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ABSTRACT 
 
 

The complexity and nonlinearities of the modern power grid render traditional physical 

modeling and mathematical computation unrealistic. AI and predictive machine learning 

techniques allow for accurate and efficient system modeling and analysis. Electricity 

consumption forecasting is highly valuable in energy management and sustainability research. 

Furthermore, accurate energy forecasting can be used to optimize energy allocation. This thesis 

introduces Deep Learning models including the Convolutional Neural Network (CNN), the 

Recurrent neural network (RNN), and Long Short-Term memory (LSTM). The Hourly Usage of 

Energy (HUE) dataset for buildings in British Columbia is used as an example for our 

investigation, as the dataset contains data from residential customers of BC Hydro, a provincial 

power utility company. Due to the temporal dependency in time-series observation data, data 

preprocessing is required before a model can be created. The LSTM model is utilized to create a 

predictive model for electricity consumption as output. Approximately 63% of the data is used 

for training, and the remaining 37% is used for testing. Various LSTM parameters are tested and 

tuned for best performance. Our LSTM predictive model can facilitate power companies’ 

resource management decisions. 
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CHAPTER 1 

 

INTRODUCTION 
 

Electricity has increasingly become a necessity in daily living, and over the past few decade’s 

electricity usage has skyrocketed. In 2018, the overall global energy consumption grew by 2.3%, 

a rise driven by economic growth and increased regional cooling and heating demands. However, 

with the advent of smart grids, precise electric load forecasting has become increasingly critical 

as it enables power companies to schedule the optimized loads and minimize the use of wasteful 

electrical products [1]. Since electricity consumption varies according to the time of day, models 

are constructed using time series data to forecast electricity consumption for any given time [2]. 

The Deep Learning model utilizes neural networks and has proven to be very successful in 

modeling complex systems [3]. Deep Learning models can achieve high levels of accuracy and 

efficiency compared with mathematical modeling approaches[4]. 

 
 

1. Deep Learning Methods 
 

Deep Learning is a branch within the area of machine learning, and it involves learning of new 

knowledge without the computer being specifically programmed. Deep Learning is used in fields 

such as telecommunications, banking, biomedicine, spam detection, and image classification. As 

illustrated in Fig. 1, Deep Learning physically involves an input layer with three neurons that 

receives input information which is then passed on to a hidden layer. The hidden layer performs 

mathematical calculations based on the input--the greater the number of hidden layers between 

the input and the output, the greater the depth. Each hidden layer represents an individual 

machine learning algorithm. The output is finally produced by the last hidden layer. 
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Figure1: The architecture of Deep Learning neural networks and the types of layers 
(from http://alexlenail.me/NN-SVG/LeNet.html) 

 
1.1 Convolutional Neural Network (CNN): 

 
The human brain’s biological processes inspired the development of CNN. CNNs can be used 

to identify important features in an image, classify an image, process natural language, and 

investigate financial time series [4]. CNN, a well-known architecture of Deep Learning in Figure 

2, influenced by living creatures' natural visual perception processes, is a regularized version of 

multilayer perceptron. Multilayer perception refers to fully connected networks in which every 

neuron in one layer is connected to all neurons in the adjoining layer.[5] 

Figure 2: Convolutional Neural Network Layers (convolution, fully, Nx binary classification) [5]. 
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A. Convolution: 

 
The first layer is the most critical component layer that extracts the most important features 

of an image and applies filters such as an Activation Function (ReLU & Sigmoid). The 

convolution’s purpose is to identify an image’s features and decrease a picture’s size for faster 

computations [11]. Figure 3 below shows how the convolution operates. The computer scans a 

picture segment with a distance of 5×5 picture input and redoubles it with a 3×3 filter to make a 

3×3 feature map as the output. After the convolution, the picture is smaller [12]. Mathematically, 

a convolution of two functions f and g is defined as in [11] 

 

Figure 3: Simple Convolution of a (5x5) matrix with a (3x3) kernel[11]. 
 
