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Abstract

We propose using stochastic methods to generate new Jazz solos in the style of an 

artist of interest. To accomplish this, we implement several Markov models that use an 

artist’s known solos in order to mimic their pitch selection tendencies. Construction 

of two unique solos were generated for each artist considered as well as analysis of 

the characteristics the solos possessed in comparison to the artist’s original solo. This 

software implementation seeks to offer a new method for creating computer music 

compositions.
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Chapter 1

Introduction

Computer Music has become a common technique used by composers in creating new 

musical pieces. Many approaches have been used stemming from scientific and math­

ematical formulations. With the use of these approaches, much effort has been put 

into creating new classical music pieces that yield convincing representations of clas­

sical composers like Bach and Mozart. In [2], Benson uses a group theoretic approach 

to construct new pieces. In his implementation he uses the action of the Dihedral 

group on the pitch class set to take a preexisting piece and apply rotations and sym­

metries to the musical measures. This yields a new piece with the notes of the original 

shifted by some arbitrary angle 6 originating from a ’’center” note. This approach 

could also yield an inverted form of the original piece. The main premise of the ar­

ticle was that construction of sequences of symmetries and rotations on the original 

piece yields new pieces. Several examples were constructed in which the technique 

was applied to classical pieces.Agmon in [16], discussed a mathematical formulation 

of the diatonic system using modular arithmetic. He expressed the diatonic system 

as a pair of integer classes mod( 12,7). This mathematical formulation stems from 

the fact that the set of scale steps is equivalent to Z7 = 0,1,2,3,4, 5,6 while the set 

of diatonic intervals is equivalent to a subset A = (0, 2,4, 5, 7,9, ll)of Z\2 . Diatonic
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intervals are referring to the possible distances that can occur between pairs of notes 

such as minor second, major second, perfect fifth, etc. Agmon analyzes the result of 

applying modular arithmetic to these pairs and concludes what is the corresponding 

music interpretation of these operations. Agmon demonstrates that taking the dif­

ference between pairs yields a different interval depending upon the order in which 

the operation is applied. Computing the difference (which corresponds to distance 

between notes) also alluded to the cyclic nature of the construction.

Some research that has been done in blending the ideas of math and music is the 

study of gestures that an artist makes while they are playing the piece. Such topics 

in mathematical music theory are categorized under Performance theory. In [17, 12], 

Muller discusses the creation and implementation of a computer software which cre­

ates the movements (referred to as gestures) of the hands during a piano performance. 

Muller defined a gesture to be a group consisting of (A, X, g) where A is a directed 

graph representing the structure of the gesture being performed, X is a topological 

space representing the space in which the gesture occurs, and g is a map from A to 

the directed graph generated from the space when considering all possible paths in 

space that connect two vertices. The complexity of this representation can be seen by 

considering the following example. Consider the gesture involved in playing a single 

note on the piano. In order to model this gesture, three curves have to be considered: 

the curve when moving the finger to that key, the curve when pressing the key, and 

the curve when moving away from the key. Because of the number of curves needed to 

represent one action, Muller defines the concept of hypergestures which is a collection 

of gestures. Using this approach, Muller describes the construction of this problem 

to that of equivalent questions from Homotopy theory. Some work has been done for 

determining what collections of musical pieces have particular traits as in the work 

of Burgoyne et al [4]. In their work a statistical technique was shown to effective in 

determining the harmonic structure of large collections of musical pieces. Techniques
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from compositional data analysis were used in order to determine whether a collec­

tion of Pop music pieces had particular harmonic similarities. Pieces were chosen 

from the 1950s to 1990s in order to determine how much change has there been in 

chord choice. Compositional data is essentially a vector (typically defined as com­

positions) in which each component is a numerical value related to some aspect(i.e. 

portion) of each entry in a data set. This is typically expressed as ratios between the 

components. With regard to this study, each data entry corresponded to a song in 

the collection. The components of the compositions, which were referred to as root 

compositions in this work, correspond to the scale degrees which are the roots of the 

chords in the song. The numerical value for that component corresponded to the 

ratio of time spent on that particular degree in the entire song. From this work they 

were able to determine that changes in chord usage occurred in the 1980s. Statistical 

analysis techniques like MANOVA (mutlivariate analysis of variance) were employed 

to determine information such as the effect of hit singles on the music of that time 

period.

Because of the success found in applying mathematical techniques to generating clas­

sical music, researchers have consider their application to Jazz improvisation. Jazz, 

as opposed to other musical genres, is based entirely on musical freedom. This free­

dom allows for each artist to have their own methods of self expression and thus 

establishing a mathematical formulation of Jazz approaches is very difficult and thus 

requires complex mathematical formulations. In [1], Bergomi and Portaluri propose 

the use of braid theory to model the modal chord progressions used by Jazz artist in 

their improvised solos. Taking the planar graph representation of the chords used in 

the artist’s solo and considering their corresponding topological braid classes, they 

were able to determine the sequence of braid concatenations used to construct the 

solo. Thus establishing a mode allows for the construction of solos using the sequence 

of concatenations used by the artist. A recently proposed technique, established by
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Mazzola [13], in generating solos is that of formalizing music in terms of category 

theory in which the characteristics of a note (or a collection of notes) such as pitch, 

duration, and onset are described as morphisms between spaces. Thus the generation 

of new solos stems from the manipulation of these mappings. In his work Mathe­

matics of Jazz ,[18], Maurer explains the mathematics of symphonic music and how 

this mathematical approach does not perfectly represent Jazz music. Several cases 

