for the freshwater systems (Falkowski et al., 2000; Thompson
& Cotner, 2018). For the eutrophication events, phosphate from different sources has been
recognized as a major cause (Darch, Blackwell, Hawkins, Haygarth, & Chadwick, 2014;
Macklon et al., 1997; Meinikmann, Hupfer, & Lewandowski, 2015).

Phosphate is widely involved in different human activities. It can enter into the aquatic
environment through point or non-point pollution sources. Treated wastewater serves as a major

point pollution source. Approximately 20-30% of globally mined phosphorus was estimated to
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finally end up with the sewer system globally (Brunner, 2010; Shimamura, Homma, Watanabe,
& Tanaka, 2003). Personal care products, detergents, phosphorus from water supply system,
human excreta and food waste are the primary sources of phosphate in the municipal wastewater
(Comber, Gardner, Georges, Blackwood, & Gilmour, 2013). In the recent years, more stringent
phosphorus discharge limits have become effective for municipal wastewater treatment plants,
especially in a highly environmentally sensitive area, such as the Chesapeake Bay where 0.3
mg/L total phosphorus was required for the treated wastewater effluent (Clark et al., 2010; C.
Qin et al., 2015). The high standards challenge the existing wastewater treatment options.
Therefore, innovative, reliable, cost-effective, and environmentally friendly treatment

technologies are required for alleviation of phosphate in treated wastewater.

3.1.2 Phosphate in Water

Phosphate is the has a relative simple chemical structure in comparison with a variety of
organic phosphorus. It most commonly means orthophosphate ( PO,3” ) (the most common
phosphorus oxoanion), but it is generally used for any hydrated or substituted form of the ion
(Darch et al., 2014). As discussed in the Chapter 1, phosphate has two types in an aqueous
solution in terms of size, i.e. particulate and soluble forms. The particulate phase can include
either adsorbed phosphate ion or the precipitation where phosphate ion is incorporated into the
chemical structure (e.g. CaPOs and FePOs). In a soluble form, phosphate ions can have four
different species with three pKa, as shown below (Loganathan, Vigneswaran, Kandasamy, &
Bolan, 2014).

H;PO, = H* + H,PO, ", pK,; = 2.15; (3-1)

H,P0,” = H* + HPO,*", pK,, = 7.2; (3-2)

HPO,%” = H* + P0O,>”, pK,; = 12.33; (3-3)
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3.1.3 Objectives

The objective of this chapter was to examine the treatment performance of ferrate(VI) for
alleviation of phosphate present in secondary effluent and elucidate underlying reaction
mechanisms. The working hypothesis is that ferrate(VI) is capable of effectively removing
phosphate in secondary effluent via adsorption and/or precipitation processes. To achieve the
objective, two following questions would be answered.

1) How and why do operating factors and typical wastewater matrix constituents influence

ferrate(VI) removal of phosphate in secondary effluent?
2) What are the underlying mechanisms behind the phosphate removal?

3.2 Materials and Methods

3.2.1 Wastewater samples and reagents

All the reagents used were at least analytical grade, except as noted. Potassium ferrate
(K2FeO4) (> 96%), sodium bicarbonate (NaHCO3), sodium nitrate (NaNO3), disodium phosphate
(Na2HPO4), and ammonia chloride (NH4Cl) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Secondary effluent was collected from a local municipal sewage treatment plant
(Verona, New Jersey, USA). The treatment facility received 9,464 m*/day wastewater from
residual areas. The secondary effluent was sampled after a secondary clarifier and before
disinfection. Once collected, the sample was delivered to the Montclair State University’s
Innovative Water Treatment and Reuse Laboratory, filtered with 0.45 um membrane filters (GE
Healthcare Whatman™ Nylon Membrane), and then stored at 4°C in a refrigerator until use.
Quality parameters of the secondary effluent are as follows: pH 7.48, dissolved total phosphorus
(DTP) =2.12 mg/L as P, dissolved inorganic phosphorus (DIP) = 2.08 mg/L as P, total organic

phosphorus (TOP) = 42 pg/L as P, UV2s4 absorbance = 0.161 cm™, dissolved organic carbon
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(DOC) =40.0 mg/L, turbidity = 2.33 NTU, nitrate-nitrogen (NO3™-N ) = 2.6 mg/L, ammonia-
nitrogen (NH3-N) = 10.4 mg/L, and alkalinity = 200 mg/L as CaCOs. Concentrated ferrate(VI)
(200 mg/L Fe(VI)) and phosphate (250 mg/L as P) stock solutions were prepared by dissolving
appropriate weights of KoFeO4 and Na;HPOy in ultrapure water produced from a Milli-Q water
purification system (Milli-Q Direct 8), respectively. Fe(VI) in the ferrate(VI) stock solution was
confirmed with the ABTS method (Y. Lee, Yoon, & von Gunten, 2005). P concentration was
measured using an inductively coupled plasma-mass spectroscopy (ICP-MS Thermo X-Series 1,

X0 472). The stock solution was prepared immediately before the treatment tests.

3.2.2 Treatment of secondary effluent with ferrate(VI)

Laboratory scale batch tests were carried out in 500 mL glass beakers containing 400 mL
well-mixed secondary effluent on a four-paddle programmable jar tester (Phipps and Bird -
7790-950) at room temperature (20 = 1 °C) and under atmospheric pressure. If needed, the
secondary effluent pH was adjusted to a designated level with 0.1 M sulfuric acid or sodium
hydroxide. The treatment was initiated once an appropriate volume of ferrate stock solution was
dosed. Within the first minute, the solution was rapidly mixed at a velocity gradient of 241 s™! to
completely disperse the added iron. During the following 59 minutes, the solution was gently
stirred at a velocity gradient of 21 s! for the growth of flocs. During the treatment, pH was
monitored, but not controlled or intendedly buffered. Following the slow mixing, the treated
wastewater was filtered using 0.45 um membrane filters (GE Healthcare Whatman™ Nylon
Membrane) for removing particulate matter, and the filtrates were collected for further analysis.
Control tests were carried out with the identical experimental procedure, except that ferrate(VI)

was not dosed.
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In the tests to evaluate the effect of ferrate(VI) dose, ferrate(VI) dose was varied from 0.0,
1.0, 3.0, 5.0, 7.0, 9.0, to 11.0 mg/L. In the experiments to assess the effect of initial pH,
ferrate(VI) dose was fixed at 5.0 mg/L Fe, while initial pH was varied at 5.5, 6.0, 6.5, 7.0, 7.5,
and 8.0. For the experiments to evaluate effects of alkalinity (250-500 mg/L as CaCQO3), nitrate
(NO3") (2.6-30.0 mg/L NOs3-N), and ammonia (NH3) (10-60 mg/L NH3-N), NaHCO3, NaNOs,
and NH4Cl were dosed to achieve their respective designated concentrations, respectively, at 5.0
mg/L Fe(VI) and pH 6.5. Because effluent organic matter (EfOM) is commercially unavailable,
the effect of EfOM cannot be assessed using the aforementioned experimental design. Instead,
distilled water was added to the secondary effluent at an appropriate volumetric ratio to dilute the
initial DOC of 40.0 mg/L to a designated level. Although the concentrations of alkalinity, nitrate,
and ammonia were different between the undiluted and diluted secondary effluent, they did not
significantly influence the experimental results for evaluating the effect of EfOM, because
experimental results show that the three matrix constituents had very limited influence on the

phosphate removal.

3.2.3 Removal Mechanisms

Treatment tests were carried out in 500 mL glass beakers containing 400 mL phosphate-
containing water (1.000 mg/L P) on a four-paddle programmable jar tester (Phipps and Bird -
7790-950) at room temperature (20 = 1 °C) and under atmospheric pressure. In order to eliminate
the possible influence of wastewater matrix constituents, the solution was prepared with distilled
water. The initial pH was adjusted to 6.5 and 7.5 using 0.1 M NaOH and 0.1 M HCI. Ferrate(VI)
dose was fixed at 5.0 mg/L as Fe. The experiments protocols followed the procedure of Section
3.2.2, except that solution pH was manually maintained at a designated pH with 0.1 M NaOH

and 0.1 M HCIl.
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3.2.5 Sample Analyses

Ferrate(VI) was spectrophotometrically measured using the ABTS method (Y. Lee et al.,
2005). Solution pH was measured by a pH meter (Thermo Scientific Orion 5-Star Plus). Various
secondary effluent parameters were measured after filtration through 0.45-um syringe membrane
filters (Thermo Scientific, cellulose acetate (CA), 30 mm diameter). EfOM was quantified using
DOC, which was measured with a total organic carbon (TOC) analyzer (TOC-LCPH, Shimadzu
Corp., Kyoto, Japan). Measurements of alkalinity, NO3™-N, and NH3-N followed the U.S.
Environmental Protection Agency (EPA) approved Standard Methods 2320B, 1685, and 4500F,
respectively. Total phosphate was determined with an inductively coupled plasma-mass
spectroscopy (ICP-MS Thermo X-Series II, XO 472). Acid hydrolyzable P was measured with
the HACH TNT reagent sets to determine inorganic P concentration in water. The morphology
of the retained particles was examined by a transmission electron microscope (TEM, Hitachi H-
7500) and a scanning electron microscope (SEM, Hitachi S-3400N). To quantify the amorphous
iron in the produced iron oxides, a citrate—ascorbate iron extraction method was used with minor
modification. Briefly, 0.2 M Na-citrate and 0.05 M ascorbic acid (pH 6.0) were added to the
well-mixed immediately after the coagulation and flocculation tests (3.0 mg/L Fe(VI)) with a
reagent to solution weight ratio of 60 : 1. The suspensions were shaken on a horizontal shaker for
16 h and then centrifuged at 11 000 rcf for 30 min. The extractable dissolved iron in the
suspensions was collected for analysis of amorphous iron by inductively coupled plasma-mass
spectroscopy (ICP-MS Thermo X-Series II, XO 472). The data allowed for the determination of
the mass fraction of amorphous Fe in the total Fe (i.e. 3.0 mg/L Fe) in the ferrate(VI) resultant
oxide particles. The crystal structure of amorphous and crystal iron oxide was investigated on a

Bruker D8 Advance X-ray diffractometer (XRD) with Cu-Ka radiation in the 26 range of 10-



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 107

75°. The function group was investigated using Fourier Transform Infrared (FTIR, Nicolet
4700). All the experiments were, at a minimum, run in triplicates. All the analytical results
reported represent the mean of the replicate samples. Error bars in the figures indicate one
standard deviation of these measurements.

3.3 Results and Discussion
3.3.1 Treatment performance of ferrate(VI) for removal of phosphate in secondary effluent

3.3.1.1 Effects of operating factors

Initial effects were made to evaluate effects of two operating factors, i.e. ferrate(VI) dose and
initial pH, on residual phosphate and ferrate(VI) utilization efficiency during ferrate(VI)
treatment of secondary effluent. Ferrate(VI) utilization efficiency is defined as the molar ratio of

the removed phosphate to the dosed ferrate(VI), as follows.

Removed phosphate (mol as P)
Dosed Fe(VI)(mol as Fe)

Fe(VI) utilization efficiency = (3-9)

Here ferrate(VI) utilization efficiency is used as a parameter to indicate how much phosphate can
be removed by a unit of ferrate(VI).

Ferrate(VI) dose. Effect of ferrate(VI) dose on residual phosphate and ferrate(VI) utilization
efficiency during ferrate(VI) treatment of secondary effluent is presented in Figure 3-1 (initial
DIP =2.08 mg/L as P and Fe(VI) dose = 0.0 - 11.0 mg/L). Residual DIP in the control was 2.01
mg/L P, slightly below the initial 2.08 mg/L P. In contrast, the residual DIP sharply declined
from 1.60 mg/L at 1.0 mg/L Fe(VI) to 0.46 mg/L P at 5.0 mg/L Fe(VI), and then was marginally
decreased to 0.29 mg/L P as Fe(VI) was further increased to 11.0 mg/L. Meanwhile, the Fe(VI)
utilization efficiency constantly declined from 0.87 to 0.36 mol P/mol Fe with increasing Fe(VI)

dose from 1.0 to 11.0 mg/L. These findings suggest that a higher ferrate(VI) dose can achieve
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more P removal but has a lower utilization efficiency. In the following treatment experiments,
5.0 mg/L Fe(VI) was selected because the P removal became trivial beyond 5.0 mg/L Fe(VI).
Initial pH. Effect of the initial pH on residual phosphate and ferrate(VI) utilization
efficiency during ferrate(VI) treatment of secondary effluent is shown in Figure 3-2 (Fe(VI) =
5.0 mg/L). Residual DIP declined from 0.68 mg/L P at pH 5.5 to 0.43 mg/L P at pH 6.5, and then
slightly increased to 0.54 mg/L P as pH went up to 7.5. As pH was further raised to 8.0, the
residual P was not significantly changed. Meanwhile, the ferrate(VI) utilization efficiency was
narrowly varied within 0.51 — 0.60 mol P/mol Fe. The findings clearly indicate that the minimum
residual P (0.43 mg/L P) and the maximum ferrate(VI) utilization efficiency (0.60 mol P/mol Fe)
were achieved at pH 6.5 with a corresponding P removal of 80%. Therefore, the initial pH of 6.5

was used for the ensuing treatment experiments.

