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Abstract

Lake Mattamuskeet, a large, shallow lake on the coast of North Carolina, has undergone 

water quality degradation and submerged aquatic vegetation (SAV) decline over recent 

years. Water depth and water clarity have been established as key drivers of SAV loss.

To target locations for the restoration of SAV in the lake, an analysis that focuses on 

water clarity, water depth, and current SAV presence was developed. Two separate 

methodologies were conducted and compared to analyze water clarity in the lake. The 

first applied four years (2013-2016) of Landsat 8 imagery to a previously developed 

model that predicts water clarity from the imagery. The second applied multiple 

interpolation techniques to data from surveys performed by the US Fish and Wildlife 

Service (FWS) during the years 2013-2016. The remote sensing model output was 

corrected for low model predictions and sun glint may have impacted results, so despite 

the better seasonal and temporal resolution of the remote sensing methodology, the 

interpolation methodology was deemed the better approach. The Empirical Bayesian 

Kriging interpolation technique was named the best overall approach to interpolate SAV 

presence and water clarity for Lake Mattamuskeet. A bathymetric map of the lake and 

water level data was used to estimate average water level during the SAV growing season 

(April-September). SAV habitat is located along the southern and eastern edges of the 

lake per both methodological approaches. Varying the model’s initial conditions 

produced similar results in both cases. Increasing water depth decreased available SAV 

habitat, and decreasing water depth increased available SAV habitat. These results 

suggest that sea level rise may drive future SAV decline. Managing lake levels may be 

necessary to retain suitable SAV habitat and promote clear water conditions in the future.
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Introduction

Submerged aquatic vegetation (SAV) is a crucial part of aquatic ecosystems 

(Burkholder et al. 2007). SAV provides food and habitat for many species, traps and 

stabilizes sediment leading to higher water clarity, and takes up excess nutrients and 

pollutants, preventing eutrophication and improving overall water quality. SAV also 

influences water flow and stores carbon. Decline of SAV has been observed worldwide 

and because of the ecological services it provides, restoration of SAV can be critical to 

reestablishing degraded aquatic ecosystems (Orth et al. 2006).

Declines in SAV may be particularly detrimental for shallow lakes. According to 

the concept of alternative stable equilibria (Scheffer et al. 1993), shallow lakes are 

thought to stabilize in either a clear, macrophyte-dominated state or a turbid, 

phytoplankton-dominated state. A shift from one state to the other is generally rapid and 

thought to require a significant perturbation. Jeppeson et al. (2007), however, later 

suggested that the alternative states are less stable than previously thought, but noted that 

even upon improved water clarity conditions, SAV restoration may still be necessary to 

maintain clear conditions. Therefore, whether the stable state hypothesis holds or not, 

restoration of SAV in degraded shallow lakes could be crucial for the reestablishment of 

clear conditions in shallow lake ecosystems.

Knowledge of the spatial distribution of SAV as well as related water quality 

parameters is necessary for restoration efforts. Successive mapping of SAV presence over 

time is a useful way to observe and analyze SAV decline. Approaches to SAV presence 

mapping range from field surveys (Harwell et al. 2009, Cho and Poirrier 2005) to using 

remotely sensed imagery (Dhillon et al. 2014, Zou et al. 2013, Zhang et al. 2016). Water
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quality and other environmental variables can be mapped along with SAV presence to 

understand the drivers of SAV decline and to predict future habitat changes. Field- 

obtained environmental measurements can be interpolated to produce continuous maps 

from a limited number of observations.

Different interpolation techniques exist to determine values for areas that were not 

directly sampled. The Inverse Distance Weighed (IDW) technique has been applied to 

water quality variables (Xu et al. 2001), and variations of the Kriging technique have 

been applied in similar analyses (Audu and Usman 2015, Dhillon et al. 2014). IDW is a 

deterministic method for spatial interpolation, while Kriging is stochastic. The IDW 

technique requires the assumption presented in Tobler’s First Law of Geography (Tobler 

1970), that closer objects have more in common than objects further away, because it 

bases predictions on surrounding measurements. Measurements further away from the 

prediction area have less influence than nearby measurements. IDW has been compared 

to Kriging extensively in the literature (Murphy et al. 2010, Mueller et al. 2004, 

Zimmerman et al. 1999).

Like IDW, Kriging weighs the surrounding measurements to create predictions. 

Unlike IDW, the Kriging method is based on the statistical relationships among the 

measured points. The method assumes that the distance between points reflects a spatial 

correlation. The data must first be fitted to a semivariogram model before the data are 

interpolated. One variation of the Kriging technique, called Empirical Bayesian Kriging 

(EBK), accounts for the uncertainty in these predictions.

For the Kriging method, parameters must be manually selected. EBK 

automatically calculates parameters through a process of simulations. It also accounts for
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the error that comes from estimating the semivariogram. While most Kriging methods 

calculate the semivariogram from measurements and use the single semivariogram for the 

interpolation, for EBK, a semivariogram is estimated for a subset of data and then new 

data is simulated at each measurement point in the subset. From the simulated data, a new 

semivariogram is estimated and the process is repeated for a specified number of times. 

The process creates many semivariograms for each subset, or a distribution of 

semivariograms, and the empirical semivariances can be determined. The EBK method is 

advantageous because the standard errors of prediction are more accurate than for other 

Kriging methods, and it is more accurate for smaller datasets. The primary disadvantage 

of the method is the long processing time (Pilz and Spock 2007).

Water quality maps are required for habitat suitability analysis, which utilizes 

information about the spatial distribution of different environmental factors to determine 

whether areas are suitable for the growth of particular species. SAV habitat suitability 

analysis requires current presence/absence data along with other data relevant to the 

abundance of SAV, including water clarity and water depth. Water clarity and depth have 

been identified as the two most important determinants of SAV presence (Zhang et al. 