are discussed considering first the approach of note duration in Jazz. In symphonic 

music, the standard note duration notation is taken and is maintained throughout 

every bar in the piece. For example, if a note occurs in a classical piece with the du­

ration of a eighth note then it should be held for that duration when played. Because 

of this clear interpretation, analysis of duration from a mathematical standpoint can 

be done using a binary representation. An eighth note has a duration value of | ,  

so its corresponding binary representation is 0.001. Thus every note duration has 

its own unique binary representation. However in Jazz, this is not necessarily the 

case. In Jazz the duration approach can be either the standard approach or can be 

swing style approach. When a bar of music specifies that it should be played with 

swing, then the duration of the notes change. Even more so, in the Jazz community 

there are two approaches to swing. This therefore leads to at least two binary repre­

sentations for each duration. Further differences also occur when referring to chord 

selection. In symphonic music, chords are based on preset harmonics depending upon 

whether playing in a major or minor key. Because of its ’fixed’ nature, patterns can 

be established based on constant multiples of its frequency. For example, if a piece 

is in a major key, then when a chord is played, there is a choice between augmented, 

diminished, major, and minor depending upon the feeling the composer is trying to 

express. However because of the freedom in Jazz, it is possible to play for example a 

minor seventh chord with the fifth note either sharped or flatted. There is also the 

concept of chord substitutions in which it is perfectly acceptable to play for example
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a dominant seventh chord in replacement for a minor seventh. Maurer even expressed 

that, because of the flexible approach of Jazz, the final chord of a piece does not have 

to be the tonic which is typical of symphonic music.

Among the mathematical techniques incorporated in constructing Jazz Improvisa­

tion, one of the popular approaches is that of Markov Chains. Ames [20] in 1989 was 

the first to give an overview of all of the approaches established in composing music 

through the use of Markov Chains. In his work, Ames discussed the now standard 

method (which is employed in this work) of using pitches that occurred in a piece 

of music as the state space and constructing Markov Chains from the work of clas­

sical composers. Another method for composing that he discussed was the use of 

combining several excerpts generated from different Markov chains. This allows for 

choosing the ’favorable’ aspects from the output of the chain in order to create pieces 

as well as better control of musical variability and expression. The idea of evolving 

transition matrices was discussed in which the probabilities found in the transition 

matrix of the Markov chain was allowed to chain based on preset parameters. Marom 

,[14], considered the application of Hidden Markov Models(HMM) in which unknown 

or ’’hidden” phenomena that may have affected the artist’s transcribed solo (i.e. the 

artist’s state of mind at the time of soloing) is accounted for in the construction of 

their transition matrix. In this work, we present the creation of software that allows 

for the user to create computer generated improvised jazz solos which mimic the ten­

dencies of a jazz artist of their choosing from a preset collection. We focus on using 

the pitch data of solos from Jazz artists Miles Davis, John Coltrane, and George 

Benson to construct Markov Chains that model their improvisational behavior for a 

particular song. These artist were chosen because solos they played in the piece we 

chose did not contain block chords which our approach does not effectively handle. 

We generate solos using 1st and 2nd order Markov chains and provide analysis strictly 

for the l si order case using probabilistic model checking. It is worth noting that we
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attempted to apply this same construction to durations (i.e. note values). However 

we were unsuccessful in creating interesting rhythmic output since the dominating 

duration value in the solos used were eighth notes. This led to eighth notes having a 

high probability of occurring and therefore yielding solos which did not capture the 

interesting rhythmic approaches that these artists employed in their corresponding 

solos. We then propose a Markov model construction based on pitch classes and show 

how to generate a vector representation of an artist using the properties of Markov 

chains. We applied this construction to create a vector representation of Jazz sax­

ophonist Charlie Parker and applied techniques from Monte Carlo Markov Chains 

to generate a solo using the vector representation of the artist. Probabilistic model 

checking is again used to analyze the effectiveness of the model in producing solos 

which resemble the improvisational nature of the artist.
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Chapter 2

1st Order Markov Process on 

Pitches

We will use the theory, described in [7, 6, 5], of the following terms. Let the following 

pair (f2, S) be a measure space with set along with its cr-algebra S  of subsets of ft 

and define P  to be a probability measure on (Q,S). Thus (f2,5, P) is a probability 

space.

Definition. A stochastic process X  with state space x  is a collection xn^=0 of x-valued 

random variables on (fi, 5, P).

A random variable X{ is simply the value of the process at the ithtimestep. To 

define a Markov process, we will use the following notation: For every m > n the 

a-algebras 5™ = a(xn) V ... V a(xm) where cr(xi) is the cr-algebra generated by a 

random variable X{.

Definition. A stochastic process X  is Markov, for every n > 0 and every measur­

able bounded function f  : x  — ► R (where R is the set of real numbers)one has 

E (f(x n)\SQ~1) = E (f(x n)\Sn-i) almost surely.

Definition. A Markov process is time-homogeneous if 3 a measurable map P from x  

into P{x)> the space of probability measures on x, such that P(xn £ A\xn- i  = a) =
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(P(a))(A) for every A e B{x) the Borel algebra, almost every a € \  and every n > 0, 

where P is the transition probabilities for x.

Definition. A Markov chain has order n if the probability of state X{ occurring de­

pends upon the previous n states. If a Markov chain has order n, we may say that it 

has memory n.

