
Montclair State University Montclair State University

Montclair State University Digital Montclair State University Digital

Commons Commons

Theses, Dissertations and Culminating Projects

1-2021

Deep Learning for Electricity Forecasting Using Time Series Data Deep Learning for Electricity Forecasting Using Time Series Data

Hanan Abdullah Alshehri
Montclair State University

Follow this and additional works at: https://digitalcommons.montclair.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alshehri, Hanan Abdullah, "Deep Learning for Electricity Forecasting Using Time Series Data" (2021).
Theses, Dissertations and Culminating Projects. 678.
https://digitalcommons.montclair.edu/etd/678

This Thesis is brought to you for free and open access by Montclair State University Digital Commons. It has been
accepted for inclusion in Theses, Dissertations and Culminating Projects by an authorized administrator of
Montclair State University Digital Commons. For more information, please contact digitalcommons@montclair.edu.

https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/
https://digitalcommons.montclair.edu/etd
https://digitalcommons.montclair.edu/etd?utm_source=digitalcommons.montclair.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.montclair.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.montclair.edu/etd/678?utm_source=digitalcommons.montclair.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@montclair.edu

i

ABSTRACT

The complexity and nonlinearities of the modern power grid render traditional physical

modeling and mathematical computation unrealistic. AI and predictive machine learning

techniques allow for accurate and efficient system modeling and analysis. Electricity

consumption forecasting is highly valuable in energy management and sustainability research.

Furthermore, accurate energy forecasting can be used to optimize energy allocation. This thesis

introduces Deep Learning models including the Convolutional Neural Network (CNN), the

Recurrent neural network (RNN), and Long Short-Term memory (LSTM). The Hourly Usage of

Energy (HUE) dataset for buildings in British Columbia is used as an example for our

investigation, as the dataset contains data from residential customers of BC Hydro, a provincial

power utility company. Due to the temporal dependency in time-series observation data, data

preprocessing is required before a model can be created. The LSTM model is utilized to create a

predictive model for electricity consumption as output. Approximately 63% of the data is used

for training, and the remaining 37% is used for testing. Various LSTM parameters are tested and

tuned for best performance. Our LSTM predictive model can facilitate power companies’

resource management decisions.

ii

MONTCLAIR STATE UNIVERSITY

Deep Learning for Electricity Forecasting Using Time Series Data

by

Hanan Abdullah Alshehri

A Master’s Thesis Submitted to the Faculty of

Montclair State University

In Partial Fulfillment of the Requirements

For the Degree of

Master of Science

January 2021

College/School: Science and Mathematics Thesis Committee:

Department : Computer Science
Dr. Michelle Zhu
Thesis Sponsor

Dr. Weitian Wang
Committee Member

Dr. Jiaying Wang
Committee Member

iii

Deep Learning for Electricity Forecasting Using Time Series Data

A THESIS

Submitted in partial fulfillment of the requirements

For the degree of Master of Science

By

Hanan Abdullah Alshehri

Montclair State University

Montclair, NJ

2021

iv

Copyright c 2021 by Hanan Abdullah Alshehri . All rights reserved

v

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest appreciation and thanks to my advisor

Dr. Michelle Zhu. You have been a great mentor, and I am very grateful for your having

motivated me and helpedmeclarify my thoughts. I would also like to thank you for encouraging

my research and helping me develop research skills. Your advice on both research methods

and how to complete my master’s program have been invaluable.

I owe thanks from the bottom of my heart to a very special person, my husband,

Abdulaziz. His support and understanding during my pursuit of the master’s degree made

completion of this thesis possible. I appreciate my little boy Hussam, who has been the light

of my life for the last two years; he has given me the extra strength and motivation to get

things done.

Most importantly, I would like to thank my family members for all their support and

love over the years. I am fortunate to have a beautiful mother who supported me in all my

pursuits. Last but not least, I would like to give special thanks to my father who always

believed in my ability to be successful, not only in the academic arena, but in life.

vi

Table of Contents

Abstract… ... i

Acknowledgments… .. v

List of Tables… .. vii

List of Figures… ... viii

Chapter1: Introduction… ... 1

Deep learning Methods .. 1

1.1 Convolutional Neural Network(CNN ... 2

1.2 Recurrent Neural Network(RNN) .. 4

1.3 Long Short- Term Memory(LSTM)… .. 6

Chapter 2: Related works ... 8

Chapter 3: Data Source ... 10

3.1 Dataset Description… ... 11

3.2 Data Preparation… ... 13

Chapter 4: Algorithm Design ... 14

Chapter 5: Experimental Results .. 16

Chapter 6: Conclusion and Future Work… ... 32

References .. 33

vii

LIST OF TABLES

[1] Residential File Data (data, hours, energy_ kwt) ... 11

[2] Import libraries and read weather dataset file using pandas… ..11

[3] Four years of hourly energy data ..12

[4] Time series weather dataset consists of data (hours, temperature, humidity, pressure, weather,