2016). The two parameters have been used in previous SAV habitat suitability analyses 

(Havens et al. 2003, Poirrier et al. 2009), and it has been recommended that having 

higher resolution bathymetry and light climate data would improve model results 

(Harwell et al. 2009). The call for more detail regarding these two parameters highlights 

their importance in determining SAV habitat suitability.

Water clarity is a measurement of the total constituents in the water column, and 

is determined by how clear, or transparent, the water column appears to be. Clarity can be
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measured in several ways, but one of the most common and easiest is using a Secchi disk 

(Figure 1). The Secchi disk is a 20-centimeter black and white disk that is inserted into 

the water, and the maximum depth at which the disk is visible is known as the Secchi 

disk depth (SDD) or Secchi disk transparency (SDT). The SDD/SDT is approximately 

equal to one half of the photic zone, the depth that light will penetrate to. Decreases in 

water clarity can be caused by anything that impacts the ability of light to penetrate the 

water column, such as increasing abundance of phytoplankton, typically in response to 

excess nutrients, or by a storm event that increases turbidity. Seer and Shears (2015) 

found that turbidity varies highly month-to-month, and explanatory environmental 

variables are different in different regions. Therefore, site-specific information (both 

spatial and temporal) must be considered to define accurate water clarity conditions for 

any particular site.

The measurement of water clarity is one of the many applications of remote 

sensing to hydrologic research and has been widely explored in the literature (Nelson et 

al. 2003, Wu et al. 2009, Butt and Nazeer 2015). Jensen (2010) provides essential 

background for the understanding of remotely sensed water clarity. Remote sensing of 

turbidity requires in situ measurements and the selection of an appropriate remote sensing 

metric to calibrate remotely sensed data. Field measurements should be taken on days 

with little wind, because wind causes additional specular reflection towards the sensor 

due to wave action on the surface. The spectral reflectance of suspended sediment 

depends on both the amount of material and the characteristics of the material, such as 

size and absorption. For water with suspended minerals in the water column, the peak 

reflectance shifts toward longer wavelengths in the visible spectrum. The visible
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wavelength range of 580-680 nm may be useful to distinguish the type of suspended 

sediments, and the near-infrared wavelength range of 713-880 nm could inform the 

amount of suspended minerals (Jensen 2010).

Algal plant organisms contain chlorophyll a pigment, which also changes the 

spectral reflectance characteristics of pure water. Chlorophyll a produces strong 

absorption of blue light between 400-500 nm and red light at approximately 675 nm, with 

a reflectance maximum around 550 nm because of relatively lower absorption of green 

light, and a peak around 690-700 nm. Essentially, the presence of chlorophyll a in the 

water column decreases the amount of reflectance in the blue and red wavelengths and 

increases in the green wavelengths. When turbidity and chlorophyll are both present, a 

different response occurs. It is typically difficult to differentiate chlorophyll a from 

dissolved organic matter in coastal and inland surface waters (Jensen 2010).

A range of satellites have been used to measure water clarity including IKONOS, 

QuickBird, SPOT, SeaWIFS, MERIS, MODIS, and Landsat (Ozen et al. 2016b). Landsat 

is advantageous because the Landsat program has collected the longest consecutive span 

of Earth observing imagery, beginning in 1972 (Figure 2), and level-1 standard products 

are available at no cost (USGS 2016a). The Landsat 8 spacecraft, launched in 2013, 

carries two sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor 

(TIRS). The OLI measures visible, near-infrared and shortwave infrared reflectance with 

30-meter multispectral spatial and 15-meter panchromatic resolutions. The sensor is a 

“push-broom” design. It uses long linear detector arrays with thousands of detectors per 

spectral band. This is a significant improvement over previous sensors that used 

oscillating mirrors to sweep the field of view across the swath, known as “whiskbroom.”
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The satellite travels a sixteen-day repeat cycle in a heliosynchronous orbit that ensures 

observations are made at the same local solar time for each location. Landsat 8 has 11 

bands (Table 1). Bands 2, 3, and 5, which are most important to this study, are visible 

blue, green, and near infrared, respectively. The images are radiometrically and 

geometrically corrected. The data is corrected for view angle effects, satellite distortions 

including altitude deviations, and Earth distortions like rotation, curvature, and relief. 

Relative detector differences and dark current bias are removed. The products are 

provided in digital number (DN) units, which can then be converted to spectral radiance, 

top of atmosphere (TOA) reflectance, or surface reflectance (USGS 2016a).

Landsat imagery has been used in many studies to estimate lake clarity using 

regression analysis to correlate Landsat data and ground observations (Butt and Nazeer 

2015, Nelson et al. 2003, Kloiber et al. 2002). Coefficients in the regression equation are 

expected to be consistent with factors unique to a specific scene. Ideally, a single 

equation with constant coefficient values can be used to calculate a water clarity index 

that could be applied to many images in the region over a large temporal scale. This 

would minimize the need for ground data to calibrate the remotely sensed data, which 

would be very useful in water clarity monitoring because field sampling is time intensive, 

and ground data used for calibration of satellite data is limited by a time window due to 

the temporal variability of water clarity (Kloiber et al. 2002). Kloiber et al. (2002) 

analyzed the possibility of using a single, constant-form equation to relate field 

observations and satellite data to allow for comparison across images. Kloiber et al. 

