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ABSTRACT 

COMMUNITY-SCALE BEACH NOURISHMENT AND GROIN 

CONSTRUCTION DECISIONS ALONG HUMAN-MODIFIED COASTS: 

THE INTERPLAY BETWEEN SOCIOECONOMICS, COORDINATION, 

TOURISM, AND SHORELINE CHANGE 

by Arye M. Janoff 

In response to coastal erosion driven by storms, sea-level rise, and local gradients in 

sediment supply, communities defend their homes and maintain beach recreation by 

widening beaches via soft engineering (i.e., beach nourishment) or hard engineering (i.e., 

groins). Past research has found that, at regional scales, the net effect of these 

interventions has in many cases not only counteracted historically observed beach 

erosion, but has reversed erosional trends, on average shifting shorelines seaward. While 

groins trap sediments locally at and upcoast of the structure relative to the direction of 

alongshore transport, however, they often have adverse downcoast impacts, resulting in 

heightened erosion and forcing communities to respond with new engineering measures 

or by abandoning their beachfront properties. This research aims to understand the key 

drivers of community-scale coastal management decisions. Toward this, I developed a 

model that couples natural coastal dynamics (i.e., geomorphology) with the economics of 

beach management, which is used to compare different protection schemes to determine 

their economic consequences. In the first chapter, I explore the effect of inter-community 
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beach nourishment coordination, and find that coordination is most important 

economically for both communities when they have different property values because the 

less wealthy town tends to nourish more than necessary if they preserve their beach 

alone. In chapter two, I perform regression analyses with field data on community-scale 

nourishment, socioeconomics, and geomorphic conditions in New Jersey, and find that 

both a community’s beachfront wealth and its proportion of commercial property value 

(i.e., a proxy for its level of tourism) help explain its beach nourishment decisions. In 

chapter three, I employ the geomorphic-economic model in communities downdrift of a 

groin subject to heightened beach erosion, and find that the community’s beachfront 

property value and its size (a proxy for its tax base) help explain how (i.e., nourishment, 

groin, both, or neither) and when it will respond. In a scenario in which climate change 

causes shorelines to retreat more rapidly and the overexploitation of sand/rock resources 

dramatically increases its cost, less wealthy communities may be unable to keep pace 

with the changing conditions and instead abandon their properties altogether, leaving 

only the wealthiest homeowners along the coast. Furthermore, tourism-centric 

communities facing these threats may respond with different nourishment approaches to 

meet recreational demand compared to their residential-dominated counterparts. Finally, 

for communities subject to groin-induced erosion, it is possible that the historical 

transition away from groins to beach nourishment as the main management response over 

the last half century could be reversed in the future, and groins could again become the 

more commonplace approach as communities adapt to sea-level rise. Such divergent 

outcomes based upon wealth disparity, extent of a local tourism economy, and spatial 
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proximity to groin-induced erosion should be considered in future policy development at 

the state and federal levels. 

Keywords; coupled natural-human systems, coastal geomorphology, beach nourishment, 

groin downdrift erosion, spatial-dynamic feedbacks, geo-economics, game theory, coastal 

tourism, coastal management decisions. 
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BACKGROUND AND OBJECTIVES 
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 The New Jersey coast, spanning 127 miles from the northern barrier spit of Sandy 

Hook and the eroding bluffs of Monmouth County, through the central and southern 

barrier island complexes, to the headlands of Cape May is almost entirely developed with 

boardwalks and beachfront communities (Ashley, 1986; Dahlgren, 1977; Newell et al., 

1988). Summers at the Jersey Shore have been a mainstay for tourists from all over the 

state and world, touting some of the oldest seaside resorts in the country (Weiss, 2004). 

From these seasonal crowds have emerged various cultural landmarks such as the Stone 

Pony and Convention Hall in Asbury Park, Jenkinson’s Boardwalk in Point Pleasant 

Beach, Casino Pier in Seaside Heights, Steel Pier and the Casino Industry in Atlantic 

City, Lucy the Elephant in Margate City, Morey’s Pier and the tramcar in Wildwood, and 

the Victorian-style bed and breakfasts and Congress Hall in Cape May (Rosenberg, 2019; 

Simm, 2019). 

 These attractions and an increasing demand for beach vacation homes has led to 

widespread infrastructural development (Crossett et al., 2004). Communities were settled 

and incorporated to provide public services, and as the densely populated nearby urban 

centers of New York City and Philadelphia continued to grow in the first half of the 20th 

century, more people sought refuge from the urban heat in the cool sea breezes and in the 

waves on the Jersey Shore (Capuzzo, 2003). Eventually, the coastal system became 

heavily modified, with homes and promenades vying for the best ocean views lining the 

former foredune environments. Storms and coastal erosion were unplanned for and 

unmitigated, however, and rather than rethink these beachfront investments after 

suffering significant property damages, many of New Jersey’s communities sought to 



3 
 

 
 

protect their infrastructure through beach management, eventually requiring help from 

the State and Federal governments (Psuty and Ofiara, 2002; USACE, 2012). 

 Over the last half-century, the scale of these human interventions has grown ever 

larger, creating a unique and unknown system state: the urbanized coast. This effect, 

coined the “new-jerseyization” of the shoreline by Orrin Pilkey (Pilkey and Neal, 1992), 

describes a human-adapted system that behaves differently from its natural state, not only 

due to the loss of various natural components such as the dune, marsh, and maritime 

forest environments, but also due to the emergent feedbacks between the natural 

dynamics and human interventions (Nordstrom, 1994; Nordstrom and Jackson, 1995).  

 Living close to the ocean serves as an amenity, creating the base for local and 

tourist economies. There is an inherent desire to protect private and public infrastructure, 

including properties, roads, boardwalks, water and gas lines, sewers, stormwater 

infrastructure, communications systems, etc. (Johnston et al., 2014). Beaches and oceans 

have high recreational values, providing public goods and services for surfers, kite-

surfers, wind-surfers, swimmers, kayakers, scuba-divers, snorkelers, birders, sunbathers, 

and others (Ariza et al., 2014; Sano et al., 2011). In addition, many coastal homeowners 

conserve their properties for future generations, implying high bequest values (Silberman 

et al., 1992). Without question, humans are attracted to coastal life. 

Property owners and coastal managers have utilized soft and hard engineering to 

protect properties and to sustain beach recreation (Douglass and Krolak, 2008; van Rijn, 

2011). Soft engineering involves external sand placement, known as replenishment, 

nourishment, or beach fill, to widen beaches artificially (Hoagland et al., 2012). This 
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‘soft’ approach may require regular maintenance as sand spreads alongshore, however, 

resulting in the need for periodic re-nourishment (Landry, 2004; Smith et al., 2009). Hard 

engineering involves the construction of immovable objects, such as shore-perpendicular 

groins, which slow alongshore currents to deposit sediments locally at and updrift of the 

object (Kraus and Batten, 2007; Mestanza et al., 2018; Valsamidis and Reeve, 2017).  

 On aggregate, these practices have not only masked regional historical trends in 

coastal erosion but also led to net shoreline accretion in developed areas along the U.S. 

East and Gulf coasts, especially in New Jersey (Armstrong and Lazarus, 2019, Hapke et 

al., 2013). These geomorphic consequences have, in turn, capitalized into the coastal real 

estate market, which has necessitated further beach management (Armstrong et al., 

2016). Additionally, many high tourism zones such as Asbury Park, Long Branch, and 

Seaside Heights have benefitted in recent years from extensive coastal zone management, 

providing wider beaches for recreation and more investment in the hospitality and service 

industries (Psuty and Ofiara, 2002).  

Research on the outcomes of heavily developed coasts is still in its infancy and 

the key drivers of these system dynamics are relatively unexplored. Moreover, the range 

of feedbacks between private residential properties, commercial development, and natural 

geomorphological changes along the coast requires a deeper understanding. This 

dissertation will seek to address the interplay between the natural and human processes of 

heavily developed coasts, and more fundamentally, to identify the main factors that might 

help explain the cumulative evolution of such coupled systems.  
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We focus these efforts on both hard (i.e., groins) and soft (i.e., beach 

nourishment) engineering practices, on various community types (i.e., residential-

dominated vs. commercial-dominated), and on different spatial scales (i.e., single 

community vs. multi-community interactions). The research proposed in this dissertation 

can be divided into three main objectives: 

 

I. Objective 1: Explore the role of coordination between neighboring communities 

in how they choose their beach nourishment programs and the resultant 

geomorphic and economic consequences of decisions made jointly vs. 

independently 

II. Objective 2: Determine the interplay among socioeconomics, tourism, and 

geomorphology to understand how commercial vs. residential development 

controls community-scale beach nourishment decisions differently 

III. Objective 3: Couple geomorphology and socioeconomics to account for groin 

downdrift erosion and explore the key parameters that govern downdrift 

community responses in sediment-starved locations 

 

Taken together, this work will help to describe how a coupled natural-human 

system such as the New Jersey coast evolves over decadal to centennial timescales and on 

sub-regional to regional space scales. This dissertation research will also add to the body 

of knowledge on the dynamics of developed coasts with an array of human-scale 

components and intervention types that until now have been unexplored. More broadly, 
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this work will not only benefit our collective scientific understanding of coupled coastal 

system dynamics, but will also help to inform local managers, state planners, multi-state 

coalitions, federal policymakers, and flood insurance markets as we face more rapid sea-

level-rise rates and changing sand resource economic conditions associated with climate 

change in the future. 
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CHAPTER 1 – FROM COASTAL RETREAT TO SEAWARD GROWTH: 

EMERGENT BEHAVIORS FROM PAIRED COMMUNITY BEACH 

NOURISHMENT CHOICES 

 

 

 

 

 

 

 

 

The contents of this chapter appear in: 

Janoff, A., Lorenzo-Trueba, J., Hoagland, P., Jin, D., & Ashton, A. D. (2020). From 
Coastal Retreat to Seaward Growth: Emergent Behaviors from Paired Community Beach 
Nourishment Choices. Earth and Space Science Open Archive ESSOAr. 
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1.0 Summary 

Coastal communities facing shoreline erosion preserve their beaches both for 

recreation and for property protection. One approach is nourishment, the placement of 

externally-sourced sand to increase the beach’s width, forming an ephemeral protrusion 

that requires periodic re-nourishment. Nourishments add value to beachfront properties, 

thereby affecting re-nourishment choices for an individual community. However, the 

shoreline represents an alongshore-connected system, such that morphodynamics in one 

community are influenced by actions in neighboring communities. Prior research 

suggests coordinated nourishment decisions between neighbors were economically 

optimal, though many real-world communities have failed to coordinate, and the 

geomorphic consequences of which are unknown. Toward understanding this 

geomorphic-economic relationship, we develop a coupled model representing two 

neighboring communities and an adjacent non-managed shoreline. Within this 

framework, we examine scenarios where communities coordinate nourishment choices to 

maximize their joint net benefit versus scenarios where decision-making is uncoordinated 

such that communities aim to maximize their independent net benefits. We examine how 

community-scale property values affect choices produced by each management scheme 

and the economic importance of coordinating. The geo-economic model produces four 

behaviors based on nourishment frequency: seaward growth, hold the line, slow retreat, 

and full retreat. Under current conditions, coordination is strongly beneficial for wealth-

asymmetric systems, where less wealthy communities acting alone risk nourishing more 

than necessary relative to their optimal frequency under coordination. For a future 
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scenario, with increased material costs and background erosion due to sea-level rise, less 

wealthy communities might be unable to afford nourishing their beach independently and 

thus lose their beachfront properties.  

 

1.1 Introduction 

Beach nourishment involves dredging sediment from external sources to deposit 

locally in order to widen beaches (Hoagland et al., 2012; Lazarus et al., 2011; Smith et 

al., 2009). As the predominant form of beach maintenance along the U.S. east coast since 

the 1960’s, this practice has not only masked regional historical trends in coastal erosion 

but also led to net shoreline accretion in developed areas along the U.S. East and Gulf 

coasts, e.g. New York and New Jersey (Armstrong & Lazarus, 2019; Hapke et al., 2013). 

While communities or groups of communities often nourish on a local scale, these sudden 

increases in beach width are subject to heightened erosion due to alongshore and cross-

shore sediment transport, thereby diminishing the volume of sand placed by these 

communities over time and thus, the efficiency (sand lost relative to the sand added) of 

the nourishment project as well. When combined with neighboring actions, regional 

nourishment comprises a dynamical system (Ells & Murray, 2012).  

 Aggregate shoreline trends do not always explain community-scale nourishment 

choices, however. While many communities have widened their beaches since initiating 

maintenance activities, some have held their shoreline position (Hapke et al., 2013). In 

extreme cases, communities have lost individual properties or have abandoned entire 

municipalities (Kobell, 2014; Tischler, 2006). This range of outcomes highlights the 
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location-specific variability of beach nourishment decisions, potentially influenced by 

underlying differences in geology and socioeconomics that affect the efficiency or 

feasibility of nourishment projects, and necessitates a deeper analysis of the dynamic 

processes by which communities and coastlines interact, accounting for both human and 

natural components.  

Previous work found a positive feedback between coastal development and 

nourishment effort, whereby widened beaches add value to adjacent properties and 

compel future beach nourishments (Armstrong et al., 2016; McNamara et al., 2015). 

There is limited knowledge on what initially triggers this geomorphic-economic 

feedback, and what role, if any, the distribution of alongshore wealth might play in this 

feedback. Recent work has suggested that the level of coordination among coastal 

neighbors could partially explain these emergent outcomes (Gopalakrishnan et al., 2016; 

Smith et al., 2015).   

Many studies have explored the economic effects of coordinated vs. independent 

behavior (Brandts & Schram, 2001; Cason & Gangadharan, 2015; Gachter et al., 2017; 

Metzner et al., 2006), but research on its application to coastal dynamics is still in its 

infancy. Empirical studies in behavioral economics use rule-based games to explore how 

humans interact (Bohnet & Frey, 1999; Hoffman et al., 1996). In one such example, a 

public goods game, two players contribute toward a shared good, and enjoy that good 

regardless of their contribution levels. Each player may choose not to contribute but still 

enjoy the good, thus benefiting from the other player’s effort and maximizing self-utility. 

Contributors who compare their payoff to the “free-rider” often react by giving less out of 
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spite, resulting in an economically suboptimal outcome in subsequent rounds of the game 

(Cason et al., 2004).  

Beach nourishment interactions among coastal neighboring communities follow 

these economic dynamics, including feedbacks between human “players” and their 

natural environment. In response to geomorphic processes and background erosion, 

coastal communities actively maintain their beaches to protect nearby properties and 

infrastructure (Johnston et al., 2014), for recreational activities such as surfing, 

swimming, or sunbathing (Lazarow, 2007; Wagner et al., 2011), for providing ecosystem 

services including dune and intertidal habitats (Landry & Whitehead, 2015; Pompe & 

Rinehart, 1995), and for supporting local tourism economies (King, 1999).  

Properties adjacent to the beach capitalize these services into their value. A small 

but growing literature on hedonic pricing has shown that property owners benefit 

economically from local beach widening due to human intervention (Gopalakrishnan et 

al., 2011; Landry & Hindsley, 2011; Pompe & Rinehart, 1995). Ocean currents driven by 

waves redistribute this sand along the coast between neighboring communities, implying 

that beach nourishment is a quasi-public good where down flow communities cannot be 

excluded. Where communities border natural coast, tidal inlets, or other sinks for 

nourishment sand, these currents might also reduce the physical efficiency of 

nourishment projects by removing sand from the active beach system. Using a simplified 

game-theoretic framework, we explored how socioeconomic relationships drive 

nourishment decisions and how these management outcomes and their corresponding 
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nourishment efficiencies might differ if communities coordinate their beach maintenance 

programs or choose strategies independently. 

Historically, coastal communities have not coordinated their nourishment plans 

(Gopalakrishnan et al., 2016; Lazarus et al., 2011). Records of past beach maintenance 

projects indicate that local governments and private sponsors fund many such projects, 

most of which have occurred in New Jersey and Florida (Pilkey & Clayton, 1989; PSDS, 

2019). One example is Ocean City, NJ, which pumped sand onto its beaches more than 

30 times between 1952 and 1982 using city funds and a city-owned dredge (Pilkey & 

Clayton, 1987). Similarly, Captiva Island, FL states on their Erosion Prevention District 

website, “(the) residents and businesses on Captiva Island have successfully managed 

their beaches for over 50 years” (Captiva Erosion Prevention District, 2020). 

This decentralized behavior often has both local and non-local effects (Beasley & 

Dundas, 2018; Ells & Murray, 2012; Goodrow & Procopio, 2018; Hillyer, 1996), and 

Gopalakrishnan et al. (2016) suggest this has resulted in narrower beaches due to the 

effort-reducing feedback described earlier, leading to an economically suboptimal 

outcome to alongshore coordination. In other words, cooperation amongst communities 

represents their economically optimal solution. Further, there is no incentive for 

communities acting alone to increase their nourishment effort because doing so would 

mean they would lose more sand from their beach due to the higher angle formed by their 

seaward protrusion, effectively reducing their nourishment project’s physical efficiency 

as well. These historically uncoordinated beach nourishments may have caused 

accidental geoengineering of the coastal system that differs from the natural dynamics 
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resulting in narrower beaches (Smith et al., 2015). Indeed, Armstrong et al. (2019) and 

Hapke et al. (2013) detected this anthropogenic signature, finding that beaches along the 

US east coast have accreted seaward since beach nourishment began in earnest in the 

1960s.  

While anecdotal evidence indicates that communities have exhibited 

uncoordinated behavior, intuition from game theory and past research would suggest that 

this behavior results in narrower beaches. Yet, the outcome of widened beaches is both 

observable and quantifiable; which suggests the question: is uncoordinated or coordinated 

beach nourishment the cause of this coastal-anthropic signature? Perhaps it is not 

mutually exclusive but depends on certain conditions. If so, what are the underlying 

conditions that drive cooperation? 

In this paper, we construct an idealized modeling framework that couples cross-

shore and alongshore geodynamics with changes in coastal property values, and we 

explore how community-scale economic characteristics control beach nourishment 

decisions. We speculate that the property value distribution between coastal neighbors 

determines the importance of coordinating nourishment plans, and that alongshore wealth 

asymmetry could control the emergent system behaviors. These differences could explain 

the broad array of outcomes along the U.S. East and Gulf coasts, ranging from seaward 

growth to retreating shorelines, and they could provide insight into the key drivers of past 

coastal behavior. 

