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ABSTRACT 

Human-robot collaboration (HRC), where humans and robots work together on specific tasks, is a 

growing part of smart manufacturing that entails artificial intelligence (AI) techniques in 

manufacturing processes. Robots need to be able to dynamically understand their working 

environments and human partners both accurately and quickly, as inaccurate or slow predictions 

can be dangerous to humans and collaborative tasks. To handle challenging environments, robots 

need to utilize commonsense knowledge (CSK), which is everyday knowledge about fundamental 

concepts, such as how basic objects interact with each other, what their properties are, and how 

they are associated. Human beings utilize CSK regularly, and robots can effectively collaborate 

with humans through it. This thesis outlines the fundamentals of CSK to provide prerequisite 

information and demonstrates how robots utilize it to collaborate with humans. The thesis also 

demonstrates the effectiveness of CSK and HRC through simulation studies and real-world 

human-robot collaboration experiments by deploying commonsense knowledge priorities and 

mathematical modeling for task optimization in robot action planning. Human-robot collaboration 

is compared with humans working without aid from robots. This thesis presents the results of this 

work along with a survey of relevant literature, as well as open issues for further research.  To the 

best of our knowledge, ours is pioneering work on proposing a specific approach based on 

commonsense knowledge for human-robot collaboration in smart manufacturing.  

Keywords: Artificial Intelligence, Big Data, Collaborative Robotics, Commonsense Knowledge, 

Human-Robot Interaction, Mathematical Modeling, Smart Manufacturing, Task Quality 

Optimization, Vehicle Assembly 
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THESIS TEXT 

1. Chapter 1: Introduction 

 

1.1. Background and Motivation 

Human-robot collaboration, where humans and robots work together on tasks, is an important part 

of manufacturing. Collaborative robots have a variety of benefits over traditional robots, such as 

being capable of working alongside human beings in the same space and being designated to 

handle multiple tasks [1]–[5]. Adding additional space for robots or getting multiple types of robots 

for multiple tasks increases costs, which can make using collaborative robots less costly. 

Additionally, collaborative robots supplement humans rather than supplanting them [6]. Robots 

need to be able to collaborate with humans easily and while planning for dynamic real-world 

situations [7]. Commonsense knowledge (CSK), which is understanding objects, their properties, 

and how they relate to and interact with each other, is important for human robot collaboration. 

Humans have commonsense knowledge due to life experience, such as knowing that icy ground is 

slippery and should be walked on carefully. Robots have a difficult time with acquiring and using 

this knowledge, but need it in order to collaborate with humans  [8]. 

 

1.2. Contributions of This Study 

This thesis presents information on commonsense knowledge and human robot collaboration, 

specifically focusing on how the two areas are connected.  This thesis also offers a simulated 

experiment demonstrating how commonsense knowledge can improve human-robot collaboration. 

This simulation involves a human and a robot collaborating to construct a vehicle from a given set 

of parts. Commonsense knowledge will be used to guide the robot’s actions so constructing the 
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vehicle is fast and simple for the human worker. In addition, this thesis displays how in person 

experiments confirmed the benefits of human robot collaboration for constructing a vehicle in the 

real world. 

 

1.3. Thesis Structure 

The thesis is structured as follows. First, prerequisite information about commonsense knowledge, 

human-robot collaboration and automated vehicles is presented in section 2. Afterwards, the 

proposed approach, the details of the methodology and the study’s limitations are outlined in 

section 3. From there, the experiments and their results are presented in section 4. Lastly, 

conclusions and future work are presented in section 5. The rest of this article is organized into 

these sections. 
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2. Chapter 2: Related Work 

 

2.1. Commonsense Knowledge 

Commonsense knowledge focuses on real-world entities, their connections and how they interact 

[8]. Commonsense knowledge is obvious to humans and can be used even if it does not relate to 

the current task. For example, human drivers, especially in New Jersey, know that if one deer runs 

in front of a car, there may be others nearby and they should remain careful. This knowledge is 

not directly related to driving, but it can still aid with driving more effectively. Adding this type 

of knowledge to robots is difficult due to the extensive prior training required [9]. Robots are far 

more competent with factual knowledge, such as weather patterns, but they have more difficulty 

with forming connections, such as thunder preluding lightning and heavy rain [9]. Another 

common example is that robots can identify types of vehicles, but humans can tell based on the 

way a person drives if they need to be careful of that person. Adding commonsense knowledge to 

machines will help robots perform nearly as well as human beings. 

Commonsense knowledge is used in various areas such as text understanding, computer 

vision and image processing, reasoning and planning [10]. Programs when comprehending texts 

typically handle individual words and short phrases, while CSK focuses on more of the entire 

passage, leading to greater accuracy [10]. Computer vision benefits from using commonsense 

properties such as continuously tracking objects even after they leave the frame in order to prevent 

surprises [10]. When robots work in real time environments, unpredicted events can occur. To 

handle these events, robots need to utilize commonsense reasoning, such as a catering robot not 

delivering a drink if the glass is empty. Robots are able to execute tasks more effectively with 

commonsense knowledge since they can handle corner cases more efficiently. 
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Commonsense knowledge bases (e.g. [8], [11], [12]) contain useful forms of knowledge. 

Semantics are defined as a specific field concepts, while pragmatics are defined as general 

concepts. An example of semantic knowledge is knowing the optimal foot position for a specific 

kick while pragmatic knowledge is knowing that continuously training outside in extreme heat is 

dangerous. Commonsense knowledge bases utilize both semantics and pragmatics. One 

knowledge base that uses CSK in the context of the Semantic Web is YAGO [13]. The Semantic 

Web attaches importance to words based on references to their context. YAGO is particularly 

effective not only due to having great breadth, it also utilizes multiple sources for knowledge, 

while many other systems only use one source [13]. YAGO gathers facts from sources such as 

WordNet, a knowledge base that connects related words, and Wikipedia, a well-known knowledge 

base that acts as an online encyclopedia [13]. Within YAGO, entities are connected to other entities 

through relationships and can be part of classes. Classes themselves can also act as entities, 

meaning classes can be related to each other and to other entities [13]. Relation instances can be 

connected to other relation instances to form connected relationships, such as the popularity of 

soccer players and the team they play for [13]. 