(2002) concluded that a consistent band combination, blue / red + blue could be applied 

for images over a 25-year period in Minnesota, suggesting that for a constant scene, the

6



same band combinations can be used to predict water clarity across time without in situ 

calibration data for every image. This has been found in studies between SSD and 

Landsat data involving only a few lakes to regional analysis, as was this study (Kloiber et 

al. 2002).

A recent study performed by Ozen et al. (2016a) in conjunction with the U.S. Fish 

& Wildlife Service at the Mattamuskeet National Wildlife Refuge investigated whether 

satellite imagery could be used to monitor water clarity at Lake Mattamuskeet. The study 

analyzed a 16-bit Landsat 8 scene with DN values from March 2013 and made use of a 

limited amount of SDD data. Due to a hydrological disconnect between the east and west 

basins of the lake as described by Waters et al. (2010), the east and the west sides were 

modeled separately in this study. A single dataset containing 15 measurements on the east 

side of the lake and 15 measurements on the west side of the lake was found in which the 

survey date corresponded to +/- 1 day from the Landsat scene. Nine pixel values from the 

Landsat image at each measurement point were extracted and averaged and used for 

regression modeling to establish a relationship between the field measurements and 

remotely sensed data.

Previous work that determined water clarity from satellite imagery was reviewed, 

and all the band combinations that were used in previous research were tested (Table 2) 

in Ozen et al. (2016a). A total of 42 variations of bands and band combinations were 

applied. It was determined that different band combinations produced the most 

statistically significant relationship for the two basins of the lake (p<0.05). For the most 

accurate results determined by running Akanke’s information criteria (AIC), the east side 

required the combination of the blue and NIR bands, while the west side required the
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blue, green, and NIR bands (R2=0.83 and R2=0.59, respectively). It was suggested that 

this difference might be influenced by the differences in depth on the two sides of the 

lake, although the biophysical communities differ as well. The final equations are:

SDDeast = 1.14 - 0.00011 x (blue) - 0.0000055 x (NIR) Eq. (1)

SDDwest = 4.70 - 0.001 X (blue) +0.00026 x (green) + 0.00034 x (NIR)
Eq. (2)

The purpose of this study is to answer the question: in which areas of Lake 

Mattamuskeet should we focus SAV restoration efforts? In the process of answering this 

question, two methods for estimating water clarity are compared: modeling from Landsat 

8 data and interpolating from field measurements. Multiple interpolation techniques are 

tested and compared. Water clarity information from both methodologies, a bathymetric 

map and lake level data to inform water depth, and the most recent SAV presence survey 

are used to assess the lake for potential SAV habitat under current conditions as well as 

for some possible future scenarios.

Methods 

Study Site

Lake Mattamuskeet (Figure 3) is located along the Atlantic Flyway, making it a 

vital stopover for more than 200,000 wintering waterfowl annually. It is the largest 

natural lake in North Carolina, and the hydrology has been drastically altered by several 

changes to the lake and surrounding watershed. The first of four drainage canals that 

connect the lake to the Pamlico Sound was constructed in 1850, reducing the lake’s 3- 

meter depth to its current 1 -meter average. The lake was drained three times and the
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drained lake bottom farmed twice between 1915-1932 with the assistance of pumps that 

were once capable of draining the lake. Today, about 162 km2 of open water remain, 

surrounded by cropland and a complex network of canals and pumps. Due to the low 

relief of the watershed, the surrounding Coastal Plain, and its proximity to the ocean, the 

hydrology is controlled largely by pumping. Farmers continue to pump in the area not 

only to maintain cropland, but also to flood and drain impoundments, sometimes multiple 

times per season. Impoundments are managed areas that are drained in the summer to 

grow vegetation that attracts ducks and other waterfowl, and flooded in the winter to 

attract the wildlife. Much of the drained water works its way through the canal system 

into Lake Mattamuskeet, bringing large amounts of sediment and nutrients into the lake. 

An agreement upon the establishment of Mattamuskeet National Wildlife Refuge allows 

neighboring landowners to continue pumping into the lake (Winton et al. 2016,

Motorman et al. in press).

Although Lake Mattamuskeet is not adjacent to the coast with a direct threat from 

sea level rise, four drainage canals hydrologically connect it to the Pamlico Sound, which 

is currently experiencing sea level rise at an average rate of 3 mm/year (NC Coastal 

Resource Commission 2015). When the national wildlife refuge was established, water 

control structures were built across the four main canals that connect the lake to the 

Sound to prevent saltwater intrusion. These structures open when lake levels are higher 

than the Sound levels, allowing the lake water to drain into the Sound. When Sound 

levels are higher, the structures remain shut, preventing saltwater from entering the lake. 

Sea level rise will cause the water level in the Sound to remain higher for longer periods 

of time, so the structures will remain closed for longer, forcing lake level to remain
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higher as well. Although the surrounding lake topography may limit the level to which 

the water can rise, scenarios in which the lake level has increased due to sea level rise are 

likely in the future.

The lake is divided into two basins (Figure 3) by a highway that was constructed 

in 1940 and five culverts connect the two sides of the lake (Waters et al. 2010). In the 

mid-1990s, SA V on the west side of the lake began to decline and is now entirely absent. 

The east side of the lake began to follow the trend in 2013 (Figure 4). SAV loss followed 

a severe decrease in water quality, particularly water clarity (Moorman et al. in press). 

Management plans to restore SAV are already in consideration. However, a better 

understanding of the area’s hydrology and the drivers of water quality, particularly water 

clarity, could provide essential insight to restoration plans.

Field data

A gridded sampling approach was used for SAV surveys performed during the 

years 1989-2004 by the U.S. Fish and Wildlife Service (FWS). Surveys were performed 

using a transect sampling approach (104 points across 7 transects) in 2013, 2014, and 

2015. In 2016, a new grid method was developed to account for some gaps left by the 

transect method. SAV surveys between 2013-2016 included percent and type of SAV, 

sediment type, water depth, muck depth, temperature, turbidity, conductance, pH, 

dissolved oxygen, and Secchi depth at each survey point.