 

B. Pooling: 
 

Other than convolutional layers, a CNN usually uses pooling layers to minimize the size 

of the representation and to speed computation. Retaining important features while 

downsizing the image is called Spatial Pooling or subsampling, and it can be accomplished 

through various methods such as Max, Average, and Sum, etc. [12]. The common approach 

used in pooling is max pooling. Suppose someone has a 4x4 input and wants to apply a type 

of pooling called Max pooling as seen in Figure 4. This particular implementation of max 

pooling renders a 2x2 output. If the 4x4 input is broken into various regions, the output 
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becomes the size of 2x2. Each output will be the max from the corresponding shaded region. 

Hence, in the upper left, the max of these four numbers is 9. On the upper right, the max of 

the numbers is 2. In the lower left, the biggest number is 6. On the lower right, the biggest 

number is 3. Thus, to compute each frequently occurring number on the right, the max is 

taken over a 2x2 region. A filter size of two (f=2) is applied, when a 2x2 region and a stride 

of two (S=2) is taken. These are the hyperparameters of max pooling. It can be seen that 

pooling picks the maximum value of a 2×2 array, and subsequently moves these windows by 

two pixels [12]. 

 
 
 
 
 

 
 
 

Figure 4 : Max Pooling layer applied a single slice of an input volume[12]. 
 
 
 

1.2 Recurrent Neural Network (RNN): 
 

Recurrent Neural Networks (RNN) are designed to deal with time-varying inputs in 

which relevant data is used to determine if time t might have happened at other times in the past. 

Standard RNNs such as a single layer of Tanh have a simple repeating module structure. A 

Recurrent Neural Network is a form of Deep Learning Network that includes loops/repetition 

within the networks to enable memory. Previously stored memory information is used to predict 

the next value. These networks are useful in recognizing the sequence dependency of data. In 

(1) 
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addition to predicting future data, it also maintains some advantages of time serial data. RNN 

can retain data for a long time, but it is incredibly hard to publish all data when the time period 

is excessively long. It becomes untrainable when a network contains too many deep layers—a 

condition called problem of the vanishing gradient. To address this gradient disappearance issue 

experienced by RNN, researchers have constructed an architecture called long- term short-term 

memory (LSTM). This network provides historical information relevant to more recent time 

steps and uses a better framework [6] to find and pass on information. 

Figure 5 : Recurrent Neural Networks (RNN) take some input X and feeds that input into the RNN 
 
 
 

As Figure 5 shows, a Recurrent Neural Network takes some portion of input X and passes it 

through an internal hidden state. the portion will be updated every time the RNN reads a new 

input. The internal hidden state will be returned to the model the next time an input is read. After 

some time steps, it is expected that the RNN will predict an output vector. 

 
 

(2) 
 
 

Inside the green RNN block in Figure 5, some recurrence relation with function f is computed. 
 

Thus, function will depend on some weight W, and will accept previously hidden state . 
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The input at the current state , will become the output for the next hidden state or the updated 

hidden state designated as . The next input becomes the new hidden state , which will be 

passed into the same function and become input . The same function f, and the same weights 

will be used for every time step of the computation. 

1.3 Long Short-Term Memory (LSTM): 

LSTM is the most widely used Deep Learning method, and it is the one that is employed 

in this thesis. It is an artificial recurrent neural network architecture used in the field of Deep 

Learning. LSTM has feedback links, unlike normal feed-forward neural networks. Not only can 

it process single data points, it can also process the whole data sequences. LSTMs have a chain- 

like structure; however, the repeating modules are different. They have cell blocks instead of 

standard neural network layers, and the cells have various components such as an input gate, a 

forget gate, and an output gate, as shown in figure 6. 

Figure 6: LSTM cell diagram with various components (input, forget get, and output gate) [10]. 

There are two values on the left side: is a new sequence value at time t, and is a 

previous output at time t-1. The first stage for this composite input is squashed by a layer, 

which is responsible for taking numbers and transposing them to a percentage between 1 and -1 



7 
 

to ensure that all numbers are homogeneous. 
 