 It will be especially important to understand the future evolution of these heavily 

developed coasts under different coordination schemes when faced with more extreme 
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conditions, including more rapid sea-level-rise rates and higher sand resource costs for 

completing beach nourishment projects. Exploring how these future changes might affect 

community- and regional-scale behaviors using our geo-economic framework could help 

address these knowledge gaps, and inform coastal policymakers and managers dealing 

with unique challenges associated with global climate change. 

 

1.2 Mathematical Framework 

We explore beach nourishment decisions for two alongshore-neighboring 

communities with an idealized geometry as depicted in Figure 1.1. The model domain 

includes neighboring communities i=1,2 that can nourish and an alongshore-adjacent 

boundary region i=3 that cannot nourish, each with alongshore length si. Each 

community has an average shoreline location xS,i and shoreface toe location xT,i. The 

geometric relationship comprising these boundaries along with the depth of closure 

(shoreface depth) D form the shoreface slope θi: 

𝜃𝜃𝑖𝑖(𝑡𝑡) = 𝐷𝐷
𝑥𝑥𝑇𝑇,𝑖𝑖(𝑡𝑡)−𝑥𝑥𝑆𝑆,𝑖𝑖(𝑡𝑡)

.            (1.1)  

The property setback xH,i  delineates the community’s seaward limit, and along with its 

shoreline, bounds the community’s beach width wi, i.e., wi = xS,i – xH,i. Given this 

idealized geometry, we can describe the system with two state variables per alongshore 

community: the location of the shoreline xS,i  and the shoreface toe xT,i. 
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Figure 1.1. (a) Model setup planview, (b) cross-section illustrating beach nourishment, 
and (c) the alongshore and (d) the cross-shore transport that occurs due to this seaward 
protrusion. 
 

To describe the dynamics of this system, we account for both natural processes, 

including cross-shore and alongshore sediment transport, and human processes, including 

beach nourishment practices. Communities respond to a background erosion rate γ by 

nourishing their beaches with a fixed nourishment width xN,i, with the human intervention 

thus forming a shoreline protrusion. A low-angle wave climate flattens these beach 

nourishments via natural processes. Alongshore sediment flux qL,i is directed from 

seaward-relative communities to landward-relative communities, with an alongshore 

distance between communities (si + si+1)/2. We highlight a representative example of the 
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flux direction between communities in Figure 1, but in theory the alongshore transport 

can occur in either direction depending on the shoreline’s configuration.  

The boundary cell represents a natural coastline in which no nourishment occurs. 

A periodic boundary condition at the edges of the system domain means that any 

sediment leaving the system at one boundary re-enters at the other boundary. When one 

or both communities nourish, sediment from these protrusions transports alongshore from 

the communities to the boundary cell, which therefore serves as a sediment sink for 

nourishment sand. Nourishment events at the shoreline also trigger cross-shore sediment 

flux qC,i due to the over-steepened shoreface slope, directing sand from the shoreline to 

the shoreface toe. The balance between the volume of nourishment sand and the sand lost 

alongshore to the boundary cell, cross-shore to the toe, or removed from the system due 

to background erosion determine the physical efficiency of the nourishment project. 

 A two-community system with a boundary cell is analyzed here. The governing 

equations are presented in general form allowing an extension to n communities. We 

characterize the geometry of each community (and the adjacent boundary coast) with the 

average shoreline location xS,i and shoreface toe xT,i, which allows us to describe the 

evolution of the system using six ordinary differential equations.  

We present these geodynamics in the first section below, followed by the 

coupling between physical processes and community behaviors. We then discuss the 

control problem by which communities choose nourishment actions, and we propose a 

numerical solution to this problem. 
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1.2.1 Beach and Shoreface Morphodynamics 

We compute the alongshore-averaged component of sediment flux qL,i using the 

difference in average shoreline locations xs,i – xs,i+1 between neighboring communities i 

and i+1: 

𝑞𝑞𝐿𝐿,𝑖𝑖(𝑡𝑡) = 𝐾𝐾1 ∙
�𝑥𝑥𝑆𝑆,𝑖𝑖(𝑡𝑡)−𝑥𝑥𝑆𝑆,𝑖𝑖+1(𝑡𝑡)�

(𝑠𝑠𝑖𝑖+𝑠𝑠𝑖𝑖+1)/2 
,           (1.2) 

where K1 is the alongshore flux coefficient. This equation, which assumes the low-wave-

angle case for a standard CERC formula (Coastal Engineering Research Center, 1984), 

represents an average alongshore flux between each community based on the angle 

formed by the two shoreline locations. This shoreline angle controls both the magnitude 

and the direction of alongshore sediment transport, given by equation 1.2.   

 Widening a beach via nourishment steepens the beach’s slope (i.e., shoreface) 

relative to its equilibrium profile (Dean, 1977, 1991; Miselis & Lorenzo-Trueba, 2017), 

which triggers cross-shore sediment transport. The shoreface flux qC,i is the cross-shore 

component of sediment transport based on its slope θi relative to its equilibrium profile 

θeq: 

𝑞𝑞𝐶𝐶,𝑖𝑖(𝑡𝑡) = 𝐾𝐾2 ∙ �𝜃𝜃𝑖𝑖(𝑡𝑡) − 𝜃𝜃𝑒𝑒𝑒𝑒�,            (1.3) 

where K2 is the shoreface flux coefficient. When the shoreface is steeper than its 

equilibrium profile (i.e., θi > θeq), sand moves from the upper shoreface to the lower 

shoreface, whereas the opposite is true if the shoreface has a milder slope than its 

equilibrium profile (i.e., θi < θeq).  
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 Changes in shoreline position xS,i are computed using the discretized ordinary 

differential equation Δxs,i/Δt for each cell: 

 ∆𝑥𝑥𝑆𝑆,𝑖𝑖(𝑡𝑡)
∆𝑡𝑡

=
2 ∙ �𝑞𝑞𝐿𝐿,𝑖𝑖−1(𝑡𝑡)−𝑞𝑞𝐿𝐿,𝑖𝑖(𝑡𝑡)�

𝑠𝑠𝑖𝑖
− 4∙𝑞𝑞𝐶𝐶,𝑖𝑖(𝑡𝑡)

𝐷𝐷
− 𝛾𝛾 + 𝑁𝑁𝑖𝑖�𝑥𝑥𝑁𝑁,𝑖𝑖,𝑅𝑅� ,  (1.4)  

where qL,i and qC,i are given by equations (1.2) and (1.3)1. The nourishment term Ni is a 

function representing intermittent nourishment with a fixed cross-shore width xN,i and 

rotation length Ri (time interval between periodic nourishment) (Smith et al., 2009).  

 We assume the nourishment function Ni to be discrete in order to capture the 

time-specific costs of each sand placement. Nourishment events occur when the time 

function equals a multiple j of the rotation length Ri with a subsequent cross-shore 

magnitude xN,i: 

𝑁𝑁𝑖𝑖∗(𝑡𝑡,𝑅𝑅𝑖𝑖) = �𝑥𝑥𝑁𝑁,𝑖𝑖;     𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑅𝑅𝑖𝑖 ∙ ∑ 𝑗𝑗ℎ𝑖𝑖
𝑗𝑗=1

0;        𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 ,         (1.5) 

where hi is the number of nourishment episodes per community. We only apply the 

nourishment term Ni in equation 1.4 for interior communities who nourish. The term Ni is 

set to zero in the boundary cell i = 3, which represents a natural nearby coastline.  

 
1 The ordinary differential equation for the shoreline location is based on previous work that has tested the 
effect of alongshore (Ashton et al., 2006a, 2006b) and cross-shore (Dean, 1977, 1991) dynamics on 
shoreline changes using field observations. Given that this framework assumes both alongshore and cross-
shore mass balance, the numerical solution is grounded in the principles of physics as employed in previous 
literature (Falqués, 2003; Williams et al., 2013). Finally, the numerical solution for the shoreline was also 
validated using the analytical solution for a simplified version of this ordinary differential equation for one 
community (see Kraus and Batten, 2007), and the two solutions were found to be in agreement.  
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A second discretized ordinary differential equation ΔxT,i/Δt simulates the 

evolution of the shoreface toe location xT,i as a function of the cross-shore sediment flux 

qC,i, the shoreface depth D, and the background erosion rate γ: 

∆𝑥𝑥𝑇𝑇,𝑖𝑖(𝑡𝑡)
∆𝑡𝑡

= 4∙𝑞𝑞𝐶𝐶,𝑖𝑖(𝑡𝑡)
𝐷𝐷

− 𝛾𝛾.            (1.6) 

These geodynamics can then be used to describe the physical efficiency of the 

nourishment projects, or in other words, the volume of sand retained in the beach system 

relative to the volume of sand pumped onto the beach via nourishment activities. We 

track the volume of sediment lost from the nourishment projects qLoss in both 

communities based on the cross-shore flux qC, the alongshore flux qL and the background 

erosion rate γ: 

𝑞𝑞𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) = (𝑠𝑠1 + 𝑠𝑠2) ∙ 𝐷𝐷𝑇𝑇 ∙ 𝛾𝛾 + 4 ∙ �𝑠𝑠1 ∙ 𝑞𝑞𝐶𝐶,1(𝑡𝑡) + 𝑠𝑠2 ∙ 𝑞𝑞𝐶𝐶,2(𝑡𝑡)� + 2 ∙ 𝐷𝐷𝑇𝑇 ∙

�𝑞𝑞𝐿𝐿,3(𝑡𝑡) − 𝑞𝑞𝐿𝐿,2(𝑡𝑡)�.             (1.7) 

The total volume of sand lost over the course of a model run VLoss is the integration of this 

qLoss through time: 

𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ∫ 𝑞𝑞𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡) ∙ 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓
0 ,           (1.8) 

where tf is the planning time horizon.  

The total volume of sand added by the nourishment projects VNourish is the discrete 

sum of all nourishment volumes based on the cross-shore project widths xN,1 and xN,2, and 

the rotation lengths R1 and R2 in communities one and two: 
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𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ = 𝐷𝐷𝑇𝑇
2
∙ �𝑡𝑡𝑓𝑓∙𝑥𝑥𝑁𝑁,1∙𝑠𝑠1

𝑅𝑅1
+ 𝑡𝑡𝑓𝑓∙𝑥𝑥𝑁𝑁,2∙𝑠𝑠2

𝑅𝑅2
�.         (1.9) 

The efficiency of the nourishment project E can then be determined by the 

balance between the volume nourished VNourish and the volume lost VLoss: 

𝐸𝐸 = 𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ
𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ+𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

.          (1.10) 

 

1.2.2 Economic Model 

The system’s physical components feed into a socioeconomic framework used to 

compare the outcomes of different nourishment choices (i.e., rotation lengths). Toward 

this end, beaches are assumed to provide both protective and recreational benefits for 

coastal communities (Jin et al., 2015; Landry et al., 2003; McNamara & Keeler, 2013; 

McNamara et al., 2015; Pompe & Rinehart, 1995, Simmons et al., 2002). When 

analyzing the benefit for the whole community, we assume that an average beach width 

borders all beachfront homes in the community with an average property value. We 

assume that each community is the relevant decision-maker.  

The value of beach width wi is capitalized into the benefit function Bi for 

community i as: 

𝐵𝐵𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖 ∙ 𝜌𝜌 ∙ �
𝑤𝑤𝑖𝑖(𝑡𝑡)
𝑤𝑤𝛼𝛼

�
𝛽𝛽

,                              (1.11) 

where αi is the baseline property value that includes all of a home’s amenities except for 

that of the beach’s width (i.e., the number of bedrooms/bathrooms, square footage, lot 
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acreage, etc.) as well as the number of alongshore properties per community, ρ is the 

discount rate that weights future vs. present values and can be interpreted here as the 

capitalization rate through time, and wα is the baseline width beyond which the beach 

adds value to the front property.  

Note that 𝛼𝛼𝑖𝑖 ∙ 𝜌𝜌 is the baseline rental value or capital added per unit time for the 

average home in community i. The positive parameter β describes the effects on Bi of unit 

changes in beach width. The sum of all property values in a community represents the 

community’s total wealth. Assuming each community has the same number of homes, the 

difference in average property value reflects the difference in total wealth between 

neighboring communities. This relationship, therefore, captures how beach 

morphodynamic processes affect a community’s level of wealth.  

In addition to the benefits of widening a beach, communities incur a cost for their 

nourishment project Ci based on the fixed cost cf (for permitting, equipment, labor, etc.) 

and the variable cost ϕN (i.e., volumetric price of sand resource): 

𝐶𝐶𝑖𝑖(𝑡𝑡) = 𝑐𝑐𝑓𝑓 + 𝜙𝜙𝑁𝑁 ∙
1
2
∙ 𝑥𝑥𝑁𝑁,𝑖𝑖 ∙ 𝐷𝐷 ∙ 𝑠𝑠𝑖𝑖 ,                (1.12) 

where nourishment volume is a triangular prism formed by the cross-shore width xN,i, the 

depth of closure D, and the alongshore project length si (Figure 1.1). Non-nourishing 

communities do not incur any costs, i.e., Ci = 0. 
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1.2.3 Optimization: Nourishment Rotation Length for Coordination and Non-

Coordination 

We define the net benefit NBi as the sum of continuous benefits Bi (Equation 

1.11) and discrete costs Ci (Equation 1.12) discounted by a representative rate ρ over a 

planning time horizon tf: 

𝑁𝑁𝑁𝑁𝑖𝑖 = ∫ 𝐵𝐵𝑖𝑖(𝑡𝑡) ∙ 𝑒𝑒−𝜌𝜌∙𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓
0 − ∑ 𝐶𝐶𝑖𝑖,𝑗𝑗(𝑡𝑡)

(1+𝜌𝜌)𝑡𝑡
ℎ𝑖𝑖
𝑗𝑗=1  .                  (1.13) 

We simulate two levels of coordination:  jointly optimized rotation lengths 

(coordination), and independently optimized rotation lengths (non-coordination). Under 

non-coordination, each community i independently maximizes its net benefits NBi as 

follows:  

max
𝑅𝑅𝑖𝑖

𝑁𝑁𝑁𝑁𝑖𝑖 .           (1.14) 

We explore two end-member assumptions and present one as a representative 

decentralized case. For one end member scenario, a community choosing its nourishment 

strategy independently assumes its neighbor will not nourish, which is a cautionary 

assumption. This might cause the community to nourish more frequently than necessary 

and may be suboptimal, but at least the community can avoid under-nourishing its beach 

and potentially losing beachfront properties. While this assumes that communities cannot 

observe what their neighbor is doing, which represents a limited setup that simplifies the 

problem of non-cooperation, we use this scenario as a baseline analysis because it is the 

most conservative assumption a community can make. For the other end member 
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scenario, a community assumes its neighbor will nourish with high frequency, which is a 

risky assumption because it could lead to more instances of beachfront property loss. The 

risky end member is included in the chapter 1 appendix. 

Under coordination, both communities share their management decision by 

choosing the optimal rotation lengths that maximize the sum of their net benefits:  

max
𝑅𝑅1,𝑅𝑅2

∑ 𝑁𝑁𝑁𝑁𝑖𝑖2
𝑖𝑖=1                       (1.15) 

Coordination implies both communities have full information about their neighbor’s 

behavior, and thus represents the socially optimal solution. There are cases in which 

communities might find it individually net beneficial to deviate from their socially 

optimal solution, however, unless a cost-sharing arrangement exists. 

 In all cases, communities commit to the nourishment rotation lengths yielded by 

equations (1.14) or (1.15) until the end of the model run, similar to a real-world 

community’s contractual obligation to a dredge company for a fixed period (USACE, 

1999). This represents a one-time decision in our framework. While this approach does 

not allow for dynamic feedbacks between communities through time, this simplifies a 

difficult problem into a basic decision framework, describing how communities might 

choose their nourishment strategies initially, and how these first moves might differ 

based on their coordination scheme. 
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1.2.4 Numerical Solution 

In this section, we explain how we numerically solve the optimization problem 

described in equations (1.14) and (1.15). First, we compute the evolution of the shoreline 

location xS and shoreface toe xT in each community for a wide range of nourishment 

rotation lengths between 0-25 years with a spacing of 0.2 years. In particular, we obtain 

xS and xT from equations (1.4) and (1.6) respectively, which we solve numerically using 

the simplified forward Euler method2. We then calculate the benefits and costs for each 

scenario using equations (1.11) and (1.12) respectively. The discounted difference 

between the benefits and costs yields the net benefit, which we compare between all 

options. The rotation lengths R1* and R2* provide the maximum net benefit under each 

scenario (i.e., non-coordination and coordination). All results presented below ensure that 

neither the resolution nor the boundary limits employed misrepresent the true optimal 

choice. 

  

 
2 The Forward Euler method for the numerical solution is employed here because it is the simplest 
approach, which is appropriate for the set of first order differential equations with given initial values. In 
addition, the Forward Euler method was verified using the Modified Euler and the Runge-Kutta methods, 
all of which returned similar results for the system’s dynamics. Finally, the Forward Euler was tested with 
various model time steps, which did not produce any appreciable differences. 
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1.2.5 Parameter Estimation 

Table 1.1. Economic Input Parameters for Model Simulations 
Economic 
Parameters 

Symbol Feasible 
range  

of values 

Units Test value: 
figs. 2, 5-6, 
8  

Test value: figs.  