DBpedia is another substantial  knowledge base, with 10 million entities and 1.46 billion 

facts [14]. The knowledge database collects and structures data from Wikipedia in order to form 

its structure [14]. The system parses data from Wikipedia, extracts useful information and outputs 

that information into a data storage system [14]. Users maintain the information while information 

from Wikipedia is mapped to the DBpedia ontology [14].  DBpedia is designed to update 

information based on pages on Wikipedia changing, allowing the stored knowledge to remain 

relevant and up-to-date with current events [14]. 
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ConceptNet is another knowledge base that focuses primarily on connecting concepts and 

analyzing whole or major sections of texts while not focusing on determining the veracity of 

specific assertations [15]. ConceptNet’s nodes are short fragments such as “moving forward” and 

“front entrance.” Data analysis is made up of three phases. The first phase is the Extraction phase, 

where data is collected. The second phase is the Normalization phase, where data is normalized, 

i.e. words are made singular and determiners such as ‘the’ and ‘an’ are removed from syntactic 

constructs. The final phase is the Relaxation phase, where processing improves the network’s 

connectivity and minimizes semantic gaps. ConceptNet can be applied in various fields, such as 

providing relevant translations, helping with understanding conversations and providing the 

meaning of words in a specific context [15]. 

WebChild, an initiative at the Max Planck Institute for Informatics, Germany, is another 

contemporary commonsense knowledge base [9]. WebChild stores and extracts commonsense 

concepts, properties and relationships from the Internet. The knowledge base has concepts 

described based on their, corresponding real-world domain, similar concepts, physical parts if 

applicable, its related activities, its relevant properties and its usual locations. Suitable pictures of 

commonsense concepts are provided as well. WebChild also allows users to view these concepts 

through the WebChild commonsense browser [9]. A partial snapshot of the interface is shown in 

Figure 1. The interface describes a concept by providing a picture of that concept, what domain it 

is part of, activities the concept is associated with and other attributes [9]. WebChild provides an 

overview for various commonsense concepts and can be applied to real world applications, such 

as object recognition systems, in order to improve their commonsense capabilities. 
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Figure 1: Partial snapshot of the WebChild commonsense browser 

 

Translation tools are a frequently used knowledge base, demonstrated by the fact that 

Google Translate has over 500 million daily users, but are not without issues [16]. Translation 

tools often have trouble handling collocations, which are the correct form of colloquial 

expressions, such as ‘rat race’ instead of ‘rat rush’ [17]. Fixing unusual collocations can helps 

users search for information and with correcting errors in machine translated knowledge by using 

commonsense knowledge of collocations. CollOrder is a system that helps with that problem by 

detecting and correcting odd collocations [17]. CollOrder tags words by parts of speech and then 

searches its knowledge bases, which are made up of corrective native speaker English (e.g. the 

British National Corpus: BNC) collocations that correspond to the same parts of speech. CollOrder 

then ranks and filters suggestions and displays them based on their frequency. CollOrder can help 

users increase Google searches’ relevancy and help with developing writing aids for learns of ESL. 

Knowledge bases demonstrate how useful commonsense knowledge can be. 
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2.2. Human Robot Collaboration 

Collaborative robots, which are designed for human robot collaboration, have several 

advantages over traditional robots. Traditional robots require extra equipment and guarding, 

resulting in greater costs and less flexibility [3]–[5]. Traditional robots can also only handle a pre-

determined set of tasks, while collaborative robots can have the tasks they handle modified and 

expanded [1], [2]. In addition, collaborative robots support human strengths, such as judgement 

and adaptability, as they handle areas requiring strength and repetition [1]. 

 

 

Figure 2: Types of human-robot collaboration  

[Source: Icons for robot, human and part taken from “Noun project”, see Appendix A][1]. 

The four main types of human-robot collaboration are coexistence, synchronized, 

cooperation and collaboration [1]. Cell collaboration involves robots and humans working in 

entirely separate spaces and not interacting. Coexistence entails humans and robots working in the 

same space without interacting. Synchronized collaboration entails humans and robots working in 

the same space, but at different times. Cooperation entails humans and robots working in the same 

space at the same time, but on different tasks. Finally, full collaboration entails humans and robots 
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working on the same activities together. Full collaboration is not always the optimal form of 

collaboration; simpler forms of collaboration can be used in different situations. Human-robot 

collaboration is defined by various levels and can benefit companies. 

Human-robot collaboration is useful since it allows robots to primarily handle certain tasks 

in order to increase safety and productivity [5]. Some of the main tasks that robots usually handle 

are welding, assembly and paint spraying. Robots handling these tasks benefits both human 

workers and companies utilizing robots. Robot welding results in better products while keeping 

humans safe and providing them with a better work life. Robot assembly decreases costs and 

increases consistency while moving humans away from monotonous work. Robot paint spraying 

results in greater consistency and productivity while protecting human workers from needing to 

repeatedly spray paint, which is dangerous [5]. Human-robot collaboration benefits companies 

with better results and cheaper costs and benefits human workers with more safety. 

Robots need to be programmed to handle tasks, which involves programming them to react 

correctly to events in their environment and manage a sequence of waypoints [4]. However, this 

programming is time-consuming and often requires several iterations to create a sufficient system. 

Augmented reality makes testing a system easier through allowing an operator to see a simulation 

of the process and its results. The system would involve one operator handling a head mounted 

display, a camera, a hand-held input device and a wearable computer.  The wearable computer 

handles various functions, including detecting key fixed points, rendering graphics and processing 

events.  A tracking system follows the head mounted display and generates and places graphics in 

a 3D space based on operator actions. This allows the operator to simulate and view robot 

programming. Robot programming is around five times faster than traditional programming and 

operators find robot programming easier and more intuitive as well.  
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Programming commonsense knowledge in robots results into better performance since it 

connects spatial and temporal relationships between objects that make up activities [18]. 

Researchers at the University of Brennen, Germany are currently designing robot that utilizes 

commonsense knowledge for task execution. The system stores entities' 3D positions at a certain 

time in a four-dimensional vertex, providing the model with the positions of all objects at a certain 

time and a 3d image of the environment. The system also connects visual patterns detected from 

the image to spatial relations. For example, 2D and 3D shapes can be connected to objects’ size 

and distance. The system also allows for dividing tasks into simpler tasks that easier to handle. 

The commonsense knowledge features up this system make task execution easier for robots. 