We will be discussing the application of time-homogeneous Markov Chains which 

are time-homogeneous Markov Processes that have finite state space. Our measurable 

map P  will be represented by a transition matrix. Because we are considering time- 

homogeneous Markov Chains, the transition matrix will stay the same after each time 

step. In our application, we will consider the state space to be the collection of all 

unique notes used in a given piece of music. Thus each entry in the transition matrix 

will correspond to the probability of going from one note to another. For all examples 

and analysis in this work will be based on l si and 2nd order Markov Chains.

2.1 Example of 1st Order Markov Process on Pitches

Lets consider the following example of this construction. Using the nursery rhyme 

’Mary had a little Lamb’ we will consider the construction of its transition matrix. 

Below is the sheet music for the piece.

4 1 i

We will start by first collecting all unique notes in the piece. So the first unique note 

encountered is E4 (the first note in the piece of music). Note that EA means that 

we are referring to the tone E  which occurs in the Ath octave. With this note chosen 

we can now ignore all other occurrences of EA as a unique note. Continuing in this
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manner we get the following collection of notes: C4, D4, E4 , G4. Each of these notes 

will be a state x* for our Markov chain and the collection of these notes is our state 

space x as defined above. Thus we can begin constructing the transition matrix which 

will look like this:

C4 D4 E4 G4

C4  ̂Oi n £* 12 £*13 £*14 ^

D4 £*21 £* 22 £*23 £*24

E4 £* 31 £*32 £*33 £*34

G4 £̂*41 £*42 £*43 £*44 j

Taking the first note C4, we will look through the piece and count all occurrences 

of C4. The first occurrence of the note C4 is the third note in the sheet music. Its 

important to note that we will not count the last note which is also a C4 since we will 

only be considering pairs of notes in which C4 is the first note of the pair. Because 

the last note has no note coming after it, it cannot be considered. Therefore the 

number of C4s that appear is 2. Starting at the first entry in the above matrix we 

will count the number of times that the pair [C4, C4] appears (i.e. when a C4 is 

followed by a C4 in the piece). Since this pair does not appear the probability of 

C4 being played after a C4 is 0 and therefore the (C4, C4)-entry is 0. Next is the 

(C4, Z)4)-entry. Using the same process we see that the [C4, D4] pair appears twice 

which is the only two occurrences of C4 (that we count in this construction) in the 

piece so the probability of D4 following a C4 is 1. Continuing this process for each 

entry in the matrix we get the following complete transition matrix:

C4 D4 E4 G 4

C4 ( 0 1 0 0 ^

D4 3 //10 3/io 2A 0

E4 0 79 79 79

G4 0 0 72 v j
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With the transition matrix constructed from this piece, we can now begin to build 

a new song using the rand function [10] from MATLAB to give us a uniformly dis­

tributed random number that is in the interval (0,1).

input

Figure 2.1: Illustration of the Markov Process

Letting the first note in our new song be C4, we call the rand function which gives 

us a value of 0.8417. We then begin by adding up the values in the C4-row until we 

get a number larger than 0.8417. Once this is achieved the note whose value we last 

added will be chosen as the next note in the new song. Since in this example the 

only note that can come after CA is D4, our next note in our song is DA. We then 

consider the next note by looking at the possibilities that can come after DA. The 

rand function now gives us 0.9058. Adding the values in the D 4-row, the moment 

we get a number larger than 0.9058 is when we add the number in the (C4, EA) 

entry. Thus the next note in the new note is EA. Thus our new song is the following 

sequence: C4, DA, EA. We continue the process until we get the desired song length. 

Figure 2.1 shows the step-by-step action of the process just described.
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2.2 Design and Testing of Markov Processes

With the model clearly established we now focus on the design process of our software. 

The first step in the process was to obtain the note data for a chosen song. The song 

is taken as input in the form of a MIDI file which is the standard file format for 

computer music. To manipulate such files we use MATLAB’s MIDIToolbox package 

[9, 8] along with a collection of methods which we created. The functions provided 

allowed us to import MIDI files and construct a matrix containing information about 

a song such as the pitch, duration, and onset of each note. With the matrix we 

take the column corresponding to the pitches and construct the transition matrix in 

the same manner covered in the example from Section 2.1. We use the subset of all 

unique pitches as the states. The transition matrix generated will be a n x n matrix 

where n is the number of unique pitches. With the transition matrix, we begin our 

construction of the new improvised solo. We start our solo by choosing the first note 

(called the seed) of the original solo to be the first note of the new solo. This is 

not a requirement but merely a choice of implementation. The method still performs 

the same even if the seed was randomly chosen. With the seed, we use a randomly 

generated number to choose the next note based on the probabilities corresponding 

to the accessible states. We then change the seed and repeat the process. With the 

new solo, represented as a vector, we overwrite the pitch column of the song matrix 

with the new solo, maintaining the duration and onsets of the original song.

To listen to the newly constructed solo and determine its melodiousness we played 

it along with a backing track within the same musical key. To do this we used the 

software REAPER [11] which allows us to manipulate MIDI files and combine several 

MIDI tracks into one unified track. This software gave us the opportunity to adjust 

tempo issues if they occurred when trying to sync the MIDI tracks. The piece that 

we chose to use for our simulations was ’So What’ by trumpeter Miles Davis. This 

piece was chosen since it is well known piece in Jazz music. We chose to use the solos
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of Miles Davis, guitarist George Benson, and saxophonist John Coltrane. These solos 

were chosen since these are the most popular solos recorded for the piece and thus 

their transcriptions are readily available. Using the solo for each artist we generated 

a transition matrix representing each artist and then randomly generated a new solo 

equal in length to the original solos. Figures 2.2-2.4 are each artist’s solo overlayed 

with a new solo generated from their respective Ist order Markov Chains. The x-axis 

represents the time step while the y-axis represents the MIDI number of the notes. 