3.3.1.2 Effect of wastewater matrix constituents

Effects of four common wastewater matrix constituents, including alkalinity (the major
chemical is bicarbonate at the study pH condition), NO3", NH4", and effluent organic matter were
subsequently investigated, as shown in Figure 3-3(a), (b), (c), and (d), respectively. As seen in
Figure 3-3(a), residual phosphate was increased from 0.45 to 0.61 mg/L P, while the
corresponding P removal efficiency was decreased from 78% to 71%, as alkalinity increased
from 200 to 250 mg/L as CaCOs. However, the residual P in treated wastewater did not evidently
change over the alkalinity of 250 — 500 mg/L CaCOs. Effect of NO3™ on the residual phosphate is
illustrated in Figure 3-3(b). When NO3™-N was increased from 2.6 to 30.0 mg/L, the residual
phosphate narrowly varied between 0.45 and 0.57 mg/L P, and the phosphate removal ranged
within 73% - 78%, indicating a minor impact of nitrate on the phosphate removal by ferrate(VI).

Role of NH3 on the phosphate removal is presented in Figure 3-3(c). With the increase of NH3-
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N from 10.6 to 60.0 mg/L, the residual phosphate slightly remained at 0.78-0.79 mg/L P,
indicating that ammonia cannot obviously influence ferrate(VI) removal of phosphate from
secondary effluent. Overall, alkalinity, nitrate, and ammonia in secondary effluent exhibited no
or little impacts on the abatement of phosphate in secondary effluent with ferrate(VI).

However, the effect of EfOM on the phosphate removal was significant. As shown in Figure
3-3(d), residual phosphate stabilized at 0.47 — 0.53 mg/L P as EfOM increased from 2.5 to 10.0
mg/L DOC. However, when DOC was increased to 40.0 mg/L, residual phosphate significantly
increased to 1.37 mg/L P. These findings suggest that ferrate(VI) removal of phosphate in a
secondary effluent matrix can be suppressed at a high EfOM range, but the inhibiting effect

became minor at a low EfOM concentration.

3.3.2 Mechanistic Studies

To explore underlying mechanisms of ferrate(VI) reactions with phosphate in water,
ferrate(V1) treatment of phosphate was performed in distilled water. After ferrate(VI)-treated
samples at different pH were filtered with 0.45 um membrane, residual phosphate and iron
concentrations are shown in Figure 3-4. As seen, the residual phosphate declined from the initial
1.000 to 0.026 mg/L P at pH 6.5, but to 0.950 mg/L P at pH 7.5, indicating that the lower pH
significantly improved the removal of P. Meanwhile, a similar pattern with pH was observed for
residual iron. At a Fe(VI) dose of 5.0 mg/L, the residual Fe was 0.001 mg/L at pH 6.5, but
remained as high as 4.247 mg/L at pH 7.5. Based on chemical equilibrium computation with the
Visual Minteq, residual iron at the studied conditions were nearly zero. Therefore, the residual
Fe observed in the filtrate most likely represents iron present in small-sized ferrate(VI) resultant
particles that passed through 0.45 pm membrane filters. From Figure 3-4, we cannot determine

whether the considerable residual P after ferrate(VI) treatment at pH 7.5 was truly soluble or
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associated with these small-sized iron particles. Of note, orthophosphoric acid has a pKa» of 7.20,
so the majority of its derived ions was anionic H.PO4 and HPO4* at pH 6.5 and 7.5,
respectively. The higher pH of 7.5 enabled a less positively or more negatively charged surface
area of iron (hydr)oxides with a typical point zero of charge at pH 6.5-8.5 (Stumm, 1992a) ,
thereby disfavoring the access of phosphate to iron (hydr)oxide particles. Based on the
aforementioned observations, we can concluded that: 1) at pH 6.5, the most phosphate were
associated with the resultant iron particles that could be almost completely screened by the
filtration; and 2) at pH 7.5, a vast majority of iron particles were sufficiently small to go through
the membrane, while phosphate appeared to be on/in these fine particles and/or soluble in water.
Direct characterization of ferrate(VI) resultant particles after ferrate(VI) treatment of
phosphate. In order to further understand the phosphate removal, the following material analysis
focused on the reactions at pH 6.5, at which phosphate was more effectively removed. Surface
elemental analyses were made for the ferrate(VI) resultant particles (Figure 3-5). Results
evidently show that abundant Fe, P, and O co-existed on the solid phase. Fe and P were
uniformly distributed on the solid surface. Morphology of these particles are illustrated in Figure
3-6. The SEM image (Figure 3-6(a)) reveals that the particles were somewhat angular and their
sizes broadly ranged from a few tens of nanometers to several micrometers. The morphology is
different from that of these particles from ferrate(VI) decomposition in the absence of phosphate
in a previous study (Goodwill, Jiang, Reckhow, Gikonyo, & Tobiason, 2015), in which
ferrate( V1) resultant particles were more rounded and less angular, and their sizes were relatively
uniform around several micrometers. The TEM image in Figure 3-6(b) more clearly presents the

morphology of the nano-sized portion of these particles, the size of which was adequately small
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to pass through the ensuing filtration. As shown, these particles were roughly spherical with the
particle sizes of less than 20 nm. They aggregated to form a net structure.

FTIR spectra of the ferrate(VI) resultant particles after ferrate(VI) treatment of phosphate are
presented in Figure 3-7. Very broad peaks were observed over the wavenumber of 500-4000 cm
!, suggesting a poor crystalline structure. The broad peak at 2800-3600 cm™ and sharp peak at
1600-1700 cm™ are attributed to water -OH stretching and bending vibrations, respectively,
suggesting the presence of crystalline H>O on these samples (Pironon & Barres, 1992). The sharp
and strong peak at 900-1300 cm™! indicates the stretching vibration of P-O in PO4*" (Boonchom
& Puttawong, 2010; Derrick, Stulik, & Landry, 2000). The presence of P is in agreement with
the observation from the EDS analysis. On the other hand, XRD patterns of the ferrate(VI)
resultant particles after the treatment of phosphate are shown in Figure 3-8. The particle sample
was mostly X-ray amorphous, making the interpretation difficult.

Characterization of crystalline fraction of these particles produced from ferrate(VI)
treatment of phosphate. Although the aforementioned analyses revealed the amorphous
properties of ferrate(VI) resultant particles produced after ferrate(VI) reactions with phosphate,
previous studies highlighted occurrence of both amorphous and crystalline iron (hydr)oxides
after ferrate(VI) reduction in the absence of phosphate in water (Lv, Zheng, Zhang, & Deng,
2018). Therefore, it is likely that amorphous and crystalline iron oxides simultaneously existed in
the ferrate(VI) resultant particles after ferrate(VI) reactions with phosphate in distilled water.
Here we used a citrate-ascorbate extraction method for dissolution of the amorphous fraction of
the ferrate(VI) resultant particles. After the extraction, the remaining particles were the
crystalline portion. The extraction method was early proposed for dissolving poorly crystalline

iron oxides (primarily ferrihydrite) in soils and mineral mixtures (Reyes & Torrent, 1997), and
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later became a widely accepted method for separation of amorphous and crystalline fractions of
iron (hydr)oxide in environmental sample analyses (Ginn, Meile, Wilmoth, Tang, & Thompson,
2017; Lv et al., 2018).

Surface elemental analyses of the crystalline fraction of the ferrate(VI) resultant particles are
shown in Figure 3-9. Surprisingly, P was not obviously found, though Fe and O remained
among the most abundant elements. This finding reveals that the most P removed was associated
with the amorphous fraction in ferrate(VI) resultant particles. SEM and TEM analyses were also
made to determine the morphology of the crystalline particles, as shown in Figure 3-10 (a) and
(b), respectively. The SEM image show that the crystalline particles exhibited a sheet structure
with very uniform sizes of several micrometers. The TEM image reflects that besides the large-
sized particles shown in Figure 3-10(a), nano-sized aggregates (around 100 nm) composed of
very small and uniformly sized nanoparticles (< 10-20 nm) existed. Spectra of FTIR for these
crystalline particles are shown in Figure 3-11. The peak at 570 cm™! is attributable to Fe-O
stretching vibration (Okada et al., 2005). Of note, the peak at 900-1300 cm’!, representing the
stretching vibration of P-O in PO4>", was not observed, thereby ruling out the presence of FePOa.
Therefore, the precipitation reaction of Fe(Il) produced from Fe(VI) reduction with phosphate
appeared not to be a major reaction pathway of the phosphate removal for ferrate(VI) removal of
phosphate. XRD patterns of these crystalline particle are presented in Figure 3-12. The
measured data well matched the XRD pattern of hematite (a-Fe2O3) based on the database of
The International Centre for Diffraction Data (ICDD) and the findings previously reported from
literature (Schimanke & Martin, 2000; Zainuri, 2017). The finding suggests that the majority of

crystalline fraction of particles produced from the ferrate(VI) treatment of phosphate was
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hematite, while the formation of ferric phosphate was not supported from the characterization
tests.

Moreover, fractions of different iron types in the ferrate(VI) resultant particles from
ferrate(VI) removal of phosphate are shown in Figure 3-13. Three types of iron were
investigated, including amorphous iron in particulate matters (> 0.45 um), crystalline iron in
particulate matters (> 0.45 um), and total iron in small-sized particles (< 0.45 um) or in a soluble
state. At 5.0 mg/L Fe(VI) for removal of phosphate (1.00 g/L P), the amorphous, crystalline, and
small-sized/soluble iron accounted for 49%, 40%, and 11%, respectively. This finding is in
agreement with the aforementioned observation that both crystalline and amorphous iron oxides
existed in the final iron sludge.

3.3.2 Discussion

Mechanisms for phosphate removal. Based on the findings from this study, removal of
phosphate with ferrate(VI) exhibits different reaction mechanisms with phosphate removal with
common iron-based coagulants (e.g. ferric and ferrous salts). Ferric salts such as ferric chloride
are a chemical reagent widely used for abatement of phosphate present in municipal wastewater.
Although the detailed mechanistic information regarding ferric removal of phosphate in water is
not fully understood, adsorption and precipitation reactions have been regarded as two key
processes for the phosphate removal (Frossard, Bauer, & Lothe, 1997; Huang & Shenker, 2004;
Luedecke, Hermanowicz, & Jenkins, 1988; Smith, Takacs, Murthy, Daigger, & Szabd, 2008;
Wilfert, Kumar, Korving, Witkamp, & van Loosdrecht, 2015). Several previous studies support
that the adsorption of phosphate onto iron oxides is the major mechanism when ferric salts are
applied (Luedecke et al., 1988; Smith et al., 2008; Szabo et al., 2008). Iron oxides are a general

term for the insoluble iron based (hydr)oxides, which can be rapidly formed through ferric
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hydrolysis (Cornell & Schwertmann, 2003). The adsorption of phosphate occurs when surface
hydroxyls on iron oxides serve as a Lewis acid and exchange with phosphate ions in water
(Cornell & Schwertmann, 2003; Thistleton, Berry, Pearce, & Parsons, 2002; Wilfert et al., 2015).
This leads to the formation of surface complexes on the iron oxides. The other possible reaction
pathway is the formation of insoluble iron-phosphate precipitates after ferric dosing
(Tchobanoglous et al., 2014). Although FePOy is traditionally acknowledged as the major
precipitation product, the structure of final iron-phosphate products is indeed complex
(Tchobanoglous et al., 2014). In a realistic water and wastewater treatment, the adsorption and
precipitation reactions may simultaneously occur during ferric removal of phosphate in water
(Thistleton et al., 2002).

Different from ferric elimination of phosphate in water, this study reveals that adsorption of
phosphate to ferrate(VI) resultant iron (hydr)oxide is a dominant mechanism for ferrate(VI)
removal of orthophosphate. The conclusion is made based on the experiment evidence — absence
of insoluble iron-phosphate precipitates in the final solid products. We found that amorphous and
crystalline iron particles were both produced from ferrate(VI) reactions with phosphate. The
citrate-ascorbate extraction could dissolve the amorphous iron fraction, but could not remove
iron-phosphate precipitates, if they truly formed. After the extraction, we did not observe P in the
remaining crystalline fraction based on the EDS analysis. Moreover, the FTIR spectrum did not
indicate the presence of Fe-P bounds in the remaining insoluble particles. Furthermore, the XRD
patterns suggests that hematite only, no iron-phosphate minerals, existed in the final solid
products. These findings rule out the principle role of the precipitation mechanism for ferrate(VI)

removal of phosphate in water.
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Adsorption of phosphate to iron (hydr)oxides was extensively studied. The phosphate
binding to the surface of iron (hydr)oxides is primarily attributed to formation of inner-sphere

surface complexes, as follows (Butkus, Grasso, Schulthess, & Wijnja, 1998; Stumm, 1992b).

= FeOH + PO}~ + H* == FeP0O2™ + H,0 (3-11)
= FeOH + PO}~ + 2H* == FeHO; + H,0 (3-11)
= FeOH + PO}~ + 3H* == FeH,PO0, + H,0 (3-12)

Where = FeOH represents a surface hydroxyl group on the iron oxide surface. Of note, there are
two possible reasons for the fact that phosphate was not abundantly associated with crystalline
iron particles after the citrate-ascorbate extraction. Firstly, amorphous iron (hdyr)oxides typically
have a greater adsorption capacity than their crystalline counterparts (Wang et al., 2013).
Therefore, phosphate was more associated with amorphous iron oxides. Secondly, adsorption of
phosphate to hematite (the crystalline iron oxide formed in this study) in water was reported
(Elzinga & Sparks, 2007; Gimsing & Borggaard, 2007; Kuo & Lotse, 1973). The absence of P
on the crystalline iron fraction may be because the phosphate adsorbed to hematite desorbed
during the extraction.