(3) 

The input subsequently passes into the second state via an input gat .This input gate work to 
 

sigmoid switch off unneeded input value items. It has a sigmoid function as activation, and it’s 

output vector is the forget valve, which will applied to the old memory C_t-1 by element-wise 

multiplication [14] . A sigmoid function outputs a value between 0 and. 

 
 
 

(5) 
 

The next step is the Forget Gate Loop. LSTM cells have an internal state variable added to 

input data to create an efficient recurrence layer. This additional operation helps to minimize 

the risk of vanishing gradients. The forget factor is: 

(6) 
 

This repetition loop is controlled via a forget gate that works the same as the input gate, and 

helps the network learn state variables that should be “remembered” or “forgotten.” The last 

step is an output layer tanh squashing function controlled by an output gate. It determines 

which values are allowed as cell output. 

(7) 
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CHAPTER 2 
 

RELATED WORKS 
 

A LSTM-RNN-based univariate model for demand-side load prediction was developed and 

optimized by Salah Bouktif and his team. The model can accurately predict both short-term 

ranging from a few days to 2 weeks and medium-term ranging from a few weeks to few months. 

Bouktif introduces seven forecasting techniques in the field of energy prediction that represents 

a range of commonly used machine learning approaches. The best model to analyze the 

consumption data is used as the benchmark. Using France Metropolitan electricity consumption 

data as a case study [3], Bouktif discusses wrapper and embedded feature selection strategies, 

including the removal of recursive features, and additional regressor trees to validate the 

significance of model inputs. 

Upeka Somaratne, Anupiya Nugaliyadde, and Kok Wai Wong focus on models that can be 

used to predict short-term, mid-term, and long-term electricity consumption for either a single 

house or a block of houses. Their research compares ARIMA (Autoregressive Integrated Moving 

Average), ANN, and DNN. RNN and LSTM measures are established by performing tests for the 

public London Smart Meter dataset. Although ARIMA shows that short-term predictions perform 

well, they do not perform well when compared to other models as duration increases. For short- 

term prediction, RNN and LSTM have been shown to perform similarly to ARIMA, while 

outperforming all other models in mid-term and long-term predictions [4]. 

Rahman and team have developed and optimized a novel Deep Recurrent Neural Network 

(RNN) model with one-hour resolution. Imputation on an electricity usage dataset comprises 

segments of missing values using the Deep Natural Network . The proposed models are used to 

predict hourly electricity consumption for the Public Safety Building in Salt Lake City, Utah, 
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and aggregate hourly electricity consumption in residential buildings in Austin, Texas [5]. 
 

Kwok Shah and team have studied nine time series datasets to predict a building’s energy 

consumption requirement, and the datasets are used in other forecasting areas such as economics, 

quality management, stock market, and weather. These models can also be used in building 

systems to detect faults over time [6]. 



10 
 

 
CHAPTER 3 

 

Data Source 
 
 

The capabilities of Deep Learning Neural Networks suggest they are a good fit for time 

series data. Neural networks can learn an arbitrary complex model from datasets and provide a 

mapping relationship from input to output. Technically, available sequence contexts provided as 

input may directly allow neural network models to learn both trends and seasonality. Long Short- 

Term Memory (LSTM) can solve many time series tasks that are unsolvable by feed-forward 

networks using fixed-size time windows, and the LSTM networks support efficient learning of 

temporal dependencies [7]. In our study, we develop an LSTM model for multivariate time series 

forecasting using Keras library as well as Pearson and Kendall correlation function. Adam and 

Stochastic Gradient Descent (SGD) optimizers under various batch sizes (50,75, and 100) are 

also tested and compared. 