9-10 

Variable 
Nourishment 
Costa,b,e,i,m,p,t 

ϕN 5—30  $/m3 15 15—50 

Fixed 
Nourishment 
Costd,j,p 

cf - $1,000,000 1 1 

Baseline 
Property  

Valuec,f,h,k,n,r,u 

α - $1,000 25—550 Community 1: 

$385 

 

Community 2: 

$257 

Discount 
Rateg,q,s,t 

ρ 1—10 %/yr 6 6 

Hedonic 
Parameter 
(Beach 
Width)b,d,l,o,q 

β 0.05—0.8 - 0.4 0.4 

Sources. aASBPA (2020). bGopalakrishnan (2010). cGopalakrishnan et al. (2011). 
dGopalakrishnan et al. (2016). eHillyer (1996). fJin et al. (2015). gLandry (2004). hLandry 
and Hindsley (2011). iMcdowell Peek et al. (2016). jMcNamara et al. (2011). kNational 
Association of REALTORS (2020). lPompe and Rinehart (1995). mPSDS (2019). nRedfin 
Inc. (2020). oSlott (2008). pSlott et al. (2010). qSmith et al. (2009). rTrulia LLC. (2020). 
sUSACE (1999). tWilliams et al. (2013). uZillow Inc. (2020).   
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Table 1.2. Physical Input Parameters for Model Simulations 
Physical 
Parameters 

Symb
ol 

Feasible 
range of 
Values 

Units Test 
value: 
figs. 
2, 5-
6, 8a 

Test value: 
fig. 7  

Test 
value: 
fig. 
8b 

Test value: 
figs. 9-10  

Background 
Erosion 
Ratea,i,k,r,v,w 

γ 0—10 m/yr 5  
 
  

5 5 5—10 

Nourishment 
Magnitudeb,t 

xN 0—200 m 50 100 50 50 

Rotation 
Lengthb,o,t,u 

R - yr 0—
25 

(g) 
R1=6.38 
R2=11.86 
(h) 
R1=6.92 
R2=7.55 

0—
25 

0—25 

Depth of 
Closuref,g,j,m,n

,s 

D 5—20  m 16 16 16 16 

Alongshore 
Flux 
Coefficientc,d,

e,h 

K1 10—
1,000 

1,000 
m2/yr 

600 600 600 600 

Cross-shore 
Flux 
Coefficientp,q

,s 

K2 - m2/yr 2,000 2,000 2,000 2,000 

Shoreface 
Equilibrium 
Slopep,q,s 

θeq - m/m 0.02 0.02 0.02 0.02 

Alongshore 
Community 
Length (Cell 
Length)l 

s - m 1,500 (g) 
s1=7090 
s2=3670 
s3=5380 
(h) 
s1=2720 
s2=7780 
s3=5250 

10,00
0 

1,500 

Sources:  aArmstrong and Lazarus (2019). bASBPA (2020). cAshton et al. (2001). 
dAshton and Murray (2006a). eAshton and Murray (2006b). fBirkemeier (1985). 
gBrutsché et al. (2014). hFalqués (2003). iGopalakrishnan (2010). jHallermeier (1980). 
kHapke et al. (2013). lInspired by field values observed in New Jersey. mKraus and Batten 
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(2007). nKraus et al. (1995).  oLazarus et al. (2011). pLorenzo-Trueba and Ashton (2014). 
qMiselis and Lorenzo-Trueba (2017). rMurray et al. (2013). sOrtiz and Ashton (2016). 
tPSDS (2019). uSmith et al. (2009). vWilliams et al. (2013). wZhang et al. (2004).  

 

1.3 Community Behaviors 

1.3.1 Single Community 

The model produces four primary behaviors based on nourishment choices: 

seaward growth due to frequent beach nourishment (i.e., short rotation length); hold the 

line due to moderately frequent nourishment (i.e., medium rotation length); slow retreat 

due to infrequent nourishment (i.e., long rotation length) and resulting in property 

abandonment; and full retreat due to a lack of nourishment and resulting in property 

abandonment (Figure 1.2). We characterize seaward growth behavior as the maximum 

shoreline position in the final five years greater than the maximum seaward extent of the 

first nourishment event. Hold the line behavior falls between this threshold and the initial 

property setback. Whereas, slow retreat and full retreat result in shorelines landward of 

the initial property setback. The only difference between the latter two scenarios is that 

slow retreat includes nourishment effort on the part of the community and full retreat 

does not (Figure 1.2). When considering two communities, each behavioral category that 

includes beach nourishment can comprise a mix of two primary behaviors.  
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Figure 1.2. Mode behaviors resulting from different beach nourishment frequencies: a) 
R=3 years b) R=5.2 years c) R=10 years d) R=Ø (no nourishment).   
   

We present an example of each mode behavior observed in the field. Using the 

beach nourishment databases from the Program for the Study of Developed Shorelines 

(PSDS) of Western Carolina University (2019) and the American Shore and Beach 

Preservation Association (ASBPA, 2020), we report the number of nourishment events 

and year of first/last nourishment event for each example below and show that these 

mode behaviors likely depend on nourishment decisions (Figure 1.3a-d). 
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Figure 1.3. Emergent mode behaviors observed in the United States East and Gulf coasts: 
(a) seaward growth in Ocean City, NJ; (b) hold the line in Brigantine, NJ; (c) slow retreat 
in Dauphin Island, AL; and (d) full retreat in Cedar Island, VA. 

  

Toward coupling these nourishment decisions and their emergent mode behaviors 

with community-scale socioeconomics, we present the rotation lengths for coastal New 
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Jersey communities as a function of their property values (Figure 1.4). We determine a 

median property value estimate using four real estate search engines (National 

Association of REALTORS, 2020; Redfin Inc., 2020; Trulia LLC., 2020; Zillow Inc., 

2020), and calculate the representative beachfront property value assuming a power law 

relationship between property value and inland distance from the ocean (Gopalakrishnan 

et al., 2011; Pompe & Rinehart, 1995). We gather data using spatial analyst tools on 

alongshore community lengths and representative property sizes. The total wealth of the 

community is defined here as the summed value of all alongshore properties in a 

community. We track the number of nourishment events by community, as reported in 

the PSDS (2019) and the ASBPA (2020) databases, and use the first (1936) and last 

(2020) completed nourishment event along the New Jersey coast to calculate a 

representative rotation length for each community. 
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Figure 1.4. Rotation lengths for coastal communities in New Jersey as a function of their 
total beachfront wealth (alongshore sum of beachfront property values), exhibiting 
nourishment variability for low-wealth communities and frequent nourishment for high-
wealth communities. 
 

While in general, the rotation length decreases as total beachfront wealth 

increases, there is variability for low-wealth communities. This could be due to 

commercial real estate exerting control over nourishment frequency (e.g. Atlantic City, 

Ocean City, Asbury Park, Cape May, Wildwood, Long Branch, etc.), where beach 

tourism economies are often located in neighborhoods with lower property values (or 

there is a disamenity associated with proximity to tourism areas). Other variability, 

however, could be due to alongshore interactions between neighboring communities’ 

nourishment decisions. 
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 In many field cases, mode behaviors realized by a community depend at least in 

part on their neighbor’s actions as well. We account for this alongshore coupling between 

neighboring nourishment choices in the subsequent section (1.3.2). However, these initial 

field insights do provide context for our beach nourishment game concerning the range of 

both property values and rotation lengths used for model explorations. 

 

1.3.2 Two-community Interconnection 

In order to capture the alongshore feedbacks between neighboring community 

nourishment decisions, a two-community model setup was implemented, allowing a 

comparison of the emergent behaviors produced by coordinated and uncoordinated 

schemes. The setup comprises a sample array of real-world scenarios in which 

neighboring communities can be wealth-symmetric or wealth-asymmetric (Figure 1.5). 

The sensitivity of community nourishment decisions to different baseline property values 

(Equation 1.7) in each community was explored.   

Under coordination, community-specific rotation lengths depend on relative 

baseline property value balances, but under non-coordination, they depend only on each 

community’s baseline property value (Figure 1.5a-b). This baseline property value 

regime space encompasses all key behaviors that emerge from the model (Figure 1.2) 

including instances of mixed behaviors (i.e., seaward growth/hold the line). The 

thresholds between these behaviors depend upon the level of coordination, and these 

thresholds demarcate regions in which communities that do not coordinate misallocate 
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their distribution of nourishment effort (rotation length) compared to their economically 

optimal distribution of effort produced by coordination. This emerges, in particular, when 

there is a disparity in baseline property values between neighbors (Figure 1.5a-b). 

Full retreat arises for the lowest wealth systems regardless of whether or not 

coordination occurs. Both coordinated and uncoordinated emergent behaviors are 

sensitive to minor changes in baseline property values for low and moderately wealthy 

systems, while they are less sensitive for high baseline property values. Neighboring 

communities with different baseline property values experience many instances of 

behavioral difference between coordinated and uncoordinated regimes, particularly for 

moderate baseline property values. By working independently, communities effectively 

treat all of their neighbors equally; thereby, ignoring the marginal importance of helping 

a neighbor based on the benefit they might provide the system. Accounting for the 

alongshore distribution of wealth under coordination represents the economically optimal 

allocation of nourishment effort, contrasting with the uncoordinated scenario in which 

communities might either under-nourish (i.e., longer rotation lengths) or over-nourish 

(i.e., shorter rotation lengths) compared to their rotation length choices under coordinated 

efforts (Figure 1.5a-b, e).  
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Figure 1.5. Emergent behaviors for coupled systems under (a) coordination  and (b) non-
coordination and (c-d) the nourishment efficiencies under the respective management 
schemes. Panel (e), the benefit of coordination relative to non-coordination indicates the 
economic difference between management scenarios, and the community-specific regions 
of over- and under-nourishment for (f) community one and (g) community two reveals 
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how uncoordinated strategies economically compare with their optimal strategies under 
coordination. 
 

In general, nourishment efficiency increases as the wealth increases 

corresponding with decreasing rotation lengths (Figure 1.5c-d). While this increase in 

efficiency can be attributed in part to the larger volume of sand placed by frequent 

nourishment (Equation 1.9), triggering an increase in the volume of sand lost from the 

two communities (Equation 1.8), the fraction of volume lost relative to the nourishment 

volume decreases and the efficiency thus increases (Equation 1.10). These efficiencies 

differ between coordination schemes primarily in regions of wealth disparity, where 

coordination results in a higher physical efficiency than non-coordination (Figure 1.5c-d), 

corresponding with a higher economic efficiency (i.e. optimal solution) produced by 

coordination in this region as well. 

The difference in behavioral outcomes depending on the coordination level 

highlights the baseline-property-value combinations for which coordination is most 

important. The benefit of coordination is the smallest (i.e., coordination is least 

important) for low wealth communities that cannot afford nourishment regardless of their 

coordination level (Figure 5e). It is also lowest for regions of high wealth disparity 

between neighbors because the marginal benefits provided by wide beaches in a wealthy 

community outweigh the marginal costs of frequent nourishment, and their less wealthy 

neighbor can neither afford nourishment on their own nor provide any appreciable benefit 

to the system if they work together.  
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The benefit of coordination is largest (i.e., coordination is most important) for 

lower-wealth communities that can afford beach nourishment by cooperating but not by 

acting alone. Coordination is also important for regions with moderate baseline-property-

value asymmetry, identified by the blue star as an example (Figure 1.5e). This baseline-

property-value combination corresponds with seaward growth behavior for both 

coordination levels (Figure 1.5a-b), but coordination is more beneficial to the two 

communities as a whole, assuming that a cost-sharing arrangement or transfer payment 

exists under coordination, because the less wealthy community over-nourishes and the 

wealthier community under-nourishes when acting alone (Figure 1.5f-g). This 

uncoordinated distribution of nourishment effort between the two communities results in 

a lower nourishment efficiency compared to coordination, meaning that the two 

communities lose more sand from their beaches relative to the amount they place if they 

neglect cooperation. 

The optimal distribution of nourishment effort between communities for the blue 

star in figure (1.5e) under coordination, while representing the maximum total net benefit 

for the entire system, results in an asymmetric share in net benefits between communities 

(Figure 1.6). In fact, the less wealthy community that nourishes infrequently under 

coordination receives a larger share of the net benefits than the wealthier community that 

nourishes frequently (Figure 1.6a). This is due to the large asymmetry in nourishment 

effort, whereby the wealthier community bears the majority of the nourishment 

responsibility, and is a function of the level of interconnectivity between communities 

(i.e., that small alongshore length and the high diffusivity value). In regions where 
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communities are more alongshore disconnected, the distributed nourishment effort and 

thus the corresponding community-specific breakdown in net benefits might be more 

comparable. A cost-sharing or transfer payment arrangement from the community 

nourishing less might be necessary here to ensure the wealthier community remains in a 

coordinated scheme. 

 

 
Figure 1.6. Beach widths for communities with baseline property values corresponding to 
the blue star in figure 1.5e under (a) coordination  and (b) non-coordination, and (c-d) the 
resulting community-specific net benefits for coordination and non-coordination 
respectively. 
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If these two communities compare their own payoffs resulting from each 

coordination level rather than the total net benefit, however, there is an incentive for the 

less wealthy community to cooperate (i.e., to follow their coordinated nourishment 

choice) while there is an incentive for the wealthier community to defect (i.e., to follow 

their uncoordinated nourishment choice) (Figure 1.6c-d). The wealthier community 

realizes a higher net benefit from acting alone than coordinating because they not only 

nourish less and incur fewer costs, but their less wealthy neighbor nourishes more than 

they would have under the coordinated plan (Figure 1.6a-b). This combination of 

strategies, if followed, would result in reduced nourishment effort system-wide, which 

would lead to the suboptimal outcome of narrower beaches due to non-coordination as 

described by Gopalakrishnan et al. (2016). These individual incentives, in the absence of 

a cost sharing or transfer payment plan, might be a barrier to coordination, which could 

help explain why communities have historically operated in a decentralized manner. 

 

1.4 Model Comparison with Field Decisions 

While the historical level of coordination between real-world communities and 

their initial property values is unknown, we do see evidence of these two-community 

mode behaviors in the field. Specifically, we highlight two barrier island systems in 

southern New Jersey: Avalon/Stone Harbor and Strathmere/Sea Isle City. In both 

instances, the two communities experience seaward growth behavior due to their 

distributed nourishment effort. This evolution is evident both in historical aerial imagery 

(Figure 1.7a-d) and in the modeled shorelines (Figure 1.7e-f).  
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Figure 1.7. Example of dynamic interconnection between neighboring New Jersey 
communities: (a) Avalon and Stone Harbor and (b) Strathmere (Upper Township) and 
Sea Isle City. Historical aerial imagery from (a-b) 1920 and (c-d) 2019 illustrate their 
developmental and morphodynamic evolution. From the PSDS and ASBPA beach 
nourishment databases, we calculate each community’s rotation length, from which 
seaward growth behavior emerges for (e-f) both barrier island systems. 
 

We group two-community neighbors for all New Jersey community pairs in our 

database and analyze their distributed nourishment choices (i.e., rotation length ratio) as a 

function of their distributed beachfront wealth (i.e., wealth ratio). Here, the beachfront 

wealth is defined as the sum of all beachfront property values in a community, which 

accounts for the community’s alongshore length and number of properties adjacent to its 

beachfront. Some field community pairs result in a rotation ratio that is larger than one, 

meaning the less wealthy community nourishes more than the wealthier community 

nourishes. We find that the commercial real estate influences associated with high 

tourism areas such as Seaside Heights and Atlantic City could bias these examples. 
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Similarly, the natural dynamics of shorelines adjacent to fully hardened (i.e. two jetties) 

tidal inlets and the resultant sediment deficits downdrift of these inlet jetties, for which 

our model does not account, could be affecting nourishment decisions in communities 

such as Avon-by-the-Sea and Barnegat Light. For these reasons, we remove the field 

pairs composed of these communities. 

 We plot the rotation-length ratios as a function of wealth ratios (relative to the 

lower-wealth community for each two-community pair) for coordinated and 

uncoordinated model scenarios and shade each region surrounding the corresponding 

observations, terming these regions the coordinated and uncoordinated model envelopes. 

These field-model comparisons include both small communities (Figure 1.8a) and large 

communities (Figure 1.8b) to cover most New Jersey community sizes. In general, 

increasing the wealth ratio results in a decreasing rotation-length ratio because when 

neighboring communities have more wealth disparities (i.e., large wealth ratios) their 

rotation lengths are more dissimilar (i.e., small rotation-length ratio). If neighboring 

communities have high wealth disparities but similar rotation lengths, this may indicate 

that they are misallocating their distributed nourishment effort compared to their 

economically optimal levels. 

The slope of this decreasing rotation ratio for small wealth ratios is steeper under 

coordination than non-coordination for smaller communities, and the rotation ratios are 

small for large wealth ratios under coordination (Figure 1.8a), meaning that nourishment 

decisions are more different between the two communities when they coordinate and 
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more similar between the two communities when they act independently. We then 

overlay field data from neighboring New Jersey communities to see how two-community 

pair decisions might compare with the model’s output. Given that many field 

communities have alongshore lengths (median length = 2.68 km) similar to the case 

presented in Figure 8a, the regions enveloping field pairs in this subplot might serve as an 

indicator of their underlying decision-making scheme, i.e., whether or not they 

coordinated their nourishment plans. An example of non-coordination could include Sea 

Isle City/Avalon, NJ, which is plausible given they are on different barrier islands and 

separated by a partially hardened (i.e., one jetty) tidal inlet. Whereas, Loveladies/Harvey 

Cedars could be an example of coordination given they are tightly coupled alongshore 

and subject to the same USACE regional beach nourishment plan (1999).  
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Figure 1.8. Comparison of rotation-length ratio vs. wealth ratio between model 
(coordination/non-coordination) and field observations for (a) small communities and (b) 
large communities. Field pair locations identified by the abbreviations used in subplots a-
b are shown for the (c) central and (d) southern New Jersey coast regions. 
 

Field examples that do not fall in either model envelope in figure (1.8a) could be 

influenced by other underlying factors. One such factor could be the shoreline orientation 
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effects whereby one community protrudes farther seaward than its landward neighbor 

thus necessitating more frequent nourishment than expected due to its reduced 

nourishment efficiency (e.g. Stone Harbor/North Wildwood). Another factor could be an 

asymmetry in how the neighboring communities value their beach for recreational 

purposes where wealthier communities value these amenities less than poorer 

communities do (e.g. Deal/Asbury Park and Monmouth Beach/Long Branch). This 

relates to the beach amenity value β in equation (1.11). Such factors are not considered 

here, although future work will be necessary to explore these dynamics further.  

A simple test within the model’s framework, however, is increasing the 

alongshore community length (Figure 1.8b). This serves to reduce the connectivity 

between communities and results in nourishment decisions that are less dependent on the 

dynamics of neighboring communities. The coordinated scheme for large communities, 

especially, yields rotation lengths that are more similar (i.e., rotation ratio that is closer to 

one) than the same scheme for smaller communities. The model envelopes for large 

communities (Figure 1.8b) cover nearly all remaining data points not covered by the 

model envelopes for small communities (Figure 8a), including larger field communities 

such as Long Branch (length = 6.95 km). One data point that remains uncovered by the 

large community envelopes, Ocean City/Longport, could be a result of the disparity in 

community lengths (Ocean City = 11.47 km; Longport = 2.27 km) or their separation by 

a large tidal inlet (Great Egg Harbor Inlet) that is partially hardened, which could be 

disrupting alongshore flow between communities. 
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Furthermore, when we include community-average nourishment volumes as well 

as frequencies in our analysis, presented below as nourishment flux, we find that 

community pairs might be allocating their nourishment effort in an economically 

inefficient manner. For instance, in figure 9a, poorer communities in a moderate wealth-

disparate pair tend to nourish with larger fluxes than wealthier neighbors do, on average, 

indicating that these poorer communities are likely over-nourishing or that their wealthier 

neighbors are under-nourishing compared to their economically optimal levels in the 

context of a two-community framework. In addition, these emergent flux differences 

result in quantitative differences in beach width, such that poorer communities often 

realize wider beaches than their wealthier neighbors (Figure 1.9b). 