Concurrent formation of both amorphous and crystalline iron (hydr)oxide is of interest.
Formation of crystalline iron (hydr)oxide only from ferrate(VI) decomposition in water was
previously reported (Goodwill et al., 2015; Radina P Kralchevska et al., 2016). However, a
recent study indicates that the ratio of amorphous Fe to crystalline Fe was 2.3:1.0 when
ferrate(VI1) was applied for coagulation of colloidal particles in water (pH 7.5, 3.0 mg/L Fe(VI),
and 2.00 mg/L DOC) (Lv et al., 2018), highlighting that the both iron types were concurrently

present in ferrate(VI) resultant particles. In this study, the FTIR spectra, XRD patterns, and
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citrate-ascorbate extraction all indicate that amorphous and crystalline iron were present in the
final iron (hydr)oxide products after ferrate(VI) treatment of phosphate. It is not surprising that
amorphous iron (hdyr)oxide was produced during ferrate(VI) treatment, because ferric ions were
in-situ produced from ferrate(VI) reduction in the ferrate(VI) —phosphate system and amorphous
iron (hdyr)oxide is a principal product of ferric hydrolysis during ferric-based coagulation
(Crittenden, Trussell, Hand, Howe, & Tchobanoglous, 2012). However, the underlying
mechanisms for the formation of crystalline iron oxides are unknown. Although the
crystallization of amorphous iron hydroxides is a thermodynamically favorable process, the time
required for the aging process is typically long, beyond the time length of the treatment
experiments in this study. Production of crystalline iron oxide in this dissertation research might
be ascribed to OH™ continuously released from ferrate(VI) self-decomposition (Eq. 3-13)
(Goodwill et al., 2015). The OH" locally produced adjacent to iron can accelerate the aging
process to generate crystalline iron oxides (Cornell, Giovanoli, & Schneider, 1989).

2Fe04> + SH,0 = 2Fe(OH); + 40H + 1.50,1 (3-13)

In this study, the produced crystalline iron oxide was hematite, in agreement with the finding
of Goodwill et al. (2015). However, other crystalline iron oxide types were reported from
ferrate(VI) decomposition. For example, core-shell structured nanoparticles were found (Radina
P Kralchevska et al., 2016), in which maghemite (y-Fe>O3) was in the center covered by a layer
of lepidocrocite (y-FeOOH). Mechanisms for formation of the different iron oxide minerals in
these ferrate(VI) systems are unclear. A likely reason is that different experimental conditions
were used in these studies.

Roles of operating factors and wastewater matrix constituents. Performance of

phosphate removal relies heavily upon ferrate(VI) dose and solution pH. The increased
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phosphate removal with a higher ferrate(VI) dose is ascribed to the increasing quantity of iron
(hydr)oxide, which can provide more active adsorption sites. On the other hand, solution pH
would influence the species of phosphate in water and zeta potentials of ferrate(VI) resultant
particles. As discussed above, at the studied pH (6.5 and 7.5), the major phosphate species are
anionic. With the increasing pH, the surface charge of ferrate(VI) resultant particles became less
positive or more negative, so that anionic phosphate more difficultly accesses to the solid
surface. It should be noted that the aforementioned electrostatic interaction only leads to a
physical adsorption, but can serve as the first step towards the inner-sphere surface complexation
(chemical adsorption) (Stumm, 1992a), which is widely accepted as the major reaction
mechanism for adsorption of phosphate to iron oxide.

Among the wastewater matrix constituents, EfOM exhibited an inhibiting effect in
ferrate(VI) removal of phosphate. The finding may be ascribed to the following reasons. Firstly,
part of EfOM molecules can be also bound to the surface of iron (hydr)oxides (Shon,
Vigneswaran, & Snyder, 2006). These compounds can compete with phosphate for the active
adsorption sites on the iron oxide adsorbents, thereby suppressing the phosphate adsorption and
removal. Secondly, once adsorbed on the iron oxide particles, the EfOM molecules, similar to
natural organic matter (Lv et al., 2018), can further reduce zeta potential on the ferrate(VI)
induced particles, making adsorption of negatively charged phosphate more difficult.

Implication to wastewater treatment industry. Findings of this chapter have profound
impacts for wastewater treatment industry.

1) Ferrate(VI) is a technically efficient agent for elimination of phosphate in secondary
effluent. The removal performance depends on ferrate(VI) dose and pH. Most wastewater

constituents appear not to significantly influence the treatment, except EfOM that exhibited a
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negative effect on the phosphate removal at a sufficiently high EfOM level. Therefore, special
attention should be paid to the two operating factors and EfOM in practical use for achieving a
treatment goal. Particularly, if the inhibiting role of EfOM, especially at a high EfOM
concentration, needs to be mitigated, additional treatment, such as activated carbon adsorption,
may be required for alleviation of EfOM before ferrate(VI) dosing.

2) Adsorption is a dominant reaction pathway for ferrate(VI) removal of phosphate. The
underlying mechanism is the inner-sphere surface complexation, which can lead to a strong
binding. Therefore, desorption of phosphate from the iron sludge to secondary effluent is not a
concern. Therefore, the ferrate(VI) treatment can provide a reliable phosphate removal from
wastewater. However, the strong association makes a challenge if the removed phosphorus needs
to be recovered after wastewater treatment.

3) Liquid-solid separation is required as a downstream treatment step because the produced
iron (hydr)oxide particles must be removed for separation of phosphate from secondary effluent
as well as for abatement of the particle-induced total suspended solids. The size growth and
settleability of the iron (hydr)oxide particles at different treatment conditions need to be further
investigated. The information is key to determine what types of liquid-solid separation
technologies (e.g. gravity-driven sedimentation basins, rapid or slow sand filters, membrane
filtration, or centrifuge separation) can serve as an effective and efficient liquid-solid separation
method. Our previous studies reveal that ferrate(VI) induced particle did not completely settle
down within 72 hours after ferrate(VI) treatment of secondary effluent, while many micro-scale
particles remained suspended and their sizes slowly grew up with time (Zheng & Deng, 2016).
However, the particle settleability would be expectedly improved after the operating factors (e.g.

ferrate(VI) dose and pH) were optimized.
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3.4 Conclusion

This study aimed to study the treatment performance and reaction mechanisms of ferrate(VI)

removal of phosphate in a secondary effluent matrix. The treatment option was expected to serve

as a novel advanced wastewater treatment. Based on the findings form this study, major

conclusions are made as follows.

1y

2)

3)

4)

Ferrate(VI) is capable of effectively alleviating phosphate (the vast majority of inorganic
phosphorus) from secondary effluent. The treatment performance relies on ferrate(VI)
dose and water pH. Generally, higher ferrate(VI) dose and lower pH (6.5-7.5) favor the
phosphate removal. Of the different wastewater matrix constituents, EfOM may markedly
inhibit ferrate(VI) removal of phosphate, particularly within a high EfOM concentration
range.

Iron sludge produced after ferrate(VI) treatment of phosphate comprise both amorphous
and crystalline iron (hydr)oxides. The major crystalline form is hematite.

Adsorption is the dominant mechanism for ferrate(VI) removal of phosphate. Given that
inner-sphere surface complexation is the major reaction pathway for iron oxide
adsorption of phosphate from water, the binding is strong and unexpected phosphate
desorption should be minor.

Liquid-solid separation is required as an ensuing treatment subsequent to ferrate(VI)
reactions with phosphate, due to the production of insoluble iron sludge from ferrate(VI)
removal of phosphate. Although the liquid-solid separation was not investigated in this
chapter, the knowledge on this aspect is of importance. Properties (e.g. size, density, and

settleability) of these ferrate(VI) resultant particles deserve an in-depth study in future.
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Figure 3-1 Effect of ferrate(VI) dose on residual phosphate and Fe(VI) utilization efficiency
during ferrate(VI) treatment of secondary effluent (Initial DIP = 2.08 mg/L as P; Fe(VI) dose =
0.0 - 11.0 mg/L; and pH was not controlled or internationally buffered)
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Figure 3-2 Effect of initial pH on residual phosphate and Fe(VI) utilization efficiency during
ferrate(VI) treatment of secondary effluent (Initial DIP = 2.08 mg/L as P; initial pH: 5.5, 6.0, 6.5,
7.0, 7.5, and 8.0; Fe(VI) dose = 5.0 mg/L; and pH was not controlled or internationally buffered)
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Figure 3-3 Effects of different wastewater matrix constituents on residual phosphate during
ferrate(VI) treatment of secondary effluent (Fe(VI) dose = 5.0 mg/L, initial DIP = 2.08 mg/L P):
(a) alkalinity: 200-500 mg/L as CaCO3; (b) NO3™-N: 2.6-30.0 mg/L; ¢) NH3-N: 10.6-60 mg/L;
and d) EfOM: 2.5-40 mg/L)
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Figure 3-4 Residual phosphate and iron after ferrate(VI) treatment of phosphate in distilled
water (Fe(VI)=5.0 mg/L; initial phosphate =1.000 mg/L P; initial pH= 6.5 or 7.5; and P and Fe
were measured after 0.45um membrane filtration)
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Figure 3-5 Surface element analysis of ferrate(VI) resultant particle after ferrate(VI) treatment of
phosphate in distilled water (Fe(VI)=5.0 mg/L; initial phosphate =1.000 mg/L P; initial pH= 6.5)
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Figure 3-6 Morphology of ferrate(VI) resultant particle after ferrate(VI) treatment of phosphate
in distilled water: (a) SEM image; and (b) TEM image (Fe(VI)=5.0 mg/L; initial phosphate
=1.000 mg/L P; and initial pH= 6.5)
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Figure 3-7 FTIR spectrum of ferrate(VI) resultant particle after ferrate(VI) treatment of
phosphate in distilled water (Fe(VI)=5.0 mg/L; initial phosphate =1.000 mg/L P; and initial pH=
6.5)
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Figure 3-8 XRD spectrum of ferrate(VI) resultant particle after ferrate(VI) treatment of
phosphate in distilled water (Fe(VI)=5.0 mg/L; initial phosphate =1.000 mg/L P; and initial pH=
6.5)
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Figure 3-9 Surface element analysis of the crystalline fraction of ferrate(VI) resultant particle
after ferrate(VI) treatment of phosphate in distilled water (Fe(VI)=5.0 mg/L; initial phosphate
=1.000 mg/L P; initial pH= 6.5)
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Figure 3-10 Morphology of the crystalline fraction in the ferrate(VI) resultant solid samples
produced after ferrate(VI) treatment of phosphate in distilled water: (a) SEM; and (b) TEM
(Fe(VI)=5.0 mg/L; initial phosphate =1.000 mg/L P; initial pH= 6.5)
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Figure 3-11 FTIR spectrum of the crystalline fraction in the ferrate(VI) resultant solid samples
produced after ferrate(VI) treatment of phosphate in distilled (Fe(VI)=5.0 mg/L; initial phosphate
=1.000 mg/L P; initial pH= 6.5)
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Figure 3-12 XRD patterns of the crystalline fraction in the ferrate(VI) resultant solid samples
produced after ferrate(VI) treatment of phosphate in distilled water (Fe(VI)=5.0 mg/L; initial
phosphate =1.000 mg/L P; initial pH= 6.5)
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Figure 3-13 Fractions of different iron species in the ferrate(VI) resultant solid samples
produced after ferrate(VI) treatment of phosphate in distilled water: (Fe(VI)=5.0 mg/L; initial
phosphate =1.000 mg/L P; initial pH= 6.5; amorphous and crystalline iron existed in the iron

(hydr)oxide particles with the sizes over 0.45 um, while small-sized or soluble iron existed in the
filtrate after 45 um membrane filtration)
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Chapter 4 Removal of Organic Phosphorus from Secondary Effluent with Ferrate(VI)

4.1 Introduction and Objectives

4.1.1 Eutrophication and Organic Phosphorus

Eutrophication in natural water systems is a process to describe the excessive growth of algal
biomass because of excessive input of nutrients, including nitrogen and phosphorus (Schindler et
al., 2008; Thompson & Cotner, 2018). The increasing nitrogen and phosphorus fluxes into the
freshwater system are primarily caused by human activities through various point and non-point
pollution sources. The undesirable algal bloom can significantly degrade water quality, thereby
posing a serious threat to natural water systems in the world (Falkowski et al., 2000; Thompson
& Cotner, 2018). Of note, the excessive input of phosphorus has been frequently reported to
trigger the overgrowth of phytoplankton and algae species, even at a concentration as low as 0.01
mg/L as P (Smil, 2000). As discussed in Chapter 1, eutrophication can seriously degrade the
quality of aquatic ecosystem and pose a threat to public health, particularly when the polluted
water serves as a drinking water source.