energy_kw/h, and var1(t)) .. 16

[5] Comparison of time lag (leg=1, leg 2& leg=5)with metric .. 17

[6] Pearson correlationbetween variables… ... 18

[7] Kendall correlation betweendataset variables .. 20

[8] The Comparison of Batch size vs Metric-1… ... 23

[9] The Comparison of Batch size vs Metric-2… ... 24

[10] Comparison between two Optimizers Adam and SGD .. 26

[11] Categoricalenergy consumption level .. 28

[12] Transformed dataset… ... 29

[13] Pearson correlation ... 29

[14] Kendall correlation .. 29

[15] Month column in the dataset… ... 30

[16] : Month with energy consumption .. 30

viii

LIST OF FIGURES

[1] The architecture of Deep Learning neural networks and the types of layers 2

[2] Convolutional Neural Network Layers (convolution, fully, Nx binary classification) 2

[3] Simple Convolution of a (5x5) matrix with a (3x3) kernel… .. 3

[4] Max Pooling layer applied a single slice of an input volume .. 4

[5] Recurrent Neural Network (RRN) take some input X and feeds that input into the RNN…

…………………… …………………..5

[6] LSTM cell diagram with various components (input, forget get, and output gate) 6

[7] Heat map for Pearson correlation between variables .. 19

[8] Batch size 50 ... 21

[9] Batch size 72 ... 21

[10] Batch size 100 ... 22

[11] SGD Optimizer .. 27

[14] Adam Optimizer .. 27

[15] Energy consumption versus months ... 31

1

CHAPTER 1

INTRODUCTION

Electricity has increasingly become a necessity in daily living, and over the past few decade’s

electricity usage has skyrocketed. In 2018, the overall global energy consumption grew by 2.3%,

a rise driven by economic growth and increased regional cooling and heating demands. However,

with the advent of smart grids, precise electric load forecasting has become increasingly critical

as it enables power companies to schedule the optimized loads and minimize the use of wasteful

electrical products [1]. Since electricity consumption varies according to the time of day, models

are constructed using time series data to forecast electricity consumption for any given time [2].

The Deep Learning model utilizes neural networks and has proven to be very successful in

modeling complex systems [3]. Deep Learning models can achieve high levels of accuracy and

efficiency compared with mathematical modeling approaches[4].

1. Deep Learning Methods

Deep Learning is a branch within the area of machine learning, and it involves learning of new

knowledge without the computer being specifically programmed. Deep Learning is used in fields

such as telecommunications, banking, biomedicine, spam detection, and image classification. As

illustrated in Fig. 1, Deep Learning physically involves an input layer with three neurons that

receives input information which is then passed on to a hidden layer. The hidden layer performs

mathematical calculations based on the input--the greater the number of hidden layers between

the input and the output, the greater the depth. Each hidden layer represents an individual

machine learning algorithm. The output is finally produced by the last hidden layer.

2

Figure1: The architecture of Deep Learning neural networks and the types of layers
(from http://alexlenail.me/NN-SVG/LeNet.html)

1.1 Convolutional Neural Network (CNN):

The human brain’s biological processes inspired the development of CNN. CNNs can be used

to identify important features in an image, classify an image, process natural language, and

investigate financial time series [4]. CNN, a well-known architecture of Deep Learning in Figure

2, influenced by living creatures' natural visual perception processes, is a regularized version of

multilayer perceptron. Multilayer perception refers to fully connected networks in which every

neuron in one layer is connected to all neurons in the adjoining layer.[5]

Figure 2: Convolutional Neural Network Layers (convolution, fully, Nx binary classification) [5].

3

A. Convolution:

The first layer is the most critical component layer that extracts the most important features

of an image and applies filters such as an Activation Function (ReLU & Sigmoid). The

convolution’s purpose is to identify an image’s features and decrease a picture’s size for faster

computations [11]. Figure 3 below shows how the convolution operates. The computer scans a

picture segment with a distance of 5×5 picture input and redoubles it with a 3×3 filter to make a

3×3 feature map as the output. After the convolution, the picture is smaller [12]. Mathematically,

a convolution of two functions f and g is defined as in [11]

Figure 3: Simple Convolution of a (5x5) matrix with a (3x3) kernel[11].

B. Pooling:

Other than convolutional layers, a CNN usually uses pooling layers to minimize the size

of the representation and to speed computation. Retaining important features while

downsizing the image is called Spatial Pooling or subsampling, and it can be accomplished

through various methods such as Max, Average, and Sum, etc. [12]. The common approach

used in pooling is max pooling. Suppose someone has a 4x4 input and wants to apply a type

of pooling called Max pooling as seen in Figure 4. This particular implementation of max

pooling renders a 2x2 output. If the 4x4 input is broken into various regions, the output

4

becomes the size of 2x2. Each output will be the max from the corresponding shaded region.