 

 
Figure 1.9. (a) Nourishment flux differences and (b) beach width differences for each 
two-community pair as a function of their beachfront wealth differences revealing that 
poorer communities often nourish more than wealthier communities do and supporting 
the model’s result that poorer communities might be over-nourishing compared to their 
economically optimal level of effort under coordination. This over-nourishment, in many 
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cases, yields wider beaches for poorer communities compared to their wealthier 
counterparts. 

 

While it is unclear whether each two-community pair actually coordinated their 

nourishment plans or chose their strategies alone in the past, these field observations 

compared with our model’s results do suggest that neighboring communities with large 

wealth disparities may have foregone benefits by failing to coordinate regional 

nourishment strategies. In the face of climate change impacts on coastal New Jersey 

communities and worldwide, it will be important to understand how these neighboring 

community interactions might change in the future and the potential paths of coupled 

coastal behavior based on the different coordination schemes they might undertake. 

 

1.5 Future Conditions: Effect of a Higher Sand Cost and Background Erosion Rate 

Subsequent nourishment decisions might rely on a different suite of underlying 

physical and economic conditions. A likely future scenario involves higher background 

erosion associated with sea-level rise and increases in the cost of sand. The prevalence of 

beach nourishment on regional scales increases the demand for sand (Brauchle, 2013). 

Additionally, reductions in near-shore-sediment supply shift dredge operations further 

offshore, implying that sand is a non-renewable resource (McNamara et al., 2011). Both 

expanding demand and diminishing supply drive up the price of sand for beach 

nourishment. 
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 Under the asymmetric wealth scenario represented by the blue star in Figures 

(1.5-1.6), behavioral sensitivities to increasing background erosion rate and increasing 

sand cost for both coordination levels are depicted in Figure (1.10).  

 

 
Figure 1.10. Emergent behaviors under (a) coordination and (b) non-coordination based 
on the background erosion rate and the sand resource cost, a diagonal transect (A-A’) 
through the regime space showing (c) the behavioral transgression from seaward growth 
to full retreat, the corresponding nourishment efficiencies for (d) coordinated and (e) 
uncoordinated regime spaces, and (f) the decreasing nourishment efficiency along the 
diagonal transect (B-B’).  
 

Communities that coordinate will experience a progression from seaward growth 

to seaward growth/hold the line to slow retreat to full retreat, highlighting their added 
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difficulty in maintaining beaches when faced with more extreme geo-economic forcings 

(Figure 1.10a). In contrast, uncoordinated communities will experience this shift from 

seaward growth to full retreat much sooner, i.e., for lower sand costs and lower erosion 

rates (Figure 1.10b-c). This drives a threshold switch for uncoordinated systems from 

over-nourishment in the less wealthy community to under-nourishment system-wide, as 

evidenced by the loss of property sooner than had the communities coordinated. The 

switch from over-nourishment to under-nourishment occurs because, when choosing a 

nourishment strategy alone, the less wealthy community can no longer justify over-

nourishing, or in other words, the cost of nourishment inefficiency (Figure 1.10e) 

outweighs the benefit of protecting beachfront properties. Ultimately, the less wealthy 

community acting alone will be unable to nourish at all and will abandon properties 

sooner than if it had cooperated with its wealthier neighbor (Figure 1.10a-c). Together, 

the uncoordinated communities will reduce their nourishment efforts due to the increased 

marginal cost of nourishment inefficiency compared to the benefit provided by frequent 

nourishment. These decisions correspond with lower nourishment efficiencies and a more 

rapid decline in efficiency than coordinated communities might experience (Figure 

1.10d-f).  

 The vulnerability to property loss for uncoordinated systems in the future mirrors 

what is already happening in many communities across the United States, both wealthy 

and not, who are struggling to protect their beachfront properties in the face of eroding 

beaches and rising seas. Wealthy homeowners in Nantucket, Massachusetts are self-

funding their protection efforts (Keneally & Simon, 2020). Likewise, upscale 
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neighborhoods in Nags Head, North Carolina, and Malibu, California who both lose 

approximately 5-6 feet of beach width per year plan to spend $48 million and $55-60 

million respectively to restore their beaches and keep their homes from falling into the 

sea (McMullen, 2018). Especially at risk, however, are property owners with fewer 

means such as those in Manistee, Michigan whose homes have begun tumbling into Lake 

Michigan due to coastal bluff erosion following record-high lake levels in recent years 

(Reynolds, 2020). These homeowners often either abandon their properties after their 

property values depreciate or sell to developers, which results in bigger homes and thus 

more wealth in the most vulnerable locations (Capuzzo, 2017; Lazarus et al., 2018). 

These instances and many more around the world will undoubtedly become 

commonplace under more extreme conditions in the future. Property-value disparities 

might amplify these risks, triggering a sharp transition from seaward growth to property 

abandonment for communities that neglect to coordinate their management plans with 

their neighbors.  

 

1.6 Discussion and Future Work 

A geomorphic-economic model to understand the key drivers influencing a 

dynamically coupled-coastal system with two communities was developed. The model 

predicted a broad array of emergent-behavioral pathways based on nourishment rotation 

length as the control variable. For instance, communities might choose to nourish their 

beaches so frequently that their shorelines grow seaward. Conversely, communities might 
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choose to nourish their beaches infrequently or not at all, such that they lose nearshore 

properties as a result.  

 Whether this dynamical system can produce the observed coastal anthropic 

signatures typically ascribed to uncoordinated management was examined. The model 

predicted that communities might accidentally nourish more frequently than is optimal 

under a coordinated management program, although this is not a blanket result. Instead, 

this behavior persists mainly when neighboring communities have different property 

values, and in particular, less wealthy communities in such situations tend to over-

nourish.  

Irrespective of the coordination scheme, neighboring communities with high 

baseline property values are predisposed to nourishing frequently, leading ultimately to 

seaward growth. These outcomes shed light on how coastal communities might have 

behaved in the past; specifically, they might have misallocated nourishment efforts when 

the underlying socioeconomic conditions such as alongshore wealth asymmetry between 

coastal neighbors was large.  

Preliminary evidence of these model trends appears in New Jersey beach 

communities. Other local factors that distinguish these systems could affect a 

comparison, however. First, groin fields are widespread along the New Jersey coast, 

thereby limiting the interconnection between neighboring communities. Second, barrier 

islands, comprising most of the southern New Jersey coast, experience washover (i.e., the 

transport of sediment from the shoreface to the top or back of the barrier), a process for 
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which the model does not account at present. Future work should explore how groin 

fields and barrier processes interact with the coupled model by extending it to include 

hard structures (Janoff et al., 2019; Kraus & Batten, 2006) and overwash dynamics 

(Lorenzo-Trueba & Ashton, 2014).  

Third, high recreational values associated with beaches in tourism-centric zones, 

where commercial beachfront real estate likely controls nourishment decisions more than 

residential properties do, could add complexity to this inter-community relationship. In 

particular, potential asymmetries in these beach amenities between neighboring 

communities could play a role in determining how they plan their beach nourishments 

and whether or not they coordinate such plans. New Jersey is a perfect example of 

variability in beach recreational values as evidenced by the wide distribution of beach 

badge (use fee) revenues by community, especially from one community to the next 

(Hoover, 2017). We plan to explore how these community-scale economic differences 

dictate how communities interact with each other when forming their management plans. 

Finally, the efficiency of these nourishment projects could differ by community, 

namely for those in regions with cross-shore or alongshore sediment deficits. Sand supply 

limitations could be due to local effects such as inlets or inlet jetties, which trap sand 

updrift, or underlying geologic characteristics on a regional scale. Similarly, communities 

that protrude seaward might experience limited alongshore supply. All of these 

conditions might decrease the efficiency of nourishment projects for certain communities, 

which would force more frequent nourishment than the model predicts. Building off the 
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efficiency approximation (Equation 1.10) presented in this paper, future work will 

explore how the amount of sand lost from nourishment projects to nearby sediment sinks 

over time, and community perceptions about the sustainability of such projects, could 

affect community nourishment decisions. 

These analyses would help clarify some of the behavioral variability observed in 

New Jersey (Figure 1.8). Nonetheless, the comparison between field data and model 

results presented in this paper suggests that many neighboring communities in New 

Jersey may have adopted an uncoordinated approach, which is also consistent with 

anecdotal evidence (Gopalakrishnan et al., 2016; Lazarus et al., 2011; Pilkey & Clayton, 

1989). 

If these communities have benefited economically from their past nourishment 

decisions, however, and the consequence of their beachfront property vulnerability (i.e., 

property damage) is largely subsidized by external sources (i.e., federal disaster relief, 

federally-/state-funded beach maintenance, flood insurance policy discounts, etc.), 

perhaps there is little incentive to overcome potential barriers to coordination and change 

behavior in the future. If this is indeed the case, the model suggests that decentralized 

communities might experience a rapid switch from over-nourishment to under-

nourishment in the face of rising sea levels and increasing sand resource costs, and less 

wealthy communities are at particularly high risk of losing coastal properties. This 

underscores that communities that choose not to coordinate might realize disparities in 
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the distribution of wealth along the coast, leading eventually to the persistence only of 

wealthier communities there. 

As sand resources dwindle and sea levels rise, costs will continue to increase, 

beaches will erode more rapidly, and fewer communities will be able to afford beach 

nourishment. Using a coordinated scheme, communities could dampen their 

vulnerability, but they cannot prevent the eventual loss of properties. Managed retreat is a 

topic of growing interest for the scientific community (Rott, 2019), and it has already 

become a reality for some homeowners from the heavily developed shores of New York 

City (Binder et al., 2015) to the remote coasts of Alaska (Agyeman et al., 2009; Mach et 

al., 2019).  

While managed retreat approaches focus largely on buyouts as a mechanism for 

property removal, the model explored here revealed a different but possibly 

complementary strategy of slowing the rate of retreat via infrequent beach nourishment to 

incorporate near-term benefits of property preservation in conjunction with relocation. 

Interestingly, the model suggests that this behavior of slow retreat is a viable strategy 

even without including the incentives comprising buyout programs. If such incentives are 

included in our modeling framework, slow retreat could be an even more attractive 

solution looking to the future.  

It will be difficult to balance the private benefits provided for beachfront 

properties, resulting in tax revenues for small coastal municipalities, and the broader 

public benefits of beach access for all (Fallon et al., 2017). A framework that accounts for 
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all stakeholder components is most likely to succeed, perhaps requiring a mix of 

incentives for property owners (buyouts), subsidies for coastal community welfare (beach 

nourishment), and reducing coastal development in the most vulnerable areas. 

Ultimately, efforts to coordinate climate change adaptation plans such as beach 

nourishment might prove to be inadequate against the risks associated with coastal life on 

centennial scales. Subsidizing a neighboring community’s beach maintenance might not 

avoid the vulnerabilities associated with coastal life, amplified by rapid sea-level rise 

rates in the future. Instead, top-down master plans, including planned region-scale 

migration from the coast, may be inescapable. 
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CHAPTER 2 – DETERMING THE INTERPLAY BETWEEN 

SOCIOECONOMICS, TOURISM, AND GEOMORPHOLOGY IN BEACH 

NOURISHMENT DECISIONS 
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2.0 Summary 

Coastal communities facing erosion maintain their beaches for recreation and 

property protection. One form of maintenance is nourishment, the placement of 

externally sourced sand to increase cross-shore beach width, forming an ephemeral 

seaward protrusion that requires periodic re-nourishment. Nourishment projects add value 

to beachfront properties, thus affecting future management choices through feedbacks 

between nourishment decisions and the benefits provided to coastal communities. 

Previous work explored this socioeconomic control on beach nourishment choice, but 

many New Jersey community decisions indicate that other factors may help explain 

management patterns. We surmise this is due to the high beach tourism demand 

experienced along this heavily developed coast in close proximity to major US cities 

(New York City, Philadelphia, Baltimore, and Washington D.C.). To understand how 

communities in New Jersey decide their management strategies, we compiled 

community-scale data on nourishment projects and estimated their nourishment fluxes, 

and combined this information with socioeconomic, tourism, and geomorphologic data. 

We run a multiple linear regression under various model specifications and find that both 

a community’s beachfront wealth and its proportion of commercial property value (i.e., a 

proxy for its level of tourism) help explain its beach nourishment decision. This suggests 

that the interplay between socioeconomics and tourism can help us to understand how 

communities have managed their beaches, and thus, how coupled natural-human 

coastlines have evolved in the past. While most of New Jersey’s coast has been held in 

position or even accreted seaward, as sea-level rises and material costs increase, beach 
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maintenance may become more difficult over the long-term, requiring expanded 

subsidies from federal and state governments. With the viability of increased 

expenditures for beach maintenance in question, local governments may experience 

difficulty protecting their properties and planned relocation of vulnerable infrastructure 

may be required. Tourism-centric communities facing these threats may respond with 

different nourishment approaches to meet recreational demand compared to their 

residential-dominated counterparts. This paper highlights the added complexity in coastal 

policy development within a high tourism, human-modified zone such as New Jersey, 

which must be included in deterministic modeling frameworks moving forward. 

 

2.1 Introduction 

Coastal communities nourish their beaches for recreational and protective 

purposes. Previous literature and empirical evidence from hedonic modeling (i.e., 

quantifying housing, environmental, and neighborhood effects on a property’s value) 

found that socioeconomic factors, such as the beachfront property value, likely control 

how communities make nourishment decisions (Gopalakrishnan et al., 2011; McNamara 

et al., 2015; Smith et al. 2009). In general, the higher a community’s beachfront property 

value, the more frequently the community will nourish, or, the shorter the return period 

between re-nourishments (i.e. rotation length). However, the frequency is not the only 

important metric in distinguishing a community’s nourishment effort; the volume per 

nourishment episode is equally as important. A community’s nourishment rate 
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(volume/year) therefore captures both of these components, providing information on 

how much sand communities are placing on their beaches each year. 

Past work found that a community’s nourishment effort depends in part on its 

own beachfront property value, but also in part on its neighbor’s property value given 

their spatial interconnection (Gopalakrishnan et al., 2016; Janoff et al., in review; Jin et 

al., 2013; Smith et al., 2015; Williams et al., 2013). The underlying assumption in this 

work is that wealthier communities will nourish more while poorer communities will 

nourish less. Homing in on New Jersey communities, however, it is not clear that 

beachfront wealth is the only determinant of nourishment output and in some cases, 

communities with lower wealth might even nourish more than wealthier communities 

(Janoff et al., in review). 

In fact, Qiu et al. (2020) point out that other factors such as underlying 

geophysical conditions could play a role in a community’s nourishment choice as well. 

They show that a community’s distance from the nearest tidal inlet, a proxy for its access 

to sand resources and thus its realized project cost for beach nourishment, will dictate 

how frequently and with how much volume they replenish their beaches. 

Other factors in addition to geomorphic site characteristics likely explain this 

nourishment variation, however. In coastal regions with an emphasis on seasonal tourism, 

such as New Jersey, the value that tourism-dominated communities (i.e., those with a 

high proportion of commercial properties) place on their beach is likely different from 

residential-dominated communities (i.e., those comprised mostly of residential 

properties), which might play a role in how they nourish their beaches. 
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Moreover, previous work found that beach amenity values differ by state 

(Dundas, 2017; Gopalakrishnan et al., 2011; Parsons et al., 1999; Pompe and Rinehart, 

1995), and even by community type, i.e. gated vs. non-gated (Pompe, 2008). There is 

also anecdotal evidence of this difference in beach recreational values by municipality in 

New Jersey. Deal, NJ, one of the wealthiest coastal communities in the state, opted out of 

the countywide nourishment project in 1999, citing concerns over the possible 

degradation of fishing/surfing quality at local spots (B. Rosenblatt, personal 

communication, January 13, 2017). Furthermore, restrictive parking ordinances and 

reductions in public beach access points have led the municipality to multiple court 

battles over the past two decades, creating a reputation for attempting to make their 

beaches private (Strunsky, 2019). As a result, Deal’s beaches are noticeably narrower 

(Figure 2.1a) than neighboring Asbury Park’s beaches, a lower-wealth community with 

dense commercial development and a robust tourism-centric economy. 

 

 
Figure 2.1. Examples of differential hedonic beach values: Asbury Park/Deal (a), and 
Seaside Heights/Lavallette (b). 

 



59 
 

 
 

While intuition suggests that beaches provide more value to wealthier 

homeowners in the form of protection, the intentional reduction in recreational benefits 

by wealthy homeowners could mean that their beach’s amenity value is lower than 

expected. Only recently, in 2016, did the community of Deal begin participating in 

nourishment projects, largely due to the flood damages associated with Super Storm 

Sandy and the expanded funding availability as a result of the consequent federal disaster 

relief package (Gladden, 2015). 

Similarly, in Lavallette/Seaside Heights (Figure 2.1b), wealthier Lavallette is a 

residential beach community whereas the lower-wealth community, Seaside Heights is a 

boardwalk hub replete with rides, Ferris Wheels, concessions, and games on their pier 

and beachfront facilities. Seaside Heights nourishes more frequently and with larger 

volumes of sand, resulting in wider beaches than Lavallette and higher recreational 

revenues. 

Beach revenues and the tourism industry linked to these physical beach 

characteristics (i.e. beach widths) are directly affected by preceding nourishment 

decisions, which depend on past tourism-related revenues, thus describing a recreation-

driven feedback. This could translate into a difference in nourishment policies for high-

wealth and low-wealth communities based on their respective levels of tourism.  

While previous work has explored the relationship between wealth and beach 

nourishment frequency (Gopalakrishnan et al., 2011; McNamara et al., 2015; Smith et al., 

2009), few to no studies have explored a complete portfolio of other possible drivers of 

these management decisions, which could include both economic and geophysical 
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factors. We seek to test the interactions among socioeconomics, tourism, and 

geomorphology in controlling community-scale beach nourishment decisions. Our main 

socioeconomic variable of interest is the value of beachfront properties in a community, 

which is the primary determinant tested in other coupled geo-economic studies on beach 

nourishment (McNamara et al., 2011; Murray et al., 2011; Smith et al., 2009). We expand 

on this analysis to include other components that might help explain why communities 

nourish as they do, particularly in the tourism-dominated region of the New Jersey coast.  

Tourism variables of interest include the revenue generated by beach recreation, 

the ratio between the aggregate assessed values of commercial and residential properties, 

and the community’s distance from the nearest tourism-concentrated zone. These 

variables could help explain why communities with lower property values might choose 

nourishment policies different from expected if oceanfront wealth is the only predictor of 

beach nourishment considered.  