Phosphorus is a major nutrient to cause eutrophication in natural water bodies. The inorganic
phosphate, as investigated in Chapter 2 and 3, accounts for a major fraction in phosphorus
present in municipal wastewater (Darch, Blackwell, Hawkins, Haygarth, & Chadwick, 2014;
Macklon et al., 1997). However, the recent attention has been directed to organic phosphorus.
Although its fraction in the total phosphorus of raw municipal wastewater is very low, organic
phosphorus is typically recalcitrant to conventional wastewater treatment, so that its portion in
treated wastewater cannot be overlooked. Thompson and Cotner (2018) pointed out that the
availability of dissolved organic phosphorus to aquatic organisms might be associated with the

occurrence of eutrophication. Organic phosphorus refers to chemical species having carbon and
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phosphorus atoms in the same molecule (Baldwin, 2013). Wetzel (2001) states that organic
phosphorus occupies 25-50% of the total phosphorus in freshwater systems. Recent studies have
showed that certain forms of organic phosphorus can act as a phosphorus source for aquatic
organisms when phosphate is limited or absent in freshwater systems (Bjorkman & Karl, 2003;
Cotner & Wetzel, 1992; Li & Brett, 2013; Nausch & Nausch, 2007). Although organic
phosphorus is not directly available to plants and organisms in the most cases, they can release
phosphatase enzymes to hydrolyze organic phosphorus and then transform it into phosphate for
uptake (Cotner & Wetzel, 1992; Dyhrman et al., 2006; Lu, Yang, Zhang, & Wu, 2014; Safiudo-
Wilhelmy, 2006; Toor, Condron, Di, Cameron, & Cade-Menun, 2003). The role of organic
phosphorus, in comparison with its inorganic counterparts, in eutrophication occurring in
freshwater has been underestimated. In fact, the presence of organic phosphorus can potentially

cause eutrophication in freshwater even in the absence of phosphate.

4.1.2 Organic Phosphorus in Freshwater

There are five classes of organic phosphorus that have been well identified and characterized
in the freshwater systems, including nucleic acids, other nucleotides, inositol phosphates,
phospholipids, and phosphonates (Baldwin, 2013). Nucleic acids include deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA), which are found in all living things. They have been
recognized as the common forms of dissolved organic phosphorus (Baldwin, 2013). Algae and
bacteria are the leading sources of DNA and RNA in freshwater (Ishii, Kawabata, Nakano, Min,
& Takata, 1998; Siuda & GAfAVde, 1996). The other nucleotides refer to organic phosphorus
like adenosine 5’-triphosphate (ATP) and adenosine 5’-monophosphate (AMP), which are
involved in cellular activities in organisms (Baldwin, 2013). Organic phosphorus as nucleotides

in the freshwater systems has a relatively low concentration. Organisms appear to be their
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origins, while their peak production is related to algal blooms in freshwater (Nawrocki & Karl,
1989). Inositol phosphates include a central inositol group which is bound to one of the six
phosphate groups by phosphomonoester bonds (Turner, Paphazy, Haygarth, & McKelvie, 2002).
Inositol phosphates are produced from biological synthesis within plants. Phospholipids have
phosphate mono or di-ester groups in the polar region of the molecule. They are the main
component of cell membranes (Baldwin, 2013). Because the amphiphilic characteristic of
phospholipids makes them insoluble, they tend to stay on the interface of water and air.
Therefore, they typically exist in the particulate form. The direct C-P bond is the major
characteristic of phosphonates. Phosphonates have been widely used in human commercial
products, such as metal chelates, concrete admixtures, and herbicides. However, phosphonates is
less abundant in freshwater than in the marine systems (Baldwin, 2013; Cheesman, Turner, &

Ramesh Reddy, 2012; Dong, Yang, Liu, & Liu, 2012).

4.1.3 Organic Phosphorus during Municipal Wastewater Treatment

Organic phosphorus in the dissolved and particulate forms typically accounts for a small
fraction (~15%) of the total phosphorus in untreated municipal wastewater based on the report of
Duenas, Alonso, Rey, and Ferrer (2003). Unfortunately, conventional secondary wastewater
treatment only abates part of particulate organic phosphorus through sedimentation, but barely
removes dissolved organic phosphorus. In the recent years, more stringent phosphorus discharge
limits have been effective for wastewater treatment plants, especially the ones adjacent to the
environmentally sensitive areas. For example, total phosphorus in the treated wastewater effluent
discharged to the Chesapeake Bay cannot be over 0.3 mg/L (Clark et al., 2010; C. Qin et al.,
2015). Although recent studies demonstrate that existing phosphorus treatment technologies can

substantially remove inorganic phosphorus in municipal wastewater to a very low level, they



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 153

poorly alleviate organic phosphorus, which represents 26-81% of total phosphorus in the treated
wastewater (A. Z. Gu, Liu, Neethling, Stensel, & Murthy, 2011; April Z Gu et al., 2014; Haizhou
Liu, Jeong, Gray, Smith, & Sedlak, 2012; Pagilla, Urgun-Demirtas, & Ramani, 2006; C. Qin et
al., 2015). Therefore, there is an urgent research need to develop an innovative, green, and cost-
effective advanced phosphorus removal technology to remove organic phosphorus in the treated

wastewater.

4.1.4 Objectives

This study aimed to evaluate the treatment performance of ferrate(VI) for alleviation of
recalcitrant organic phosphorus in biologically treated municipal wastewater and elucidate the
underlying treatment mechanisms. The working hypothesis is that ferrate(VI) is capable of
destructing certain P-containing organic compounds via chemical oxidation and then removing
the phosphorus through adsorption. To achieve the objective, three following tasks would be
answered.

1) What is the treatment efficiency of ferrate(VI) removal of recalcitrant organic phosphorus
from secondary effluent? And how do the operating factors influence the treatment
results?

2) How do water matrix constituents affect the removal efficiency of organic phosphorus?

3) What are the reaction mechanisms behind the removal?

4.2 Materials and Methods

4.2.1 Wastewater samples and reagents
All the reagents used were at least analytical grade, except as noted. Potassium ferrate
(K2FeO4) (> 96%), sodium bicarbonate (NaHCO3), sodium nitrate (NaNO3), disodium phosphate

(Na2HPO4), ammonia chloride (NH4Cl), ribonucleic acid (RNA), deoxyribonucleic acid (DNA)



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 154

sodium salt, adenosine-5'-triphosphate (ATP) disodium salt hydrate, uridine-5'-diphosphate
disodium salt (UDP), guanosine-5'-diphosphate (GDP) disodium salt (GDP), and adenosine-5'-
monophosphate (AMP) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Secondary
effluent was collected from a local municipal sewage treatment plant (Verona, NJ, USA). The
treatment facility received 9,464 m3/day wastewater from residual areas. The secondary effluent
was sampled after a secondary clarifier and before disinfection. Once collected, the sample was
delivered to Montclair State University’s Innovative Water Treatment and Reuse Laboratory,
filtered with 0.45 um membrane filters (GE Healthcare Whatman™ Nylon Membrane), and then
stored at 4°C in a refrigerator until use. Quality parameters of the secondary effluent are as
follows: pH 7.48, dissolved total phosphorus (DTP) =2.12 mg/L as P, dissolved inorganic
phosphorus (DIP) = 2.08 mg/L as P, total organic phosphorus (TOP) =42 ng/L as P, UV2s4
absorbance = 0.161 cm’!, dissolved organic carbon (DOC) = 40.0 mg/L, turbidity = 2.33 NTU,
nitrate-nitrogen (NO3™-N ) = 2.6 mg/L, ammonia-nitrogen (NH3-N) = 10.4 mg/L, and alkalinity =
200 mg/L as CaCOs. Concentrated ferrate(VI) (200 mg/L Fe(VI)) stock solution was prepared by
dissolving appropriate weights of KoFeOs in ultrapure water produced from a Milli-Q water
purification system (Milli-Q Direct 8). Fe(VI) in the ferrate(VI) stock solution was confirmed
with the ABTS method (Y. Lee, Yoon, & von Gunten, 2005). Organic phosphorus model
compound-containing solutions were prepared through dissolution of appropriate weights of
model compounds in ultrapure water to ensure the initial OP at 500 pug/L. The initial OP
concentration was confirmed using an inductively coupled plasma-mass spectroscopy (ICP-MS
Thermo X-Series II, XO 472). The solutions were prepared immediately before the treatment

tests.
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4.2.2 Ferrate(VI) removal of OP in secondary effluent

Laboratory-scale batch tests were carried out in 500 mL glass beakers containing 400 mL
well-mixed secondary effluent on a four-paddle programmable jar tester (Phipps and Bird -
7790-950) at room temperature (20 = 1 °C) and under atmospheric pressure. If needed, the
secondary effluent pH was adjusted to a designated level with 0.1 M sulfuric acid or sodium
hydroxide. The treatment was initiated once an appropriate volume of ferrate stock solution was
dosed. Within the first minute, the solution was rapidly mixed at a velocity gradient of 241 s™! to
completely disperse the added iron. During the following 59 minutes, the solution was gently
stirred at a velocity gradient of 21 s™! for the growth of flocs. During the treatment, pH was
monitored, but not controlled or intendedly buffered. Following the slow mixing, the treated
wastewater was filtered using 0.45 um membrane filters (GE Healthcare Whatman™ Nylon
Membrane) for removing particulate matter, and the filtrates were collected for further analysis.
Control tests were carried out with the identical experimental procedure, except that ferrate(VI)
was not dosed.

In the tests to evaluate the effect of ferrate(VI) dose, ferrate(VI) dose was varied from 0.0,
1.0, 3.0, 5.0, 7.0, 9.0, to 11.0 mg/L. In the experiments to assess the effect of initial pH,
ferrate(VI) dose was fixed at 5.0 mg/L Fe, while initial pH was varied at 5.5, 6.0, 6.5, 7.0, 7.5,
and 8.0. For the experiments to evaluate effects of wastewater matrix constituents, alkalinity
(250-500 mg/L as CaCOQ3), nitrate (NO3") (2.6-30.0 mg/L NOs3-N), ammonia (NH3) (10-60 mg/L
NH3-N), and disodium phosphate (NaxHPO4) (2.08-5.22 mg/L as P) were dosed to achieve their
respective designated concentrations. Treatment tests were carried out at 5.0 mg/L Fe(VI) and

pH 6.5.
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4.2.3 Ferrate(VI) treatment of OP model compounds

In-situ ferrate(VI) treatment tests for removal of individual OP model compounds were
carried out with the procedure similar to the treatment tests for secondary effluent, except that: 1)
an OP solution, rather than secondary effluent, was treated; and 2) pH was manually controlled
at a designated pH using 0.1 M sulfuric acid and sodium hydroxide. On the other hand, ex-situ
ferrate(VI) treatment tests in the OP solution was performed using a similar in-sifu treatment
procedure. The only modification is that ferrate(VI) was dosed first and then mixed for 1 hour
before the OP model compound was introduced. /n-situ and ex-situ treatment tests would
evaluate the combined effect of ferrate(VI) oxidation and iron oxide adsorption and effect of iron
oxide adsorption only, respectively. After the in-situ or ex-situ treatment, samples were filtered
through 0.45 pm membrane filters (GE Healthcare Whatman™ Nylon Membrane) for removing
particulate matter, and the filtrate would be collected for analyses. In the tests for determination
of size distributions of ferrate(VI) resultant particles, the samples after treatment, comprising
water and iron (hdyr)oxides, was sequentially filtered through 0.45 um microfiltration (GE
Healthcare Whatman™ Nylon Membrane), 0.1 um microfiltration (Thermo Scientific, cellulose
acetate (CA)), and 30 kDa ultrafiltration (UF) membranes (EMD Millipore, regenerated
cellulose). Approximately 50 mL filtrate after each filtration was collected for analyses. Particles
filtered by 0.45 um microfiltration were operationally defined as large-sized particles. Solids
passing 0.45 um microfiltration filters but filtered by 0.1 pm microfiltration were colloidal
particles. Particles passing 0.1 um microfiltration filters but filtered by 30 kDa UF membrane
were nano-sized particles. And the chemicals passing 30 KDa MF filters were regarded as

soluble substances. A similar fractionation method was applied elsewhere (Goodwill, Jiang,
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Reckhow, Gikonyo, & Tobiason, 2015) to study the size of iron particles in ferrate(VI)

decomposition in natural waters.