 

Figure 3: Testing results for different types of robot cues [19]. 

 

When humans communicate with each other while working on tasks, they send out and 

rely on cues. For robots to collaborate with humans, they need to be able read signals from humans 

while providing their own cues to humans to increase coordination [19]. One type of cue is joint 

attention, where two entities look at the same area.  Researchers studied how different types of 
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gaze cues from robots would affect joint attention. For this study, a robot asked participants to 

move objects with different colors to boxes of different colors. The robot provided three types of 

cues: congruent cues by referencing an object and then looking at it, temporally incongruent cues 

by looking at an object before referencing that object, and spatially incongruent cues by 

referencing an object and then looking at a different object. For control, the robot provided no 

cues. Results indicated that congruent gaze cues were the most useful since they vocally referenced 

objects followed by gazing at that object. Humans were able to most quickly locate objects and 

felt the most competent with vocal cues. 

 

Figure 4: Testing results for different types of repair mechanisms [19]. 

 

Communication issues can occur when humans are cooperating, such as one person asking 

for more information, a person waiting and hesitating or a person incorrectly executing a task. 

When this occurs, people often repair issues by providing more information. Human robot 

collaboration can be improved by having robot provides these repairs when issues occur. A study 

tested how robots using different repair types would correspond to the total number of breakdowns 

in communication.  Repairs can either be non-existent, where the robot only provides additional 
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information once one task is completed, simple repair, where the robot only responds to yes or no 

questions and repeats instructions for other types of questions and humanlike repair, where the 

robot responds to questions in an appropriate, humanlike manner. Humanlike repair led to 

significantly fewer breakdowns and a better experience for participants. Adding humanlike 

communication to robots allows for better human-robot collaboration. 

 

Figure 5: Augmented reality cockpit interface [20] 

 

Human robot collaboration has grown more popular, with robots being used more 

frequently by non-specialist users [20]. Designing an effective interaction model is more important 

when working with non-specialists and video games can be used as a model. Video games provide 

information in a clear manner and are simple and enjoyable to control. An augmented reality 

cockpit interface demonstrates how a video game model works better than a virtual cockpit screen, 

which is the traditional model.  The virtual cockpit screen provides several data points and a top-

down view of navigation waypoints on a 2D screen. Rather than presenting the data in 2D, the 

augmented reality interfaced shows an outline of the aircraft along with live video from outside of 
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the airplane. Whereas the virtual cockpit demands that several areas be focused on, the augmented 

reality interfaces only requires focusing on two areas. By presenting information in the simple and 

clean manner that videos game do, robots can more effectively support humans. 

One of the parts of human robot collaboration that is most related to this thesis is that robots 

need to possess effective and customizable motion planning [21], [22]. Robots that can effectively 

plan are handle more tasks correctly with high productivity and low costs [23]. In order to aid 

planning, robots should have certain principles that determine their actions [24].  For example, 

robots should handle more dangerous objects so that humans are safer while assuring their actions 

follow the steps for the task. Robots can undertake actions that minimize a task cost determined 

from various real-world parameters while protecting human beings [24]. Implementing motion 

planning can improve human robot collaboration by aiding human workers while producing better 

results. 

Although CSK-based interaction and effective communication are occurring, humans 

ultimately need to trust robots, i.e. have faith in them to collaborate with them, which makes the 

concept of trust very important [24]. If human users overly trust a robot, there may be issues when 

it is given too many tasks to handle. If users insufficiently trust a robot, its productivity and 

usefulness will be reduced. Human trust in robots is a feature to be managed such that the robot is 

highly effective.  
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Figure 6: A robot removing objects from a table with a human collaborating: levels of trust  

(objects are bottle, can and glass, from left to right in each case) [Source: Icons of robot, human, 

bottle, can and glass taken from “Noun Project”, see References] 

The robot can either ignore trust or focus on it. Interactions illustrated in Figure 6 display 

the levels of estimated trust between a human and a robot, adapted as found from a recent study. 

In this figure, the different iterations show the probable action the human will take based on the 

robot's action, with more trust being provided the less risky the action is. For example, in order to 

build trust, robots can start with low risk tasks so that they are trusted for higher risk tasks. In a 

study within this area, researchers had a person and a robot cooperate to clean a table, with bottles, 

cans and wine glasses placed on it [24]. Robots that focused primarily on maximizing the reward 

removed the wine glass first, causing more human intervention. Robots that focused on trust 

removed bottles before attempting to remove the wine glass, which caused the humans to be less 

likely to intervene.  This would allow for removing the wine glass later when the human trusts the 

robot to do so. Detecting when a human is overly trusting a robot is important as well, and having 
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the robot intentionally mismanage a task can be used to regain the focus of a human collaborator. 

By managing trust correctly, robots can better help humans with various tasks. 

Robots use policies to determine what is to be done and where the actions are to be 

performed, based on the current world state. Robots are traditionally taught to handle tasks based 

on domain models and mathematical policies, but these approaches require defining the domain 

accurately. Domain experts are needed to develop domain-specific models. Rather than learning 

from experts or through precisely defined domains, robots can use learning from demonstration 

(LfD), where robots learn by watching another entity execute a task [25]. LfD is particularly 

beneficial since it does not require expert knowledge and ordinary people can demonstrate how to 

execute tasks. This makes LfD more flexible and intuitive than traditional robot teaching systems. 

There are several different LfD forms. The first is teleoperation, where the teacher operates the 

robot learner and the robot’s sensors save the inputs. The second is shadowing, where the teacher 

executes a task and the robot attempts to mimic the teacher's actions while recording the task. The 

third is imitation, where the robot watches a non-identical entity perform a task while recording 

the task through its own sensors or sensors on an operator. The major difference between 

shadowing and imitation is that the robot is attempting to execute the task when shadowing and 

only watching the task for imitation. The different forms of learning from demonstration can be 

utilized to help robots learn how to execute the respective tasks. CSK can help improve robot 

learning since the robot will learn how to adapt to new situations and make decisions in a manner 

similar to human beings. It would bring such systems closer to the thresholds of human cognition. 
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Figure 7: Workers using a robot vehicle that acts as a platform for tree fruit farming [26]. 

 

Human robot collaboration has been utilized in agriculture, which is important since more 

food will need to be produced as the global population is expected to reach 9.1 billion by 2050, 

with 70 percent of that population living in urban areas [26]. Global food production will need to 

increase by 70%, which is where agricultural robots can aid human workers. 