Hence, in the upper left, the max of these four numbers is 9. On the upper right, the max of

the numbers is 2. In the lower left, the biggest number is 6. On the lower right, the biggest

number is 3. Thus, to compute each frequently occurring number on the right, the max is

taken over a 2x2 region. A filter size of two (f=2) is applied, when a 2x2 region and a stride

of two (S=2) is taken. These are the hyperparameters of max pooling. It can be seen that

pooling picks the maximum value of a 2×2 array, and subsequently moves these windows by

two pixels [12].

Figure 4 : Max Pooling layer applied a single slice of an input volume[12].

1.2 Recurrent Neural Network (RNN):

Recurrent Neural Networks (RNN) are designed to deal with time-varying inputs in

which relevant data is used to determine if time t might have happened at other times in the past.

Standard RNNs such as a single layer of Tanh have a simple repeating module structure. A

Recurrent Neural Network is a form of Deep Learning Network that includes loops/repetition

within the networks to enable memory. Previously stored memory information is used to predict

the next value. These networks are useful in recognizing the sequence dependency of data. In

(1)

5

addition to predicting future data, it also maintains some advantages of time serial data. RNN

can retain data for a long time, but it is incredibly hard to publish all data when the time period

is excessively long. It becomes untrainable when a network contains too many deep layers—a

condition called problem of the vanishing gradient. To address this gradient disappearance issue

experienced by RNN, researchers have constructed an architecture called long- term short-term

memory (LSTM). This network provides historical information relevant to more recent time

steps and uses a better framework [6] to find and pass on information.

Figure 5 : Recurrent Neural Networks (RNN) take some input X and feeds that input into the RNN

As Figure 5 shows, a Recurrent Neural Network takes some portion of input X and passes it

through an internal hidden state. the portion will be updated every time the RNN reads a new

input. The internal hidden state will be returned to the model the next time an input is read. After

some time steps, it is expected that the RNN will predict an output vector.

(2)

Inside the green RNN block in Figure 5, some recurrence relation with function f is computed.

Thus, function will depend on some weight W, and will accept previously hidden state .

6

The input at the current state , will become the output for the next hidden state or the updated

hidden state designated as . The next input becomes the new hidden state , which will be

passed into the same function and become input . The same function f, and the same weights

will be used for every time step of the computation.

1.3 Long Short-Term Memory (LSTM):

LSTM is the most widely used Deep Learning method, and it is the one that is employed

in this thesis. It is an artificial recurrent neural network architecture used in the field of Deep

Learning. LSTM has feedback links, unlike normal feed-forward neural networks. Not only can

it process single data points, it can also process the whole data sequences. LSTMs have a chain-

like structure; however, the repeating modules are different. They have cell blocks instead of

standard neural network layers, and the cells have various components such as an input gate, a

forget gate, and an output gate, as shown in figure 6.

Figure 6: LSTM cell diagram with various components (input, forget get, and output gate) [10].

There are two values on the left side: is a new sequence value at time t, and is a

previous output at time t-1. The first stage for this composite input is squashed by a layer,

which is responsible for taking numbers and transposing them to a percentage between 1 and -1

7

to ensure that all numbers are homogeneous.

(3)

The input subsequently passes into the second state via an input gat .This input gate work to

sigmoid switch off unneeded input value items. It has a sigmoid function as activation, and it’s

output vector is the forget valve, which will applied to the old memory C_t-1 by element-wise

multiplication [14] . A sigmoid function outputs a value between 0 and.

(5)

The next step is the Forget Gate Loop. LSTM cells have an internal state variable added to

input data to create an efficient recurrence layer. This additional operation helps to minimize

the risk of vanishing gradients. The forget factor is:

(6)

This repetition loop is controlled via a forget gate that works the same as the input gate, and

helps the network learn state variables that should be “remembered” or “forgotten.” The last

step is an output layer tanh squashing function controlled by an output gate. It determines

which values are allowed as cell output.

(7)

8

CHAPTER 2

RELATED WORKS

A LSTM-RNN-based univariate model for demand-side load prediction was developed and

optimized by Salah Bouktif and his team. The model can accurately predict both short-term

ranging from a few days to 2 weeks and medium-term ranging from a few weeks to few months.

Bouktif introduces seven forecasting techniques in the field of energy prediction that represents

a range of commonly used machine learning approaches. The best model to analyze the

consumption data is used as the benchmark. Using France Metropolitan electricity consumption

data as a case study [3], Bouktif discusses wrapper and embedded feature selection strategies,

including the removal of recursive features, and additional regressor trees to validate the

significance of model inputs.