4.2.4 Sample Analyses

Ferrate(VI) was spectrophotometrically measured using the ABTS method (Y. Lee et al.,
2005). Solution pH was measured by a pH meter (Thermo Scientific Orion 5-Star Plus). Various
secondary effluent parameters were measured after filtration through 0.45-um syringe membrane
filters (Thermo Scientific, cellulose acetate (CA), 30 mm diameter). EfOM was quantified using
DOC, which was measured with a total organic carbon (TOC) analyzer (TOC-LCPH, Shimadzu
Corp., Kyoto, Japan). Measurements of alkalinity, NO3; -N, and NH3-N followed the U.S.
Environmental Protection Agency (EPA) approved Standard Methods 2320B, 1685, and 4500F,
respectively. Total phosphate was determined with an inductively coupled plasma-mass
spectroscopy (ICP-MS Thermo X-Series II, XO 472). Acid hydrolyzable P was measured with
the HACH TNT reagent sets to indicate inorganic P in water. OP was the difference between
total P and inorganic P. The morphology of the retained particles was examined by a
transmission electron microscope (TEM, Hitachi H-7500) and a scanning electron microscope
(SEM, Hitachi S-3400N). To quantify the amorphous iron in the produced iron oxides, a citrate—
ascorbate iron extraction method was used with minor modification. Briefly, 0.2 M Na-citrate
and 0.05 M ascorbic acid (pH 6.0) were added to the well-mixed samples immediately after the
coagulation and flocculation (3.0 mg/L Fe(VI)) with a reagent to solution weight ratio of 60 : 1.
The suspensions were shaken on a horizontal shaker for 16 h and then centrifuged at 11 000 rcf
for 30 min. The extractable dissolved iron in the suspensions was collected for analysis of
amorphous iron. The data allowed for the determination of the mass fraction of amorphous Fe in

the total Fe (i.e. 3.0 mg/L Fe) in the ferrate(VI) resultant oxide particles. The daughter products
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of model OPs were identified using a liquid chromatography—mass spectrometry system (LC-MS
2020, Shimadzu Corp., Kyoto, Japan), which was equipped with a Supelcosil LC-18 column
(25cmx*4.6mm, Sum). Mobile phase A consisted of 100 % acetonitrile, while mobile phase B
consisted of 7.5 mM of ammonium acetate and adjusted to pH=7.5 with 0.1 mol/L acetate acid
and ammonium hydroxide. Flow rate was controlled at 0.5 mL/min with a retention time of 10
mins in total. The ratio of mobile phase A and B was fixed at 35% and 65% through the analysis.
The injection volume was 20 pL and the peaks were detected at 254 nm.

All the experiments were run, at a minimum, in triplicates. All the analytical results reported
represent the mean of the replicate samples. Error bars in the figures indicate one standard
deviation of these measurements.

4.3 Results and Discussion

4.3.1 Treatment performance of ferrate(VI) for removal of OP in secondary effluent

Treatment feasibility of ferrate(VI) removal of OP in secondary effluent was first
investigated. Residual OP and OP removal efficiency were used as two parameters to determine
the treatment performance. Effects of operating factors and selected wastewater matrix

constituents on the OP removal were sequentially evaluated.

4.3.1.1 Effects of operating factors

Ferrate(VI) dose. Residual DOP and DOP removal efficiency after ferrate(VI) treatment of
secondary effluent at different Fe(VI) doses are shown in Figure 4-1 (DOP= 114 ng/L as P;
Fe(VI) =0.0 — 9.0 mg/L). As seen, as Fe(VI) dose was increased from 0.0 to 3.0 mg/L, residual
DOP sharply declined from 114 to 29 png/L, while the DOP removal efficiency dramatically
increased from 0% to 75%. As Fe(VI) dose was further increased to 9.0 mg/L, residual DOP

almost stabilized at 29-31 pg/L with a corresponding DOP removal efficiency ranging within
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75%-80%. In the following experiments, Fe(VI) dose was selected at 5.0 mg/L. These findings
clearly demonstrate that ferrate(VI) could effectively alleviate DOP present in secondary
effluent.

Initial pH. Residual DOP and DOP removal efficiency after ferrate(VI) treatment of
secondary effluent at different initial pH are shown in Figure 4-2 (DOP= 114 pg/L as P; Fe(VI)
= 5.0 mg/L; and initial pH = 5.5-8.0). Residual DOP dramatically decreased from 78 pg/L at pH
5.5to 59 pg/L at pH 6.5, while the removal efficiency was increased from 31% to 49%. As pH
further increased to 8.0, residual DOP was not obviously altered. These observations evidently
show that pH disfavor the OP removal with the pH decreased at an acidic solution condition.
However, the effect of pH on the OP removal was insignificant at a weakly acidic to weakly

alkaline condition (pH 6.5-8.0). In the following experiments, solution pH was selected at 6.5.

4.3.1.2 Effect of wastewater matrix constituents

Effects of common wastewater matrix constituents, including alkalinity, NOs", NH4", and
PO.*, were subsequently investigated, as shown in Figure 4-3(a), (b), (c), and (d), respectively.
As seen in Figure 3-3(a), residual DOP slightly declined from 59 pg/L (48% removal) at an
alkalinity of 250 mg/L CaCOs to 47 pug/L (59% removal) at an alkalinity of 250 mg/L CaCOs,
and then narrowly varied between 44 and 47 pg/L, corresponding to the removal within 59% -
69%, over an alkalinity range of 250 - 500 mg/L CaCOs, indicating that alkalinity did not greatly
affect the OP removal. Effect of NO3™ on the residual OP is illustrated in Figure 4-3(b).
When NO3™-N was increased from 2.6 to 5.0 mg/L, the residual DOP dropped from 59 to 48
pg/L, corresponding to the increase of the DOP removal efficiency from 48% to 58%. At 5.0-
30.0 mg/L NO3™-N, residual DOP ranged within 42-48 NO3™-N pg/L, also indicating that nitrate

had a minor influence on ferrate(VI) removal of organic phosphorus in secondary effluent. And



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 160

the effect of NH3 on residual DOP is presented in Figure 4-3(c). Over 10.6 — 60.0 NH3-N, the
residual DOP varied slightly within 48-59 pg/L, corresponding to the overall DOP removal of
48%-58%, suggesting that ammonia had a limited influence on ferrate(VI) removal of OP in
secondary effluent. Overall, these observations indicate that the impacts of alkalinity, nitrate, and
ammonia on the organic phosphorus removal during ferrate(VI) treatment of secondary effluent
are insignificant.

In contrast, a significant inhibiting effect of inorganic orthophosphate on ferrate(VI) removal
of DOP was observed, as shown in Figure 4-3(d). As seen, as phosphate increased from the
original 2.08 to 5.22 mg/L as P (i.e. 16.00 mg/L PO4>), residual DOP increased from 59 to 112
png/L, with the corresponding removal efficiency dramatically declined from 48% to 1%,

indicating that the OP removal was suppressed with the increasing phosphate concentration.

4.3.2 Mechanistic studies of ferrate(VI) removal of DOP

OP exists in EfOM molecules that are an integral part of wastewater matrix constituents in
biologically treated municipal wastewater. It is well known that NOM and its different fractions
(e.g. humic acid and fulvic acid) can be extracted from natural water, or representative NOM
compounds are commercially available for scientific studies. However, there are no standardized
methods to extract EfOM from secondary effluent, and commercial EfOM products are
unavailable. Therefore, it is technically difficult to investigate the fundamental reactions between
ferrate(VI) and P-containing organic compounds in a real secondary effluent. In order to
overcome the technical barriers, we selected six individual P-containing organic compounds as
OP model compounds in secondary effluent for the ferrate(VI) treatment tests. They include
RNA, DNA, ATP, UDP, GDP, and AMP. These model compounds were used as surrogate

compounds for P-containing compounds in EfOM. To eliminate the influences of other
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wastewater matrix constituents, all the treatment experiments were carried out in distilled water.
For each specific OP model compound, its initial OP concertation was fixed at 500 pg/L. And
solution pH was manually controlled during the reactions.

Ferrate(VI) removals of individual OP model compounds. Residual P concentrations after
ferrate(VI) treatment of RNA, DNA, ATP, UDP, GDP, and AMP are shown in Figure 4-5 (a),
(b), (¢), (d), (e)and (f), respectively (Fe(VI) = 5.0 mg/L; P = 500 pg/L). For each model
compound, in-situ and ex-situ ferrate(VI) treatments were performed at pH 6.5 or 7.5. In-situ
treatment means that ferrate(VI) was dosed to the P-containing water, in which ferrate(VI)-
driven oxidation and adsorption due to ferrate(VI) resultant particles might both contribute to the
OP removal. On the other hand, in an ex-sifu treatment, ferrate(VI) was dosed to distilled water
and then depleted before a specific OP model was introduced, which reflected the OP adsorption
effect only. Of note, part of or whole OP molecules may be subject to change of chemical
structure due to chemical oxidation during an in-sifu treatment, while the structure of the OP
molecules remained intact over the ex-sifu treatment because of the lack of chemical degradation
reactions.

As shown in Figure 4-4, the residual P concentrations of the six OP model compounds all
slightly declined (< 20%) in comparison to their respective initial levels at either pH during ex-
situ ferrate(VI) treatment. The finding evidently demonstrates that there was a poor adsorption of
ferrate(VI) resultant particles for the six model compounds. Therefore, direct adsorption due to
the formation of iron (hydr)oxide did not serve as a principal mechanism for mitigation of these
model compounds.

During the in-situ treatment, any model compound was very little removed at pH 7.5,

indicating that the joint utilization of chemical oxidation and adsorption could not effectively
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remove these compounds at the studied conditions. However, residual P significantly declined at
pH 6.5 after the in-situ treatment, except for GDP that slightly dropped from 500 to 467 pg/L
with a minor removal of 7%. The residual P in RNA, DNA, ATP, UDP, and AMP decreased
from the initial 500 pg/L to 20, 2, 15, 40, and 79 pg/L, respectively. Based on the above results,
we can conclude that the effective removals of RNA, DNA, ATP, UDP, and AMP are primarily
ascribed to the co-occurrence of ferrate(VI)-driven chemical oxidation and adsorption at a
weakly acidic condition.

Size fractions of P and Fe after ferrate(VI) treatment. In order to further understand the
size fractions of P and Fe after the in-situ treatment, the treated samples were subject to
sequential filtration with 0.45 um microfiltration, 0.1 um microfiltration, and 300 kDa
ultrafiltration. Concentrations of residual P and Fe in the filtrate after each filtration were
measured. Total P and Fe in the ferrate(VI) treated samples were also analyzed after sample
digestion. In this study, particulate matters with the sizes of > 0.45 um, 0.45-0.1 pm, and 0.1 pm
— 300 kDa were categorized into large-sized, colloidal, and nano-sized particles, respectively. P
and Fe measured in the filtrate after < 300 kDa ultrafiltration derived from soluble substances.
The size fractionation methods were successfully adopted for investigation of the size
distribution patterns of these ferrate(VI) resultant particles, which were produced after
ferrate(VI) treatment of natural water or sewage polluted source water, in previous studies (Cui,
Zheng, & Deng, 2018; Goodwill et al., 2015).

Size distributions of P and Fe after ferrate(VI) treatment of RNA, DNA, ATP, AMP, GDP,
and UDP at pH 7.5 are shown in Figure 4-5. At pH 7.5, P and Fe shared the similar size
distribution patterns. Two observations are of importance. First, for any specific model

compound, soluble P and Fe were insignificant, suggesting that P was not indeed dissolved in the
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treated water. Second, the majority of P and Fe were present in the nano-sized particles, implying
that the most P adsorbed to or was incorporated into ferrate(VI) resultant particles. Because part
of or whole parent compounds may be degraded by ferrate(VI) oxidation, we cannot conclude
whether the P associated with the nano-sized particles originated from the parent compounds,
daughter compounds, or even inorganic phosphate, which might be produced from ferrate(VI)
oxidation of OP molecules, based on the above observations.

Size distributions of P and Fe after ferrate(VI) treatment at pH 6.5 are also shown in Figure
4-5. Very different size distribution patterns of Fe and P are observed. The vast majority P and
Fe in the RNA, DNA, ATP, UDP, and AMP treatment groups existed in the large-sized particles
of > 0.45 pm, while the most Fe and P were present in the colloidal particles of 0.45- 0.1 pm in
the GDP group. Based on these findings, we can acquire important information in the four
aspects. First, the very low concentrations of the soluble P indicate that residual P was not truly
dissolved after the treatment. Second, the poor removal of GDP with ferrate(VI) at pH 6.5
(Figure 4-4) is because the most GDP was associated with colloidal particles (0.45 pm — 0.1
um). These fine particles could pass 0.45 um membrane filtration, so that the nominal
“dissolved” P was high, as shown in Figure 4-4. Third, the similar size distributions of P and Fe
imply that P was associated with ferrate(VI) resultant particles with different sizes. Four, the
sizes of these particles produced at lower pH were greater than those at higher pH, which favored
the downstream filtration that could remove the P associated with the particles. This finding is
likely related to the performance of iron-driven coagulation. Typically, better coagulation and
flocculation occur at an acidic pH level with the formation of larger and denser iron flocs

(Crittenden, Trussell, Hand, Howe, & Tchobanoglous, 2012).
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From this set of experiments, we noticed that the RNA and DNA used contained very low
fractions of OP in terms of mass. To achieve 500 pug/L OP for the above experiments, too much
RNA or DNA needed to be dosed into water, which had a much greater DOC than the realistic
DOC in secondary effluent. That is, RNA and DNA had a very high mass ratio of C to P. Given
that the concentrations of RNA and DNA should be trivial in a real secondary effluent, the RNA
and DNA were not investigated in the following experiments.

Surface elemental analyses of ferrate(VI) resultant particles. SEM and EDS analyses
were made for the particles produced from in-situ ferrate(VI) treatment of ATP, UDP, GDP, and
AMP at pH 6.5, as shown in Figure 4-6, 4-7, 4-8, and 4-9, respectively. Results show that
abundant Fe and P existed in these particles for all the four groups. This finding is in agreement
with the above observation that both P and Fe shared the similar distribution pattern.