Robots are able to support human workers so they can be more efficient and this is 

demonstrated by a robot vehicle aiding with tree fruit farming [26]. The vehicles perform 

synchronized collaboration in Mule Mode and Pace Mode, where they assist with tasks while 

following workers, and perform tasks over a specified area, respectively. The vehicles in Scaffold 

Mode perform full collaboration, where the robot acts as a platform that humans can stand on for 

executing tasks. When compared to when human workers were using ladders to trim the trees, 

humans standing on the robots in Scaffold Mode were able to trim trees more than twice as quickly. 

Humans and robots can collaborate in order to increase food production, allowing for more people 

to have access to food. 
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2.3. Automated Vehicles 

Smart mobility is an application of human-robot collaboration, where a robot completely or 

partially handles driving a vehicle. Automation is defined by several levels [27]. Level 0 of 

automation is no automation, where cruise control is greatest degree of automation. The first level 

is driver assistance, where dynamic cruise control and lane assistance are provided. The second 

level is partial automation, where assistance is provided for both controlling speed and steering. 

Up until the third level, the driver is primary entity handling the vehicle. The third level is 

conditional automation, where the robot can drive under ideal circumstances. The fourth level of 

automation is high automation, where vehicles can perfectly handle known use cases by 

themselves, but require a driver for unknown cases. The final level is full automation, where the 

vehicle is able to drive itself under any conditions. Autonomy is defined at this level, since it is 

where the vehicle makes decisions consistently. 

Autonomous vehicles have uses cases outside of cars, as demonstrated by Unmanned Air 

Vehicles (UAV) developed by Brigham Young University [28]. Unmanned air vehicles are used 

due to their small size and inexpensive nature. However, they typically require a pilot. Brigham 

Young University’s UAVs are able to use autopilot to fly to a destination, while a human can 

provide instruction to the UAV if necessary. In order to reach their destination, the UAVs calculate 

a path made up of positions and times to reach each position. UAVs benefit from being able to fly 

continuously and not needing space for a person, further minimizing their size. They also do not 

need to be controlled by a handler due to their automated nature. 

Vehicles require their AI to see what is occurring, process that information and act 

accordingly in order for full automation to occur [29]. Vehicles can use commonsense knowledge 

in order to handle environment processing and decision making, especially when handling 
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unpredicted environments. Commonsense knowledge can aid with handling those issues [30], [31]. 

Since commonsense knowledge focuses on how objects are related to the context where they occur, 

it can be used to detect issues. For example, a vehicle's commonsense knowledge system knows 

that if another vehicle is quite close behind, the vehicle should move out of the way. Autonomous 

vehicles need utilize commonsense knowledge to analyze their environment in order to handle 

unpredictable situations safely. 

While autonomous vehicles are beneficial, their usage removes the feeling of driving from 

people [32]. Autonomous vehicles can provide interaction through reading human hand gestures 

in order to improve the driving experience. Reading voice commands is a potential approach, but 

it is not as effective since often driving environments are loud and words need to be picked up 

clearly. Gestures such as turning, lane changing, increasing speed, decreasing speed, orienting the 

car and canceling inputs can allow for interaction between the driver and an autonomous vehicle. 

At the same time, these simple gestures provide an enjoyable driving experience while reducing 

the task workload. In addition, the driver feels they have some control over the vehicle. Automation 

has some issues that need to be considered when it is being implemented within vehicles. Adding 

gestures can provide a sense of control for humans while maintaining safety. 
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Figure 8: CSK-based object detection determining the location of objects and their properties [31]. 

 

Object detection is quite important for vehicles and needs to be conducted accurately or 

else disastrous consequences can occur. In 2016, a Tesla vehicle incorrectly identified a truck as 

an overpass and collided with it [30], [31]. Commonsense knowledge along with modern object 

detection systems such as YOLO [11] can be utilized to track not only the locations of objects, but 

also their properties as displayed in Figure 8. In the previously described situation, commonsense 

knowledge would determine and store the properties of the truck and know that it was not an 

overpass. Storing information can be used to determine future issues, such as rain indicating the 

road will be slippery since roads can remain slippery for a while after rain stops. In addition, 

autonomous vehicles benefit from storing objects even after they disappear from view since there 

are still nearby the vehicle. Commonsense knowledge can help autonomous vehicles avoid 

dangerous issues. 
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3. Chapter 3: Proposed Approach 

 

3.1. Overview of Approach 

Commonsense knowledge encompasses pragmatics, which relates to general world knowledge, 

and semantics, which relates to context-specific knowledge. Pragmatic knowledge is often useful 

for corner cases that do not occur regularly. For example, if the power goes out in a factory where 

a collaborative assembly robot is working, the robot should stop its current task until being given 

new tasks. Otherwise, it could run into a person or object while lighting is limited. 

The main goal of this work is to determine how robots can support humans through 

utilizing commonsense knowledge while efficiently working. The two goals for robots 

collaborating with humans are as follows. 

1. Determine commonsense priorities that can support and protect humans. 

2. Determine commonsense priorities that can result in effective execution, especially in 

terms of minimal execution time. 

These two goals must be balanced since if too much focus is placed on effective execution, 

humans may have worse work lives while if too little focus is placed on effective execution, 

production will be significantly harmed. Because of this, determining a balanced set of 

commonsense priorities is critical. Safety is the most important priority; robots must handle tasks 

leading to minimal human risk. Other priorities include the weight carried, the distance traveled 

and the danger and fragility of the carried parts. Lastly, the total execution time is quite important. 
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Figure 9: Example of HRC in Vehicle Manufacturing 

 

Throughout this thesis, the term ‘parts’ will refer to the individual components used to 

create a final product by being combined in a pre-determined manner, while ‘object’ will refer to 

the assembled final product. These terms are used to explain how human robot collaboration for 

assembly occurs. For this human robot collaboration task, a human and a robot with one arm for 

grabbing objects will be cooperating to combine parts into an object. The robot uses commonsense 

knowledge in order to effectively select and move parts.  The robot prioritizes heavier parts since 

humans can more easily and more quickly carry light parts. Humans will also have more difficulty 

with heavy parts and will therefore move more slowly. The robot arm prioritizes moving towards 

parts that are further away so work is easier for humans. The robot arm prioritizes carrying 

dangerous parts since that will keep humans safer. For example, the robot arm should carry sharp 

parts so humans do not cut themselves. At the same time the robot prioritizes carrying parts that 

are more stable since humans are better at handling parts that are fragile. The four main premises 

commonsense knowledge premises are as follows: 