Upeka Somaratne, Anupiya Nugaliyadde, and Kok Wai Wong focus on models that can be

used to predict short-term, mid-term, and long-term electricity consumption for either a single

house or a block of houses. Their research compares ARIMA (Autoregressive Integrated Moving

Average), ANN, and DNN. RNN and LSTM measures are established by performing tests for the

public London Smart Meter dataset. Although ARIMA shows that short-term predictions perform

well, they do not perform well when compared to other models as duration increases. For short-

term prediction, RNN and LSTM have been shown to perform similarly to ARIMA, while

outperforming all other models in mid-term and long-term predictions [4].

Rahman and team have developed and optimized a novel Deep Recurrent Neural Network

(RNN) model with one-hour resolution. Imputation on an electricity usage dataset comprises

segments of missing values using the Deep Natural Network . The proposed models are used to

predict hourly electricity consumption for the Public Safety Building in Salt Lake City, Utah,

9

and aggregate hourly electricity consumption in residential buildings in Austin, Texas [5].

Kwok Shah and team have studied nine time series datasets to predict a building’s energy

consumption requirement, and the datasets are used in other forecasting areas such as economics,

quality management, stock market, and weather. These models can also be used in building

systems to detect faults over time [6].

10

CHAPTER 3

Data Source

The capabilities of Deep Learning Neural Networks suggest they are a good fit for time

series data. Neural networks can learn an arbitrary complex model from datasets and provide a

mapping relationship from input to output. Technically, available sequence contexts provided as

input may directly allow neural network models to learn both trends and seasonality. Long Short-

Term Memory (LSTM) can solve many time series tasks that are unsolvable by feed-forward

networks using fixed-size time windows, and the LSTM networks support efficient learning of

temporal dependencies [7]. In our study, we develop an LSTM model for multivariate time series

forecasting using Keras library as well as Pearson and Kendall correlation function. Adam and

Stochastic Gradient Descent (SGD) optimizers under various batch sizes (50,75, and 100) are

also tested and compared.

3.1 Dataset Description:

Our model has been tested on the Hourly Usage of Energy (HUE) Dataset for Buildings in

British Columbia, Canada. The HUE dataset contains donated data from residential customers of

BC Hydro, a Crown Corporation provincial power utility owned by the government and people

of British Columbia. A residential building with a three-year consumption history and a porthole

allowing a maximum three-year data download, including weather information, provides the

dataset [6]. The household data file consists of date, hour, and energy (kw/h) attributes, as shown

in Table 1, and weather data consisting of date, hour, temperature, humidity, pressure, and

weather attributes, as shown in table 2.

11

Table 1 : Residential file data (data, hours, energy_ kwt)

Table 2 : Weather dataset import using pandas.

3.2 Data Preparation for LSTM:

Basic data preparation constitutes the initial step before advancement to the LSTM

approach. Residential and weather files are merged, and based on date and hour, while NA values

are replaced with “not recorded” values. New dataset files are then created, totaling four-years

of hourly data, as shown in Table 3. The files are saved for merging both similar dataset files

based on date and time attributes, thus creating a new dataset file to predict power consumption.

12

The second step involves a LSTM dataset creation to frame the dataset as a supervised learning

problem and to normalize input variables. Supervised learning problems are employed to predict

power consumption at a given hour considering power consumption (kw/h) and weather

conditions during previous time steps. Pearson and Kendall's correlations are performed to find

a relationship between input variables and power consumptions. Corresponding heat maps are

also shown in Table 3.

Table 3: Four years of weather and energy data.

13

CHAPTER 4

ALGORITHM DESIGN

The LSTM algorithm based on multivariate steps have three main modules, namely data

reading, conversion, and LSTM modeling. The data conversion module changes the time series

dataset into supervised learning sequences and determines variable datasets with a predictive

value.

Algorithm 1 TransformData(dataF, i) in Data Set

Input: the input raw dataset dataF, a positive integer i

Output: the output transformed dataset dataO

1. Read files and merge to data

2. for each p dataF do
3. colData ←colData.add(p.name)

4. If dataF,column=null

5. Replace null with 0

6. end If
7. end for
8. dataF ← dataF [dataF [c o l u m n]]

9. dataO ← dataF .p[0 : new size i,]

10. reshape(dataO)

11. plot(dataO)

12. return dataO

In algorithm 1, the raw dataset consisting of household and weather files are passed and

transformed. The renders dataset is represented as data O in the algorithm. The algorithm steps from

14

line 1 and 2 read in the input datasets of weather and household consumption and merged them

based on a common column. This newly created dataset is checked and the null rows are

identified and replaced with estimated values in lines 3-6 . In line 8, the newly merged and

verified dataset is plotted to help visualize the data.