Underlying site geomorphology might also help explain these nourishment 

decisions, due either to differences in local sediment supply or to coastline orientation 

effects such as alongshore or cross-shore gradients in sediment fluxes. One geomorphic 

variable of interest is a community’s distance downdrift of the nearest tidal inlet, which 

could serve as a sediment sink that limits downdrift availability or as a sediment source 

that supplies immediately adjacent beaches with sand via ebb-tidal delta attachment bars 

(Kraus, 2000; Kraus, 2002; Nienhuis and Ashton, 2016; Nienhuis and Lorenzo-Trueba, 

2019a; Nienhuis and Lorenzo-Trueba, 2019b).  
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A second geomorphic variable we would like to test as a potential nourishment 

predictor is the underlying efficiency of nourishment projects, or, the rate at which the 

nourishment sand erodes from its placement location. This efficiency is a common 

research topic for coastal engineers (Benedet and Dobrochinski, 2017; Kuang et al., 

2011; Roberts and Wang, 2012; Tonnon et al., 2018), though its connection as a control 

on nourishment policy has not been explored, to our knowledge. We estimate 

nourishment efficiency via the half-life of a nourishment project.  

In this chapter, we broaden the understanding of what drives community-scale 

nourishment decisions. We test an array of predictors including socioeconomic factors 

such as a community’s level of wealth; its level of local tourism/recreation; its regional 

proximity to beach tourism economies; and its geophysical site characteristics such as its 

supply or deficit of natural sand resources. From our analysis, we implement the key 

drivers of nourishment policy into the geo-economic modeling framework described by 

Janoff et al. (in review) that accounts both for the natural and for the economic evolution 

of a heavily developed coastal system. This analysis provides information on how the key 

predictors of community-scale nourishment policies manifest in the morphodynamics of a 

community’s beach to help describe the past geomorphic outcomes observed at New 

Jersey field sites, and how these drivers will interact with future climate change effects 

such as heightened erosion rates due to sea-level rise. 

Insights from this work and other literature expanding the envelope of 

explanatory predictors of coastal management decisions must be taken into account in 

deterministic modeling frameworks in the future, not only to understand how these 
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systems might change, but also to supply regional and local managers with the tools 

necessary to make hyperopic and sustainable decisions moving forward. 

 

2.2 Methods 

In order to test the relationship between socioeconomics/tourism/geomorphology 

and community-scale nourishment choices, we run a multiple linear regression using 

Statistical Analysis System (SAS) software with the set of variables outlined above that 

we predict will help explain community-scale management decisions. We build a 

statewide dataset for all New Jersey communities with a history of beach nourishment 

practices (Figure 2.2). 

 

 
Figure 2.2. Regional locations of New Jersey communities for the northern (a) and 
southern coasts (b). 
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Below, we present each variable that is used in our analysis, split by category: 1) 

socioeconomics (i.e., beachfront wealth); 2) tourism (i.e., beach recreational revenues, 

local proportion of tourism, and proximity to tourism centers); and 3) geomorphology 

(i.e., site and regional characteristics affecting sediment availability and beach erosion). 

The general form of the nourishment regression is thus: Nourishment = 

f(socioeconomics, tourism, geomorphology). Methods of data collection/processing are 

listed in the appendix (Table A2.1). 

We hypothesize that these three broader categories and the corresponding 

explanatory variables within these categories determine a community’s nourishment 

choice as follows: 

• Increasing a community’s beachfront property value/wealth will increase the rate 

at which the community nourishes its beach (i.e., nourishment rate) because the 

community will have higher tax revenues from which they can fund nourishment 

projects and larger demand for private property protection from damaging storm 

surges.  

• Increasing a community’s beach recreational revenues will increase its 

nourishment rate because the community will not only have a larger operational 

balance for appropriating funds to management projects but they also have a 

higher recreational demand for which they must supply a sufficiently wide beach.  

• Increasing a community’s proportion of aggregate commercial value will increase 

its nourishment rate because communities must not only protect private residential 

properties from storm surge, but also cater to the influx of non-local beach users 
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who are recreating on their municipal beaches and patronizing their local 

businesses.  

• Increasing a community’s distance from the nearest tourism center (i.e., 

community with a high proportion of commercial real estate) will decrease its 

nourishment rate because it places less importance on maintaining a wide beach 

for the potential spatial recreational spillover from the tourism center should its 

beach reach capacity. Conversely, we could also expect that communities 

immediately adjacent to tourism centers might nourish less than communities 

further from tourism centers in the hopes of free riding off the tourism center’s 

nourishment efforts. 

• Increasing a community’s distance downdrift of the nearest tidal inlet updrift will 

decrease its nourishment rate because it will not be starved of sand by the ebb-

tidal delta that might serve as a sediment sink which thus would limit sand 

availability to downdrift beaches. Increased distance downdrift likely dampens 

this effect.  

• Increasing the nourishment efficiency (i.e., increasing the nourishment project’s 

half-life) in a community will decrease its nourishment rate because the longer 

that artificially-added beach sand remains on a community’s beach, the less 

frequently and with smaller magnitude they must re-nourish in the future.  

 

We test the effect of these independent variables listed above on the dependent 

variable, nourishment rate, using a multiple linear regression analysis for an array of 
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model specifications and combinations of independent variables. We also test how the 

interaction between the geomorphic variables and the socioeconomic variables listed 

above, and discuss in more detail in subsequent sections. We present the normal 

regression as the base model in this paper because it corresponds with the highest 

adjusted R-square value of our initial regression analyses, and provides direct insight into 

the key drivers of nourishment policy without possible endogeneity associated with any 

of our independent variables listed above. To elaborate, while we predict that 

nourishment efficiency will help to determine a community’s nourishment rate, the 

amount of sand communities add to their beaches could re-orient alongshore gradients or 

re-position the shoreline in deeper water, such that more sand could be lost via 

alongshore or cross-shore transport. The nourishment efficiency, therefore, could actually 

depend on the nourishment rate as well. This endogeneity could introduce bias, and so we 

avoid any model that includes nourishment efficiency as a significant independent 

variable. 

The other two specifications we test are the lognormal and log-log regression 

models, which are listed in appendix A2.2. In addition, we provide a more detailed 

justification for why we use the normal regression as the representative empirical 

relationship in appendix A2.3. To determine the relative importance of each variable x in 

predicting the nourishment rate, we calculate the standardized value Xst of the vector of 

independent variables using its mean value μx and its standard deviation σx: 

𝑋𝑋𝑠𝑠𝑠𝑠 = 𝑥𝑥−𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

.             (2.1) 
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The dependent variable, nourishment rate, is standardized in the same fashion. In this 

way, the estimated parameters for the independent variables have equal ranges between 

zero and one, and thus, their orders of magnitude are comparable. We run this 

standardized normal model with the forward, backward, and stepwise processes to 

determine the set of significant parameters that best explains the nourishment rate. We 

also test all model combinations and isolate the model with the lowest root mean square 

error (RMSE), which represents the most accurate model fit of all possible models with 

the vector of independent variables X. 

While this regression model provides information on the main factors controlling 

community-scale beach nourishment decisions, however, these empirical relationships do 

not provide explicit information on the physical morphology of the coast. We implement 

these empirical relationships found in our regression analysis that govern the rate at 

which communities nourish their beaches into the coupled geomorphic-economic 

modeling framework described in Janoff et al. (2019) and Janoff et al. (in review).  

This model accounts for alongshore and cross-shore dynamics of shoreline 

change, assuming that seaward protrusions are diffusive and that beach nourishment sand 

is redistributed to adjacent shorelines and offshore to the shoreface toe when the 

shoreface is steepened beyond its equilibrium slope (Figure 2.3). Resultant changes in 

beach width are then capitalized into beachfront property values, and when combined 

with the costs of these nourishment projects, provide information on the net benefit of 

these management policies. 

 



67 
 

 
 

 
Figure 2.3. Idealized deterministic modeling framework described in Janoff et al. (in 
review) that accounts for both alongshore/cross-shore dynamics and socioeconomic 
effects on beachfront properties due to this physical morphology. 
 

 We modify this coupled geo-economic model (Janoff et al., 2019; Janoff et al., in 

review) that accounts for nourishment as periodic events and implement a continuous 

nourishment rate, which is consistent with our field data and the regression model’s 

output. Changes in shoreline position xS,i are computed using the discretized ordinary 

differential equation Δxs,i/Δt for each cell: 

 ∆𝑥𝑥𝑆𝑆,𝑖𝑖(𝑡𝑡)
∆𝑡𝑡

=
2 ∙ �𝑞𝑞𝐿𝐿,𝑖𝑖−1(𝑡𝑡)−𝑞𝑞𝐿𝐿,𝑖𝑖(𝑡𝑡)�

𝑠𝑠𝑖𝑖
− 4∙𝑞𝑞𝐶𝐶,𝑖𝑖(𝑡𝑡)

𝐷𝐷
− 𝛾𝛾 + 𝑁𝑁𝑖𝑖 ,  (2.2)  

where qL,i and qC,i are given by the slopes of the alongshore gradient and the shoreface 

respectively. Here, the nourishment term Ni is the nourishment rate as determined by the 

regression model and implemented as the volume of external sand added to the subaerial 
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beach per year. This nourishment rate is based on the empirical relationship with the 

significant independent variables from the normal regression model, i.e., the beachfront 

wealth and the commercial-residential value ratio, which will be discussed in section 

2.3.1. Using this model as a baseline, we test geomorphic variable (i.e., the nourishment 

half-life and the inlet distance) interactions with these two socioeconomic variables for 

the following specifications: the economic variables multiplied/divided by the 

geomorphic variables; the economic variables multiplied/divided by the natural log of the 

geomorphic variables; and the economic variables multiplied/divided by the geomorphic 

variables squared. All input parameters used in this geo-economic modeling framework 

are listed in appendix A2.4 (Table A2.8).  

 

2.3 Results 

2.3.1 Empirical Regression Model 

All regression selection processes for the normal model suggest the same set of 

independent variables best predicts the nourishment rate: 1) the total beachfront wealth, 

and 2) the commercial-residential assessment value ratio. We find that each parameter 

estimate is significant at the 95% confidence level (Table 2.1). 
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Table 2.1. Parameter estimates for the normal model (total beachfront wealth and 
commercial-residential ratio) showing the effect of each independent variable on the 
nourishment rate.  

Parameter Estimates 

Variable df Parameter 
Estimate 

Standard Error t Value Pr > |t| 

Intercept 1 -7800.23 17556.00 -0.44 0.66 
Total 

Beachfront 
Wealth 

1 1.51·10-4 4.03·10-5 3.74 < 0.01 

Commercial-
Residential 

Ratio 

1 223965.00 85407.00 2.62 0.01 

 
In general, as a community’s total beachfront wealth increases or as its share of 

commercial real estate value increases, the community will nourish more per year. This 

suggests that both socioeconomics and tourism have a positive linear impact on 

nourishment policy decisions, and that residential property values are not the only 

determinant of how a community will manage its beach. The standardized version of this 

model also indicates that a community’s total beachfront wealth has a larger effect on its 

nourishment rate than the commercial-residential assessment value ratio (Table 2.2). This 

supports previous literature’s assumption that property value is the primary driver of a 

community’s nourishment decision (Gopalakrishnan et al., 2011; McNamara et al., 2015; 

Smith et al., 2009), but highlights that a community’s proportion of commercial 

development, a proxy for its level of tourism, is also an important control on beach 

management.  
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Table 2.2. Parameter estimates for the standardized normal model (total beachfront 
wealth and commercial-residential ratio) showing the relative importance (i.e., magnitude 
of parameter estimate) of each independent variable on the nourishment rate.  

Parameter Estimates 

Variable df Parameter 
Estimate 

Standard Error t Value Pr > |t| 

Intercept 1 -1.70·10-16 0.14 0 1.00 
Total 

Beachfront 
Wealth 

1 0.54 0.14 3.74 < 0.01 

Commercial-
Residential 

Ratio 

1 0.38 0.14 2.62 0.01 

 

Nourishment rates observed in the field align moderately with predicted 

nourishment rates, although much of the variability cannot be explained by the model and 

is thus assigned to regression error in the absence of other explanatory variables (adjusted 

R-square = 0.32, Figure 2.4). This model that includes the commercial-residential ratio, 

however, explains approximately 13% of the remaining variability that cannot be 

explained by a linear regression for beachfront wealth alone (adjusted R-square = 0.19). 

It is therefore reasonable to assume that the level of commercial development is an 

important characteristic of a community in determining its beach management strategy as 

well. We integrate both the significant predictors and the corresponding nourishment rate 

into the geo-economic modeling framework constructed in Janoff et al. (in review). 
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Figure 2.4. Observed vs. predicted nourishment rates for the normal regression model 
that includes a community’s beachfront wealth and its proportion of commercial real 
estate as predictors. 
 

2.3.2 Geomorphic-economic Interaction Regressions 

The normal regression model presented in the previous section highlights the 

importance of including other socioeconomic variables as predictors of nourishment 

decisions, such as the extent of commercial real estate development within a community. 

While these variables help explain approximately 1/3rd of the variation in nourishment 

rates (adjusted R-square = 0.32; Figure 2.4), it should be noted that the importance of 
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socioeconomic conditions relative to the coast’s physical conditions might be specific to 

New Jersey (Silberman and Klock, 1988). The high tourism and property values along 

this stretch coast, which is in close proximity to major urban centers such as New York 

City and Philadelphia, could be out-competing the underlying geomorphic conditions of 

the region. 

Building off of the main components in the base model, we explore how the 

model’s two socioeconomic variables (i.e., wealth and tourism) interact with the 

geomorphic variables (i.e., the nourishment half-life and the distance downdrift of a tidal 

inlet). We run various interaction scenarios: economic variable multiplication/division by 

geomorphic variable, economic variable multiplication/division by natural log of 

geomorphic variable; and economic variable multiplication/division by the square of the 

geomorphic variable. Similar to the model selection process outlined in previous sections 

(2.2-2.3.1), we present the geo-interaction models for half-life and inlet distance that 

result in the lowest RMSE and the highest adjusted R-square value. 

 The geo-interaction model that includes a community’s nourishment half-life, i.e., 

a metric of its physical efficiency, is comprised of the total beachfront wealth and the 

commercial-residential ratio divided by the half-life (i.e., the geo-interaction variable). 

Both the wealth and the geo-interaction variable have positive parameter estimates, such 

that increasing the wealth or the commercial-residential ratio results in higher 

nourishment rates, and increasing the half-life results in lower nourishment rates (Table 

2.3). This relationship aligns with the base model presented in section 3.1 and our sub-

hypothesis for half-life, in which we expected that higher efficiency nourishments (i.e., 
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longer half-lives) allow communities to nourish less frequently, or with less volume, both 

of which correspond with a lower nourishment rate. 

 

Table 2.3. Parameter estimates for the geomorphic-economic interaction regression 
models that includes (1) a community’s beachfront wealth and the commercial-residential 
ratio divided by the nourishment half-life, and (2) the commercial-residential ratio and 
the product of the beachfront wealth the natural log of the inlet distance. 

Parameter Estimates: Geo-interaction Model 1 (Half-life) 

Variable df Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 3637.95 15265 0.24 0.81 
Total Beachfront 

Wealth 
1 1.38·10-4 3.88·10-5 3.55 < 0.01 

Commercial-
Residential Ratio 

/ Half-life 

1 89970 30513 2.95 < 0.01 

Parameter Estimates: Geo-interaction Model 2 (Inlet Distance) 

Variable df Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 -12648 18185 -0.70 0.49 
Commercial-

Residential Ratio 
1 235722 85224 2.77 < 0.01 

Total Beachfront 
Wealth · ln(Inlet 

Distance) 

1 1.88·10-5 4.90·10-6 3.85 < 0.01 

 

 The geo-interaction model that includes the community’s distance downdrift of a 

tidal inlet, i.e., a proxy for its natural sediment availability, is comprised of the 

commercial-residential ratio and the product of the total beachfront wealth and the natural 

log of the inlet distance (Table 2.3). Both parameters have a positive estimate, such that 
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increasing the extent of commercial development, increasing the beachfront wealth, and 

increasing the distance downdrift of an inlet results in a higher nourishment rate. This is 

consistent with the base model and one of our sub-hypotheses for inlet distance, in which 

inlets serve as a sediment source for downdrift communities, supplying immediately 

adjacent beaches with sand and thus resulting in lower nourishment rates closer to inlets. 

Communities further downdrift do not benefit as much from this natural sediment supply 

and respond with higher nourishment rates, though the relationship between increasing 

distance downdrift and increasing nourishment rate is nonlinear. It is important to note, 

however, that this result could differ by region due to differences in net vs. gross 

alongshore sediment transport, the influence of partially/fully-jettied inlets vs. natural 

inlets, and differences in ebb-shoal delta dynamics between the central New Jersey coast 

(Monmouth/Ocean Counties) and the southern New Jersey coast (Atlantic/Cape May 

Counties). 

 Both of these geo-interaction models help explain more of the variation in 

observed nourishment rates, with adjusted R-square values of 0.35 and 0.33 for the half-

life and inlet distance models respectively (Figure 2.5). This result highlights that while 

socioeconomics plays a primary role in determining how New Jersey communities 

choose their beach management strategies, natural characteristics of a site such as its 

sediment availability or deficit are also important components. These models add 

information on community-scale nourishment and highlight that the interplay between 

socioeconomics and geomorphology is key to understanding how communities choose to 

intervene in the coastal environment. 
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Figure 2.5. Observed vs. predicted nourishment rates for the geomorphic-economic 
interaction regression models that includes (a) a community’s beachfront wealth and the 
commercial-residential ratio divided by the nourishment half-life and (b) the commercial-
residential ratio and the product of the beachfront wealth the natural log of the inlet 
distance. 
 

2.3.3 Geo-economic Model Behaviors and Future Vulnerability 

We implement the base regression model (Section 2.3.1) into the numerical geo-

economic model framework (Janoff et al. in review), and test the model’s sensitivity to 

the beachfront wealth and the commercial-residential ratio, specifically focusing on the 

emergent mode behaviors. Communities can experience seaward growth, in which their 

beach widens over time (Figure 2.6a); hold the line, in which their beach does not widen 

but beachfront properties are maintained (Figure 2.6b); slow retreat, in which 

nourishment projects delay but ultimately accept beachfront property loss (Figure 2.6c); 

and full retreat, in which the community does not nourish and their beachfront properties 

are lost at the rate of background erosion (Figure 2.6d).  
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Figure 2.6. Example mode behaviors produced by the modified geo-economic model: 
seaward growth (a); hold the line (b); slow retreat with nourishment (c); and full retreat 
without nourishment (d). 
 