3.1 Dataset Description: 
 

Our model has been tested on the Hourly Usage of Energy (HUE) Dataset for Buildings in 

British Columbia, Canada. The HUE dataset contains donated data from residential customers of 

BC Hydro, a Crown Corporation provincial power utility owned by the government and people 

of British Columbia. A residential building with a three-year consumption history and a porthole 

allowing a maximum three-year data download, including weather information, provides the 

dataset [6]. The household data file consists of date, hour, and energy (kw/h) attributes, as shown 

in Table 1, and weather data consisting of date, hour, temperature, humidity, pressure, and 

weather attributes, as shown in table 2. 
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Table 1 : Residential file data (data, hours, energy_ kwt) 
 

 
 

Table 2 : Weather dataset import using pandas. 
 

 
 
 

3.2 Data Preparation for LSTM: 
 

Basic data preparation constitutes the initial step before advancement to the LSTM 

approach. Residential and weather files are merged, and based on date and hour, while NA values 

are replaced with “not recorded” values. New dataset files are then created, totaling four-years 

of hourly data, as shown in Table 3. The files are saved for merging both similar dataset files 

based on date and time attributes, thus creating a new dataset file to predict power consumption. 
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The second step involves a LSTM dataset creation to frame the dataset as a supervised learning 

problem and to normalize input variables. Supervised learning problems are employed to predict 

power consumption at a given hour considering power consumption (kw/h) and weather 

conditions during previous time steps. Pearson and Kendall's correlations are performed to find 

a relationship between input variables and power consumptions. Corresponding heat maps are 

also shown in Table 3. 

Table 3: Four years of weather and energy data. 
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CHAPTER 4 

ALGORITHM DESIGN 

 

The LSTM algorithm based on multivariate steps have three main modules, namely data 

reading, conversion, and LSTM modeling. The data conversion module changes the time series 

dataset into supervised learning sequences and determines variable datasets with a predictive 

value. 

 
 

Algorithm 1 TransformData(dataF, i) in Data Set 
 

Input: the input raw dataset dataF, a positive integer i 

Output: the output transformed dataset dataO 

1. Read files and merge to data 

2. for each p dataF do 
3. colData ←colData.add(p.name) 

4. If dataF,column=null 

5. Replace null with 0 

6. end If 
7. end for 
8. dataF ← dataF [dataF [ c o l u m n ] ] 

9. dataO ← dataF .p[0 : new size i, ] 

10. reshape(dataO ) 

11. plot(dataO ) 

12. return dataO 
 

In algorithm 1, the raw dataset consisting of household and weather files are passed and 

transformed. The renders dataset is represented as data O in the algorithm. The algorithm steps from 
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line 1 and 2 read in the input datasets of weather and household consumption and merged them 

based on a common column. This newly created dataset is checked and the null rows are 

identified and replaced with estimated values in lines 3-6 . In line 8, the newly merged and 

verified dataset is plotted to help visualize the data. 

 
 

Algorithm 2 Multivariate LSTM Time Series 
 

Inputs: Time series dataO 

Outputs: RMSE of the forecasted dataO 

1. X ← train 

2. Y ← Validation 

3. model = Sequential() 

4. model.add(LSTM(no. of neurons), statefull=True)) 

5. model.compile(loss=’mse’, optimizer=’adam’) 

6. for each p in range(totalepoches) do 
7. model.fit(X, Y, epochs=i, shuffle=False) 

8. model.reset_internalstates() 

9. end for 
10. return model 

 
# Make -step forecast 

11. forecast_lstm(model, X) 

12. yhat ← model.predict(X) 

13. return yhat 

14. # Perform validation on the testing data 

15. for each p in range(totallength(testdata)) do 

16. # make a step forecast 

17. X ← testdata[p] 

18. yhat ← forecast_lstm(model, X) 

19. #Recording the forecasted data 
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20. predict.append(yhat) 

21. expectdata ← test[i] 

22. end for 
23. MSE ← mse(expected_value, predictions) 

Return (RMSE ← sqrt(MSE)) 
 
 

In algorithm two, we pass the dataset transformed from algorithm one, apply a multivariate 

LSTM approach, and compute the Root Mean Square Error (RMSE) to evaluate the prediction 

accuracy. Prepared training and testing data are passed to variables X and Y for lines 1 and 2. 