Water level in the east and west basin has been measured daily by two USGS 

monitors in the lake since 2015 (Figure 5). Data from these monitors is publicly available 

from the USGS (https://nc.water.usgs.gov/projects/mattamuskeet/data.html). Wind speed
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and direction data was obtained from Weather Underground 

(https://www.wunderground.com/).

Remotely Sensed Data

Landsat 8 imagery was obtained from the USGS Earth Explorer website 

(https://earthexplorer.usgs.gov). All available, cloud-free data for the study site (path 35, 

row 14) was downloaded (shaded cells in Table 3). Each 16-bit image was provided in 

GeoTIFF format in the UTM Zone 18 projection in DN units. Data representative of each 

seasonal period was selected from available data from 2013-2016 (Table 4). Selected 

datasets were processed using ERDAS Imagine 2015. Using the batch command, the 

GeoTIFF files for bands 2, 3 and 5 were imported as Imagine images. Due to the large 

size of the Landsat images, images were subset to the size of the study area (24km by 

15km, 800 pixels by 500 pixels) during the import process (Figure 6).

To use the same equation for multiple Landsat scenes over time, correction was 

required to prevent atmospheric differences form overshadowing actual changes (Goslee 

2011). Histogram Matching was used to normalize images so that the equation developed 

for the April 2013 scenes could be applied to scenes from the fifteen additional dates 

selected for this study. Areas of interest (AOIs) were developed for all the water pixels in 

the east and west sides of the lake. For the entire lake AOI, the histogram of each 

required scene was matched to the April 2013 scene for each band required by the 

equations.

The model maker was used to apply Equations 1 and 2 to the normalized images 

for the east and west sides of Lake Mattamuskeet, respectively. The model was run for 

each of the sixteen selected images. To assess the success of this model, a field dataset
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collected within five days of the Landsat scene on July 19, 2013, was used. Modeled 

values were extracted at each sampling point and a measured vs. modeled plot was 

created. Small predicted SDD values that appeared to be influenced by sun glint were 

omitted from the model results. Sun glint occurs due to specular reflection, when waves 

reflect light directly back toward the sensor (Kay et al. 2009).

Interpolations

Ordinary Kriging, Empirical Bayesian Kriging (EBK), Inverse Distance Weighed 

(IDW), and global polynomial interpolation (GPI) techniques were applied and evaluated 

with leave-one-out cross validation using the ESRI geostatistical analyst. IDW was 

performed with powers 1, 2, and 3, and EBK was performed with a power 

semivariogram, a linear semivariogram, and a thin plate spline semivariogram. GPI was 

performed with a first-, second-, and third-order polynomial. The interpolation technique 

that produced the lowest root mean squared error (RMSE) was chosen as the best

performing interpolation for this data.

Habitat Suitability Analysis: Preliminary

A simple, preliminary habitat suitability analysis was performed using ESRI 

ArcMap for a binary raster analysis. Water clarity and water level were most related to 

SAV presence and deemed vital to SAV decline in the literature (Moorman et al. in press, 

Zhang et al. 2016, Harwell et al. 2009, Poirrier et al. 2009, Havens et al. 2003), so clarity, 

water level, and SAV presence were used in the analysis. The 2016 SAV survey dataset 

(closest to current conditions) was initially used to create interpolations for each variable. 

Each raster was reclassified based on clarity, water level, and SAV presence during the 

years 2013-2015. Water levels and clarities in which SAV was present in the past (all
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water levels less than 1.04 meters, and all SDDs greater than 0.15 meters), as well as 

SAV presence ranging from 1-100%, were reclassified to 1. All other depths, SDDs, and 

0% SAV presence were set to zero. The analysis applied a simple formula ensuring that if 

a single condition failed, the area would be deemed unsuitable:

habitat = depth x clarity x cover

A scenario to capture the possible effects of sea level rise was simulated by increasing 

initial water level by 0.1 meters. Water level was then increased further to determine the 

amount of water level increase due to sea level rise that would have to occur to produce a 

negligible amount of remaining SAV habitat (Figure 7). Currently, water levels are not 

actively managed at Lake Mattamuskeet; the water control structures open and close 

entirely based on water level. Refuge staff cannot force them to close or remain open for 

extended periods, but a potential scenario reflecting water level management was 

represented by decreasing water depth by 0.1 meters.

Habitat Suitability Analysis: Final

Two SAV habitat suitability analyses with a better representation of clarity and 

depth fluctuations were produced and compared. One applied water clarity model results 

from the remote sensing methodology, and one applied water clarity from interpolated 

field measurements. A single raster dataset for clarity was prepared by averaging the best 

interpolations from each year, selected based on the lowest RMSE produced during 

leave-one-out cross validation. Due to a lack of SDD measurements taken during 2013, 

producing highly variable interpolation results, 2013 SDD was omitted. A similar single 

raster dataset was also produced from the remote sensing methodology by taking the 

average of the model output for summer 2014-2016 results.
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Average water level during the SAV growing season (April-September) was 

calculated from daily USGS lake level data and a bathymetric map developed by the 

USFWS was used to produce a raster dataset for water level. The best interpolation of 

the SAV presence dataset was also selected.