Algorithm 2 Multivariate LSTM Time Series

Inputs: Time series dataO

Outputs: RMSE of the forecasted dataO

1. X ← train

2. Y ← Validation

3. model = Sequential()

4. model.add(LSTM(no. of neurons), statefull=True))

5. model.compile(loss=’mse’, optimizer=’adam’)

6. for each p in range(totalepoches) do
7. model.fit(X, Y, epochs=i, shuffle=False)

8. model.reset_internalstates()

9. end for
10. return model

Make -step forecast

11. forecast_lstm(model, X)

12. yhat ← model.predict(X)

13. return yhat

14. # Perform validation on the testing data

15. for each p in range(totallength(testdata)) do

16. # make a step forecast

17. X ← testdata[p]

18. yhat ← forecast_lstm(model, X)

19. #Recording the forecasted data

15

20. predict.append(yhat)

21. expectdata ← test[i]

22. end for
23. MSE ← mse(expected_value, predictions)

Return (RMSE ← sqrt(MSE))

In algorithm two, we pass the dataset transformed from algorithm one, apply a multivariate

LSTM approach, and compute the Root Mean Square Error (RMSE) to evaluate the prediction

accuracy. Prepared training and testing data are passed to variables X and Y for lines 1 and 2.

Data preprocessing for the LSTM model is conducted from lines 3-5. Supervised learning is used

and defined by the neurons used in the input layers. The Mean Square Error (MSE) is used for

the model, and the Adam optimizer is chosen as a gradient. In lines 6-10, a model is fit and

checked for accuracy and data loss. The model runs to determine the total number of epochs and

find the training loss. The internal states of the model is refreshed and a final model is

constructed, The forecasting for multivariate data occurs in lines 11-13 . The square error means

between the expected and predicted values are computed as RMSE for evaluation purpose.

16

CHPTER 5

Experimental results

Following the preparation of a household dataset for the LSTM, three data

transformations are performed before fitting a model and making a forecast. Time series data

need to be made stationary by using lag =1 to remove an increasing trend. Data is subsequently

organized with a sliding window to capture previous time step observations in order to forecast

a current time step.

Normalization is conducted to address different input variable scales. The learning

problem is framed to predict energy consumption at the current hour (t) given energy

consumptions and weather conditions at a prior time step. The dataset is transformed using the

series-to-supervised () function.

Input values between -1 and 1 are normalized in order to meet the LSTM model’s default

hyperbolic tangent activation function. Table 4 shows the transformed data for the first six

records. Of interest is the impact of the weather conditions, temperature, humidity, and pressure

on electricity consumption.

Table 4 : Time series weather dataset consists of data (hours, temperature, humidity, pressure, weather, energy_kw/h, and var1(t))

17

On the other hand, from the below table, we compared different lag numbers (lag=1, lag=2, and

lag =5) to see the result of the different sliding window sizes. Training and testing loss decrease

as time lag increases. Whereas training and testing accuracy of model increases when time lag

increases. From table 5, it can be seen that lag 5 gives the highest accuracy and lowest loss.

Table 5 : Comparison of time lag (leg=1, leg 2& leg=5)with metric

Metric Lag=1 Lag=2 Lag=5
Train Loss 0.27197579580899245 0.27317812563894 0.264903220806492

Test Loss 0.2827653962881494 0.28460874373428713 0.28298440000462055

Train Accuracy 0.710730593607306 0.71175799086758 0.7324771689497717

Test Accuracy 0.6843821949347659 0.6920555341303509 0.7132445826276539

MSE 0.258064 0.253009 0.225625

Correlations:

Correlation is a bivariate analysis that measures the strength of association between two

variables and the direction of the relationship. A value of ± 1 indicates a perfect degree of

association between two variables.

A. Pearson :

We perform a Pearson Correlation between the input variable andthe electricity consumption

predictor and plot a heatmap. The Data Frame contains household data between 2012 and 2016

for a single weather station.

Pearson r correlation is the most widely used correlation statistic to measure the degree of

relationship between linearly related variables.

18

rxy =Pearson
r correlation coefficient between x and y
n = number of observations
xi = value of x (for ith observation)
yi = value of y (for ith observation)

As shown in Table 6, each matrix entry contain correlation value between a weather-related

variable and energy consumption for residential buildings.

Table 6 :Pearson correlation between variables

The heat map can demonstrate the correlation between various weather conditions and energy

consumption. A correlation function ̀ .corr` from pandas’ package is calculated, and a correlation

matrix is generated as shown in Figure 7. Blue means positive while yellow means negative, and

the stronger the color, the larger the correlation magnitude.