The variation in the original solo is much greater than the solo generated from the 

model. The generated solo has a much tighter oscillation pattern which shows the 

’dominate’ note transition that was present in the original solo. This phenomena is 

present in all three figures for the 1st order case.
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40 60 80
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100 120

Figure 2.2: Miles Davis Solo(red) with 1st order MC(blue)
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Figure 2.3: John Coltrane Solo(red) with 1st order MC(blue)
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Figure 2.4: George Benson Solo(red) with 1st order MC(blue)

We next consider the case of nth order Markov Chains. These are Markov chains in 

which the probability that a note is going to occur depends upon whether a certain
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sequence of n notes already occurred. In this case our state space now contains not 

only just the single notes but all combinations of sequences of n notes that occurred 

within the original solo. The process for constructing a new solo remains the same as 

the l si order case. The following graphs show the similarities and differences between 

the original and new solo. Figures 2.5 - 2.7 are each artist’s solo overlayed with a 

new solo generated from their respective 2nd order Markov Chains. All three solos 

generated for each artist seem to show more variation and fewer oscillations amongst 

the same notes than the l si order case. This seems to stem from the fact that using 

pairs of notes (or sets of notes in general) to represent a state rather than using single 

notes improves variability by lowering the chance of encountering three note length 

sequences which continuously repeat.
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Figure 2.5: Miles Davis Solo (red) with 2nd order MC(blue)
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Figure 2.6: John Coltrane Solo(red) with 2nd order MC(blue)
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Figure 2.7: George Benson Solo (red) with 2nd order MC(blue)

We considered upto the case when n = 4. It becomes evident that as n increases, 

the original and new solos become the same. The reason for this is that as the

15



order n of the Markov chain increases the more of the piece the chain ’’remembers”. 

Consequently this produces more of the original piece. Consider the ’’Mary Had a 

Little Lamb” example from Section 2.1. If we considered a 5th order Markov Chain 

of this piece, then we would have to consider the probability of say, C4 coming after 

J574, DA, C4, DA, EA which are the first 5 notes of the piece. So this demonstrates that 

the chain has ’’recollection” of the first 5 notes. If for example we considered instead 

a 2Ath order Markov Chain and considered the same probability event of (74 being our 

next note, we would get the entire piece. It is worth noting that we also attempted 

this construction for the note values of the original solo. However we found that it did 

not yield any musically worthwhile results since the dominating note note values were 

eighth notes for all solos considered. In order for there to be an interesting duration 

sequence for our new solo, we would have to consider solos which have a wide variety 

of note values without one that is overly dominating. The method seems to have some 

success in capturing the style of the artist. This can be seen partly from the Figures 

in which there is is some overlap of the graphs as well as similar distances maintained 

between successive notes. This is also the case from an aural perspective. Certain 

passages in the solos generated seem to represent a course of action that the artist 

may have taken. However, sometimes the defining traits of an artist’s improvisation 

style are techniques that may not be reoccurring themes in their solo. To determine 

whether our model captures and is able to reproduce these subtleties in the artist’s 

style requires a more mathematical approach.

2.3 Analysis of Markov Process

We will now offer analysis of the models focusing on the l si order Markov Chain case. 

To determine the effectiveness of the model in the replication of an artist’s improvisa­

tion style we employ the techniques from Probabilistic model checking. Particularly
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we consider the construction of temporal logic statements to test whether particular 

traits in the artist’s style is captured. To our knowledge this is the first time in which 

probabilistic model checking techniques has been employed to test for musical traits. 

This approach provides a way of constructing logic statements that can represent 

complex musical techniques and determine whether a given model will be able to 

produce such an event. We seek to demonstrate the application of this approach in 

testing whether our model replicates Miles Davis’ improvisation style. One particular 

musical technique that Miles Davis is known to demonstrate in his solos is that of 

nonharmonic tones (i.e. the transition from scale tones to non-scale tones and back). 

For example, if we consider a song in the key of C major, according to the diatonic 

scale the only notes that can occur are: C, D , E , F, G , A, B. However, if we were play­

ing a song in which the first two notes were C and D, then we could add the passing 

tone C #  (i.e. a non-scale tone) in between the C and D. Note that nonharmonic 

tones do not have to strictly be minor second distance. So for example going from C 

to C #  to E  also counts as a case of nonharmonic tone usage. To test for this kind of 

melodic transition, we constructed the following logic statement

SiA X ( 5 - { Sl} ) A l( X ( Sl)) (2.1)

where A is the conjunction operator (i.e. all events have to be true for the entire 

statement to be true) and the X  is the next temporal operator. Temporal operators 

in general are boolean functions that output true or false depending upon whether the 

statement it is referring to comes true or not after a specified amount of time. The 

next temporal operator X  simply checks that the value that occurs next will return a 

value of true to a previously defined condition. So we are using the above logic state­

ment to determine whether the value s* is going to be in the key of the song followed 

immediately by a nonharmonic tone and then immediately back to a tone in the key.
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The value s* can be any value within the key signature. Since the song is in the key 

of C, the only values that s* can take are {60,72,74,64,76,65,77,67,69,81,71,79} 

since these are the MIDI values of pitches that the song uses which are in the key 

of C. The set refers to the collection of all values that s* can take while the 

S  is the set of all values that occurred in the solo (i.e. all notes that were used in 

the solo by Miles Davis). Thus {sj} consists of the list of MIDI values listed above 

and S  — {s*} are all the other MIDI values that s* cannot be. Using the probabilistic 

model checking software PRISM [19], we input the Markov chain generated from the 

Miles Davis solo and input the following statements:

Pr>0.5 [* A X (S  -  {s*}) A X (X {Si))} (2.2)

P r , ?[SlA l ( 5 - { SJ ) A l ( I ( Sl))] (2.3)

The first statement tests whether the probability of running into a nonharmonic tone 

is greater than 0.5 while the second statement computes the actual probability of 

running into a nonharmonic tone. PRISM generated that the nonharmonic tone will 

occur with probability 1 with an initial state of E. So it can be concluded that in 

every execution of our software, any solo that is generated will contain nonharmonic 

tones since the probability of this event occurring is 1. This result shows that our 

model is successful in producing solos which will contain a particular aspect (in this 

case the use of nonharmonic tones) of Miles Davis’ improvisational style.

Similarly, we will now consider the validity of the model in replicating the improvi­

sation style of John Coltrane. John Coltrane was known for using modes to construct 

his solos. Modes are a collection of scales built from the notes of the diatonic scale
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of the primary key. In his album Ascension, Coltrane is shown to have employed a 

technique called an extension of a perceptual space [12]. This involves taking a chord 

and for every note in the chord play its corresponding mode. The series of modes that 

are played can be organized in different structures. For example in his piece ” A Love 

Supreme” on the album Ascension, Coltrane imposes a symmetric structure to the 

series of modes used in which he plays a modal series of aeolian, phrygian, phrygian, 

aeolian. Because of his heavy use of modes, an effective model of Coltrane’s style 

requires the testing of the model to produce solos centrally rooted in modal soloing. 

Through analysis of the original piece, the primary mode used was the Dorian mode. 

The C Dorian scale is C, D, Eb, F,G, A, Bb,C  which only differs from the diatonic 

scale by the third note which was raised a semitone and the seventh note of the 

diatonic scale which was lowered a semitone. Thus we choose to test whether the 

Markov chain will yield a solo that is based upon the C Dorian scale. Because the 

C Dorian scale is very similar to the C Major scale we chose to specifically compute 

the probability that a solo will be generated by our model which contains either Eb 

or Bb. To compute this probability we use the following logic statement

P=i[F(siA(EbVBb)

SjA{EbVBb))](2A)

This statement computes the probability that eventually a four note sequence will 

occur which will consist of a note from the mode (or key since they are similar) 

followed by either an Eb or Bb , then another note from the mode, and finally either 

Eb or Bb again. Using PRISM to compute this probability, the model was shown to 

generate such a four note sequence with probability 1.

Doing the same procedure for our George Benson model, we attempted to determine 

the possibility of our model generating arpeggios since this is common technique that 

he employs in his solos. Because arpeggios are just melodic expression of chord tones,
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there are various ways in which they can be played. For example, if we consider the 

C major triad, the following are all the possible arpeggios that can occur:

^  i
{C, £ , G}, {£, G, G}, {G, G, £}, {G, G, £7}, {£, G, G}, {G, E, C}. Although some of 

these combinations may not be the ’’typical” way of playing it, these cases must also 

be considered. Also extending this same idea to 7th chords, the number of possibilities 

increase. Thus we limit our testing strictly to triads, particularly major triads. To 

test for this we provide the following logic statement

P=?[F(si A ((si+1 - s ^  =  4 A ((si+2 -  =  7))] (2.5)

The above logic statement allows us to compute the probability that at some point 

in the execution of the model a note Si will occur followed by a note which is a major 

thirds distance from s» and then immediately followed by a note which is a perfect 

fifths distance from s,. To make sure that the successive notes are a major third and 

perfect fifths distance away from Si respectively, we check whether the difference(i.e. 

the distance) between the MIDI value of the next note and Si is equal to 4 semitones 

and 7 semitones respectively. The results of PRISM yielded a probability of 1 of a 

major triad in root position occurring. Particularly it was shown that an A-major 

triad in root position will occur with probability 1. Further testing is required to 

determine other types of arpeggios (i.e. arpeggiated seventh chords, arpeggiated 

ninths,etc) that may have been captured by our model. Testing is also needed to 

determine whether the model would yield the same results if a different initial state 

was chosen. This analysis has demonstrated the effectiveness in testing these kinds of
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models using probabilistic model checking. This approach provides a convenient way 

to analyze such models without having to focus on a case by case analysis of generated 

solos. Analyzing one particular generated solo can lead to incorrect conclusions since 

the probabilistic nature of the problem could yield results that in general are unlikely 

to occur in most executions of the model. So any analysis (regarding the traits of 

the artist’s style that is captured in the model) that can be done, which strictly rely 

upon the generated solos, must be done using a collection of executions.
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Chapter 3

Markov Chain M onte Carlo

We next consider a different construction of the transition matrix to represent a solo. 

In the previous construction we decided to choose the state space to be all unique 

pitches. This meant that we consider a different frequency of the same tone to be a 

unique note. For example an A occurring in the forth octave is a unique note from an 

A occurring in the third octave. However the new construction will not differentiate 

between the frequencies but simply take it as a representation of the tone (i.e. the 

note A is taken to be the same whether it is in the third octave or the fourth octave). 

To preserve the octave that the artist is playing in (so as to avoid extremely high or 

extremely low played solos) we constructed a separate matrix that tracks the octave 

that a particular tone was played in. This is useful for the creation of the new solo. To 

find our stationary distribution, we had to make sure that our transition matrix had 

two properties. The first property is that our transition matrix had to be aperiodic.