1. Humans prefer carrying lighter and closer parts due to ease 

2. Humans will carry heavy parts more slowly than light parts. 

3. Humans should handle less stable parts 
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4. Humans should not handle dangerous parts 

Stability is defined as how likely a part is to remain stable if dropped; a wood part is more 

stable than a glass part. Humans will handle heavy parts more slowly than light parts, especially if 

carrying heavy parts all day. Humans will find it extremely frustrating if a robot mishandles an 

unstable part and not trust the robot to handle parts in the future. To avoid this scenario, humans 

will handle less stable parts. Since safety is the most important, robots will handle parts that are 

more dangerous. 

The proposed approach for human robot collaboration is illustrated in Figure 8. There may 

be conflict between premises 3 and 4 occasionally. This framework for commonsense knowledge 

based human robot collaboration is defined as follows. First, human and robot execution affect a 

real world workspace. From there, task information is gathered from the workspace. That 

information is used to inform actor action analysis and a metric function, which are then combined 

into a cost function. The cost function in turn affects robot execution.  Because of these conflicts 

and the need to determine how to best fulfill the premises, mathematical modelling is used. 

 

Figure 10: Framework of proposed approach in object assembly 
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The human robot collaboration system uses the CSK premises in order to optimize vehicle 

construction, with initial parts being shaped into a final object. 

 

3.2. Details of Methodology 

The knowledge base developed in this thesis focuses on human and robot priorities for selecting 

parts based on their properties, such as their weight, size, distance (the sum of the distance from 

the arm and the distance from their final position), danger and stability. In order to follow the 

premise that humans prefer lighter and closer parts, the robot arm should prioritize heavier parts 

and parts that are further away. In order to fulfill the premise that robots should not carry unstable 

parts, humans will carry parts that are less stable. Lastly, in order to actualize the premise that 

humans should not carry dangerous parts, robots should handle parts that are more dangerous. 

The steps for arms handling parts are as follows. 

1. Arms lock onto a part and indicate to other arms that they done so to prevent other arms 

form locking onto the same part. 

2. Arms move to the part they have locked onto. 

3. Arms move the part they are carrying to the final position. 

Locking onto parts is used to indicate to other arms that a specified part is being targeted 

and that they should target other parts. From there, arms move to the parts they locked onto, grab 

them and then move to where they are supposed to be placed. This process is repeated until there 

are no remaining parts. An algorithm is used to define this behavior and is displayed below. The 

algorithm uses the real-time parts and their properties, and the arms’ positions and priorities in 

order to determine which parts to first select and how to move them to their respective final 

positions. 
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Each arm uses a scoring algorithm based on its position and the attributes of the remaining 

parts to determine which part to select. The scoring equations are as follows.  

𝑊𝑎(𝑠𝑝) =  (𝑚𝑖𝑛𝑎(𝑠𝑝) + 𝑚𝑒𝑎𝑛𝑎(𝑠𝑝) + 𝑚𝑎𝑥𝑎(𝑠𝑝))/3         − (1) 

𝑂1(𝑝) = ∑ 𝑟(𝑎𝑚𝑖𝑛) × 𝑊𝑎(𝑠𝑝) /(𝑎(𝑝))𝑡
𝑎=1                          − (2) 

𝑂2(𝑝) = ∑ 𝑟(𝑎𝑚𝑎𝑥)  × (𝑎(𝑝)/𝑡
𝑎=1 𝑊𝑎(𝑠𝑝))                                   − (3) 

𝑂(𝑝) = 𝑂1(𝑝) + 𝑂2(𝑝)                                                      − (4) 

The set of parts is defined as sp and the term a(p) refers to a specific attribute for the part 

p. Wa(sp) refers to the weighted average across the set of parts for a specific attribute, formed by 

averaging the set’s minimum value for that attribute, maximum value for that attribute and the 

average value for that attribute. R(amin) refers to an arm’s priority for minimizing a specific 

attribute and R(amax) refers to an arm’s priority for maximizing a specific attribute.  The series 

∑t
a=1 is the series of all measured attributes. There are currently four attributes being analyzed, but 

the system is customizable to permit adding other attributes. The relative attributes are important 

since the attribute of a part is compared against the weighted average for that attribute. The score 

is based on the priorities and values for attributes, including weight, danger and distance, so each 

attribute is finished.  

 For robot action planning, consider that humans and robots collaborate in the same workspace 

with the same set of parts denoted as P, and commonsense priorities denoted as C. Thus each P 

refers to a part such as wheel1, seat1 etc. while each C refers to a CSK priority such as distance, 

weight etc. Note that danger gets 1.5 times higher priority than the mean of all the other attributes. 

Here, C(danger) represents the CSK priority of this attribute while C(x) for x = 1 to m represents 

the priorities of each of the other attributes. Furthermore, 𝑃𝑖  represents the 𝑖𝑡ℎ part in the set P while 

𝑆(𝑝𝑖) represents the overall score for moving a part to its correct position. This score is calculated 
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by comparing the attributes of a part against the maximum and minimum values of the attributes of 

all the parts, along with the CSK priorities. 𝑃𝑠 represents the selected part while t represents the total 

number of parts. Thus, human and robot arms select their next part to move using Equations (5) to 

(7) herewith. 

𝐶(𝑑𝑎𝑛𝑔𝑒𝑟)  =
1.5

𝑚
∑  𝐶(𝑥)                               − (5)

𝑚

𝑥=1

 

𝑆 = {𝑆(𝑝𝑖) | 0 ≤ 𝑖 ≤ 𝑡 − 1}                                − (6) 

𝑃𝑠 = 𝑃(argmax(𝑆))                                              − (7) 

 

The following algorithms are used for task execution optimization in robot action planning 

and robot arm movement respectively.  
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Within the simulation, human movement speed is affected by the amount of weight being 

carried, so the simulation reflects this with the following formula. In the simulation, a person can 

either be un-encumbered, slightly encumbered, encumbered, or very encumbered. The variable E 

is used to represent how encumbered a person is and the variable v represents their normal velocity: 

when the person is unencumbered. V(Es) represents the velocity when slightly encumbered, V(E) 

represents the velocity when encumbered and V(Ev) represents the velocity when very 

encumbered. This knowledge will modify their movement speed for placing parts using the 

equations as follows. 