The water clarity, water level, and SAV presence rasters were reclassified using a 

new classification. Chesapeake Bay water quality standards were consulted (Tango and 

Batiuk 2013) due to similarities between the two water bodies, but it was determined that 

reclassifying based on these standards did not produce suitable SAV habitat. Instead, the 

SAV surveys were analyzed to determine average water clarity in locations only where 

SAV was present over the past four years. An average was used because of the high 

variability of water clarity. For depth, which also varies but is more consistent overall, 

the maximum depth at which SAV was 100% present over the past four years was used 

for reclassification. Suitable conditions were assigned a value of 1, and unsuitable 

conditions were assigned a value of 0. Reclassified rasters were applied to the equation:

habitat = depth + clarity + cover

This equation produced a range from zero to three, representing the least to the most 

suitable locations for SAV restoration.

Results

Multiple outputs were produced in the process of targeting locations for SAV 

restoration in the lake. Water clarity was analyzed first using Landsat 8 imagery to study 

seasonal changes over a four-year period. Water clarity was also analyzed by 

interpolating field measurements taken during the summer of the same four years.

Various interpolation techniques were compared to determine the best interpolation
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method for water clarity data. SAV presence was also interpolated from field 

measurements. The analysis to target locations for SAV restoration was performed twice, 

once using water clarity results from the remote sensing methodology and once using 

water clarity results from the interpolations of filed measurements.

Remote Sensing

A total of 32 raster datasets (16 for each side of the lake) spanning from April 

2013 -  December 2016 were produced to model water clarity during different seasons of 

the four-year period (Figures 8-9). A distinct linear pattern appears on most of the output 

imagery that corresponds with the prevailing wind direction during the time the image 

was captured. Both models produced values below zero in the areas of the lake where the 

linear pattern was most prevalent. For the east side, this occurred predominately during 

spring and summer scenes. For the west side, these values dominated large portions of the 

lake for most of the scenes.

One dataset was available to validate the model results, separate from the in-situ 

dataset and Landsat scene upon which the model was developed (April 14, 2013). A 

dataset composed of in-situ measurements collected in July 2013 in the east side of the 

lake was compared to the results derived from the July 19, 2013 Landsat scene. The 

model under-predicted SDD for this date (r2=0.586; Figure 10). There were no other 

surveys that corresponded to a Landsat scene for this analysis with enough field 

measurements to provide further validation.

Interpolations

Based on RMSE calculated during cross validation for each interpolation, EBK 

outperformed the other interpolation techniques for SAV presence and for water clarity in
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2015 and 2016 (Table 6). The power semivariogram produced the best EBK interpolation 

for every dataset. For water clarity in 2014, the second-order global polynomial 

interpolation was the best technique, although the EBK technique produced the next-best 

result. For 2013 water clarity, IDW with a power of 1 and all global polynomial 

interpolations performed better than EBK. The Ordinary Kriging technique produced 

RMSEs slightly higher than EBK in each case.

The final SAV raster dataset, created from the EBK power semivariogram 

interpolation method for the 2016 data, shows that most of the lake currently lacks SAV, 

and most of the remaining SAV is sparse (Figure 11). The 2013 water clarity 

interpolation was omitted from further analysis because of the variability of interpolation 

results due to a smaller number of field measurements. The three best water clarity 

rasters, produced from the overall best-performing interpolation method for water clarity 

for the 2014, 2015, and 2016 datasets (EBK with a power semivariogram) suggest that 

clarity is variable and has generally decreased over time (Figure 12).

Water Clarity: Remote Sensing Model vs. Interpolation o f Measurements

Results for SDD over the years 2013-2016 from the remote sensing analysis were 

compared to the best-performing interpolations of field measurements for each year 

(Figure 13). Initial model results were much lower than interpolations from field 

measurements. Because the remote sensing model produced a range of extremely low 

values, the result was adjusted to portray realistic values. The raster was multiplied by 

3.5. This factor was determined by forcing the validation plot’s trend line through the 

origin (Figure 10). The slope of the new line represented the factor that needed to be
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applied to the model results in order to produce a 1:1 relationship with field 

measurements (Figure 14).

Habitat Suitability Analysis

Locations for SAV restoration were identified along the eastern and southern 

border of the lake, where some SAV is still present and the water is clearest and 

shallowest (Figures 15-16). Habitat with the best suitability is available for a total of 

14.46 km2 according to the remote sensing analysis and only 2.64 km2 according to the 

interpolation analysis. For a 0.1 m increase in water level, the available SAV habitat 

reduces to 8.68 km" and 2.3 km" for the remote sensing and interpolation methodologies 

respectively (Figures 17-18). For another increase of 0.1 m, ideal habitat disappears 

entirely in both cases. Habitat considered “moderately” suitable, fulfdling only two of the 

three ideal conditions, is available for 39.61 km2 and decreases to 35.87 km2, 31.99 km2, 

and 31.47 km2 with incremental 0.1-m increases in water level for the remote sensing 

analysis. A similar decrease occurs according to the interpolation analysis: from 31.61 

km" to 18.82 km", 2.99 km2, and 2.64 km2. For a small decrease in water level, the best 

possible SAV habitat only increases slightly to 17.78 km2 for the remote sensing analysis 

and 2.64 km for the interpolation analysis because water clarity is the limiting condition. 

With 0.1 m incremental decreases in water level, “moderately” suitable habitat increases 

from 39.61 km" to 45.31 km2, 54.04 km2, and 56.83 km2. The same trend occurs for the 

interpolations analysis: 31.61 km2 to 41.40 km2, 53.99 km2, and 63.33 km2.

Discussion

SAV habitat suitability for SAV restoration was identified within Lake 

Mattamuskeet based on the assumptions that ( 1 ) habitat suitability is closely linked to
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water depth and clarity and (2) SAV restoration will have the best chance to succeed near 

existing SAV. Previous studies have made similar assumptions (Harwell et al. 2009, Cho 

and Poirrier 2005). The assumption of these conditions allowed for a simple yet effective 

and straightforward analysis that has implications for SAV restoration in Lake 

Mattamuskeet and in other lakes experiencing SAV declines.