Definition. A state i is said to have period r if P# ’ =  0 whenever n is not divisible 

by r, and r is the largest integer with this property. A state i with period 1 is said to 

be aperiodic.

Musically speaking this led to choosing improvised solos of an artist which did not 

have repetitive patterns. Any improvised solo with repetitions as the dominating
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theme of the solo would yield a period equal to the length of the repetition. The 

second property that our matrix must possess is that of irreducibility.

Definition. A transition matrix P is irreducible if it is possible to go from any state 

to any other state within the state space.

Because we chose to define the state space as all 12 tones, we were guaranteed 

this property as long as every tone was used in the artist’s solo. Since our transition 

matrix is both irreducible and aperiodic, the following theorems guarantee us a vector 

7r which possesses a unique interpretation with regards to Markov chains.

Theorem  (Perron-Frobenius Theorem). If a matrix P is irreducible, then there exists 

exactly one eigenvector 7r with Pn = 7r. Furthermore, 7r can be chosen such that all 

its entries are strictly positive. If P is aperiodic, all other eigenvalues satisfy |A| < 1.

Theorem . Let P be irreducible and aperiodic and let tt be its Perron-Frobenius vector. 

Then for any probability measure v E RN, one has limn^[nfPnv — n

The vector n is called the Perron-Frobenius vector. This vector is the station­

ary distribution for our transition matrix. The ith component corresponds to the 

probability that the ith state (i.e. a particular tone)will occur over a period of time. 

Because the transition matrix is our characterization of the artist’s style, we therefore 

make the assertion that the vector n is an equivalent representation since we can al­

ways reconstruct the transition matrix from this vector. This allows us to only have 

to store our vector representation of our artist instead of maintaining a transition 

matrix for each.Therefore computing of transition matrices for artist and generating 

their corresponding stationary distribution can be considered a preprocessing step. 

We then can just keep the stationary distributions which requires less storage space. 

We can effectively compute 7r by applying standard numerical techniques such as the 

QR algorithm. However because we are considering a single example for testing this
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construction, it suffices to take large powers of the matrix knowing that it would 

converge yielding n.

To generate our note sequence we use Markov Chain Monte Carlo methods to 

sample from our stationary distribution. We apply the Metropolis Hastings (MH) 

Algorithm for this. Starting with an initial note b (which we are still considering to 

be the first note of the original solo), the MH algorithm starts with proposing a state 

i with the conditional probability density q(b: *) given that the previous state is b. 

Prom there we compute the Hastings Ratio,

r(b,i)
s(i)q(hb)
s{b)q{b,i)

(3.1)

where s(*) is the density function of the stationary distribution. We then choose to 

accept the proposed note by computing a(b, i) — min{ 1, r(b, i)) and comparing it to a 

number u which was generated from a uniform distribution. If u < a then we accept 

the proposed note. Otherwise we reject and choose the next note in the sequence to 

be the previous note b.

3.1 Example of Markov Chain Monte Carlo

Let’s now consider an example of this construction using an excerpt from the classical 

piece ’The Flight of the Bumble-Bee’ by composer Nikolai Rimsky-Korsakov. We will 

use only the first 8 measures of the piece that are shown below.

Using the same process as previously illustrated in Section 2.1, we construct the fol­

lowing transition matrix.
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C D m E F G G # A A # B

c (  0 V s 0 0 0 V s 0 0 0 0 0 6 /
/  8

c # 5 // 10 0 5 //10 0 0 0 0 0 0 0 0 0

D 0 10 /
/11 0 V n 0 0 0 0 0 0 0 0

D # 0 0 6 //  8 0 2/ s 0 0 0 0 0 0 0

E 0 0 0 1 0 0 0 0 0 0 0 0

F 0 0 0 0 1 0 0 0 0 0 0 0

F 4 0 0 0 0 0 1 0 0 0 0 0 0

G 0 0 0 0 0 0 1 0 0 0 0 0

G # 0 0 0 0 0 0 0 1 0 0 0 0

A 0 0 0 0 0 0 0 0 1 0 0 0

A # 0 0 0 0 0 0 0 0 0 1 0 0

B
u

0 0 0 0 0 0 0 0 0 7 s 0

With this transition matrix, we will now compute the stationary distribution. By 

taking increasing powers of the above matrix it will converge to matrix with repeat-
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ing rows. The row that repeats is the stationary distribution. By taking the above 

matrix to the 100ih power, we obtain the following matrix. To reiterate we chose to 

take the 100ih power simply because we knew, through testing, that the matrix would 

converge to yield the stationary distribution after raising to this power. Note that 

this is also guaranteed to us by Theorem 3. However to determine the convergence

of the matrix such methods as the QR algorithm should be used.
C cé D Dé E F Fé G Gé A Aé B

c  ̂0.1250 0 0.4167 0 0.3750 0 0.0833 0 0 0 0 0 ^

C # 0 0 0 0 0 0 0 0 0 0 0 0

D 0.1250 0 0.4167 0 0.3750 0 0.0833 0 0 0 0 0

Dé 0 0 0 0 0 0 0 0 0 0 0 0

E 0.1250 0 0.4167 0 0.3750 0 0.0833 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0 0 0 0

Fé 0.1250 0 0.4167 0 0.3750 0 0.0833 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 0

Gé 0 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0 0 0 0 0 0

Aé 0 0 0 0 0 0 0 0 0 0 0 0

B
l  ° 0 0 0 0 0 0 0 0 0 0 °)