𝑣(𝐸𝑠) = 0.66 × 𝑣     − (8) 

𝑣(𝐸) = 0.5 × 𝑣          − (9) 

𝑣(𝐸𝑣) = 0.33 × 𝑣     − (10) 

These algorithms and equations are used for the execution of tasks in our proposed 

approach for human-robot collaboration. We now describe its experimental evaluation based on 

simulations. 
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4. Chapter 4: Experimental Evaluation 

 

4.1. Experimental Platform  

In order to determine optimal CSK priorities, the simulation was conducted with various robots 

priorities and with limitations placed on the robot priorities. Human priorities were determined by 

common sense and remained constant while robot priorities changed for different tests. The 

computer determined CSK priorities were tested against manually determined CSK priorities and 

simpler priorities. The CSK-based attributes corresponding to CSK priorities of distance, weight, 

danger and stability, and their ranges of values are depicted in TABLE I herewith, as coded in the 

KB and used in our experiments. The columns here indicate the CSK attributes. The first row 

defines the minimal human attribute values while the second row defines its maximal ones; the 

third row defines the maximal robot attribute values, and the fourth row defines its minimal ones.  

 

 Distance (cm) Weight (kg) Danger (Level Stability (Level) 

Min for Human 5 1 0 0 

Max for Human 600 55 30 30 

Max for Robot 700 60 30 30 

Min for Robot 10 2 0 0 

 

TABLE I:  COMPUTER DETERMINED PRIORITIES FOR HUMANS AND ROBOTS IN KB 

      The robot’s maximization priorities are designed to mirror the human’s minimization priorities 

and vice-versa. This allows humans to work with parts they prefer and are better at working with, 
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resulting in object assembly being faster, safer and more effective. Robots can then handle those 

parts that humans have more difficulty moving, such as heavy, large or fragile parts. 

The robot’s priority ranges are limited in order to support human beings. This allows 

humans to work with parts they are best at working with, resulting in faster object assembly. 

Robots can handle heavy or large parts more effectively than humans, and therefore robots will 

handle those parts. Figure 11 shows an example of car parts in their initial and final state with 

respect to our simulation experiments.  

 

Figure 11: Car parts in their initial and final state 

 

 

4.2. Task Description 

The tasks consisted of simulated human robot collaboration, with humans and robots combining 

vehicle parts into a vehicle. In order to determine optimal CSK priorities, the simulation was run 

with various robots priorities and with positive and negative limitations placed on the robot 

priorities. Human priorities were determined by common sense and remained constant while robot 
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priorities changed for different tests. The computer determined CSK priorities were tested against 

manually determined CSK priorities and simpler priorities. These simpler priorities include blank, 

where all priorities equal 0, closest, where all priorities except distance are equal to 0 and norobot, 

where only the human has priorities. When testing to determine the effectiveness of priorities, each 

set combined five different sets of parts 1000 times, with a total of 5000 executions. The attributes 

the human arm handled and the time were then average and stored. For the experiments, distance 

is measured in cm, weight in kg and time in seconds. Danger and stability are measured as relative 

levels. The exact combination of priorities is shown as follows in TABLE II. Note that we include 

the attribute “size” here since we initially defined it in the KB. However, we did not actually use 

the size of the parts within our simulation and in-person experiments so far. The other attributes, 

namely: distance, weight, danger and stability were used in the experiments conducted in this 

thesis. Addressing size of parts in the experiments remains an aspect of future work.  
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prioritiescsk

Distance Weight Danger Stability Size

0 0 0 100 0

100 100 50 0 100

100 100 150 100 100

0 0 0 0 0

prioritiescskv3

Distance Weight Danger Stability Size

0 0 0 50 0

0 250 100 0 0

100 150 100 0 0

0 0 0 0 0

blank

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

closest

Distance Weight Danger Stability Size

0 0 0 0 0

100 0 0 0 0

0 0 0 0 0

100 0 0 0 0
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TABLE II: LIST OF ALL PRIORITIES 

In addition, the objects to assemble ranged from simple to complicated, allowing the 

simulation to test the priorities on disparate sets of parts. Through this, a more general set of 

priorities could be determined. TABLE III depicts a list of all sets of attributes in the experiments 

as well as the specific attributes for each set.  

 