(9)

19

Figure 7: Heat map for Pearson correlation between variables

Blue indicates a positive correlation, and the darker the color, the stronger the correlation. Using

the heat map in Figure 7 as an example, if one wants to know the correlation between weather

and humidity, it can be seen that there is no correlation based on the value of -0.039. A correlation

between hours of the day and energy consumption is easily discerned. Humidity and temperature

show a negative correlation, meaning that as temperature rises, humidity decreases.

B. Kendall rank correlation(non- parametric):

The Kendall Correlation between the input variable and the electricity consumption

predictor along with the plotted heat map is displayed in Table 7. The Kendall rank correlation

(non-parametric) is an alternative to Pearson’s correlation (parametric) and is used to test

similarities in ordering data when quantities includerank. Other types of correlation coefficients use

observations as the correlation basis. Kendall’s correlation coefficient uses pairs of observations

20

and determines the strength of association based on the pattern of concordance and discordance

between pairs. The Kendall Correlation between weather variables (pressure, humidity, and

weather) and the electricity consumption predictor generates the heat map.

Table 7: Kendall correlation between dataset variables

Finally, inputs (X) are reshaped into the 3D format expected by LSTMs, namely samples,

timesteps, and features. The training and testing datasets have about 17K hours of data for

training and about 10K hours for testing.

Batch Sizes:

Batch size is one of the most important hyperparameters to tune as it defines the number of

samples propagated through a network. The smaller the batch, the less accurate the gradient

estimate will be. However, a smaller batch size means less memory and faster computation.

Practitioners often want to use a large batch size to train their model as it allows a computational

speedup from the GPU’s parallelism.

21

LSTM has 50 neurons in the first hidden layer and one neuron in the output layer in order to

predict energy consumption. The input shape is a one-time step with six features. A Mean

Absolute Error (MAE) loss function and an efficient Adam version of stochastic gradient descent

is used. Additionally, the experiment is conducted with three different batch sizes (50, 72, and

100) to indicate which batch size produces the best results with the least amount of loss and with

a high degree of accuracy.

Figure 8: Results for batch size 50 Figure 9: Results for batch size 72

22

Figure 10: Results for batch size 100

Explanation for These Different Batch Size:

As shown the Figure 8, 9 and 10, the blue line represents training loss, whereas the orange

line represents validation loss. The X-axis shows total epochs while the Y-axis represents the

training and testing loss during each period. As seen in Figure 8, maximum training loss is 0.14,

while extreme validation loss is 0.06 that reduce as epochs increase. Figure 9 shows that the

maximum training loss is 0.16, while the maximum validation loss is 0.08, which reduces as

epochs increase. Figure 10 shows that the extreme training loss is 0.20, while the maximum

validation loss is 0.08 that reduces as epochs increase. Based on the above observations, we

choose the lowest batch size of 50 for higher accuracy and minimal loss.

23

Table 8: The comparison of batch size vs metric.

Batch Size : 50
Metric Epoch1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50
Train Loss 0.1388 0.0489 0.0471 0.0475 0.0473 0.0471
Test Loss 0.0765 0.0495 0.0472 0.0475 0.0469 0.0468
Train
Precision

0.4158 0.5593 0.5604 0.5593 0.5586 0.5599

Test
Precision

0.5539 0.5535 0.5786 0.5714 0.5830 0.5666

Train
Recall

0.4736 0.6368 0.6368 0.6368 0.6368 0.6368

Test Recall 0.6045 0.6362 0.6362 0.6362 0.6362 0.6362
Train F1-
Score

0.4414 0.5954 0.5959 0.5953 0.5949 0.5960

Test F1-
Score

0.5774 0.5917 0.6060 0.6019 0.6084 0.5992

Batch Size 72
Metric Epoch1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50
Train Loss 0.1488 0.0482 0.0488 0.0469 0.0478 0.0473
Test Loss 0.0749 0.0478 0.0485 0.0472 0.0488 0.0467

Train
Precision

0.4045 0.5598 0.5609 0.5601 0.5608 0.5603

Test
Precision

0.5561 0.5674 0.5814 0.5437 0.5813 0.5461

Train
Recall

0.4581 0.6369 0.6369 0.6369 0.6369 0.6369

Test Recall 0.6051 0.6364 0.6364 0.6364 0.6364 0.6364

Train F1-
Score

0.4273 0.5954 0.5963 0.5959 0.5962 0.5957

Test F1-
Score

0.5792 0.5998 0.6364 0.5863 0.6076 0.5877

Batch Size 100
Metric Epoch1 Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50
Train Loss 0.2058 0.0495 0.0474 0.0475 0.0470 0.0472
Test Loss 0.1107 0.0485 0.0482 0.0467 0.0472 0.0477
fTrain
Precision