Data preprocessing for the LSTM model is conducted from lines 3-5. Supervised learning is used 

and defined by the neurons used in the input layers. The Mean Square Error (MSE) is used for 

the model, and the Adam optimizer is chosen as a gradient. In lines 6-10, a model is fit and 

checked for accuracy and data loss. The model runs to determine the total number of epochs and 

find the training loss. The internal states of the model is refreshed and a final model is 

constructed, The forecasting for multivariate data occurs in lines 11-13 . The square error means 

between the expected and predicted values are computed as RMSE for evaluation purpose. 
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CHPTER 5 
 

Experimental results 
 

Following the preparation of a household dataset for the LSTM, three data 

transformations are performed before fitting a model and making a forecast. Time series data 

need to be made stationary by using lag =1 to remove an increasing trend. Data is subsequently 

organized with a sliding window to capture previous time step observations in order to forecast 

a current time step. 

Normalization is conducted to address different input variable scales. The learning 

problem is framed to predict energy consumption at the current hour (t) given energy 

consumptions and weather conditions at a prior time step. The dataset is transformed using the 

series-to-supervised () function. 

Input values between -1 and 1 are normalized in order to meet the LSTM model’s default 

hyperbolic tangent activation function. Table 4 shows the transformed data for the first six 

records. Of interest is the impact of the weather conditions, temperature, humidity, and pressure 

on electricity consumption. 

Table 4 : Time series weather dataset consists of data ( hours, temperature, humidity, pressure, weather, energy_kw/h, and var1(t)) 
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On the other hand, from the below table, we compared different lag numbers (lag=1, lag=2, and 

lag =5) to see the result of the different sliding window sizes. Training and testing loss decrease 

as time lag increases. Whereas training and testing accuracy of model increases when time lag 

increases. From table 5, it can be seen that lag 5 gives the highest accuracy and lowest loss. 

 
 

Table 5 : Comparison of time lag (leg=1, leg 2& leg=5)with metric 
 
 
 

Metric Lag=1 Lag=2 Lag=5 
Train Loss 0.27197579580899245 0.27317812563894 0.264903220806492 

Test Loss 0.2827653962881494 0.28460874373428713 0.28298440000462055 

Train Accuracy 0.710730593607306 0.71175799086758 0.7324771689497717 

Test Accuracy 0.6843821949347659 0.6920555341303509 0.7132445826276539 

MSE 0.258064 0.253009 0.225625 
 
 

Correlations: 
 

Correlation is a bivariate analysis that measures the strength of association between two 

variables and the direction of the relationship. A value of ± 1 indicates a perfect degree of 

association between two variables. 

 
 

A. Pearson : 

 
We perform a Pearson Correlation between the input variable andthe electricity consumption 

predictor and plot a heatmap. The Data Frame contains household data between 2012 and 2016 

for a single weather station. 

Pearson r correlation is the most widely used correlation statistic to measure the degree of 
 

relationship between linearly related variables. 
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rxy =Pearson 
r correlation coefficient between x and y 
n = number of observations 
xi  = value of x (for ith observation) 
yi  = value of y (for ith observation) 

 
 

As shown in Table 6, each matrix entry contain correlation value between a weather-related 

variable and energy consumption for residential buildings. 

Table 6 :Pearson correlation between variables 
 
 
 

 
 

The heat map can demonstrate the correlation between various weather conditions and energy 

consumption. A correlation function ̀ .corr` from pandas’ package is calculated, and a correlation 

matrix is generated as shown in Figure 7. Blue means positive while yellow means negative, and 

the stronger the color, the larger the correlation magnitude. 

 
(9) 
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Figure 7: Heat map for Pearson correlation between variables 

Blue indicates a positive correlation, and the darker the color, the stronger the correlation. Using 

the heat map in Figure 7 as an example, if one wants to know the correlation between weather 

and humidity, it can be seen that there is no correlation based on the value of -0.039. A correlation 

between hours of the day and energy consumption is easily discerned. Humidity and temperature 

show a negative correlation, meaning that as temperature rises, humidity decreases. 