Identification of degradation products in treated water. In order to understand the
reactions of ferrate(VI) and OP model compounds, the degradation products of the model
compounds after ferrate(VI) oxidation were identified using LC/MS. Because GDP could not be
well removed by ferrate(VI), only the samples from ferrate(VI) treatment of ATP, UDP, and
AMP were tested. In-situ ferrate(VI) treatment tests were performed at pH 6.5. LC/MS data of
the parent and major daughter compounds after ferrate(VI) treatment of ATP, UDP, and AMP
are shown in Figure 4-10, 4-11, and 4-12, respectively. After treatment of any selected model
compound, a major daughter compound with a P-containing chain was identified. Of interest, the
daughter compound of ATP or AMP was a fragment after the breakdown of the C-N bond
between two ring structures in the parent compound. Ferrate(VI) reactivity toward different
organic molecules was extensively investigated (V. K. Sharma, 2010; Yang et al., 2012). The

ferrate(VI) induced degradation may be involved with electron transfer, hydrogen atom transfer,
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hydride ion or covalently bonded ferrate intermediates depending upon the nature of the
compound (D. G. Lee & Gai, 1993). Particularly, similar to ozone, ferrate (V) preferentially
attacks electron-rich function groups on an organic molecule (Yang et al., 2012). The C-N bonds
of two ring structures on the parent compounds was attacked due to the electron rich property.
The cleavage occurs due to the low bond energy and easy activation through the resonance from
the two ring structures. Cleavage of C-N bond by ferrate(VI) oxidation was also previously
reported elsewhere (Deng, Wu, Wang, Liu, & Wang, 2019; Sun et al., 2018).

Ferrate(VI) oxidation of UDP seems a little more complex. The identified daughter
compound had a m/z of 350. Its plausible chemical structure is shown in Figure 4-11. The two
reactions might have occurred, including: 1) the scission of the C-N bond between two ring
structures, similar to the destruction patterns of ATP and AMP; and 2) two —OH groups appeared
to transform to —COOH. A similar reaction was recently reported elsewhere (Han et al., 2018).
The latter reaction pathway might proceed as follows. Ferrate(VI) firstly oxidized alcohols to
carbonyl groups in a manner reported previously (Delaude & Laszlo, 1996; Y. R. Song & Ma,
2013). Afterward, the carbonyls transformed to carboxylic moieties through hydroxylation.
4.3.3 Discussion

Mechanisms for OP removal with ferrate(VI). Ferrate(VI) oxidation may entirely or
partially degrade OP compounds into daughter P-containing compounds or into inorganic P.
Following ferrate(VI) treatment, the P originally present in these OP model compounds would
have three possible fates, including: 1) parent compounds in water or on the ferrate(VI) resultant
particles; 2) daughter OP compounds in water or on the ferrate(VI) resultant particles; and 3)
inorganic phosphorus in water or associated with the ferrate(VI) resultant particles. Further

analyses of the fate of P after ferrate(VI) treatment is of importance to understanding the reaction
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mechanisms for OP in secondary effluent. Below are the detailed discussion on ferrate(VI)
removal of the selected OP model compounds.

Results from ex-situ ferrate(VI) treatment show the poor removal of these OP model
compounds through adsorption only with the ferrate(VI) resultant particles. Therefore, it is
unlikely that these parent compounds could be mostly captured by the produced iron
(hydr)oxides. Meanwhile, we did not find these parent compounds in water after ferrate(VI)
treatment. Therefore, the selected OP compounds were almost all degraded by ferrate(VI)
oxidation.

On the other hand, inorganic P (e.g., orthophosphate and polyphosphate) was undetectable in
the aqueous phase after ferrate(VI) treatment. It is most unlikely that polyphosphate, if truly
produced from the OP degradation, could adsorb to iron (hydr)oxide, because polyphosphate is
poorly removed by adsorption with iron oxides (Tchobanoglous et al., 2014). The extraction
method, which was described in detail in Chapter 3, was used to examine whether any
orthophosphate was adsorbed to the ferrate(VI) resultant particles. Results show the absence of
orthophosphate on the iron sludge. The aforementioned findings suggest that ferrate(VI) cannot
sufficiently degrade these OP model compounds into inorganic phosphorus. It is well known that
ferrate(VI) preferentially transforms dissolved organic matter, rather than completely oxidize
them into inorganic species (Y. L. Song et al., 2016; Yang et al., 2012). This was evidenced by
the fact that ferrate(VI) oxidation could readily alleviate chemical oxidation demand (COD) but
poorly abate dissolved organic carbon (DOC) when it was used for degradation of NOM in
natural water sources (Y. L. Song et al., 2016). This finding is primarily ascribed to the nature of
ferrate(VI). Although it has a high redox potential of up to 2.20 V, ferrate(VI) oxidation is highly

selective. The oxidative anion tends to react with electron-rich moieties, but very slowly reacts
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with electron-poor moieties. Meanwhile, ferrate(VI) is subject to its self-decomposition in water,
which can make ferrate(VI) to gradually decay until ferrate(VI) depletion.

Based on the mass balance analysis, only daughter P-containing compounds existed in the
treatment systems. The degradation of the parent compounds can be validated by the
identification of decomposition products in solutions after the treatment using the mass
spectrometry technique. Results in the ferrate(VI) treatment of the selected OP model
compounds clearly indicate that the most of P was associated with the finally produced iron
(hydr)oxides. Therefore, the P is plausibly present in the degradation products of the OP model
compounds after ferrate(VI) treatment. Overall, the major plausible reaction mechanisms for
ferrate(VI) removal of the selected OP compounds are as follows. Ferrate(V]) first attacks certain
functional groups on the OP parent compounds for production of various P-containing
compounds. The chemical oxidation most likely occurs on electron-rich moieties. With the
nature of different degradation products, some sorb to the produced iron (hydr)oxides, while the
others remain in water in a soluble state. Adsorption of P-containing organic compounds to
various iron oxides have been documented elsewhere (Johnson & Loeppert, 2006; Lii et al.,
2017; Ruttenberg & Sulak, 2011; Yan et al., 2016).

It should be noted that the aforementioned reaction pathways for ferrate(VI) oxidation and
ensuing adsorption for removal of OP are proposed based on the experimental evidence with
selected OP model compounds. Organic phosphorus in EfOM may have been contributed from
many other individual organic compounds in secondary effluent. Further studies are needed for
in-depth understanding of ferrate(VI) reactions with other OP species in EfOM.

Operating factors and coexisting wastewater matrix constituents. Ferrate(VI) removal of

OP, similar to ferrate(VI) alleviation of phosphate in water, can be greatly influenced by
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ferrate(VI) dose and solution pH. Better OP removal was achieved at higher ferrate(VI) during
treatment of secondary effluent, because more Fe(V]) is available for degradation of OP
compounds and more iron (hydr)oxide particles are produced for adsorption of OP degradation
products. On the other hand, lower pH at 5.5-6.5 favored OP removal likely due to the greater
ferrate(VI) reactivity. Ferrate(V]) reactivity is acutely increased with the pH decrease (D.
Ghernaout & Naceur, 2011; V. K. Sharma, 2002b; Virender K Sharma, Chen, & Zboril, 2015).
The extremely strong Fe(VI) at such an acidic condition may greatly degrade OP into inorganic
phosphate before removal of P through adsorption. However, in a realistic municipal wastewater
treatment, solution pH mostly varies within a nearly neutral pH range (6.5-8.5). In the treatment
tests with real secondary effluent, very slight difference was observed for the DOP removals
over pH 6.5 — 8.0. However, in the ferrate(VI) treatment tests for model OP compounds, better
removal was observed at pH 6.5 than at pH 7.5. As discussed above, the difference was caused
due to the different size distribution patterns of ferrate(VI) resultant particles produced at
different pH. Generally, more large-sized particles were produced at pH 6.5, so that these
particles to which OP compounds adsorb were readily removed in the downstream filtration,
thereby having a lower residual OP.

Different from many other wastewater matrix constituents without a marked effect on
ferrate(VI) removal of OP, phosphate exhibited a significant inhibiting effect. As discussed in
Chapter 3, adsorption of phosphate to ferrate(VI) resultant particles is the dominant mechanism
for ferrate(VI) removal of reactive phosphate in secondary effluent. Therefore, more phosphate is
expected to be captured by the ferrate(VI) induced particles when more phosphate is present in
secondary effluent. The ferrate(VI) treatment tests for removal of model OP compounds also

reveal that adsorption of P-containing degradation compounds to ferrate(VI) resultant particles
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plays an essential role for the OP alleviation. Therefore, there is a competition between

phosphate and OP compounds for active adsorption sites on iron (hydr)oxides. More adsorption

sites would be occupied at higher initial phosphate concentration, so that less OP compounds are

adsorbed. Ruttenberg and Sulak (2011) found that phosphate had a greater affinity with various

iron oxides than many organic phosphorus compounds.

Implication to the wastewater industry. Findings from this chapter have unique

implications for the wastewater industry in the following aspects.

1y

2)

This study finds a new pathway to prevent recalcitrant wastewater—derived OP from
entering into natural receiving water bodies. Addition of common coagulants, such as
ferric chloride and aluminum sulfate, has been used as a widely accepted method for
elimination of phosphate from biologically treated municipal wastewater due to their
effectiveness and low costs. Although the coagulation can well remove reactive
phosphate, it has proven ineffective for mitigation of OP. Encouraging results from this
study shows that ferrate(VI) is a promising treatment agent for capturing OP in secondary
effluent. This is of significance, particularly for these natural water bodies that are highly
environmentally sensitive to nutrient loadings (e.g., the Chesapeake Bay in the United
States).

Ferrate(VI) removal of OP can be significantly influenced by ferrate(VI) dose, water pH,
and the presence of phosphate. The first two are operating factors. while the last one
represents a wastewater matrix constituent. For different secondary effluents, the specific
optimal ferrate(VI) dose and pH need to be determined. It should be noted that the
original secondary effluent pH may not be the optimal level. If additional pH adjustment

is required before and after the treatment, the costs are increased due to the use of
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acid/base as well as additional pH adjustment equipment and pipelines. Accordingly, the
system design, operation, and maintenance would become more complex. If this is the
case, what ferrate(VI) dose and pH are realistically adopted depends on the comparison at
different operational conditions in terms of treatment efficiencies and treatment expenses.
3) This study reveals that OP adsorption to ferrate(VI) resultants plays a vital role in the
ferrate(VI) removal of wastewater OP. Therefore, the controlling of particle sizes during
the treatment operation is essential to selection of appropriate downstream liquid-solid
separation techniques, because different liquid-solid separation methods are effective for
different particle size ranges. Generally, larger particles are more readily and less costly
separated. Therefore, the size growth of particles during ferrate(VI) treatment through
appropriate engineering designs and operation control (e.g., control of pH and chemical
mixing gradients) deserves a further investigation in future.
4.4 Conclusion
In this study, the treatment performance of ferrate(VI) removal of OP in secondary effluent
was evaluated. Effects of two operating factors (i.e., ferrate(VI) dose and water pH) and four
coexisting wastewater matrix constituents (i.e., alkalinity, nitrate, ammonia, and phosphate) were
particularly evaluated. In order to elucidate the underlying reaction mechanisms, ferrate(VI)
reactions with six OP model compounds were investigated. Major conclusions from this study
are summarized as follows.
1) Ferrate(VI) treatment is a technically effective method for mitigation of organic
phosphorus in biologically treated municipal wastewater. The treatment efficiency is

influenced by ferrate(VI) dose and pH.
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2) Among different wastewater matrix constituents, alkalinity, nitrate, and ammonia have
very limited influence on ferrate(VI) removal of OP. In contrast, inorganic phosphate can
suppress the OP removal. The inhibiting effect is ascribed to competitive adsorption of
phosphate with OP compounds for active adsorption sites on the ferrate(VI) resultant
particles.