Remote Sensing o f Water Clarity

The models used to predict SDD from Landsat 8 data at Lake Mattamuskeet were 

developed based on a Landsat scene and field measurements from April 2013. A 

comparison of field measurements to modeled SDD was performed on a scene and field 

measurements from the same year, but a different season (July 2013, Figure 10).

Although the model captured a relationship between field measurements and model 

predictions (r2=0.586), the modeled values were much lower than measured values, 

suggesting that the model was consistently producing values that were too low. One 

possible explanation for the model’s performance is that it was developed for a dataset 

collected in April, and then applied to Landsat scenes from summer, fall, and winter in 

addition to spring. Although the model may have captured seasonal changes in water 

clarity, it may also have captured seasonal changes unrelated to water clarity. The 

development of separate models for separate seasons could solve this problem. However, 

additional field measurements from multiple seasons are required to test this possibility 

and to produce and validate separate models.

The model produced exceptionally low and negative values for large portions of 

the west side and smaller, more concentrated sections in the east side (red areas in 

Figures 8-9). These low results, particularly in the east side, seem to be caused by more

18



than the model’s tendency to predict small values. It appears that these areas are 

accompanied by a linear pattern that corresponds to the ripples that would be produced by 

wind based on the prevailing wind direction (Figure 8). This pattern is particularly 

noticeable in the near-infrared (NIR) band of each scene (Figure 19). Landsat 8’s band 

five captures the NIR portion of the spectrum. Typically, spectral reflectance in the NIR 

wavelength should not be observed over water because NIR light is entirely absorbed by 

water.

One possible explanation for the observation is that the band has captured sun 

glint. Sun glint is noticeable in the NIR part of the spectrum because the radiance 

reflected from water should be negligible, so reflectance can be attributed to sun glint 

(Kay et al. 2009). Kay et al. (2009) provide some examples of sun glint (Figure 20) and 

in a review of methods for correcting imagery for sun glint reflection, they note that for 

coastal images with small pixel sizes, data from the NIR band is used as an indicator for 

sun glint. However, for shallow water, turbid water, or water with vegetation near the 

surface, this assumption of negligible NIR reflectance does not necessarily hold. This 

form of correction, therefore, should not be applied for Lake Mattamuskeet because of its 

shallowness and high turbidity. Because the lake appears to be impacted by sun glint on a 

seasonal basis, predominantly in the spring and summer, there may be another contributor 

to the reflectance. However, SAV that may be close to the surface is not present in the 

parts of the lake that were affected, and they appear in the deeper areas of the lake. 

Additionally, the seasonal trend in turbidly observed in the lake, which peaks in the 

winter/early spring (Figure 21) does not correspond to the spring/summer peaks in
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possible sun glint. Therefore, while it is possible that there is more contributing to the 

NIR reflectance, it is also likely that sun glint is impacting the imagery in this study.

Spatial trends and an overall temporal trend in water clarity are not clear from the 

model output. Perhaps additional historical data, which could be provided by previous 

Landsat sensors, could provide enough information to determine whether there is an 

overall decreasing trend in water clarity over time, as has been reported from visual 

observations of the lake. Spatial trends may be decipherable with further analysis of 

individual images with respect to water depth and wind speed and direction data, which 

could impact daily clarity. However, before this level of detail can be analyzed, the 

model performance must be improved with additional data.

Future research could attempt to calibrate the model with in situ data across 

different seasons. This requires further field sampling to obtain data from each season 

corresponding to cloud-free Landsat scenes. Alternatively, a model could be developed 

for a different sensor that corresponds better with existing datasets. If multiple sensors 

were used, an atmospheric correction of imagery to remove the combination of light 

reflected from aerosols might be important in obtaining consistent measurements through 

time from sensor to sensor. Whether Landsat or another sensor is used, further research 

should analyze the role that sun glint plays on satellite imagery of Lake Mattamuskeet. A 

compositing criterion could be used to filter out the observations affected by sun glint. 

Remote Sensing vs. Interpolation

Regardless of whether satellite imagery or direct field measurements are 

analyzed, water clarity is very difficult to predict both spatially and temporally. At any 

given time, multiple influences are likely acting on the lake’s water clarity, extending
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from natural occurrences such as storm events to human stressors such as pumping. An 

activity in one area of the lake may produce unique spatial patterns in that area or 

elsewhere. Figure 22 is an example of a very high resolution satellite image taken with 

the DigitalGlobe satellite on January 19, 2014. The image captures the speed at which 

changes to water clarity are occurring in the lake. Secchi disk measurements performed at 

the time of this image could feasibly produce a range of values for measurements taken 

within meters of each other.

In this case, due to the lack of field data corresponding to Landsat scenes and the 

other influences on radiance measurements such as sun glint, direct interpolations of field 

measurements were better suited for the habitat suitability analysis. The interpolation 

comparison results found in this study were similar to results found in previous cases 

(Murphy et al. 2010). Future analyses could include more variations of each technique, or 

incorporate additional interpolation methods. The creation of a model using software 

such as R could allow for a vast amount of iterations using different techniques and 

inputs. For the scope of this study, it appears that appropriate interpolations for 

conditions in Lake Mattamuskeet were produced. Given the number of measurements and 

range of values, the best-performing interpolation techniques in this case did not 

overwhelmingly outperform the other techniques, suggesting there is some flexibility to 

which interpolation technique is used.