B. Kendall rank correlation( non- parametric): 

The Kendall Correlation between the input variable and the electricity consumption 

predictor along with the plotted heat map is displayed in Table 7. The Kendall rank correlation 

(non-parametric) is an alternative to Pearson’s correlation (parametric) and is used to test 

similarities in ordering data when quantities includerank. Other types of correlation coefficients use 

observations as the correlation basis. Kendall’s correlation coefficient uses pairs of observations 
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and determines the strength of association based on the pattern of concordance and discordance 

between pairs. The Kendall Correlation between weather variables (pressure, humidity, and 

weather) and the electricity consumption predictor generates the heat map. 

Table 7: Kendall correlation between dataset variables 
 

 
 

Finally, inputs (X) are reshaped into the 3D format expected by LSTMs, namely samples, 

timesteps, and features. The training and testing datasets have about 17K hours of data for 

training and about 10K hours for testing. 

 
 
 

Batch Sizes: 
 

Batch size is one of the most important hyperparameters to tune as it defines the number of 

samples propagated through a network. The smaller the batch, the less accurate the gradient 

estimate will be. However, a smaller batch size means less memory and faster computation. 

Practitioners often want to use a large batch size to train their model as it allows a computational 

speedup from the GPU’s parallelism. 
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LSTM has 50 neurons in the first hidden layer and one neuron in the output layer in order to 

predict energy consumption. The input shape is a one-time step with six features. A Mean 

Absolute Error (MAE) loss function and an efficient Adam version of stochastic gradient descent 

is used. Additionally, the experiment is conducted with three different batch sizes (50, 72, and 

100) to indicate which batch size produces the best results with the least amount of loss and with 

a high degree of accuracy. 

Figure 8: Results for batch size 50 Figure 9: Results for batch size 72 
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Figure 10: Results for batch size 100 

Explanation for These Different Batch Size: 

As shown the Figure 8, 9 and 10, the blue line represents training loss, whereas the orange 

line represents validation loss. The X-axis shows total epochs while the Y-axis represents the 

training and testing loss during each period. As seen in Figure 8, maximum training loss is 0.14, 

while extreme validation loss is 0.06 that reduce as epochs increase. Figure 9 shows that the 

maximum training loss is 0.16, while the maximum validation loss is 0.08, which reduces as 

epochs increase. Figure 10 shows that the extreme training loss is 0.20, while the maximum 

validation loss is 0.08 that reduces as epochs increase. Based on the above observations, we 

choose the lowest batch size of 50 for higher accuracy and minimal loss. 
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Table 8: The comparison of batch size vs metric. 

 
 

Batch Size : 50 
Metric Epoch1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 
Train Loss 0.1388 0.0489 0.0471 0.0475 0.0473 0.0471 
Test Loss 0.0765 0.0495 0.0472 0.0475 0.0469 0.0468 
Train 
Precision 

0.4158 0.5593 0.5604 0.5593 0.5586 0.5599 

Test 
Precision 

0.5539 0.5535 0.5786 0.5714 0.5830 0.5666 

Train 
Recall 

0.4736 0.6368 0.6368 0.6368 0.6368 0.6368 

Test Recall 0.6045 0.6362 0.6362 0.6362 0.6362 0.6362 
Train F1- 
Score 

0.4414 0.5954 0.5959 0.5953 0.5949 0.5960 

Test F1- 
Score 

0.5774 0.5917 0.6060 0.6019 0.6084 0.5992 

Batch Size 72 
Metric Epoch1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 
Train Loss 0.1488 0.0482 0.0488 0.0469 0.0478 0.0473 
Test Loss 0.0749 0.0478 0.0485 0.0472 0.0488 0.0467 