Low-wealth communities with mostly residential properties will nourish enough 

to maintain their beach width, while wealthier communities or those with a larger 

proportion of commercial real estate will widen their beaches (Figure 2.7a). 

Superimposed on this regime space is each New Jersey community color-coded by its 

categorical mode behavior. This behavior is determined by the difference in shoreline 

locations between 1899 and 2012 for each community, where >50% seaward shoreline 
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change corresponds to seaward growth, <50% shoreline change maintenance is classified 

as hold the line, and >50% landward shoreline change corresponds to retreat (slow retreat 

in nourishing communities; full retreat in non-nourishing communities). Red circles 

indicate communities that have prograded their shorelines seaward, while blue circles 

indicate communities that have held their shorelines in place (Figure 2.7a).  

Approximately 65% of the model’s behavioral predictions match the categorical 

field behaviors, and more importantly, both the model and field support our hypothesis 

that low wealth communities with a high proportion of commercial real estate can 

nourish with large rates, and thus, result in seaward growing shorelines. In addition, 

nearly all of the field observations that comprise hold the line behavior are residential-

dominated communities. This indicates that the distinction between tourism-dominated 

and residential-dominated communities can help explain some of the counterintuitive 

geomorphic-economic trends we have observed along the U.S. east coast (i.e., less 

wealthy communities nourishing more and resulting in wider beaches than wealthier 

communities) and should be included when determining the future of developed 

coastlines more broadly.  
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Figure 2.7. Emergent mode behaviors (a) based on the nourishment rates determined by 
its relationship with total beachfront wealth and the commercial-residential assessment 
value ratio from the normal regression model. New Jersey field observations are included 
in the regime space and color-coded by their field behaviors (red: seaward growth; blue: 
hold the line) to show how many communities experience each mode behavior and 
whether the nourishment projects result in a positive or negative net benefit for the local 
residential community. Also included are shoreline evolution subplots for each behavior 
(b-c) through time for both residential-dominant and commercial-dominant communities 
experiencing seaward growth and hold the line behaviors respectively. 
  

In the future, expected increases in erosion rates associated with sea-level-rise 

rates will make it more difficult for communities to maintain their beachfront properties. 

Should communities continue nourishing at the same rate in the future, compared to the 

baseline behaviors under current conditions (Figure 2.7a), fewer communities will 

experience seaward growth, and more communities will experience hold the line or slow 

retreat (Figure 2.8a). Eventually, more extreme erosion rates will force most (Figure 
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2.8b) or all communities to abandon beachfront properties (Figure 2.8c-d) even with 

nourishment action in place. In addition to enhanced erosion rates, nearshore sand supply 

will decrease due to continued, expansive nourishment programs, forcing dredging 

operations further offshore, thus driving the price of sand up. Should communities 

experience increases in sand cost, erosion rate , or likely both , it may become more 

difficult for communities to maintain their nourishment policies in the future, 

highlighting the added economic difficulty for coastal communities facing the effects of 

climate change as well. 
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Figure 2.8. Emergent mode behaviors based on the nourishment rates determined by its 
relationship with total beachfront wealth and the commercial-residential assessment value 
ratio from the normal regression model for an increasing background erosion rate: γ = 1 
m/yr (a); γ = 2 m/yr (b); γ = 3 m/yr (c); γ = 4 m/yr (d). Field observations color-coded by 
current behavior (red: seaward growth; blue: hold the line) are included to show their 
behavioral transition in the future if they maintain their status quo nourishment policy. 
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2.4 Discussion 

While under current climate and economic conditions, most all coastal 

communities have been able to maintain or even widen their beaches over the last half 

century due to extensive artificial beach nourishment policies (Armstrong and Lazarus, 

2019; Janoff et al., in review), the future sustainability of these communities is less clear. 

It is even more uncertain how communities comprised primarily of residential properties 

might choose management strategies differently from communities focused on beach 

recreation and a commercial tourism industry. In addition, the extent of rental properties, 

full-time homes, and secondary homes within a residential-dominant community could 

affect the community’s nourishment choices. These differences in socioeconomic 

structure by community type and even a community’s proximity to nearby tourism-

dominated communities will likely leave a categorically distinct signature on the 

evolution of developed coasts. In addition, local geomorphological impacts will also 

interact with and feedback on these human-scale components in unknown ways under 

future conditions associated with climate change such as sea-level rise and diminished 

resource availability. 

 The level of intervention required of these communities will not remain static; 

instead, a regional re-analysis of our management approach is likely required. This 

impending choice centers on whether to increase beach nourishment efforts to keep pace 

with increasing rates of erosion, thus further fueling the positive feedback that has 

increased both wealth and the magnitude of beach nourishment interventions on decadal 

timescales (Armstrong et al., 2016); or, disband current management frameworks with 
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state and local governments, remove vulnerable infrastructure, and accept property 

relocation in high risk zones toward developing a more hyperopic management view.  

This paper adds to the growing body of developed coast literature in highlighting 

that a community’s beachfront property value is not the sole predictor on its current or 

future beach management decisions. Instead, the economic extent of the local tourism 

industry and the interplay between socioeconomics and geomorphology are important, 

and must be considered when analyzing how communities will respond to increased 

erosion. 

The New Jersey coast’s proximity to New York City and Philadelphia promotes 

steady demand for beach recreation and beachfront property ownership (Silberman and 

Klock, 1988), which will likely serve to entrench our current management mentality 

toward holding the line and protecting our vulnerable infrastructure. This may be 

especially true for communities whose economies rely heavily on hospitality and 

recreational services. It is unlikely that communities will consent to moving away from 

the coast voluntarily, thereby giving up their prime real estate, reducing their municipal 

property tax revenues, and losing their local businesses that anchor their seasonal tourism 

economies. It is possible that tourism-dominant communities will demand even more 

protection than residential-dominant communities in the future, possibly serving to focus 

state and federal subsidy programs on such areas with high recreational values.  

The complex sociopolitical dynamics between neighboring communities fighting 

for limited and likely more expensive sand resources coupled with a potentially 

apprehensive federal government will only exacerbate these existing challenges to coastal 
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management, whose weight is often felt most by environmental justice and low-income 

communities.  

Furthermore, while our analysis supports the theory that the proportion of 

commercial real estate in a community might make up for its lower property values in 

explaining its high rates of nourishment and thus its wide beaches, we find evidence from 

the field that suggest some lower-wealth communities may be nourishing with large 

magnitudes even in the absence of an extensive local tourism economy. This harkens 

back to findings from Janoff et al. (in review) who suggest that low-wealth communities 

may be over-nourishing, or nourishing more than they otherwise would have had they 

coordinated their nourishment plans on regional scales with neighboring communities. 

This highlighting not only the interconnectivity of these coastal systems but also the 

socioeconomic and geomorphic consequences that might result from community-scale 

differences in wealth or tourism-related benefits. 

In order to understand how heavily developed coastlines, such as New Jersey, and 

how communities in particular might adapt in economically/environmentally sustainable 

ways, deterministic models must be developed that account for shifts in the decision-

making process and for the various changes to both natural and human components 

within this coupled system. These will not only include changes to coastal real estate 

markets but also disruptions to local tourism economies and to the value of beaches as 

recreational amenities.  

Previous work highlighted property value as a primary determinant of how 

communities have interacted with shoreline dynamics in the past and how these 
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interactions might change in the future (Armstrong et al., 2016; Smith et al., 2009; 

Lazarus et al., 2011). Recent work has built on these findings, considering the 

interconnected dynamics of neighboring communities making different nourishment 

decisions based on their level of coordination (Gopalakrishnan et al., 2016; Janoff et al., 

in review; Jin et al., 2013; Smith et al., 2015). Further, Qiu et al. (2020) suggested that 

underlying geophysical conditions in the coastal environment can also help explain why 

communities have managed their beaches in specific ways depending on their spatial 

proximity to sand resources. 

Our empirical analysis here adds to this growing list of nourishment predictors, 

highlighting the importance of tourism within a community. Additionally, our initial 

attempt at incorporating these relationships into a semi-empirical, geo-economic 

modeling framework features the importance of including tourism as a control on the 

regional geomorphic trends we observe in the field, such as seaward prograding 

shorelines (Armstrong and Lazarus, 2019; Hapke et al., 2013). Further, natural 

geomorphologic conditions, such as sediment delivery and sand retention at nourishment 

sites are important components of nourishment choices, though further work is needed to 

understand the effect of tidal inlets based on regionally distinct characteristics between 

central (Monmouth/Ocean Counties) and southern (Atlantic/Cape May Counties) New 

Jersey.  

We use the geo-economic framework based on the normal regression model’s 

parameter estimates to predict how community-scale decisions will interact with higher 

erosion rates associated with sea-level rise in the future, and show that communities 
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might not only have a harder time maintaining wide beaches, but they will also be 

susceptible to property loss. 

It will be important within future deterministic modeling frameworks and/or the 

continued development of these existing frameworks, however, to account for a wider 

suite of community-scale differences, including the interactions between socioeconomics, 

tourism, and geomorphology, and to find ways in which we can analyze the 

socioeconomic evolution of communities dominated by commercial real estate. This 

paper provides a potential avenue toward addressing this goal, but more work is required 

to fully understand how beach morphodynamic changes are capitalized into a tourism 

economy. This information will not only further our intrinsic understanding of the 

evolution of coupled natural-human systems such as urbanized coasts with variable 

community types, but also will be critical for local governments faced with the expanding 

challenges associated with climate change and the federal and state governments helping 

to facilitate these difficult management decisions in order to maximize social welfare. 
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CHAPTER 3 – A GEO-ECONOMIC MODEL TO EXPLORE COMMUNITY 

RESPONSES TO DOWNDRIFT GROIN-INDUCED EROSION 

 

 

 

 

 

 

The contents of this chapter partially appear in: 

Janoff, A., Lorenzo-Trueba, J., Hoagland, P., Jin, D., & Ashton, A. (2019). Coupling 
Geomorphology and Socioeconomics to Account for Groin Downdrift Erosion. In P. 
Wang, J. D. Rosati, M. Vallee (Eds.), Proceedings of the 9th International Conference, 
(pp. 1826–1839). Tampa/St. Petersburg, FL: International Conference on Coastal 
Sediments 2019. https://doi.org/10.1142/9789811204487_0158 
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3.0 Summary 

 Coastal communities use hard and soft engineering to sustain beach 

recreation and to protect physical properties and infrastructure. Soft engineering 

involves external sand placement to widen beaches artificially; this placement is 

typically termed ‘nourishment’. Hard engineering involves the construction of 

immovable objects, such as shore-perpendicular groins, which slow alongshore 

currents and deposit sediments locally at and updrift of the objects. While groins 

accrete sediment updrift, they also limit downdrift sediment supply, exacerbating 

erosion and often forcing downdrift communities to respond with new 

engineering measures. We have developed a coupled geo-economic model to 

explore how communities make relevant management decisions. The model 

identifies a set of factors that could help explain the geo-economic condition and 

timing of a community’s responses to groin-induced erosion as observed in New 

Jersey. These include the community’s beachfront property value and its size (a 

proxy for its tax base), both of which determine its ability to finance groin 

construction or beach nourishment projects. Results of model simulations for 

future conditions, such as higher background erosion rates and higher rock 

material costs, suggest that management interventions will likely be economically 

infeasible, resulting in beachfront property loss and retreat from the coast. 

Depending on the balance between erosion rates and economic conditions, the 

model also highlights the possibility that the historical transition away from 

groins to beach nourishment as the main management response could be reversed 
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in the future, and groins could again become the more commonplace intervention 

as communities adapt to sea-level rise. 

 

3.1 Introduction 

 More than two-thirds of the world’s largest cities are located on 

coastlines (Uzun and Celik, 2014). As of 2003, coastal counties in the United 

States comprised 53% of the national population but only 17% of the coterminous 

land area (Crossett et al., 2004). Dense coastal development led to engineering 

activities to protect assets and maintain beaches. Living close to the ocean serves 

as an amenity, creating the base for local and tourist economies, and there is an 

inherent desire to protect private and public infrastructure associated with them, 

including residential/commercial properties, roads, boardwalks, water and gas 

lines, sewers, stormwater infrastructure, communications systems, etc. (Johnston 

et al., 2014). Beaches and oceans have high recreational values as well, providing 

public goods and services for surfers, anglers, swimmers, scuba-divers, birders, 

sunbathers, and other beach/ocean users (Ariza et al., 2014; Sano et al., 2011). In 

addition, many coastal homeowners conserve their properties for future 

generations, implying high bequest values (Silberman et al., 1992). Taken 

altogether, the coastal zone encompasses a variety of amenities that humans seek 

to preserve. 
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 Property owners and coastal managers have utilized soft and hard 

engineering to protect properties and to sustain beach recreation (Douglass and 

Krolak, 2008; van Rijn, 2011). Soft engineering involves external sand placement, 

known as replenishment, nourishment, or beach fill, to widen beaches artificially 

(Hoagland et al., 2012). This ‘soft’ approach may require regular maintenance as 

sand spreads alongshore, however, resulting in the need for periodic re-

nourishment (Landry, 2004; Smith et al., 2009). Hard engineering involves the 

construction of immovable objects, such as shore-perpendicular groins, which 

slow alongshore currents to deposit sediments locally at and updrift of the object 

(Kraus and Batten, 2007; Mestanza et al., 2018; Valsamidis and Reeve, 2017).  

 A small but growing literature on hedonic pricing has shown that 

properties benefit economically from local beach widening caused by both beach 

nourishment and the emplacement of groins (Gopalakrishnan et al., 2011; Landry 

and Hindsley, 2011; Pompe and Rinehart, 1995). Rational communities will 

choose their most efficient protective option, providing the most benefit for the 

least cost. Beach maintenance in updrift communities may encourage “free-

riding” behavior in downdrift communities, where the downdrift communities 

benefit without being required to contribute to the cost of protection (Williams et 

al., 2013). Depending upon local coastal dynamics, the alongshore extent of 

groin-stabilized updrift shorelines can even lead to free-riding by communities in 

the updrift direction.  
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 While groins stabilize updrift beaches, they also limit downdrift sediment 

supply, exacerbating erosion and often forcing vulnerable communities to respond 

with new engineering measures (Brown et al., 2016; Bruun, 1995; Ells and 

Murray, 2012). If these communities have the necessary resources, they will be 

able to stabilize their shorelines, an example of which can be seen in southern 

Long Beach Island, NJ, where Holgate built groins and nourished their beaches 

after a certain amount of time, resulting in a downdrift-hardened coast with a 

significant shoreline offset relative to the updrift community, Beach Haven 

(Figure 3.1a). 

 Where groins or beach nourishment are economically difficult to justify, 

downdrift communities might abandon properties altogether (Tischler, 2006). An 

example of a multi-property abandonment occurred in coastal New Jersey during 

the early 20th century when the town of South Cape May experienced accelerated 

rates of beach erosion as a consequence of updrift development and the 

construction of groins in Cape May City (Tischler, 2006; Figure 3.1b). Cape May 

City properties were more highly valued than those in South Cape May, and the 

community chose to invest in the emplacement of coastal protections, thereby 

accelerating beach erosion in the downdrift community. Along with storm surge 

damages, the loss of South Cape May properties to accelerated beach erosion 

forced the town into bankruptcy (Tischler, 2006). 
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Figure 3.1. 1870s map of southern Long Beach Island, NJ (a) and 1931 map of 
South Cape May, NJ (b) superimposed on current aerial imagery showing the 
shoreline offsets that result from updrfit groin constructions. In one case, the 
downdrift community responded with subsequent groin constructions and beach 
nourishment (Holgate), while in another, the downdrift community filed for 
bankruptcy and abandoned their properties/community altogether. 
 

 Here, our objective is to present a simple model coupling geomorphology 

and socioeconomics along developed coasts to help understand strategy selection 

behavior for a community downdrift of a neighbor that built a groin updrift. Our 

research differs from the earlier literature exploring developed coast behavior in 

that we model the interaction between hard structures (groins) and soft structures 

(nourishment) to examine the role of groin-induced downdrift abandonment vs. 

management intervention while also analyzing the benefits and costs of these 

decisions. The model compares different protective strategies (i.e., soft 

engineering, hard engineering, a combination of the two, time-delayed 
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intervention, and ‘do nothing’ resulting in property abandonment) to maximize 

economic efficiency, encompassing the feedback between natural coastal 

morphodynamics and human-scale modifications to the system. We will explore 

how different system characteristics (i.e., parameter values) might affect 

management choices in sediment-starved communities downdrift of a groin. 

 

3.2 Methods 

3.2.1 Beach Morphodynamics 

We use an idealized geometry modified from previous work (Janoff et al., in 

review 2021; Janoff et al., 2019) to predict shoreline change averaged across a 

community (Figure 3.2). We assume an average number of cross-shore property 

rows n. Alongshore input sediment transport QL,1 is calculated using the CERC 

formula, and is a function of the wave climate (i.e., fixed wave angle χ and the 

wave height H) and the alongshore flux coefficient K1: 

𝑄𝑄𝐿𝐿,1(t) = K1 ∙ 𝐻𝐻5/2 ∙ cos(𝜒𝜒 − 𝜇𝜇(𝑡𝑡)) ∙ sin(𝜒𝜒 − 𝜇𝜇(𝑡𝑡)) (3.1) 

 QL,2 represents the bypass sediment flux around the groin with length L 

placed between communities i=1 and i=2 (Figure 3.2, Kraus and Batten, 1994). 

Bypass is governed by the input sediment flux into the updrift cell QL,1 and the 

ratio between the beach width wi and the groin length L: 

 𝑄𝑄𝐿𝐿,2(𝑡𝑡) = 𝑄𝑄𝐿𝐿,1(𝑡𝑡) ∙ 𝑤𝑤𝑖𝑖(𝑡𝑡)
𝐿𝐿

 .                 (3.2) 

For the case in which the system’s shorelines are beyond the groin’s seaward 

limit, the beach morphodynamics are governed by the alongshore transport 
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equation (3.1) where the shoreline gradient μ is determined by their shoreline 

positions xS,1 and xS,2 as: 

 𝜇𝜇(𝑡𝑡) = �xS,i(t)−xS,i+1(t)�
(si+si+1)/2 

     (3.3) 

We assume a flat updrift shoreline (i.e., μ=0) such that input sediment flux to the 

model domain is a function of the system’s wave climate only, rather than any 

localized shoreline perturbations.  

 Using the cross-shore and alongshore dynamics presented in Janoff et al. 