The stationary distribution is

C
/

C # D Dé E F Fé G Gé A Aé B

7r = ( 0.1250 0 0.4167 0 0.3750 0 0.0833 0 0 0 0 0

(3.2)

where each number corresponds to the probability that the note will occur. Using this 

distribution we will now implement the Metropolis Hastings(MH) algorithm. We will 

use the transition matrix from the piece Fur Elise to represent our arbitrary density
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function to make note proposals. Below is its transition matrix.
C C # D £># E F F# G A A# B

c ( 0 0 7 l3 0 6 //13 0 0 0 0 4/l3 0 713

C# 0 0 0 0 0 0 0 0 0 0 0 0

D 1 0 0 0 0 0 0 0 0 0 0 0

D4 0 0 0 0 1 0 0 0 0 0 0 0

E 2 / /22 0 0 8 //  22 722 0 0 0 2 //  22 4 / /22 0 7  22

F 0 0 0 0 0 0 0 0 00 0 0

F# 0.1250 0 0.4167 0 0.3750 0 0.0833 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 0 0 0

G# 0 0 0 0 0 0 0 0 0 0 0 1

A 4/io 0 0 0 Vio 0 0 0 0 0 0 5 / /io

A# 0 0 0 0 0 0 0 0 0 0 0 0

B V 713 0 4/l3 0 4/l3 0 0 0 0 2 //13 0 0
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Figure 3.1: Illustration of the MCMC Protocol

We will choose the first note of the new piece to be D. We first start the algorithm 

by proposing a note. Note that in the following equations, g(*|*) (from 3.1)will be 

values from the Fur Elise transition matrix. The conditional density function s(*) 

used in equation 3.1 will be represented by the Perron-Frobenius vector n. The input 

of both of these functions will be either the proposed note or the previous note which 

refer to the states i and b listed in equation 3.1. The following calculations are the 

implementation of the MH Algorithm. The general process is outlined in Figure 3.1.

Itera tion  1:

1. Propose Note: C

2. Compute the acceptance probability:
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(3.3)

■ r,a(C |D) =  m m { l,g(c|g)]r(D ) }

. f, l/ 13* 0.1250. 
=  mm{1’ 1 * 0.4167 }

= min{ 1,0.02307}

3. Generate a random number (Note: used MATLAB rand function)

u = 0.007 (3.4)

4. Determine whether to accept or reject proposed note

0.007 = u < a = 0.02307 => AcceptNote : C (3.5)

5. Add note to new song 

New Song = [D, C\

Itera tion  2:

1. Propose Note: E

2. Compute the acceptance probability:

a{E\C) min{ 1,

m in{\,

g(C\E)n(E)
v i e w e r
2/ 22 * 0.3750 
6/ 13*0.125(r

=  mm{l, 0.59089}

(3.6)

3. Generate a random number (Note: used MATLAB rand function)
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u = 0.0442 (3.7)

4. Determine whether to accept or reject proposed note

0.0442 — u < a — 0.59089 => AcceptNote : E  (3.8)

5. Add note to new song 

New Song = [D, C, E]

Above is the sheet music of the example just computed. We only showed the first 

two iterations to highlight the process, but the implementation of this method allows 

for us to specify the number of notes we want in our new solo. Thus if we specified 

the number of notes in our new solo to be 60, the software would keep applying the 

method until 60 notes were generated. Because we are only focusing on constructing 

new melodic phrases (i.e. new pitches), we chose to generate new solos equal in 

length to the original solo in order to use the note values of the original solo. In this 

example all of the notes that we proposed were accepted. However if u > a, then 

we would reject the proposed note and just add the previous note. Thus for the first 

iteration, if we rejected the proposed note our new song after iteration 1 would have 

been [D , D\. Figure ?? shows a solo generated when the number of iterations is equal 

to 21. Observe how there is not much variability in the generated piece since there 

are not many notes that are available to propose (i.e. since alot of the notes have 

probability of 0 of occurring). This characteristic in the model will be elaborated 

upon in the analysis of the model.
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Figure 3.2: MCMC generated solo after 21 Iterations

3.2 Analysis of Markov Chain Monte Carlo

The Jazz composition that we chose for this simulation was ’Anthropology’ [15] by 

saxophonist Charlie Parker. This piece was chosen for the same reasons as the com­

position in the previous section. This piece also had the added advantage in that 

it uses all 12 tones. Using our new method we generated the invariant measure 7r. 

Below is the graph of Charlie Parker’s original solo [15] overlayed with the new solo 

generated from our proposed method. The sheet music of Parker’s original solo as 

well as the new solo can be found in the Appendix.

Figure 3.3: Charlie Parker(red) with Metropolis Hastings generated Solo(blue)

As in the analysis of the previously discussed model, we seek to determine the effec­

tiveness of this new construction in generating solos which mimic the improvisational
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techniques utilized by Charlie Parker. A particular technique that we tested for was 

that of chromatic playing (i.e. playing which consists primarily of semitone move­

ment). Because of the similarity of the test to the one used for the Miles Davis model, 

we used the same logic statement used in that analysis. However since we consider 

first the pitch classes in constructing our transition matrix and then the octave later in 

the final construction of the solos, we had to create a multi-layered model for correct 

representation in PRISM. This led to creating a pair of synchronized PRISM mod­

ules in which one simulated the transitions between the pitch classes and the other 

determined the choice of which octave the note will occur. The simulations showed 

that chromatic playing rarely occurred and only of 2 note length. For example, the 

two note sequence B  —> C would occur with probability 1. However considering the 

probability of either C or B  (The only two notes playable to be considered chro­

matic playing) immediately after the following sequence would yield a probability of 

0. Aurally, the generated solo sounds similar to about the initial 20 notes of Charlie 

Parker’s solo. However as it continued, it seemed to deviate completely in theme. 