Train 
Precision 

0.4045 0.5598 0.5609 0.5601 0.5608 0.5603 

Test 
Precision 

0.5561 0.5674 0.5814 0.5437 0.5813 0.5461 

Train 
Recall 

0.4581 0.6369 0.6369 0.6369 0.6369 0.6369 

Test Recall 0.6051 0.6364 0.6364 0.6364 0.6364 0.6364 

Train F1- 
Score 

0.4273 0.5954 0.5963 0.5959 0.5962 0.5957 

Test F1- 
Score 

0.5792 0.5998 0.6364 0.5863 0.6076 0.5877 

Batch Size 100 
Metric Epoch1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50 
Train Loss 0.2058 0.0495 0.0474 0.0475 0.0470 0.0472 
Test Loss 0.1107 0.0485 0.0482 0.0467 0.0472 0.0477 
fTrain 
Precision 

0.3065 0.5611 0.5598 0.5595 0.5602 0.5591 

Test 
Precision 

0.5075 0.5629 0.5770 0.5740 0.5748 0.5768 

Train 
Recall 

0.3545 0.6368 0.6368 0.6368 0.6368 0.6368 

Test Recall 0.6222 0.6362 0.6362 0.6362 0.6362 0.6362 
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Train F1- 
Score 

0.3228 0.5963 0.5957 0.5954 0.5959 0.5952 

Test F1- 
Score 

0.5572 0.5972 0.6051 0.6034 0.6038 0.6049 

 
 

Table 8: The comparison of batch size vs metric 
 

Metric Batch size 50 Batch size 72 Batch size 100 
Train Loss 0.04713788243376365 0.048964687740 

45575 
0.04727578801 
910933 

Test Loss 0.04705696579071549 0.047919397405 
24351 

0.04876118863 
434668 

Train Precision 0.5670033688414586 0.544889911614 
5965 

0.56665826861 
71684 

Test Precision 0.5451831038141924 0.578264836737 
3351 

0.55985135630 
27028 

Train Recall 0.6346587823406202 0.634658782340 
6202 

0.63465878234 
06202 

Test Recall 0.6342992508323155 0.634299250832 
3155 

0.63429925083 
23155 

Train F1-Score 0.5985583281408162 0.585975862855 
7806 

0.59834799820 
97399 

Test F1-Score 0.5860141067765743 0.604796526770 
3758 

0.59433519731 
93092 

 
 

The above table shows the results of various batch sizes. Models are fitted with three different 

batch sizes: 50, 72 and 100. The training loss for batch 72 is higher than that of batch size 50. 

The test loss for batch 50 is the lowest and batch 100 has the highest test loss. Train precision is 

the lowest for batch 72, and the testing precision value is the lowest for batch size 50. Recall 

values for training and testing is the same for all batch sizes. The F1-score is the lowest for batch 

size 50. It appears that smaller batch size results in less model loss. 
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Optimizers: 
 

In order to reduce losses, optimizers are used to change the attributes of a neural network such 

as weights and learning rate. We compare two popular optimizers, namely Stochastic Gradient 

Descent (SGD) and Adam. 

1) Stochastic gradient descent(SGD): 

 
SGD is a first-order optimization algorithm using the first order derivative of a loss function. It 

calculates how weights are updated in order to reach the minimum for function. Batch gradient 

descent results in redundant computations for large datasets, as well as recomputes gradients for 

repeated examples before each parameter update. SGD is usually much faster and can be used to 

learn online. The example in the training group is randomly shuffled, and a learning rate η and 

an initial vector of parameters w are chosen. This is repeated until the minimum is obtained. 

 
 

2) Adam: 

 
Adaptive Moment Estimation works with momentums of the first and second order. The velocity 

should not be too high since the minimum could be jumped over. Adam integrates both RMSProp 

and Momentum. Momentum (v) provides a short-term memory to the optimizer. Rather than 

trusting the present gradient, preceding and current gradients are used to compute a ratio β1.[13] 

RMSProp takes 1/square root of the gradient into consideration. It means that the optimizer takes 

a larger step if the variance is small (confident), and vice versa.[13] 
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Table 10 : Comparison between optimizer Adam and SGD 