Habitat Suitability Analysis Scenarios

With sea level rise, it can be expected that the lake level will rise, remaining 

higher for longer periods of time due to the water control structures remaining closed for 

longer periods. It might be expected that as lake levels rise, the lake area might increase
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laterally, thus increasing the amount of shallow area. In this case, however, 

impoundments surrounding the lake (particularly along the eastern and southern edges 

where SAV habitat suitability is highest) prevent the possibility of the lake growing 

laterally as more water is retained in the basins. Instead, the water will drain into the 

many smaller canals and impoundments once it has reached its highest possible level. 

Additional topographic information would be necessary to understand at exactly what 

point the lake will begin to inundate surrounding land, but clearly due to that lake’s 

connection to the rising Pamlico Sound, depth will increase as long as the topography 

constrains lateral expansion. In this way, SAV habitat availability will decrease as 

demonstrated in Figures 14-15. These figures show a decrease in suitable habitat due to 

an increase in water level. SAV can only grow at depths at which light can still reach it, 

so this result is expected. More information is necessary to understand how the impacts 

of climate change and sea level rise will play out physically, but regardless of the rate and 

magnitude of lake level change, SAV habitat is clearly at risk.

The possibility of managing lake levels was considered here because the 

reduction of water levels should allow for much more SAV habitat (Figures 14-15). 

However, the lake is already quite shallow. Further reduction of water levels would 

reduce the surface area of the lake and potentially, some of the existing SAV habitat. The 

apparent paradox, that reducing lake levels will produce more SAV habitat, but reducing 

lake levels will decrease lake surface area and thereby reduce the amount of potential 

SAV habitat, should be modeled to maximize SAV habitat produced by a range of lake 

level reductions.
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Conclusions

This study successfully located areas for SAV restoration, but also identified a 

possible threat to SAV habitat in Lake Mattamuskeet. Although sea level rise is a threat 

to the lake already because the water control structures could be overwhelmed and allow 

saltwater intrusion, sea level rise and subsequent lake level increases will also reduce 

available SAV habitat. Restoration may be important to the future survival of SAV in the 

lake, as it would reestablish SAV where it previously existed. Additional management 

scenarios, such as the control of lake levels, may be necessary under future conditions to 

maintain SAV and, in result, improve water-quality conditions in the lake.

This study presents some ideas that can be applied to the management of other 

coastal lakes with similar water quality conditions and SAV loss. The application of 

remotely sensed data is a promising approach that, given an initial increase in in situ data 

to develop working models for a given site, might eventually decrease the need for in situ 

data and allow for the study of trends beginning before in situ data is available. The 

habitat suitability analysis portion of this study would be particularly useful to test 

possible lake levels to improve management decisions regarding lake level and SAV 

restoration.
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Table 1. Landsat 8 Bands (modified from USGS 2016a). The Landsat 8 satellite carries 
two sensors, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). 
The OLI images consist of eight 30-meter spectral bands and one 15-meter panchromatic 
band. Bands 10 and 11 are collected at 100 meters.

LANDSAT-8 OLI & TIRS BANDS Wavelength
(micrometers)

Band 1 30-m Coastal Aerosol 0.43-0.45
Band 2 30-m Blue 0.45-0.51
Band 3 30-m Green 0.53-0.59
Band 4 30-m Red 0.64-0.67
Band 5 30-m Near-Infrared (NIR) 0.85-0.88
Band 6 30-m Shortwave Infrared (SWIR) 1 1.57-1.65
Band 7 30-m Shortwave Infrared (SWIR) 2 2.11-2.29
Band 8 15-m Panchromatic 0.50-0.68
Band 9 30-m Cirrus 1.36-1.38
Band 10 100-m Thermal Infrared (TIRS) 1 10.60-11.19
Band 11 100-m Thermal Infrared (TIRS) 2 11.50-12.51
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Table 2. Band Combinations Tested (from Ozen et al. 2016a). These are the bands and 
band combinations tested by Ozen et al. (2016a) in the creation of two models using 
regression analysis to predict Secchi Disk Depth (SDD) from Landsat 8 imagery for the 
east side and the west side of Lake Mattamuskeet (Eq. 1 and Eq. 2). For the east side, 
band2+band5 (blue + near-infrared) was the best combination based on the combined 
lowest Akaike’s Information Criterion (AIC), highest r2 and highest adjusted r2 (AIC = - 
111.05, r2 = 0.59, Adj. r2 = 0.5). For the west side, band2+band3+band5 (blue + green + 
near-infrared) was the best combination (AIC = -101.4, r2 = 0.82, Adj. r2 = 0.75).

Single Band Band R atios A dd itio na l B and C o m b in atio n s
b a n d i band2/band3 band2+band3+band4+band5
band2 band3/band2 band2+band3+band4
band3 band2/band4 band2+band3
band4 band4/band2 band2+band4
band5 band3/band4 band2+band5
band6 band4/band3 band2+band3+band5
band7 band5/band4 band3+band4+band5

band4/band5 band3+band4
band3/band5 band3+band5
band5/band3 band4+band5
band5/band2 (band2/band4)+ band2
band2/band5 (band4/band2)+ band2

(band2/band4)+ band4
(band4/band2)+ band4
(band2/band4)+ band3
(band5/band2)+ band5
(band2/band5)+ band3
(band2/band5)+ band2
(band5/band4)+ band4
(band2/band4)+ band2+ band5
(band2/band4)+ band4+ band5
(band4-band5/ band4+band5)
(band3-band5/band3+ band5)

3 0



Table 3. Dates of Available Landsat 8 Imagery. Cloud-free imagery is highlighted, and 
imagery chosen for the analysis is bolded. The columns are grouped by season, and each 
bold group of rows represent years.