3) Based on the studies with OP model compounds, ferrate(VI) oxidation and ensuing
adsorption with ferrate(VI) resultant particles are the major OP removal mechanisms.
Specifically, ferrate(VI) firstly degrades these parent OP compounds into daughter P-
containing compounds, followed by adsorption of these daughter compounds by the resultant
iron (hdyr)oxide particles. Of note, inorganic phosphate is not observed after ferrate(VI)
treatment of OP model compounds, suggesting that ferrate(VI) insufficiently degrades OP
into inorganic P. However, the conclusions are made only based on the selected model
compounds. Given that OP derives from various EfOM molecules, novel experimental
approaches need to be developed for exploration of the mechanisms for ferrate(VI) removal

of aggregate OP in secondary effluent.
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Figure 4-1 Residual DOP and DOP removal efficiency after ferrate(VI) treatment of secondary
effluent at different Fe(VI) doses (DOP= 114 ng/L as P; Fe(VI) = 0.0 — 9.0 mg/L)
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Figure 4-2 Residual DOP and DOP removal efficiency after ferrate(VI) treatment of secondary
effluent at different initial pH (DOP= 114 pg/L as P; Fe(VI) = 5.0 mg/L; and initial pH = 5.5-

8.0)
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Figure 4-3 Effects of different wastewater matrix constituents on residual DOP during
ferrate(VI) treatment of secondary effluent (Fe(VI) dose = 5.0 mg/L; initial DOP = 114 pg/L P;
and initial pH = 6.5): (a) alkalinity: 200-500 mg/L as CaCOs; (b) NO3™-N: 2.6-30.0 mg/L; c)
NH3-N: 10.6-60 mg/L; and d) phosphate: 2.08-5.22 mg/L as P)
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Figure 4-4 Ferrate(VI) removal of different model OP compounds at different conditions
(TP=500 pg/L P; Fe(VI) = 5.0 mg/L; pH = 6.5 or 7.5; Control: no ferrate(VI) addition; in-situ
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Figure 4-5 Size distribution of P and Fe after in-situ ferrate(VI) treatment of different OP model
compounds: a) DNA; b) RNA; c¢) ATP; d) AMP; e) GDP; and f) UDP (initial OP =1000 ug/L as
P; Fe(VI)=5.0 mg/L; and pH was maintained at 6.5)
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(b)

Figure 4-6 Surface element analysis of ferrate(VI) resultant particles after ferrate(VI) treatment
of ATP in distilled water (P=500 pg/L; Fe(VI) = 5.0 mg/L; pH = 6.5; the top image: Fe and P
mapping on the particle surface; and the bottom image: intensities of different detected elements)
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Figure 4-7 Surface element analysis of ferrate(VI) resultant particles after ferrate(VI) treatment
of UDP in distilled water (P=500 pg/L; Fe(VI) = 5.0 mg/L; pH = 6.5; the top image: Fe and P
mapping on the particle surface; and the bottom image: intensities of different detected elements)
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Figure 4-8 Surface element analysis of ferrate(VI) resultant particles after ferrate(VI) treatment
of GDP in distilled water (P=500 pg/L; Fe(VI) = 5.0 mg/L; pH = 6.5; the top image: Fe and P
mapping on the particle surface; and the bottom image: intensities of different detected elements)
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Figure 4-9 Surface element analysis of ferrate(VI) resultant particles after ferrate(VI) treatment
of AMP in distilled water (P=500 pg/L; Fe(VI) = 5.0 mg/L; pH = 6.5; the top image: Fe and P
mapping on the particle surface; and the bottom image: intensities of different detected elements)

12




FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL

mb

Chromatogram(ATP Initial.lcd)
] Detectar A Chi
500
'\I
] I
400 i
1 [
I |
i |
300+ | |
] |
|
|
] I|I
204 | y
: |
100 b
] | B
| | .
] | e
] | + .
0 —t
L T T T T T T T LI T
1 2 3 4 5 g 10
min
(a)
Ret. Time: 1-1(E+) [3.803)-{3 740->3.780] RS Spacinan(ATI inkiad.ke)
Inten.
20000
40000
300004
20000
10000
250 300

(b)

185



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 186

S Spec ™ 120 PP )
Ret. Time: 1-1(E+) 0.2251[8.423-0.027) o SPeorumIATR AR 0.1 20 PPM CONC led)
Inten.

251:1:03:
270000
200000
2500004
2400004
2300004

220000~

F

(©

NH;
<1
>
M N/ HO 0
o— — W W L
o O G DQF\O/B“‘*OR’T]RDH

/P\ /F“-—u.. —FP—
8] C{/ o !:l O || OH
(d)

Figure 4-10 Ferrate(VI) oxidation of ATP (P=500 pg/L; Fe(VI) = 5.0 mg/L; and pH = 6.5) a)
liquid chromatography of ATP; b) mass spectroscopy of ATP; ¢) mass spectroscopy of
degradation products; and d) proposed degradation pathway)
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Figure 4-11 Ferrate(VI) oxidation of UDP (P=500 pug/L; Fe(VI) = 5.0 mg/L; and pH = 6.5) a)
liquid chromatography of UDP; b) mass spectroscopy of UDP; ¢) mass spectroscopy of
degradation products; and d) proposed degradation pathway)
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Figure 4-12 Ferrate(VI) oxidation of AMP (P=500 pg/L; Fe(VI) = 5.0 mg/L; and pH = 6.5) a)
liquid chromatography of AMP; b) mass spectroscopy of AMP; ¢) mass spectroscopy of
degradation products; and d) proposed degradation pathway)
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Chapter 5 Conclusions
5.1 Economic Analysis

Cost is another essential factor affecting the acceptance of an innovative technology in the
market. However, it is unsuitable to perform techno-economic assessment (TEA) for ferrate(VI)
treatment technologies and compare them with exiting treatment options, considering that the
emerging treatment technologies still remain at the early stage. However, a preliminary cost
analysis could be made to estimate the expenses for chemical reagents during ferrate(VI)
treatment of biologically treated municipal wastewater.

Ferrate(VI) application was extremely restricted because the synthesis of a dry or powder
high-purity ferrate product, with sufficient stability to be transported, handled, and stored, was
prohibitively expensive (> $130/kg) (Waite, 2012). However, recent advances in ferrate(VI)
production can substantially produce ferrate(VI) stock solution on site, thereby making the
application feasible (Cashman et al., 2014; Jiang, Stanford, & Alsheyab, 2009; Jiang, Stanford,
& Mollazeinal, 2012; Waite, 2012). Such advances have opened new opportunities for
applications of ferrate(VI) to new areas, such as wastewater treatment. At an annual inflation rate
of 3%, ferrate(VI) has an estimated price at $0.49/kg as Fe (the present value in 2020) (Cui,
Zheng, & Deng, 2018). On the other hand, the common ferric chloride has a price around at
$0.19/kg (the present value in 2020) (ICIS, 2006). We can notice that the expense of ferrate(VI)
treatment was 2.57 times as that of ferric treatment in terms of chemical agents when ferrate(VI)
and ferric salts are used at the identical doses. Although the ferrate(VI) treatment appears more
costly, it would bring more treatment benefits as discussed later. Here we made a preliminary

cost analysis for ferrate(VI) application. When ferrate(VI) is used for treatment of phosphorus in



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 204

secondary effluent at a dose of 5.0 mg/L as Fe, the estimated cost for ferrate(VI) consumption
was approximately < $0.10/10° gal.
5.2 Implication in Environmental Management

Wastewater treatment plays a key role in water resources management, particularly at an
urban setting. This project aimed to improve the quality of untreated or treated wastewater, of
which the latter one may be discharged into the environment or reused for an intended purpose,
particularly in the removal of phosphorus. These findings from this project have profound
impacts on the aspects on urban water management, environment, and society, as discussed

below.

5.2.1 Implication to Water Management

Wastewater treatment is one key component in an urban or agricultural water cycle.
Engineering technologies and designs are applied to improve wastewater quality for different
purposes. This study clearly demonstrates that ferrate(VI) is a promising treatment agent for
alleviation of organic and inorganic wastewater phosphorus in the dissolved and particulate
forms, together with other wastewater contaminants at different wastewater treatment stages.
Specific discussion on the implication to water management is as follows.

1) Ferrate(VI) treatment can serve as a CEPT in wastewater treatment. Secondary
wastewater treatment is typically the minimum wastewater treatment requirement in many
developed countries, such as the United States and Singapore. Within a typical secondary or even
tertiary wastewater treatment facility, ferrate(VI) can early remove phosphorus in the primary
treatment step, before the wastewater enters into a biological wastewater treatment unit.
Meanwhile, the CEPT can alleviate many particulate pollutants, such as TSS and particulate

COD. Therefore, the ferrate(VI) CEPT can significantly mitigate the loading for the ensuing
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biological treatment (e.g. activated sludge basins or trickling filters), thereby enhancing the
wastewater treatment.

Application of CEPT for low-income or developing countries is another scenario, where
primary wastewater treatment serves as a dominant wastewater option. Undoubtedly, the quality
of treated wastewater after the primary sedimentation tank is poor, because the major treatment
mechanism in the primary treatment is settling driven by gravity. Consequently, the major
pollutants to be removed in primary sedimentation tanks are particulate matters, rather than
soluble contaminants (e.g., dissolved COD, N, P, and trace emerging contaminants). In contrast,
adoption of a CEPT with ferrate(V]) is expected to significantly improve the effluent quality due
to multiple functions of ferrate(VI). Besides TSS, ferrate(VI) can remove phosphorus and
decompose emerging contaminants. Moreover, ferrate(VI) inactivation of water-borne pathogens
can be a substitute of traditional wastewater disinfection (e.g., chlorination or ozonation). This
will greatly decrease the complexity of system design and operation, while improving the quality
of treated wastewater.

2) Ferrate(VI) treatment provides a new advanced wastewater treatment to the wastewater
industry. The innovative option can concurrently remove inorganic and organic phosphorus, thus
achieving a very low effluent P. This is of significance for the wastewater industry that always
stay current and proactive for the increasingly stringent wastewater discharge regulations on
different wastewater parameters, such as phosphorus. Although addition of iron or aluminum
coagulants at wastewater treatment plants, as a traditional P removal method, can effectively
remove phosphate in wastewater, the treatment poorly removes organic phosphorus.
Consequently, the traditional method cannot meet with the low P discharge requirement in many

environmentally sensitive water bodies, e.g. the Cheapskate Bay. In contrast, one benefit from
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ferrate(VI) treatment is the effective removal of organic phosphorus, accompanied by the
mitigation of phosphate. The better P removal performance is ascribed to concurrence of
chemical oxidation and adsorption over the ferrate(VI) treatment.

Besides phosphorus, ferrate(VI) has been well demonstrated to remove many other
wastewater contaminants, such as trace emerging contaminants and pathogenic microorganisms.
Of note, in the realistic advanced wastewater treatment, alleviation of emerging contaminants
(e.g. antibiotics) is frequently achieved by activated carbon adsorption or chemical oxidation
(e.g., ozonation and UV/hydrogen peroxide), while inactivation of pathogens is accomplished by
chlorination, ozonation, or UV disinfection. However, when ferrate(VI) is adopted for P
removal, emerging contaminants and water-borne pathogens can be simultaneously removed.
Therefore, the treatment units originally designed for organics removal and disinfection may not
be needed. This will save treatment costs and decrease the system complexity.

3) Ferrate(VI) treatment is beneficial to water reuse in an urban water cycle. Planned water
reuse is a common option in urban water management in the arid and semi-arid regions, such as
the western United States. Pollutants present in treated wastewater should be sufficiently
removed before intended reuse. In the U.S. Northeast, although large-scale wastewater
reclamation projects are barely implemented due to the abundant precipitation, the unexpected
“de facto” water reuse often occurs, at which the intake of a drinking water treatment plant is in
proximity to the discharge outlet of an upstream municipal wastewater treatment facility.
Therefore, a technically viable treatment technology is required to significantly improve the
quality of treated wastewater, which later serves as the source water of a wastewater reclamation

facility or a potable water treatment plant.
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4) Despite the aforementioned advantages, ferrate(VI) treatment brings potential challenges
to the wastewater treatment facility. Similar to the traditional coagulant addition, ferrate(VI)
dosing finally leads to production of iron sludge, which may require appropriate management
and disposal. Of note, when ferrate(VI) is applied to CEPT, the liquid-solid separation is not an
issue in the most cases, because the iron sludge can readily settle down in the primary
sedimentation basins. However, when ferrate(VI) is used for advanced wastewater treatment, a
following liquid-solid separation must be used for removal of these unwanted particles. Size and
density of these ferrate(VI) resultant particles rely on the treatment operation and solution
chemistry, as evidenced by the findings from this dissertation research and our previous studies
(Zheng & Deng, 2016). In order to address the issue, a strategy for the wastewater industry is to
promote the formation of larger and denser particles through controlling of the operation

conditions and solution chemistry parameters.

5.2.2 Environmental Benefits

Environmental benefits of the ferrate(VI) treatment technologies are embodied in two aspects,
including 1) the improvement of environmental quality and 2) the environmental friendless of
the technology.

Improving environmental quality. Ferrate(VI) alleviation of phosphorus, both inorganic and
organic, in wastewater would minimize the occurrence of eutrophication in natural receiving
water bodies, given that phosphorus is one of the two primary nutrients. Eutrophication is one of
the most common water pollution events in the United States and many other countries. This can
directly cause algal blooms, which can deplete dissolved oxygen, produce taste and odor
compounds, increase water turbidity, and release toxic algal toxins. A serious algal blooming

event may lead to the shutdown of neighboring potable water treatment plants due to the
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contamination of water sources. Wastewater discharge is a principal point pollution source for
the input of phosphorus and nitrogen. Therefore, mitigation of wastewater nutrients within the
wastewater treatment plants is a strategically sound approach to preventing the occurrence of
eutrophication.

Meanwhile, ferrate(VI) has proven very effective for degradation of harmful emerging
contaminants through chemical oxidation, such as pharmaceuticals and personal care products,
endocrine disrupting chemicals, and algal toxins. These contaminants, even at trace
concentrations, may have adverse effects on human and environmental health. Therefore,
ferrate(VI) treatment capable of removing phosphorus and many other wastewater derived
pollutants can safeguarde the environmental quality.

Environmentally friendly technologies. Ferrate(V]) is recognized as a “green” water treatment
technology (Sharma, Zboril, & Varma, 2015). Ferrate(VI) itself does not produce harmful
products. Rather, the final product is non-toxic iron (hdyr)oxide (sludge). Binding of many
contaminants (e.g. phosphate and arsenic) on the ferrate(VI) resultant particles is strong and
irreversible, so that desorption is minimal. Meanwhile, ferrate(VI) oxidation, different from
many other chemical oxidation (e.g., 0zonation), barely produces undesirable disinfection
byproducts (e.g. carcinogenic bromate) in treated water. Therefore, ferrate(VI) is a safe treatment
agent.