norobot

Distance Weight Danger Stability Size

0 0 0 50 0

150 150 75 0 0

0 0 0 0 0

0 0 0 0 0

combinationscsk

Distance Weight Danger Stability Size

0 0 0 0 0

100 250 100 0 0

0 100 150 50 0

50 0 0 0 0

combinationscskv3

Distance Weight Danger Stability Size

0 0 0 0 0

100 250 100 50 0

0 250 150 0 0

100 0 0 0 0

thesispriorities

Distance Weight Danger Stability Size

0 0 0 0 0

100 100 150 50 0

0 50 200 50 0

100 0 0 0 0
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Attributesv1

partid Label isbase Length Width Height Weight Danger Stability

0 wheel1 FALSE 3 2 3 10 3 2

1 wheel2 FALSE 3 2 3 10 3 2

2 wheel3 FALSE 3 2 3 10 3 2

3 wheel4 FALSE 3 2 3 10 3 2

4 vehiclebase TRUE 18 14 10 30 10 15

5 seat1 FALSE 4 4 5 5 2 4

6 seat2 FALSE 4 4 5 5 2 4

7 backseat FALSE 12 4 5 15 5 8

Attributesv2

partid Label isbase Length Width Height Weight Danger Stability

0 wheel1 TRUE 6 3 6 2 3 4

1 wheel2 TRUE 6 3 6 2 3 4

2 wheel3 TRUE 6 3 6 2 3 4

3 wheel4 TRUE 6 3 6 2 3 4

4 tire1 FALSE 9 3 9 3 3 6

5 tire2 FALSE 9 3 9 3 3 6

6 tire3 FALSE 9 3 9 3 3 6

7 tire4 FALSE 9 3 9 3 3 6

8 frontmirror FALSE 15 15 3 2 15 2

9 rearmirror FALSE 15 15 3 2 15 2

10 vehiclebase TRUE 54 42 30 15 10 15

11 vehiclebottombase TRUE 54 42 30 15 10 15

12 seat1 FALSE 12 12 15 7 2 4

13 seat2 FALSE 12 12 15 7 2 4

14 backseat FALSE 36 12 15 11 5 8

15 sunroof FALSE 21 21 6 7 15 2

Attributesv3

partid Label isbase Length Width Height Weight Danger Stability

0 wheel1 FALSE 12 3 12 10 3 4

1 wheel2 FALSE 12 3 12 10 3 4

2 wheel3 FALSE 12 3 12 10 3 4

3 wheel4 FALSE 12 3 12 10 3 4

4 vehiclebase TRUE 18 14 10 30 10 15

5 seat1 FALSE 12 12 15 5 2 4

6 seat2 FALSE 12 12 15 5 2 4

7 seat3 FALSE 12 12 15 5 2 4

8 front FALSE 12 30 30 15 8 10

9 back FALSE 20 30 30 15 8 10

10 roof FALSE 48 30 12 20 12 4
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TABLE III: LIST OF ALL SETS OF ATTRIBUTES AND ATTRIBUTES FOR EACH SET 

  

Attributesv4

partid Label isbase Length Width Height Weight Danger Stability

0 wheel1 FALSE 8 4 8 5 3 4

1 wheel2 FALSE 8 4 8 5 3 4

2 wheel3 FALSE 8 4 8 5 3 4

3 wheel4 FALSE 8 4 8 5 3 4

4 wheel5 FALSE 8 4 8 5 3 4

5 wheel6 FALSE 8 4 8 5 3 4

6 wheel7 FALSE 8 4 8 5 3 4

7 wheel8 FALSE 8 4 8 5 3 4

8 vehiclebase TRUE 50 14 10 30 10 15

9 seat1 FALSE 12 12 15 5 2 4

10 seat2 FALSE 12 12 15 5 2 4

11 seat3 FALSE 12 12 15 5 2 4

12 front FALSE 12 30 30 15 8 10

13 back FALSE 20 30 30 15 8 10

14 roof FALSE 50 30 12 20 12 4

Attributesv5

partid Label isbase Length Width Height Weight Danger Stability

0 wheel1 FALSE 3 2 3 15 3 2

1 wheel2 FALSE 3 2 3 15 3 2

2 wheel3 FALSE 3 2 3 15 3 2

3 wheel4 FALSE 3 2 3 15 3 2

4 vehiclebase TRUE 18 14 10 40 10 15

5 seat1 FALSE 4 4 5 10 2 4

6 seat2 FALSE 4 4 5 10 2 4

7 backseat FALSE 12 4 5 20 5 8
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In-person testing of human robot collaboration with commonsense knowledge has occurred 

as well. The CSK principles applied in the simulation were applied in the lab as well. For this lab, 

a model vehicle with four base parts and four wheels was used, as shown in Figure 12 below. 

 

Figure 12: Model vehicle used for vehicle assembly experiments 

 

The base parts are the cargo bed, the backseat, the front seat and the front, with the wheels 

being attached to the cargo bed and the front. A robot arm collaborates with a human to assemble 

the vehicle by grabbing the base parts and delivering them to the human. From there, the human 

attaches the wheels to the base parts. This division of labor is efficient since the robot cannot 

effectively handle the wheels while the human can attach the parts, and the robot can lessen the 

human's work by handling the base parts. The setup is shown below in Figure 13, and displays the 

experiments that occurred with a real robot arm. 
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Figure 13: Human-robot collaboration in vehicle assembly (snapshot of real lab demo) 

 

 

4.3.  Results Analysis  

In the simulation experiments, the average attributes the human handled and the average time are 

summarized in the following table, i.e., TABLE IV.  

 

TABLE IV: AVERAGED VALUES OF HUMAN ATTRIBUTES AFTER 5000 EXECUTIONS. 

These results display benefits of using CSK priorities for HRC. For example, in the csk 

row in Table IV, the human carries less weight (compared to blank, closest or norobot), lessening 

the impact on human stamina. Stamina is not an issue if work is only done for a minimal amount 

attributes distance (cm) weight (kg) stability danger time (s)

options

csk 516.5 41.9 24.5 21.1 35.6

cskv3 561.2 45 28.2 22.9 35.5

blank 561.7 48 26.9 26 36.7

closest 502.8 48.3 26.4 25.6 37.6

norobot 486.6 54.8 29.9 30.8 38.6

work 495.2 39.8 24.9 19 35.2

workv3 502.9 39.3 24.8 19.9 35.3
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of time, but if work is undertaken for hours at a time, stamina degrading will result in humans 

working slower. Having humans handle lighter parts will maintain stamina, and increase comfort 

as a bonus.  Most importantly, danger is lowered with CSK priorities, especially in combinationcsk 

(and its v3), hence enhancing human safety. Execution time is also found to be lower with CSK 

priorities in comparison to simpler priorities. While the human travels a greater distance in csk 

(compared to closest for example), that is less important than safety. The human also performs 

tasks more slowly since the closer parts are occasionally heavier and this causes humans to move 

more slowly. The performance is more optimal for combinationscsk and combinationscskv3 than 

for prioritiescsk and prioritiescskv3 (as shown earlier in TABLE II), since the values were 

determined algorithmically rather than by hand. The combinationscsk priorities represent the 

newest research for this thesis. Further optimization can be performed in future work. 

The in-person human robot collaboration proved to be beneficial as well. For the in-person 

experiment, robot and human handle parts in a predetermined and optimized order. Currently, all 

of the parts have a starting constant position, with the four base parts standing on the four corners 

of the white cardboard base in Figure 12, and the four wheels being nearby the human worker. The 

execution proceeds in the following order. 

1. Robot hands over cargo bed of truck to human 

2. Human attaches back wheel 1 and back wheel 2 to cargo bed 

3. Robot hands over truck back seat to human 

4. Robot hands over truck front seat to human 

5. Robot hands over truck front to human 

6. Human attaches front wheel 1 and front wheel 2 to truck front 
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Testing this assembly order showed that assembling the vehicle with aid from the robot 

makes the task easier than assembling it without assistance. While the task takes more time to 

complete with the robot's assistance, human stamina will remain higher for large-scale vehicle 

assembly execution, allowing humans to continue producing high efficiency and high quality 

work. Maintaining stamina becomes more relevant when in a large-scale setting, where a task is 

executed hundreds of times. Because of this, the human-robot collaboration outlined in these 

experiments is a significant contribution. 