(in review 2021), we can describe the system at any point in time with two 

variables, the shoreline location xs,i and the shoreface toe xT,i (Figure 3.2).  
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Figure 3.2. Model setup planview (a) with modified sediment flux between 
communities using the bypass equation (2). Cross-section (b) illustrates the depth 
of closure and equilibrium condition governing shoreface dynamics in the vicinity 
of a groin.  
 



95 
 

 
 

 In contrast with the model framework originally presented by Janoff et al. 

(in review), which implements nourishment as discrete and periodic events, we 

implement nourishment in a community with a continuous rate. In this way, the 

model results for this study depend more on the comparison between nourishment 

and groin construction and the timing of each implementation, rather than the 

timing of specific re-nourishment events. This is the same approach utilized by 

Gopalakrishnan et al. (2016) and Janoff et al. (in prep). 

 

3.2.2 Welfare Analysis 

 We calculate the net benefit for different management decisions (i.e., 

initial/delayed groin construction, initial/delayed beach nourishment, a 

combination of the two, and no intervention). The net benefit for each strategy is 

unique, providing a metric to compare options. The net benefit NBi for 

community i is the sum of net benefits over a planning horizon (0 ≤ t ≤ T): 

 𝑁𝑁𝑁𝑁𝑖𝑖 = ∫ (𝐵𝐵𝑖𝑖(𝑡𝑡) − 𝐶𝐶𝑖𝑖(𝑡𝑡)) ∙ 𝑒𝑒−𝜌𝜌∙𝑡𝑡 ∙ 𝑑𝑑𝑑𝑑𝑇𝑇
0  ,                 (3.4) 

where Bi = the benefits, Ci = the costs, ρ = the discount factor (0 ≤ ρ ≤ 1), t = time, 

and T = the model time horizon. Net benefits appreciate proportional to the 

discount factor, thus describing the community’s effective time horizon of 

interest. 
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3.2.3 Benefits 

Beach width provides both a protective and a recreational value to coastal 

communities (Jin et al., 2015; Landry et al., 2003; McNamara and Keeler, 2013; 

McNamara et al., 2015; Pompe and Rinehart, 1995; Simmons et al., 2002). We 

extend previous formulations to account for a community’s size, modeled as the 

number of homes in cross-shore. This captures a community-scale perspective 

rather than that of only the beachfront homes. The benefit Bi for community i is 

defined as: 

 𝐵𝐵𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖 ∙ 𝜌𝜌 ∙ �
𝑤𝑤𝑖𝑖(𝑡𝑡)
𝑤𝑤𝛼𝛼

�
𝛽𝛽
∙ (𝑛𝑛 𝑖𝑖(𝑡𝑡))𝜓𝜓 ,                               (3.5) 

where αi = the beachfront property value and wα = a reference beach width. Note 

that 𝛼𝛼𝑖𝑖𝜌𝜌 = the baseline rental value, which encompasses a home’s structural and 

neighborhood characteristics excluding the beach width. The above specification 

assumes that benefits of shoreline protection are positively related to the number 

of homes in a community. Two positive parameters β and ψ describe the effects 

on Bi of unit changes in beach width and the number of rows in the community, 

respectively. This relationship captures how dynamic changes in beach width 

affect a property’s value, and ultimately a community’s total wealth. 

 The parameter ψ also captures the effect of declining value of property as 

its distance from the beach increases. Typically beachfront properties are most 

valuable, and properties in each subsequent row inland are less valuable (Figure 

3.3). This relationship is due to diminished viewership, increased travel cost, and 



97 
 

 
 

decreased recreational amenity with distance from the beach (Jin et al., 2015; 

Landry and Hindsley, 2011; Pompe and Rinehart, 1995). Our model formulation 

allows for the migration of beachfront benefit if property rows are lost to erosion. 

 

 
Figure 3.3. Property value (PV) distribution as a function of increased distance 
from the beach (property row). Normalized values illustrate proportional decrease 
in price for each row inland. 
 

3.2.4 Costs 

 The total cost of shoreline management Ci for community i is a sum of 

engineering-related activities: 

 𝐶𝐶𝑖𝑖(𝑡𝑡) = 𝐶𝐶𝐺𝐺,𝑖𝑖(𝑡𝑡) + 𝐶𝐶𝑁𝑁,𝑖𝑖(𝑡𝑡,𝑁𝑁𝑖𝑖) ,              (3.6) 

where CG,i = the cost of groin construction; CN,i = the cost of nourishment; and Ni 

= the nourishment rate. In turn, we describe the groin construction cost CG,i as:   

 𝐶𝐶𝐺𝐺,𝑖𝑖(𝑡𝑡) = 𝜙𝜙𝐺𝐺 ∙ 𝐿𝐿 ,                      (3.7) 
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where 𝜙𝜙𝐺𝐺  = the variable cost coefficient for rock ($/m) and L = the groin’s length 

(m). This cost is a discrete event at the time of groin construction. The cost of 

nourishment CN,i is: 

 𝐶𝐶𝑁𝑁,𝑖𝑖(𝑡𝑡) = 𝜙𝜙𝑁𝑁 ∙ 𝑁𝑁𝑖𝑖,                 (3.8) 

where 𝜙𝜙𝑁𝑁 = the variable sand cost coefficient, and Ni = the nourishment rate. 

Nourishment costs are continuous across the model’s time horizon and starting at 

the time of nourishment intervention. 

 

3.2.5 Optimization 

 Similar to the optimal control problem presented in Janoff et al. (in 

review), we compare the welfare analysis equation (3.4) for different strategies 

that a community can take in response to heightened erosion due to the updrift 

community’s groin. These strategies include combinations of initial groin 

construction/beach nourishment, time-delayed beach nourishment/groin 

construction, or no intervention. Each strategy’s corresponding effect on the 

system’s natural and human components are implemented into the 

morphodynamic and socioeconomic frameworks respectively, and the timing of 

strategic implementation that maximizes the downdrift community’s net benefit is 

considered their rational response. This net benefit maximization also includes the 

optimal time at which a community will choose to nourish, build a groin, or 

pursue a combination of strategies. In sum, this corresponds to an optimal control 

problem, with the times of groin construction and nourishment intervention as the 
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control variables tg and tn respectively, and the net benefit NB (Equation 3.4) as 

the functional to be optimized: 

 max
𝑡𝑡𝑔𝑔,𝑡𝑡𝑛𝑛

𝑁𝑁𝑁𝑁.       (3.9) 

We utilize a time range between zero (i.e., initial intervention) and 100 years (i.e., 

the model’s time horizon) for both the groin timing and the nourishment timing 

variables, with temporal resolution of one year. Neither the range nor the 

resolution affect the optimal solution. We employ a brute force approach to solve 

this optimal control problem, such that we calculate the net benefit of each 

combination of intervention timings and identify the combination that produces 

the maximum net benefit for the downdrift community. 
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3.2.6 Parameter Estimation 

Table 3.1. Economic input parameters including the symbol, feasible range of 
values, representative test values, units, and references.  

References: aGopalakrishnan, 2010; bGopalakrishnan et al., 2011; 
cGopalakrishnan et al., 2016; dHillyer, 1996; eInspired by field values observed in 
New Jersey; fJin et al., 2015; gLandry, 2004; hLandry and Hindsley, 2011; iLandry 
et al., 2003; jMcdowell Peek et al., 2016; kMunicipal financial documents; lPompe 
and Rinehart, 1995; mPSDS, 2019; nSlott, 2008; oSlott et al., 2010; pSmith et al., 
2009; qUSACE, 1999; rUSACE, 2015; sWilliams et al., 2013.   

Economic 
Parameters 

Symbol Feasible 
Range of 
Values 

Units Test 
Value: 

Fig. 6, 8b 

Test Value: 
Fig. 9 

Sand Cost 
Coefficienta,d,j,m,o,r,s 

ϕN 2—30 $/m3 5 5 

Groin Cost 
Coefficientd,j,r 

ϕG 0.8—290 $103/m 100 1—1,000 

Baseline Property 
Valueb,f,h,k 

α 100—650 $103 6: 0.1—
650 

8b: 80—
110 

277.519 

Number of Cross-
shore Property 
Rowse 

ni 8—140 - 6: 1—120 
8b: 38 

38 

Discount 
Factorg,p,s 

ρ 0.01—0.2 yr-1 0.15 (a-b) 0.15 
(c-d) 0.03 

Hedonic 
Parameter (Beach 
Width)a,c,l,n,p 

β 0.05—0.8 - 0.5 0.5 

Hedonic 
Parameter 
(Property 
Rows)a,b,h,i 

ψ 0.0001—
0.8 

- 0.2 0.2 
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Table 3.2. Physical input parameters including the symbol, feasible range of 
values, representative test values, units, and references.  
Physical 
Parameters 

Symbol Feasible 
Range 

of 
Values 

Units Test Value: 
Figs. 5—6, 8b 

Test Value: 
Fig. 9 

Background 
Erosion 
Ratea,g 

γ 0—?? m/yr 2 
 
 

0.5—10 

Nourishment 
Rateb,m 

Ni 2—130 103 
m3/yr 

Updrift: 8.415 
Downdrift: 

18.614 

Updrift: 8.415 
Downdrift: 

18.614 
Groin 
Lengthh,i 

Li 20—240 m Updrift: 135 
Downdrift: 

100 

Updrift: 135 
Downdrift: 100 

Depth of 
Closured,f,l 

D 5—20 m 16 16 

Alongshore 
Flux 
Coefficientc,e 

K1 10—
1,000 

103 
m2/yr 

500 500 

Cross-shore 
Flux 
Coefficientj,k 

K2 2—10 103 
m2/yr 

2 2 

Shoreface 
Equilibrium 
Slopej,k 

θeq - m/m 0.025 0.025 

Alongshore 
cell lengthh 

s 185—
630 

m 300 300 

Property sizeh lot 20—60 m 30 30 
Deep Water 
Wave Angleh 

χ 0—90 ° 75 75 

Deep Water 
Wave Heighth 

H 0.5—5 m 1 1 

References: aArmstrong and Lazarus, 2019; bASBPA, 2020; cAshton et al., 2001; 
dBirkemeier, 1985; eFalqués, 2003; fHallermeier, 1980; gHapke et al., 2013; 
hInspired by field values observed in New Jersey; iKraus and Batten, 2007; 
jLorenzo-Trueba and Ashton, 2014; kMiselis and Lorenzo-Trueba, 2017; lOrtiz 
and Ashton, 2016; mPSDS, 2019. 
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3.3 Downdrift Community Responses 

 We compare four primary strategy responses by the downdrift community (Figure 

3.4): no groin or nourishment (a), groin without nourishment (b), nourishment without 

groin (c), and groin with nourishment (d). In this case, the updrift community’s strategy 

is independent of the downdrift community but the downdrift community’s strategy is 

conditioned upon the choice of groin construction in the updrift community. For this 

analysis, we assume that the updrift community has chosen to build a groin, and thus, we 

focus only on the downdrift community’s response to that groin. 

 

 
Figure 3.4. Four primary responses a downdrift community can take: no nourishment or 
groin (a), groin without nourishment (b), nourishment without groin (c), and nourish with 
groin (d). 
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 If we consider delayed downdrift responses, communities might choose to nourish 

and/or build a groin at any point during the model run (i.e., time-delayed intervention). 

Including all possible combinations of strategies, this amounts to nine possible responses. 

We include a sample shoreline time-series for each strategy combination as well as the 

resultant loss of properties depending on the strategy and/or timing of intervention 

(Figure 3.5).  
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Figure 3.5. Decision matrix for downdrift community with all combinations of 
initial/delayed/no beach nourishment and/or groin construction.  
 

Using these options given to the downdrift community, we explore the model’s 

predicted downdrift responses for a range of beachfront property values (a proxy for the 

community’s level of wealth) and community sizes (proxied by the number of property 

rows in cross-shore). We assume average updrift and downdrift groin lengths and 
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nourishment rates based on field observations for this initial analysis in Figure 3.6 (as 

listed in Table 3.2). 

From literature, furthermore, the common assumption is that storm events have 

been the main cause of intervention timing, where many field communities built groins 

after damaging storms such as the one in 1920, the Great Atlantic Hurricane of 1944, and 

the Ash Wednesday Storm of 1962 (Rankin, 1952; Rayner, 1952; Stauble et al., 2005; 

Farrell et al., 2004b; Pilkey and Wright III, 1988; Rice, 2015; Miller, 1980; Everts et al., 

1980; Donahue et al., 2004). These observations indicate that communities have 

historically responded in a very myopic manner, meaning that they likely did not consider 

future storm impacts or damages associated with chronic erosion when choosing to 

intervene in order to stabilize their beaches. This decision-making dynamic corresponds 

with a high discount rate, which effectively shortens the time horizon across which a 

community might make a management decision. Based on this qualitative evidence, we 

assume a relatively high discount rate in the following analysis (Figure 3.6). 

 When property value is low, regardless of community size, downdrift 

communities can neither build a groin nor nourish because they don’t have the adequate 

financial means to do so, thus resulting in property abandonment, i.e., no groin; no 

nourishment (Figure 3.6). If a community has a low property value and has a moderate 

amount of property rows, it builds a groin after a time delay but does not nourish, i.e., 

delayed groin; no nourishment. Downdrift communities with moderate property values or 

few cross-shore property rows respond to updrift-induced erosion by constructing a groin 

at the start of the model run but without complementary nourishment, i.e., initial groin; 
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no nourishment. If the community has a higher property value and is large, it is able to 

build a groin initially but nourish after a time delay, i.e., initial groin; delayed 

nourishment. If a community is large, wealthy, or both, it will choose both to nourish and 

to build a groin as soon as possible, i.e., initial groin; initial nourishment. 

 This result highlights that building a groin is more easily achieved for 

communities with fewer economic resources available, but that nourishing is also 

achievable if community resources (i.e., higher wealth or larger tax base) are even more 

readily available. Irrespective of their intervention type, however, by intervening 

instantaneously, communities are able to avoid property loss associated with downdrift-

enhanced erosion, and instead, stabilize their shorelines over the long-run. 
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Figure 3.6. Downdrift community responses as a function of baseline property values and 
community sizes. 
 

3.4 Model Comparison with Field Observations 

 To compare the field and model, we collect community-specific data on groin 

construction and beach nourishment characteristics for two-community couplets along 

the New Jersey coast, including the times of groin construction (Table A3.1) and first 
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nourishment intervention (ASBPA, 2020; PSDS, 2019) in the updrift and downdrift 

communities. This analysis, for the purposes of determining the updrift community, 

assumes a net alongshore sediment transport direction by region, i.e., northerly transport 

in central New Jersey and southerly transport in southern New Jersey (Ashley et al., 

1986).  

 We arrange these times of groin and nourishment interventions for each downdrift 

community, listed from north to south (from left to right), and grouped by coastal county 

in New Jersey (Figure 3.7). Also included are the times and names of prominent storms 

that struck or affected these communities to show the relative importance of storms in 

how communities have made their management decisions. 
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Figure 3.7. A general timeline of groin construction and the timing of first nourishment in 
downdrift New Jersey communities relative to the storms causing beach erosion and the 
transition from locally-managed to federally-managed/-subsidized projects after 
approximately 1960. 
 

 The model is community-centric and does not analyze the effect of federal or state 

involvement (i.e., externally subsidized or planned groin/nourishment projects). After a 

series of storms in the 1950s-1960s, culminating in the Ash Wednesday storm of 1962, 
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The US Army Corps of Engineers responded to significant storm damages along the New 

Jersey coast with emergency measures such as new groin constructions, modified existing 

wooden groins with rock and cement reinforcements, and beach nourishments (Hillyer, 

1996).  

 Following passage of the Water Resources Development Act in 1986, the federal 

government has taken the leading role in designing, managing, and subsidizing many 

regional beach nourishment interventions (Hillyer, 1996). This top-down policy response 

plays a key role in how and when observed downdrift nourishment responses were 

implemented. As such, we assume that the switch from locally-driven to federally-driven 

management occurred in approximately 1960 (Hillyer, 1996). Focusing only on the 

period of time prior to federal involvement, therefore, provides information on how 

communities made groin management decisions isolated from the influence of external 

agencies. 

 Most downdrift communities built groins in response to large storm events in 

order to stabilize their beaches as an emergency adaptation measure, but some built 

groins at points in time not closely succeeding major storms, e.g., Deal, Belmar, and Sea 

Isle City (Figure 3.7). Furthermore, cases such as Deal and Belmar are particularly 

interesting because they did not respond to the unnamed 1915 storm in the same way that 

their fellow Monmouth County communities such as Sea Bright, Asbury Park, and 

Bradley Beach did (i.e., with groin construction). Instead, Deal and Belmar waited until 

1933 and 1928 respectively to construct their groins (Table A3.1). Similarly, Sea Girt did 

not build groins after any of the storms during the pre-federal period, and waited until 
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1962 to intervene, at which point the federal government’s role likely influenced their 

decision. Altogether, this suggests that storms are not the only driver of groin 

construction policy. 

 In fact, New Jersey’s coastal communities were at various stages of development 

at the beginning of the 20th century (US Census Bureau, 2010), with the most densely 

populated (i.e., many residents per meter alongshore) communities such as Asbury Park 

and Bradley Beach constructing groins immediately after the 1915 storm, and less 

densely populated communities such as Belmar, Deal, and Sea Girt opting to delay groin 

construction (Figures 3.7, 3.8a).  However, we are interested in the time at which 

downdrift communities built groins relative to the date of groin construction in the updrift 

community to understand how communities responded to groin-induced erosion, in 

particular.  

 We plot the time delay in downdrift groin construction as a function of the 

population density at the time of the management implementation, i.e., the preceding 

decadal Census count (Figure 3.8b). These data are superimposed on the envelope of 

model predictions for downdrift groin time delays based on the same population density 

metric. We proxy the population density in the model by multiplying the number of 

cross-shore property rows with the number of people per property (assuming two 

taxpaying residents in a home) and dividing by the alongshore property length (Table 

3.2). This envelope is constructed with a series of sensitivity analyses for different 

baseline property values (Table 3.1), and encompasses all time-delay data points 
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produced by the model for each combination of baseline property value and population 

density (Figure 3.8b).  

  

 
Figure 3.8. (a) Population density changes through time for each downdrift community in 
New Jersey collected from the 2010 US Census counts, and (b) the comparison between 
predicted time delays in downdrift groin construction relative to updrift groin 
construction and observed time delays for field communities in New Jersey. Results 
provide evidence that the extent of coastal development plays a role in how communities 
respond to groin-induced erosion. 
  