0.3065 0.5611 0.5598 0.5595 0.5602 0.5591

Test
Precision

0.5075 0.5629 0.5770 0.5740 0.5748 0.5768

Train
Recall

0.3545 0.6368 0.6368 0.6368 0.6368 0.6368

Test Recall 0.6222 0.6362 0.6362 0.6362 0.6362 0.6362

24

Train F1-
Score

0.3228 0.5963 0.5957 0.5954 0.5959 0.5952

Test F1-
Score

0.5572 0.5972 0.6051 0.6034 0.6038 0.6049

Table 8: The comparison of batch size vs metric

Metric Batch size 50 Batch size 72 Batch size 100
Train Loss 0.04713788243376365 0.048964687740

45575
0.04727578801
910933

Test Loss 0.04705696579071549 0.047919397405
24351

0.04876118863
434668

Train Precision 0.5670033688414586 0.544889911614
5965

0.56665826861
71684

Test Precision 0.5451831038141924 0.578264836737
3351

0.55985135630
27028

Train Recall 0.6346587823406202 0.634658782340
6202

0.63465878234
06202

Test Recall 0.6342992508323155 0.634299250832
3155

0.63429925083
23155

Train F1-Score 0.5985583281408162 0.585975862855
7806

0.59834799820
97399

Test F1-Score 0.5860141067765743 0.604796526770
3758

0.59433519731
93092

The above table shows the results of various batch sizes. Models are fitted with three different

batch sizes: 50, 72 and 100. The training loss for batch 72 is higher than that of batch size 50.

The test loss for batch 50 is the lowest and batch 100 has the highest test loss. Train precision is

the lowest for batch 72, and the testing precision value is the lowest for batch size 50. Recall

values for training and testing is the same for all batch sizes. The F1-score is the lowest for batch

size 50. It appears that smaller batch size results in less model loss.

25

Optimizers:

In order to reduce losses, optimizers are used to change the attributes of a neural network such

as weights and learning rate. We compare two popular optimizers, namely Stochastic Gradient

Descent (SGD) and Adam.

1) Stochastic gradient descent(SGD):

SGD is a first-order optimization algorithm using the first order derivative of a loss function. It

calculates how weights are updated in order to reach the minimum for function. Batch gradient

descent results in redundant computations for large datasets, as well as recomputes gradients for

repeated examples before each parameter update. SGD is usually much faster and can be used to

learn online. The example in the training group is randomly shuffled, and a learning rate η and

an initial vector of parameters w are chosen. This is repeated until the minimum is obtained.

2) Adam:

Adaptive Moment Estimation works with momentums of the first and second order. The velocity

should not be too high since the minimum could be jumped over. Adam integrates both RMSProp

and Momentum. Momentum (v) provides a short-term memory to the optimizer. Rather than

trusting the present gradient, preceding and current gradients are used to compute a ratio β1.[13]

RMSProp takes 1/square root of the gradient into consideration. It means that the optimizer takes

a larger step if the variance is small (confident), and vice versa.[13]

26

Table 10 : Comparison between optimizer Adam and SGD

Metric Adam SGD
Train Loss 0.04713788243376365 0.0553449156332642

Test Loss 0.04805696579071549 0.0528786680742177
05

Train Precision 0.5670033688414586 0.5785953706257964

Test Precision 0.5451831038141924 0.573666933453687

Train Recall 0.6346587823406202 0.6346587823406202
Test Recall 0.6342992508323155 0.6342992508323155
Train F1-Score 0.5985583281408162 0.6051398191277839

Test F1-Score 0.5860141067765743 0.6022044993939164

As demonstrated in the above table, the training and testing loss from ADAM is less than the

SGD optimizer. Train precision for Adam is greater compared to SGD. The testing precision of

SGD is slightly higher. The recall value for both training and testing data is equal.

Whereas F1-score is represented as:

 (10)

F1 score for both training and testing data for Adam optimizer is greater than SGD. Thus, Adam

optimizer seems to be the best choice for our model.

27

Figure 11: SGD Optimizer. Figure 12: Adam Optimizer

As shown in Figure 11, epoch=50, batch size=50, and optimizer =SGD/Adam. The X-axis shows

total epochs while the Y-axis represents the training and testing loss during each period. The

maximum value for training loss is 0.25 and the maximum value for validation loss is 0.23,

whereas (Figure12) the maximum training loss value is 0.14. The validation loss maximum value

is 0.06. Loss from Adam is much less than that of SGD. Adam is more accurate when compared

to SGD. We keep track of both the training and test loss during training by setting the validation

data argument in the fit() function.

28

Evaluation:

After the model fit, forecasting for the entire test dataset is performed. The Root Mean

Squared Error (RMSE) for the model is calculated using forecasted/predicted and actual values.