 

4.4. Discussion on Evaluation 

The simulation results demonstrate that using commonsense knowledge for human robot 

collaboration makes work easier for humans while only slightly increasing the completion time in 

some cases. Humans are also safer since are carrying parts that are less dangerous on average. 

While work can be completed faster, oftentimes more danger is added, which can increase the 

chance of injury when tasks are frequently repeated. Having two humans collaborate to assemble 

the parts into a final object would be an option, but they would eventually become tired and work 

more slowly than a human and a robot collaborating. When tasks are repeated several times a day 

in a real scenario, avoiding tiredness is important, especially since it can help with preventing 

injury. Adding more aspects of commonsense knowledge can be even more effective than shown 

in the current simulation. 

The lab work led to relevant inferences as well. Our work proves that humans and robots 

guided by CSK can be efficient in task execution while valuing human safety and comfort by 

protecting humans. The robot arm is also capable of verbally greeting the human worker and 

informing the human worker when it has brought a base part to them. This provides a sense of 
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collaboration, which can be furthered by the human occasionally speaking to the robot. The robot 

arm made assembling the vehicle more efficient and effective. The lab experiments, even more so 

than the simulation studies, demonstrate task optimization in collaborative robotics, moving closer 

towards real executions for industrial vehicle assembly. This work contributes to smart 

manufacturing, in manner similar to other works of literature  [6], [33], [34]. 

 

4.5. Subject Evaluation 

There are no subjects for this study, due to the COVID-19 pandemic. The only experiments that 

have been conducted in this thesis are simulations or in-person experiments executed by the 

student and their committee advisors. 

 

4.6. Limitation of Study 

The study is limited due to the fact that the CSK system was only tested in the real world with one 

set of parts, where the parts' starting positions remained constant. However, results still appear 

conclusive that robots utilizing commonsense knowledge can help with improving human robot 

collaboration. The simulation also was not tested with complex sets of parts based on a real vehicle. 

Future work could remedy these issues. 
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5. Chapter 5: Conclusions and Future Work 

 

5.1. Conclusions 

This thesis surveys existing research on human robot collaboration, commonsense knowledge and 

autonomous vehicles, demonstrates the benefits and applications of human-robot collaboration, 

along with providing human-robot collaboration applications in manufacturing. The simulations 

display how human robot collaboration can be improved by applying commonsense knowledge, 

resulting in a better work environment for humans while retaining high efficiency. The in-person 

experiments display how the presented theory of applying commonsense knowledge to human 

robot collaboration is effective in practice. With the robot arm's assistance, assembling the vehicle 

has been made significantly easier. Applying human robot collaboration along with commonsense 

knowledge can help improve manufacturing. 

 

      In summary, the novel contributions of this thesis are as follows.  

1. Providing a solution for vehicle assembly with CSK priorities to balance robot execution 

and aid humans in HRC 

2. Mathematical modeling for robot action planning to provide task optimization 

3. Conducting simulation tasks along with lab experiments to prove that humans and robots 

guided by CSK can be efficient in task execution while valuing human safety and comfort 

by protecting humans, making them carry lighter parts, making the collaborative 

experience very pleasant etc.  

 



 

39 

      The work in the thesis has been published as research papers in the conferences IEEE 

IEMTRONICS 2020 (IEEE International IOT, Electronics and Mechatronics Conference) [35] and 

IEEE Big Data 2020 (IEEE International Conference on Big Data) [36], with the respective papers 

therein indicating different stages of the research. The paper on this work that appeared in IEEE 

IEMTRONICS received a best paper award in their Robotics track [37]. In addition, some part of 

the work has been submitted to a journal. The final outcomes of this thesis along with a detailed 

description on the approaches and experiments are in submission to another suitable journal.  

 

5.2. Future Work 

The simulation conducted in this thesis is modifiable, where more attributes can be added 

and modified based on the needs of the manufacturer. The system can be applied for larger and 

more complicated real tasks in the future. Currently, the arm used for in-person experiments does 

not detect the location of the parts; they are consistently placed in the same position. Future work 

can incorporate a detection system that would send the location of parts to the robot arm, which 

would then travel to the location and deliver the parts to a human worker.  

Additionally, future work would consider the important concept of trust along with 

commonsense knowledge within the realm of human-robot collaboration, with priorities changing 

as trust increases for greater optimization. This would augment human-robot collaboration for a 

more enhanced experience in contexts such as smart manufacturing. 

Furthermore, some experiments could be conducted in the future for subjective evaluation 

in real world human-robot collaboration. For example, this could consider factors such as the 

experience with in-person experiments being pleasant due to the conversation between the human 

and the robot. Other subjective evaluations could involve the manufacturing outcomes with respect 
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to their reception by the real world. Some of this future work could potentially entail contacting 

domain experts from the industry in smart manufacturing. Their inputs on real world experiments 

and feedback through surveys etc. would be valuable in further stages of the work emerging from 

this thesis, on a larger scale.  

In short, the future work emerging from this thesis is as follows.  

• Adding more attributes in the task execution.  

• Testing for larger and more complicated real world tasks. 

• Having the robot arm detect part positions. 

• Undertaking subjective evaluation experiments for real world human-robot collaboration. 

• Contacting people from the smart manufacturing industry. 

• Considering the concept of trust in human-robot collaboration, with priorities changing as 

trust increases for greater optimization.  

In general, this thesis deploys concepts from commonsense knowledge, proposes an approach 

based on that for human-robot collaboration and executes the approach in the application of vehicle 

assembly within the contexts of smart manufacturing.  Future work would provide further 

enhancements from all these perspectives, thereby making even stronger impacts on robotics and 

artificial intelligence.  
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APPENDIX A. THE NOUN PROJECT 

URL - https://thenounproject.com/ 

Man by Viktor Vorobyev from the Noun Project 

Robot by iconsmind.com from the Noun Project 

Cube (Part) by Noe Araujo from the Noun Project 

Glass by Gregor Cresnar from the Noun Project 

Can by S. Salinas from the Noun Project 

Bottle by AFY Studio from the Noun Project 
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