Metric Adam SGD 
Train Loss 0.04713788243376365 0.0553449156332642 

Test Loss 0.04805696579071549 0.0528786680742177 
05 

Train Precision 0.5670033688414586 0.5785953706257964 

Test Precision 0.5451831038141924 0.573666933453687 

Train Recall 0.6346587823406202 0.6346587823406202 
Test Recall 0.6342992508323155 0.6342992508323155 
Train F1-Score 0.5985583281408162 0.6051398191277839 

Test F1-Score 0.5860141067765743 0.6022044993939164 

As demonstrated in the above table, the training and testing loss from ADAM is less than the 

SGD optimizer. Train precision for Adam is greater compared to SGD. The testing precision of 

SGD is slightly higher. The recall value for both training and testing data is equal. 

Whereas F1-score is represented as: 

 (10) 

F1 score for both training and testing data for Adam optimizer is greater than SGD. Thus, Adam 

optimizer seems to be the best choice for our model. 
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Figure 11: SGD Optimizer. Figure 12: Adam Optimizer 

As shown in Figure 11, epoch=50, batch size=50, and optimizer =SGD/Adam. The X-axis shows 

total epochs while the Y-axis represents the training and testing loss during each period. The 

maximum value for training loss is 0.25 and the maximum value for validation loss is 0.23, 

whereas (Figure12) the maximum training loss value is 0.14. The validation loss maximum value 

is 0.06. Loss from Adam is much less than that of SGD. Adam is more accurate when compared 

to SGD. We keep track of both the training and test loss during training by setting the validation 

data argument in the fit() function.
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Evaluation: 
 

After the model fit, forecasting for the entire test dataset is performed. The Root Mean 

Squared Error (RMSE) for the model is calculated using forecasted/predicted and actual values. 

Where is the actual value of a point for a given period , n is the total number of fitted points 

and is the fitted forecast value for the period . Train and test losses are printed at the end of each 

training epoch. At the end of the run, the final RMSE of the model on the test dataset is printed, 

and the model achieves a respectable RMSE of 0.214. 
 

System Modifications: 
 

Based on promising results, we convert the numeric energy consumption value to a categorical 

value in order to achieve a better prediction result. The following rules are used: 

High: if consumption kWh is greater and equal to 1.0 

Medium: if consumption kWh is between 0.5 and 1.0 

Low: if consumption kWh is less than 0.5 

Table 11: Categorical energy consumption level 
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Table 12:  Transformed dataset 
 

 
 

Table 13: Pearson correlation. 
 

 
 

Table 14:  Kendall correlation 
 

 
 

Numeric energy consumption is now changed to high, medium and low as categorical 

variables. When the weather seems to be mostly cloudy, energy consumption appears to be high. 

Most energy consumption occurs between 9:00 a.m. and 1:00 p.m. 
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Monthly Energy Consumption: 
 

We also want to investigate how energy consumption changes with different months. To 

determine that, the month is extracted from the date and a new month column is appended to the 

dataset. The data shows that the people tends to use more electricity in cold months. It is probably 

due to heating need. 

Table 15: Month Column in the dataset 
 

 
 
 

Table 16 : Month with energy consumption 
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Figure 13: Energy consumption versus months. 
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CHAPTER 6 
 

Conclusion and Future Work 
 

In the past decades, electric power systems (EPSs) have developed from physical 

structures to smart grids with intelligent monitoring and control technologies. Governments and 

power companies have installed smart meters in almost every home and building. In this thesis, 

Deep Learning is used to create a predictive energy consumption system using the LSTM model. 

With multivariate time series data, the LSTM model is employed to predict energy 

consumption by building a model with historic datasets. Merging and preprocessing datasets in 

order to fit the LSTM model is performed first. Then different batch sizes and two optimizers 

are used and compared. The Adam optimizer and small batch sizes seem to result in higher 

accuracy and less loss for both training and the validation dataset. 
 

Correlations between various weather inputs and energy output are also studied using 

Pearson and Kendall correlations. It is observed that when the weather is mostly cloudy, energy 

consumption tends to be high. High energy consumption often happens in the morning, and 

energy consumption is always at the highest during cold seasons. 
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