Where is the actual value of a point for a given period , n is the total number of fitted points

and is the fitted forecast value for the period . Train and test losses are printed at the end of each

training epoch. At the end of the run, the final RMSE of the model on the test dataset is printed,

and the model achieves a respectable RMSE of 0.214.

System Modifications:

Based on promising results, we convert the numeric energy consumption value to a categorical

value in order to achieve a better prediction result. The following rules are used:

High: if consumption kWh is greater and equal to 1.0

Medium: if consumption kWh is between 0.5 and 1.0

Low: if consumption kWh is less than 0.5

Table 11: Categorical energy consumption level

29

Table 12: Transformed dataset

Table 13: Pearson correlation.

Table 14: Kendall correlation

Numeric energy consumption is now changed to high, medium and low as categorical

variables. When the weather seems to be mostly cloudy, energy consumption appears to be high.

Most energy consumption occurs between 9:00 a.m. and 1:00 p.m.

30

Monthly Energy Consumption:

We also want to investigate how energy consumption changes with different months. To

determine that, the month is extracted from the date and a new month column is appended to the

dataset. The data shows that the people tends to use more electricity in cold months. It is probably

due to heating need.

Table 15: Month Column in the dataset

Table 16 : Month with energy consumption

31

Figure 13: Energy consumption versus months.

32

CHAPTER 6

Conclusion and Future Work

In the past decades, electric power systems (EPSs) have developed from physical

structures to smart grids with intelligent monitoring and control technologies. Governments and

power companies have installed smart meters in almost every home and building. In this thesis,

Deep Learning is used to create a predictive energy consumption system using the LSTM model.

With multivariate time series data, the LSTM model is employed to predict energy

consumption by building a model with historic datasets. Merging and preprocessing datasets in

order to fit the LSTM model is performed first. Then different batch sizes and two optimizers

are used and compared. The Adam optimizer and small batch sizes seem to result in higher

accuracy and less loss for both training and the validation dataset.

Correlations between various weather inputs and energy output are also studied using

Pearson and Kendall correlations. It is observed that when the weather is mostly cloudy, energy

consumption tends to be high. High energy consumption often happens in the morning, and

energy consumption is always at the highest during cold seasons.

33

References

[1] Bouktif, S., Fiaz, A., Ouni, A. and Serhani, M.A., 2018. Optimal deep learning lstm model for electric

load forecasting using feature selection and genetic algorithm: Comparison with machine learning

approaches. Energies, 11(7), p.1636.

[2] Nugaliyadde, Anupiya, Upeka Somaratne, and Kok Wai Wong. "Predicting Electricity Consumption

using Deep Recurrent Neural Networks." arXiv preprint arXiv:1909.08182 (2019).

[3] Rahman, A., Srikumar, V. and Smith, A.D., 2018. Predicting electricity consumption for commercial

and residential buildings using deep recurrent neural networks. Applied energy, 212, pp.372-385.

[4] Deb, C., Zhang, F., Yang, J., Lee, S.E. and Shah, K.W., 2017. A review on time series forecasting

techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, pp.902-

924.

[5] Mocanu, E., Nguyen, P.H., Gibescu, M. and Kling, W.L., 2016. Deep learning for estimating

building energy consumption. Sustainable Energy, Grids and Networks, 6, pp.91-99.

[6] Makonin S. HUE: The hourly usage of energy dataset for buildings in British Columbia. 2018 Sep 3.

[7] Graves, A., Mohamed, A.R. and Hinton, G., 2013, May. Speech recognition with deep recurrent

neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp.

6645-6649). IEEE.

[8] “Keras LSTM tutorial - How to easily build a powerful deep learning language model,” Adventures

in Machine Learning, 30-Oct-2020.

[9] Iea, “World Energy Outlook 2019 – Analysis,” IEA, 01-Oct-2020. [Online]. Available:

https://www.iea.org/reports/world-energy-outlook-2019.

[10] Chm, “Convolutional Neural Networks for Beginners using Keras and TensorFlow 2,”

LaptrinhX, 21-Apr-2020.

[11] H. Pokharna, “The best explanation of Convolutional Neural Networks on the Internet,” Medium,

28-Jul-2016.

34

[12] “CS231n: Convolutional Neural Networks for Visual Recognition,” Stanford
University CS231n: Convolutional Neural Networks for Visual Recognition. [Online].
Available: http://cs231n.stanford.edu/.

[13] Nokknock “ADAM in 2019 - What's the next ADAM optimizer,” Medium, 06-Oct-2020

[14] S. Yan, “Understanding LSTM and its diagrams,” Medium, 15-Nov-2017
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714.

	Deep Learning for Electricity Forecasting Using Time Series Data
	Recommended Citation

	pdf.pdf