We will consider several reasons for this outcome. One initial cause for this is the 

generalization of the notes to the pitch classes. The model discussed in Chapter 2, 

would differentiate between say (74 and (73. So for example in a particular solo if the 

note (74 only occurs once and the note (73 occurs five times then the first method 

will assign more importance to (via having a higher probability) to (73 than to (74. 

However, the MCMC method views these as the same note and therefore it can be 

viewed as assigning from one perspective the same probability to (74 and (73 and 

from another perspective increasing the probability of C occurring in the generated 

solo. Thus its providing a slight normalizing affect to notes that are not as popular 

and simultaneously increasing the probability of a particular pitch class occurring in 

the generated solo. Another, much more significant issue that could yield to a less 

accurate representation of an artist by our model is the ” burn in” [3] period of the MH
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algorithm. Because the MH algorithm (and MCMC methods in general) relies upon 

the need for an initial distribution to converge to the stationary distribution, the first 

few initial notes are not indicative of the nature of the stationary distribution. The 

” burn in” is thus thought of as the number of iterations needed to be discarded start­

ing from the initial execution of the MH algorithm. Because we did not consider the 

” burn in” period in our implementation of the MH algorithm we therefore included in 

our solo a sequence of notes which may not have been yielded from the Charlie Parker 

transition matrix. In [3], Brooks et al recommends removing the first 100 outputs 

from the algorithm. However to determine the number of notes to discard from the 

solo requires further testing. Having to consider a burn in period can also be avoided 

if the initial distribution is close to the stationary distribution. The last reason that 

may cause inaccurate solos is the choice of the initial distribution (represented by a 

transition matrix) with regards to the probabilities between the notes. If majority of 

the entries (i.e. the probability of going from one note assuming a certain note has 

occurred) are 0 in the transition matrix then computing the Hastings ratio (Equation 

3.1) could become difficult. The problem lies in that if a significant number of the 

entries in the transition matrix are zero then it limits the possibility of states that 

is possible for successful note proposals in the algorithm. Consider once again the 

example in Section 3.1. If we start from the first iteration where the starting note 

was D it is impossible to have a proposed note of E  since in the Hastings ration 

q(E\D) =  0 since the [D,E] entry in the Fur Elise transition matrix is 0. However 

if a better transition matrix was used, it will allow for more of a variety of note pro­

posals and therefore more note variety in the solos generated. Thus an interesting 

line of study would be to determine an effective way of recognizing songs which are 

similar and would therefore yield similar distributions. This could possibly lead to a 

style classification of artist.
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Chapter 4

Conclusion

In this work we considered the use of Markov Chains to construct software that 

mimics the improvisation styles of Jazz artists. We first analyzed the use of 1st and 

ultimately nth order Markov Chains in fulfilling this objective. We observed from 

the analysis that some of the models constructed yielded replication of improvisation 

techniques that the artists was known to employ. We then proposed the construction 

of Markov Chain using pitch classes and showing how it yielded a compact represen­

tation of the artist’s tendencies. It was clear from the analysis that there was a clear 

trade-off between the accuracy of the model in representing the artist’s style and the 

memory-efficient compact representation of the artist. Further analysis is needed in 

determining whether the given models captured more complex improvisational tech­

niques used by the artist. An example of such complex techniques would be using 

chord changes to construct solos. Determining chords from a MIDI file is quite chal­

lenging and thus a different approach may be needed to retrieve this level of musical 

data from the file. As stated previously, it is for this reason that we focused on sax­

ophone and trumpet musicians since the solos they generate are melodic in nature 

(i.e. as opposed to harmonic). A possible alternative approach worth exploring is 

the distinguishing of chords from the perspective of frequency. Establishing an effec-
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tive method of extracting chord data from a piece can lead to modeling and possibly 

replicating the improvisation styles of pianist like Oscar Peterson and Bill Evans. 

Continuation of this work also includes the improvement of our pitch class model 

in giving a more accurate representation of the artist while maintaining a relatively 

compact representation.
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Chapter 5

Appendix
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Miles Davis
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So What Solo
John Coltrane
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So What Solo
George Benson
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First Order Miles Davis Solo
[Composer]
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Second Order Miles Davis
[Composer]
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First Order John Coltrane
[Composer]

7 H n ■ETZ
- H

p*
P---------- p —i —S- p —«E - i e _ ..a

P P _ P P
= r

a

4 - * 7 - 5  rJ 1 1 » 7 L- j  H y d

F ¥ f i ^ — ----------- F— * '— H r f r • p - .
- ■ 2

L M # — N
0 f  f  = 5= p :g= -^-

= * f ‘r  f
-F- 1# zz= ► » « > •  f

p  L_
-= H * ^ -------------------* -
= — ^ ------*------ V f

# 4 ü = t ±
—— — ------J----- s

J » . - Fl#__«__ P m________________ t p  -—- FTT #__m mt9 m » y  F J i F rJf F \ YJ mÆ. J > — > > Y _ _  >w i_\M/ 1

P
fl

» L p*■ «> p  r _ p  <*-

3-1

P  ■ F1— T------— pJ _________ L a !-------- —r  9

I
42



Second Order John Coltrane
[Composer]
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First Order George Benson
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