Furthermore, very minimal environmental impacts are expected during ferrate(VI) treatment.
Cashman (2014) compared ferrate(VI) and many other treatment technologies in water
disinfection in an U.S. Environmental Protection Agency-supported project. Their life cycle
assessment (LCA) shows that ferrate(VI) technology has fewer negative impacts on the

environment than conventional disinfection options in terms of global warming, smog formation,
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energy reduction, fossil depletion, acidification, ozone depletion, metal depletion and human
health.
5.2.3 Social Benefits

Innovative, effective, and efficient wastewater treatment technologies can also bring about
social benefits, considering that clean and safe water is vital to our community. At a minimum,
four social benefits are expected from the inventive ferrate(VI) treatment technologies for
wastewater treatment.

1) Enhancing clean water supply. Wastewater is recognized as a resource in the modern
viewpoint of environmental engineering. It, as part of our water cycle, will be finally recycled for
drinking water supply. One example is direct potable reuse (DPR). In DPR, wastewater becomes
part of raw water directly after water reclamation or indirect potable reuse (IPR) in which treated
wastewater enters into an environmental buffer (e.g., wetlands) before used in drinking water
treatment plants. The other example is the unplanned “de facto” reuse scenario, in which treated
wastewater from a wastewater treatment plant is part of raw water in the downstream water
treatment plant. At the either situation, if ferrate(VI) treatment is adopted as an advanced
treatment, it will significantly improve the water quality and enhance the water reuse, regardless
of planned or unintentionally reuse.

2) Boosting local economy. A less polluted water environment can create many new
opportunities for the local community, such as convenient water transportation, lively recreation
activities, and rising real estate. Meanwhile, sufficient ad safe water supply will promote human
health and reduce the occurrence of water-borne diseases. The ecological and public health can
stimulate the community economy by attracting more people and new business. Therefore, more

employment opportunities will be accordingly created.
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3). Promoting the awareness of sustainability. Ferrate(VI) is a potentially environmentally
friendly technology. Adoption of ferrate(VI) for water and wastewater treatment with less
negative impacts than conventional technologies will expand public awareness in the concept of
sustainability. The emerging “green” treatment method can be used as a modern technology
model for sustainability education of our next generation.

4) Beautifying communities. Water is a key component in landscaping design. It can be used
for irrigation to support the plant growth and be part of the landscaping (e.g. foundations,
wetlands, lakes, and streams). Sufficient and clean water will strongly support the beautification
and various recreation activities (e.g. boating, fishing, and swimming) at local communities.
Therefore, the innovation in wastewater treatment will help create a beautiful community.

5.3 Overall Conclusions

This dissertation aimed to evaluate the treatment performance for ferrate(VI) removal of
phosphorus in municipal wastewater and elucidate the underlying mechanisms. Laboratory-scale
tests were sequentially carried out to test ferrate(VI) application in primary and advanced
treatments. Results from the CEPT tests show that ferrate(VI) can substantially remove
phosphate in raw wastewater. The ferrate(VI) enabled CEPT is particularly effective for
enhanced mitigation of particulate matters and particulate-associated phosphorus and organic
matter. The enhancement is primarily ascribed to the improved sedimentation of particles due to
the attachment of ferrate(VI) resultant particles on the suspended solids in wastewater.

Ferrate(VI) treatment is also effective for removal of residual phosphorus, inorganic and
organic, in biologically treated municipal wastewater. The treatment performance relies on two
operating factors, i.e. ferrate(VI) dose and pH. Alkalinity, nitrate, and ammonia appear to have a

limited influence on the removal of both inorganic and organic phosphorus. However, EfOM can
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significantly inhibit ferrate(VI) removal of inorganic phosphate, while inorganic phosphate in
wastewater can greatly suppress the alleviation of organic phosphorus. Mechanistic studies
reveal that the abatement of phosphate is primarily attributed to the adsorption of phosphate to
ferrate(VI) resultant particles, a mixture of amorphous and crystalline iron (hydr)oxides. Of
particular, the most phosphate is captured on the amorphous fraction of the mixed iron
(hydr)oxides. On the other hand, the mechanisms for ferrate(VI) removal of organic phosphorus
is more complex. For the selected model compounds, ferrate(VI) oxidation first degrades them
into simple daughter compounds, of which some are subsequently adsorbed to the ferrate(VI)
resultant particles, while others remain in water.

Experimental results in the treatment performance and mechanisms show the potential of
ferrate(VI) as a promising treatment agent for abatement of wastewater phosphorus. Besides the
alleviation of phosphorus, ferrate(VI) is expected to remove many other chemical and microbial
contaminants with production of little byproducts and minimal environmental impacts.
Therefore, though ferrate(VI) is more expensive than the traditional phosphorus removal
methods with ferric coagulant, it can bring about unmatched benefits that traditional technologies
cannot provide.

5.4 Future Research

This dissertation research is the first step toward ferrate(VI) technologies for removal of
phosphorus in municipal wastewater. Although encouraging results are obtained, the technology
needs to be further developed in future. Four following directions are identified as follows for the
future research.

1) How much phosphorus needs to be removed from wastewater? Although P is a

wastewater pollutant, it may be beneficial. For example, wastewater P after primary
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treatment may be needed for microbial growth in the ensuing activated sludge
treatment. And P in treated secondary effluent may be useful if the wastewater will be
later used for agricultural irrigation, because P is a nutrient for the growth of crops.
Accurate control of the P removal efficiency is needed for ferrate(VI) application to
wastewater treatment and reuse. As shown before, the treatment performance is
influenced not only by ferrate(VI) dose and pH, but also by wastewater matrix
constituents. However, species and concentrations of wastewater matrix constituents
are different from one secondary effluent to another. Therefore, further studies are
needed to investigate the impacts from wastewater matrix. Particularly, many
municipal wastewater treatment plants receive industrial wastewater, which may
bring more uncertainty on the performance of ferrate(VI) treatment due to the
introduction of industrial wastewater pollutants (e.g. toxic heavy metals).
Wastewater treatment plants are operated over the entire years. Therefore, the
treatment should be viable at different temperatures. Effect of temperature on
ferrate(VI) removal of wastewater phosphorus was not investigated in this study.
Theoretically, temperature may influence the reaction through the change of the
reaction rates and adsorption capacity of iron oxides. Therefore, the role of reaction
temperature within a typical wastewater treatment range deserves an in-depth study.
Although phosphorus is a wastewater pollutant, it is a valuable chemical due to its
limited resources on the Earth. Recovery of phosphorus has recently become a
direction for sustainable management of our municipal wastewater. After ferrate(VI)
induced sludge is collected, whether P associated with the iron (hdyr)oxide can be

efficiently recovered remains interesting. However, the strong binding between Fe
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and P can seriously challenge the existing P recovery methods. Therefore,
development of innovative P recovery methods from the iron sludge is urgently
demanded.

Development of cost and energy-efficient technologies with minimal environmental
impacts is highly attractive for removal of wastewater phosphorus. However, it is
unsuitable now to carry out TEA and LCA for the innovative ferrate(VI)
technologies, given that the emerging treatment process is still at its early stage. With
the advances in the ferrate(VI) chemistry and technology, TEA and LCA need to be
carried out at a more-developed phase to compare ferrate(VI) treatment and existing

technologies.



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 214

5.5 References

Cashman, S., Gaglione, A., Mosley, J., Weiss, L., Hawkins, T., Ashbolt, N., . . . Arden, S.
(2014). Environmental and Cost Life Cycle Assessment of Disinfection Options for
Municipal Wastewater Treatment. Office of Research and Development. National
Homeland Security Research Center.

Cui, J., Zheng, L., & Deng, Y. (2018). Emergency Water Treatment with Ferrate(VI) in
Response to Natural Disasters. Environmental Science: Water Research & Technology, 4,
359-368

ICIS. (2006). List of chemical prices.

Jiang, J. Q., Stanford, C., & Alsheyab, M. (2009). The online generation and application of
ferrate(VI) for sewage treatment-A pilot scale trial. Separation and Purification
Technology, 68(2), 227-231. Retrieved from <Go to ISI>://W0S:000268648200015.
doi:10.1016/j.seppur.2009.05.007

Jiang, J. Q., Stanford, C., & Mollazeinal, A. (2012). THE APPLICATION OF FERRATE FOR
SEWAGE TREATMENT: PILOT- TO FULL-SCALE TRIALS. Global Nest Journal,
14(1), 93-99. Retrieved from <Go to ISI>://W0OS:000304741400014.

Sharma, V. K., Zboril, R., & Varma, R. S. (2015). Ferrates: Greener oxidants with multimodal
action in water treatment technologies. Accounts of chemical research, 48(2), 182-191.

Waite, T. D. (2012). On-Site Production of Ferrate for Water and Wastewater Purification.
American Laboratory, 44(10), 26-28. Retrieved from <Go to
ISI>://WO0S:000312286700006.

Zheng, L., & Deng, Y. (2016). Settleability and characteristics of ferrate(VI)-induced particles in

advanced wastewater treatment. Water Research, 93, 172-178.



FERRATE(VI) FOR WASTEWATER TREATMENT: PHOSPHORUS REMOVAL 215

This page intentionally left blank.



	Ferrate(VI) for Wastewater Treatment : Phosphorus Removal
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	Chapter 1 Introduction and Objectives
	1.1 Phosphorus Element
	1.2 Phosphorus Cycle
	1.2.1 Phosphorus Cycle in the Terrestrial Environment
	1.2.2 Phosphorus Cycle in the Riverine Environment
	1.2.3 Phosphorus Cycle in the Oceanic Environment

	1.3 Eutrophication
	1.3.1 Definition
	1.3.2 Adverse Effects
	1.3.3 The Extent Development of Eutrophication
	1.3.4 Phosphorus Sources to Eutrophication

	1.4 Phosphorus in Municipal Wastewater
	1.4.1 Phosphorus Sources to Municipal Wastewater
	1.4.2 Different Phosphorus Species
	1.4.3 Phosphorus Removal

	1.5 Phosphorus Removal Technologies in Municipal Wastewater Treatment
	1.5.1 Physico-chemical Methods
	1.5.1.1 Precipitation
	1.5.1.2 Adsorption
	1.5.1.3 Ion Exchange

	1.5.2 Biological Methods
	1.5.2.1 Enhanced Biological Phosphorus Removal (EPBR)
	1.5.2.2 Algal Phosphorus Removal


	1.6 Ferrate(VI) Technology
	1.6.1 Ferrate(VI) chemistry and its application to water and wastewater treatment
	1.6.2 Ferrate(VI) and Phosphorus in Wastewater Treatment

	1.7 Objectives and Hypothesis
	1.8 References

	Chapter 2 Chemically Enhanced Primary Treatment (CEPT) With Ferrate(VI)
	2.1 Introduction and Objectives
	2.1.1 Chemically enhanced primary treatment
	2.1.2 Objectives

	2.2 Material and Method
	2.2.1 Wastewater samples and reagents
	2.2.2 CEPT Experiments
	2.2.3 Sample Analyses

	2.3 Results
	2.3.1 Phosphorus
	2.3.2 Final solution pH
	2.3.3 Particulate matter (PM)
	2.3.4 Organic Matter

	2.4 Discussion
	2.4.1 P Removal during CEPT with Ferrate(VI)
	2.4.2 Other Wastewater Quality Indicators
	2.4.3 Implication for the wastewater industry

	2.5 Conclusion
	2.6 References

	Chapter 3 Phosphate Removal from Secondary Effluent Using Ferrate(VI) Treatment
	3.1 Introduction and Objectives
	3.1.1 Phosphate and Eutrophication
	3.1.2 Phosphate in Water
	3.1.3 Objectives

	3.2 Materials and Methods
	3.2.1 Wastewater samples and reagents
	3.2.2 Treatment of secondary effluent with ferrate(VI)
	3.2.3 Removal Mechanisms
	3.2.5 Sample Analyses

	3.3 Results and Discussion
	3.3.1 Treatment performance of ferrate(VI) for removal of phosphate in secondary effluent
	3.3.1.1 Effects of operating factors
	3.3.1.2 Effect of wastewater matrix constituents

	3.3.2 Mechanistic Studies
	3.3.2 Discussion

	3.4 Conclusion
	3.5 References

	Chapter 4 Removal of Organic Phosphorus from Secondary Effluent with Ferrate(VI)
	4.1 Introduction and Objectives
	4.1.1 Eutrophication and Organic Phosphorus
	4.1.2 Organic Phosphorus in Freshwater
	4.1.3 Organic Phosphorus during Municipal Wastewater Treatment
	4.1.4 Objectives

	4.2 Materials and Methods
	4.2.1 Wastewater samples and reagents
	4.2.2 Ferrate(VI) removal of OP in secondary effluent
	4.2.3 Ferrate(VI) treatment of OP model compounds
	4.2.4 Sample Analyses

	4.3 Results and Discussion
	4.3.1 Treatment performance of ferrate(VI) for removal of OP in secondary effluent
	4.3.1.1 Effects of operating factors
	4.3.1.2 Effect of wastewater matrix constituents

	4.3.2 Mechanistic studies of ferrate(VI) removal of DOP
	4.3.3 Discussion

	4.4 Conclusion
	4.5 References

	Chapter 5 Conclusions
	5.1 Economic Analysis
	5.2 Implication in Environmental Management
	5.2.1 Implication to Water Management
	5.2.2 Environmental Benefits
	5.2.3 Social Benefits

	5.3 Overall Conclusions
	5.4 Future Research
	5.5 References