Spring Summer Fall Winter

YEAR Mar Apr May Jun Jul Aug Sept Oct Nov Dec Jan Feb

2013-
X 14 16 1 3 4 5 X 8 10 11 12

2014 X 30 X 17 19 20 21 X 24 26 27 28

2014-
16 1 3 4 6 7 8 10 11 13 14 15

2015 X 17 19 20 22 23 24 26 27 29 30 X

2015-
3 4 6 7 9 10 11 13 14 16 1 2

2016 19 20 22 23 25 26 27 29 30 X 17 18

5 6 8 9 11 12 13 15 16 2

2016 21 22 24 25 27 28 29 31 X

3 1



Table 4. Landsat 8 Images Chosen for Analysis. These dates were chosen to represent 
each seasonal period from 2013-2016. Dates were chosen to include a distributed range 
of dates and to avoid imagery with cloud interference.

Spring Summer Fall Winter
2013-14 4/14/13 7/19/13 9/5/13 2/28/14
2014-15 4/1/14 6/6/14 10/26/14 2/15/15
2015-16 5/22/15 6/23/15 10/13/15 2/18/16

2016 5/24/16 6/9/16 9/13/16 12/2/16
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Current Conditions

Sea Level Rise Scenario

Managed Water Level Scenario

Sparse SAV Cover 
Target Locations for SAV Restoration

J\ 0 3.75 7.5 15 Kilometers
N I----------1----------1----------1----------1_________ I_________ I_________ I I

Figure 7. Preliminary SAV Habitat Analysis. Suitable locations for SAV restoration 
under current conditions and two possible water level scenarios are shown. Sea level rise 
would cause a decrease in suitable SAV habitat, but managing the lake level to prevent 
water from continuing to rise would increase the amount of suitable SAV habitat.
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Figure 8. Modeled Water Clarity: East. Output rasters for each Landsat image that was 
processed for the east side of the lake show that SDD is variable. Extremely low values 
may be attributed to sun glint (red areas). Overall, the values are lower than expected.
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Figure 9. Modeled Water Clarity: West. Output rasters for each Landsat image that was 
processed for the west side of the lake show that SDD is variable and model results are 
lower than expected.
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Figure 10. Validation of Water Clarity East Model. For July 2013 field measurements 
and the July 2013 Landsat image, a relationship was determined between measured and 
modeled values (r2 = 0.58637). Modeled values are much lower than field measurements. 
Measurement locations are displayed on the map, and those in black boxes were not used 
for the valuation because they may have been affected by sun glint. If a 1:1 relationship is 
forced, the slope is roughly equal to 3.5.
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Figure 12. Water Clarity Interpolations. The Empirical Bayesian Kriging technique was 
the best overall technique for the Secchi disk depth (SDD). The interpolations capture a 
general decrease in SDD over time. The lack of well-distributed SDD measurements in 
2013 caused a wide variation of interpolation results. The IDW technique result is shown 
for 2013.
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Figure 13. Method Comparison. Output from the remote sensing method (left column) is 
much lower than output from the interpolation method (right column). Models of summer 
water clarity are displayed to correspond to the time that the SAV surveys took place.
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Sea Level Rise Scenario: +0.1 m Managed Lake Level Scenario: -0 1 m

Sea Level Rise Scenario: +0.2 m Managed Lake Level Scenario: -0.2 m

0 2.5 5 10 15
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Figure 17. Initial Condition Variations, Remote Sensing Methodology. The same habitat 
suitability analysis was performed for various sea level rise and managed lake level 
scenarios. The left column shows a decrease in water level, and the right shows an 
increase in water level at 0.1 meter increments. Although the most suitable area available 
does not change severely because it is limited by water clarity, changes in depth impact 
the available moderately suitable habitat.
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Figure 18. Initial Condition Variations, Interpolation Methodology. The same habitat 
suitability analysis was performed for various sea level rise and managed lake level 
scenarios. The left column shows a decrease in water level, and the right shows an 
increase in water level at 0.1 meter increments. Although the most suitable area available 
does not change severely because it is limited by water clarity, changes in depth impact 
the available moderately suitable habitat.
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(a) (i)

(b)(i)

(a) (ii)

image position
(b) (ii)

image position

Figure 20. Examples of Sun Glint (from Kay et al. 2009). The left column shows 
examples of imagery impacted by sun glint and the right column shows radiance along 
the transect shown in each image. The areas with glint show higher radiance. The pattern 
appears to be different in each image. Image (b) is impacted by waves, similar to 
observations of Lake Mattamuskeet.
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Figure 21. Turbidity Trend in Lake Mattamuskeet (from USGS 2016c) Turbidity in the 
east (a) and wet (b) from USGS Monitoring Station daily measurements. The green line, 
depicting mean turbidity, peaks in late winter/early spring. It is lowest in the summer and 
fall. Spikes in maximum turbidity are typically, but do not always occur in both sides of 
the lake at the same time. They occur at various times in the year, suggesting high 
variability, possibly during weather events.
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Figure 22. High Variability of Water Clarity (from Google Earth 2017). The DigitalGlobe 
Satellite Image of Lake Mattamuskeet shows a portion of the southern border of the lake 
near where Route 94 bisects it. In this small section of the lake, clouds of sediment 
appear in the water column. The cloud of sediment shows how quickly water clarity can 
change in the lake both temporally and spatially. The sediment appears to have crossed 
through the southernmost culvert from the east to the west side of the lake, showing that, 
though the two sides may need to be analyzed separately, the conditions in the two sides 
impact each other. The image also depicts the surrounding cropland, which may also 
contribute nutrients and sediment to the lake.
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