 Field observations and model predictions both indicate that the downdrift delay in 

groin construction decreases as the population density increases, highlighting that the 

extent of community development is important in determining when the community 

decides to intervene in the coastal zone. Furthermore, the model is capable of capturing 

this population density dynamic observed in the field, and suggests that while exogenous 

environmental forcings such as storms are important drivers of groin construction, the 
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human component of these developed systems also serves an important role in coastal 

management timing.  

 How these communities might respond differently in the future is of utmost 

importance given the often fragmented, community-by-community management 

approach that has resulted from hard structural interventions historically and the 

possibility of a return to local financing of adaptation measures (Coburn, 2009). 

Changing physical and economic conditions will undoubtedly force communities to 

respond to groin-heightened erosion differently, the full range of which we explore in the 

subsequent section, below. 

 

3.5 Future Conditions: Effect of Higher Erosion Rates and Rock Material Costs 

 In the future, increased sea-level-rise rates and reductions in groin-quality rock 

supplies due to the potential over-exploitation of common-pool rock resources may lead 

to increased erosion rates and material costs (Hudson et al., 2015; Rich 2014). Should 

these downdrift communities face such challenges in addition to the already enhanced 

erosion rates they experience due to updrift groins, communities will find management 

interventions more difficult to justify economically. 

 The model indicates that for low erosion rates and groin costs, myopic downdrift 

communities respond by building a groin initially and nourishing their beach after a time 

delay (Figure 3.9a). Increasing the groin cost results in delayed nourishment without a 

groin for these communities because groins are too expensive to justify their marginal 

benefit, and the erosion rate is low enough that delayed intervention is appropriate 
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because enough properties can be preserved. Increasing only the erosion rate results in 

initial groin construction without nourishment, suggesting that groins could be a more 

effective approach toward stabilizing beaches compared to nourishment under higher sea-

level-rise rates, given that the marginal costs are low enough to justify groin intervention. 

And while this result depends on the relative balance between unit rock and sand costs, 

which govern the total costs of groin construction vs. beach nourishment, the sand costs 

used here ($5/m3) are relatively low, thus reinforcing the key point that groins are likely 

to be the more effective management option in the future. 

 High erosion rates and moderate groin costs result in delayed groin construction 

without nourishment in myopic communities because groins are economically infeasible 

in the near term, but property preservation (and community preservation more generally) 

is still feasible in the longer term. If both the groin cost and the erosion rate are too high, 

however, the community can neither nourish nor build a groin at any point because it is 

either too costly or too ineffective to produce any appreciable benefit for the community 

(Figure 3.9a). 

 These community responses correspond with a progression of system behaviors 

from seaward growth (i.e., property preservation due to widened beaches) for low groin 

costs and/or erosion rates, slow retreat (i.e., initial property loss due to shoreline 

transgression with delayed intervention) for moderate erosion rates and sand costs, and 

full retreat (i.e., extensive property loss due to shoreline transgression without 

intervention) for high erosion rates and sand costs (Figure 3.9b). The higher the groin 
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costs or erosion rates are, the more likely the downdrift community responds with either a 

groin or nourishment later and thus lose more properties in the long term. 

 

 
Figure 3.9. Downdrift community responses to updrift groin-induced erosion for myopic 
communities (a) and for hyperopic communities (c), and geomorphic behavioral 
responses for myopic communities (b) and for hyperopic communities (d) for future 
increases in groin material costs and background erosion rates. 
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 While communities have historically made management decisions in a myopic 

manner, especially when constructing groins, there is support for lower social discounting 

when adapting to sea-level rise in the future (Lincke and Hinkel, 2018; Weisbach and 

Sunstein, 2009). Should downdrift communities follow a more hyperopic planning 

approach, they respond to future climate change and socioeconomic conditions with only 

an initial groin (no nourishment) for low rock costs, a delayed groin (no nourishment) for 

moderate rock costs, and no groin or nourishment for high rock costs (Figure 3.9c). These 

decisions correspond with more instances of full retreat and thus, property abandonment, 

for higher rock costs than for the myopic scenario (Figure 3.9b). These results underscore 

not only that how communities value the future in their planning process determines the 

decisions they make and their corresponding geomorphic behaviors, but also that groins 

may be a more attractive adaptation solution than beach nourishment irrespective of the 

community’s discounting scheme. 

 In summary, under future conditions, we can expect communities downdrift of a 

groin to respond in possibly different ways than we see currently, depending on the 

relative balance between the physical forcing associated with sea-level rise (i.e., the 

background erosion rate) and the economic forcing of resource dynamics (i.e., the rock 

material cost), as well as how they plan for the future. These changes may make the 

current trend of complementary hard and soft management interventions more difficult. 

Furthermore, the model indicates a potential switch from soft engineering practices such 

as beach nourishment (prevalent in the modern day) toward hard engineering practices 

such as groins in the future due to higher erosion rates, leading to a pervasive hardening 
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of the coast until a threshold beyond which communities can no longer justify any 

management intervention without help from the federal or state government. Which 

decision these communities make will ultimately dictate how many properties are lost 

and what the physical re-orientation of the coast will look like.  

 

3.6 Discussion 

We have developed a simple model coupling coastal geomorphology and 

community-scale socioeconomics to account for emergent management decisions, 

addressing the groin-induced erosion problem. Assuming that beaches provide erosion 

protection and recreational value and that community size/property value serves as a 

proxy for wealth, our model predicts a community’s decision (i.e., initial vs. delayed 

beach nourishment and/or groin construction, or doing nothing) based on its most rational 

option (i.e., most economically beneficial).  

 Downdrift communities have often responded to one-time storm events with groin 

and nourishment interventions, suggesting that most decisions have historically been 

myopic. While stochastic conditions such as storminess might help explain the specific 

timing of groin or nourishment interventions, how communities decide to respond (i.e., 

with initial or delayed nourishment/groin construction) also depends on the underlying 

socioeconomic and resource economic conditions at the community scale.  

 The model presented in this paper highlights the key parameter controls on 

downdrift community responses to updrift-groin-induced erosion. These include a 

community’s size (a proxy for population density) and a community’s baseline property 
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value. In fact, both field observations and model predictions suggest that population 

density is an important factor that helps determine when communities have built groins in 

the past, which may also provide clues into how communities will respond in the future. 

We find that how the community weights future vs. present benefits and costs (i.e., the 

discount rate) is also an important factor in predicting downdrift community responses, 

indicating that implementing a myopic vs. hyperopic decision-making scheme could 

determine the evolution of developed coasts.   

 Looking toward the future, it will be important to incorporate the influence of 

state and federal government cost-sharing agreements, coupled with behavioral controls 

associated with tourism in highly commercialized regions such as New Jersey. These 

additional factors likely play a role in how downdrift communities choose to respond 

based on their location along the coast, their proximity to nearby tourism-concentrated 

zones, and their underlying geomorphic conditions such as the physical efficiency of 

nourishment or groin projects.  

 All of these dynamics should be explored in future work to fully understand 

community-scale responses historically, and how they might change in the future due to 

climate change. Our understanding of how these systems might behave in the future is 

integral to the development of sustainable management policies at local, state, and federal 

levels of government. For example, our model simulations suggest that the historical 

transition from groins to beach nourishment as the main management response during the 

late 20th century could be reversed in the future, suggesting that hard structures such as 

groins could again become more commonplace as communities adapt to sea-level rise. 
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Information gained from this modeling framework and scientific findings built off these 

coupled geomorphic-economic explorations can provide coastal managers and 

policymakers the foresight necessary to make more informed and comprehensive 

decisions in the future. 

 In sum, this simple model replicates the observed field responses to groin-induced 

erosion in downdrift communities, shedding light on the anthropogenic role in coastal 

morphologic evolution. Importantly, coordination across communities is gaining 

recognition as a way to incorporate unintended consequences and to redistribute risk to 

avoid situations such as heightened erosion downdrift of groins. Exploring the range of 

spatial relationships and behaviors requires a larger scale approach. Future work will 

extend the model to account for more community and inter-community dynamics, 

whether communities will maintain their status quo policies, and how external funding 

will affect strategy decisions for coupled natural-human coastal systems faced with 

climate change impacts such as sea-level rise and changing resource economic 

conditions. 
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Chapter 1 Appendix 

We present the alternative end-member assumption that uncoordinated 

communities make about their neighbor when choosing strategies independently, as 

discussed in section (1.2.3). In contrast with the representative non-coordination 

assumption presented previously, communities assume their neighbor nourishes with high 

frequency here, which we consider a risky assumption. Given this expectation, 

communities nourish less than they would have under coordination, resulting in full 

retreat for most baseline-property-value-combinations and slow retreat when one or both 

communities are wealthy (Figure A1.1b). This extreme behavioral difference results in a 

maximum benefit of coordination that is an order of magnitude larger than our 

representative non-coordination (Figures A1.1c, 1.7a) and corresponds with under-

nourishment in both communities for most of the regime space (Figure A1.1d-e). 
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Figure A1.1. Emergent behaviors from (a) coordinated and (b) uncoordinated 
management schemes, (c) the benefit of coordination between the two, and regions of 
over-/under-nourishment in (d) community one and (e) community two. We highlight the 
same baseline-property-value combination as Figure 1.7 (blue star) for sensitivity 
analyses to future conditions. 
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We test how these coordination regimes using the same baseline-property-value 

distribution presented in figure (1.7) and represented by the blue star in figure (A1.1) will 

differ under increases in background erosion rate and sand resource cost. Unsurprisingly, 

uncoordinated communities operating under a risky assumption will never choose to 

nourish, thereby experiencing full retreat behavior under all future conditions (Figure 

A1.2b). This results in a large benefit of coordination in the near future and no benefit in 

the distant future when both coordination schemes result in full retreat (Figure A1.2c). 
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Figure A1.2. Emergent behaviors under future increases in background erosion rate and 
sand resource cost for (a) coordinated and (b) uncoordinated communities, and (c) the 
benefit of coordination between these two schemes. 
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Overall, risky non-coordination results in systematic under-nourishment and thus 

property abandonment under both current and future conditions. Given that many 

communities along U.S. coastlines and worldwide have not behaved in this way, this 

uncoordinated scheme (i.e., the risky assumption) is less common than our representative 

uncoordinated scheme (i.e., the cautionary assumption). Nevertheless, we present this 

end-member case to show the two boundaries between which communities might operate 

when choosing beach maintenance independently, highlighting the variation of response 

based on the assumptions communities make about their neighbors’ behaviors.  

  



142 
 

 
 

Chapter 2 Appendix 

A2.1. Information on Data Collection for Regression Variables 

A2.1.1.     Beach Nourishment Decisions 

We collect historical data on beach nourishment projects for each community that 

has nourished their beach in New Jersey from Western Carolina University’s Program for 

the Study of Developed Shorelines and the American Shore and Beach Preservation 

Association’s beach nourishment databases. From these data, we calculate the average 

nourishment volume per event and combine with re-nourishment frequency to determine 

the average volume each community places on its beach per year, termed the nourishment 

rate. This variable will be our dependent variable, or each community’s nourishment 

decision (Table A2.1). 

 

Table A2.1. Data for dependent variable (Nourishment Rate) and independent variables 
(Average Total Beachfront Wealth—Distance to nearest inlet) for regression analyses and 
descriptive statistics (i.e., minimum, maximum, mean, median, and standard deviation) 
for each variable. 

Beach 
Location 

Nourishment 
Rate 
(m3/yr) 

Average 
Total 
Beachfront 
Wealth 
($) 

Average 
Beach 
Revenue 
($) 

Commercial-
Residential 
Ratio 

Distance 
to 
Tourism 
Center 
(m) 

Nourishment 
Half-life 
(yrs) 

Distance 
to 
nearest 
inlet 
(m) 

Sea Bright 275653.74 151042100.71 466097.08 0.22 1.00 0.45 19693.00 

Monmouth 
Beach 

65697.41 176474574.98 1074446.25 0.02 3037.00 0.58 16231.00 

Long Branch 82800.68 364186558.96 1621443.58 0.12 1.00 10.23 12990.00 

Deal 40530.63 327935601.94 2012662.64 0.01 2353.00 5.22 6286.00 

Asbury Park 11872.84 75526858.36 3761387.86 0.36 1.00 3.20 4182.00 

Bradley 
Beach 

16239.54 94366573.29 1591114.22 0.06 2590.00 0.57 1567.00 

Avon by the 
Sea 

18113.98 93642948.93 1705041.94 0.04 3730.00 1.38 494.00 

Belmar 14883.17 113284048.85 3391369.06 0.09 5295.00 3.75 8585.00 

Spring Lake 20321.39 507908530.10 2546260.53 0.04 6955.00 1.27 5717.00 

Sea Girt 16387.05 255854128.83 1063304.09 0.02 4672.00 1.05 3347.00 
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Manasquan 8909.67 138712427.62 1821710.23 0.07 2634.00 4.99 1245.00 

Point 
Pleasant 

22253.88 143708162.06 2170550.40 0.21 1.00 1.44 37180.00 

Lavallette 7184.97 232551547.86 903038.40 0.03 3030.00 0.70 23753.00 

Seaside 
Heights 

18566.34 56755726.12 3062188.83 0.16 1.00 1.19 20754.00 

Seaside Park 14045.32 156113234.65 2062806.96 0.03 1924.00 0.93 18773.00 

Barnegat 
Light 

30100.88 186061150.31 249294.29 0.04 20900.00 1.41 827.00 

Loveladies 36410.70 261131127.19 1669343.01 0.02 25264.00 0.55 5122.00 

Harvey 
Cedars 

98213.31 263791947.23 240557.63 0.01 27150.00 0.35 7090.00 

Surf City 42779.50 198374781.21 604863.09 0.05 32860.00 0.82 12655.00 

Ship Bottom 25827.10 158246738.31 731240.99 0.10 35190.00 0.77 15299.00 

Brant Beach 101101.27 506810708.39 1669343.01 0.02 35222.00 0.41 17847.00 

Beach 
Haven 

29225.17 223980865.46 567008.43 0.07 27440.00 0.54 25755.00 

Holgate 54567.97 161468655.57 1669343.01 0.02 25540.00 0.55 28111.00 

Brigantine 69688.88 344656768.45 1226638.72 0.03 7600.00 0.41 5885.00 

Atlantic City 156308.56 321989746.17 1087542.78 0.56 1.00 0.31 1606.00 

Ventnor 41974.62 183697813.87 341249.37 0.04 5308.00 0.79 6909.00 

Margate 6595.27 310248403.33 372142.27 0.02 7928.00 2.50 8856.00 

Longport 3968.64 308564359.65 240089.47 0.00 10273.00 1.37 11955.00 

Ocean City 297715.09 1094929077.2
7 

6486481.29 0.04 16354.00 1.49 3656.00 

Sea Isle City 55704.98 689434843.20 2024539.93 0.03 22840.00 0.99 6808.00 

Avalon 68726.67 1008771169.1
0 

1199899.71 0.02 15915.00 1.26 1904.00 

Stone 
Harbor 

48396.22 600117161.76 1150186.64 0.04 8624.00 0.76 9105.00 

North 
Wildwood 

19890.35 252069155.62 1135611.60 0.09 1858.00 0.46 1785.00 

Cape May 
City 

89845.81 308602653.23 4637839.47 0.20 1.00 0.77 3915.00 

Cape May 
Point 

25751.90 116868953.73 171115.97 0.00 6010.00 0.77 9136.00 

        

Descriptive Stats 

Min 3968.64 56755726.12 171115.97 0.00 1.00 0.31 494.00 

Max 297715.09 1094929077.2
7 

6486481.29 0.56 35222.00 10.23 37180.00 

Mean 55321.53 296796545.78 1620792.94 0.08 10528.66 1.55 10429.23 

Median 30100.88 232551547.86 1226638.72 0.04 5308.00 0.82 7090.00 

Standard 
Deviation 

66853.51 238512484.84 1347699.71 0.11 11453.77 1.94 8943.65 

 



144 
 

 
 

 

A2.1.2.     Socioeconomics: Beachfront Wealth 

Most previous literature assumes that beachfront property value is a singular 

control on nourishment decisions. We build off this assumption and extend this variable 

to include beachfront wealth, or the sum of all beachfront property values alongshore in a 

community. This scale is consistent with our dependent variable, the nourishment rate, 

which includes the alongshore length of these nourishment projects. Furthermore, the 

beachfront wealth serves as a proxy for the tax base, such that communities with more 

beachfront properties will have larger revenues with which to fund such beach 

nourishments.  

We approximate beachfront wealth from each municipality’s publicly available 

financial documents on their respective government websites, including their annual 

budgets and audits. Each year, communities report their aggregate assessment value for 

the entire community. From the United States Census Bureau (2010), we collect land 

areas and number of housing units for each community, which provides an estimate of 

the average lot size, i.e., land area / # housing units = mean property square footage. The 

square root of this square footage then provides us with one dimension of the lot size, 

termed the average property length.  

Dividing the land area by the alongshore length of the community, collected with 

Google Earth Pro, provides a representative cross-shore community width, or the 

landward extent of the community. We can then divide this cross-shore width by the 

average property length to determine the number of properties in cross-shore (i.e., inland 
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extent of development). We then assume a power law relationship between total cross-

shore property value (TPV) and a property’s distance from the ocean, such that 

TPV=α∙nψ, which treats beachfront property value α as the highest value in the cross-

section, and each successive landward row n declines in value based on the hedonic 

parameter ψ.  

If we divide the aggregate assessment value by the community’s alongshore 

length, this gives us a cross-sectional total assessment value, and divided by the number 

of rows gives us the average assessment value per house per meter alongshore. We can 

then back-calculate the beachfront property value α using the number of cross-shore 

property rows (i.e., n = cross-shore width / average property length), the cross-sectional 

total property value TPV, and a representative ψ value (e.g., psi = 0.7).  

Given that we have inferred the beachfront property value per meter alongshore 

and that the alongshore community length is known, we can determine the total 

beachfront wealth that encompasses all beachfront property values. We gather these data 

for as many years as are publicly available on each municipality’s website, correct for 

dollar value changes through time (i.e., inflation), and take the average of all years 

collected. This average beachfront wealth serves as the representative socioeconomic 

metric in our regression analysis.  

 

A2.1.3.     Tourism 

New Jersey’s beaches generate approximately $12.1 billion annually in revenue 

(Klein et al., 2004). As such, the amount of revenue realized by communities likely 
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factors into their beach management decisions, both directly and indirectly. We test this 

metric directly using information on each community’s annual beach revenue, but also 

test how the extent of local tourism or the proximity to nearby tourism-concentrated 

towns indirectly affects their consequent nourishment decisions.  

 

Beach Revenue from Recreation 

We gather data on the recreational revenues each community collects on its beach 

from annual financial documents including audits and budgets found on each 

municipality’s website. From these documents, we gather revenue generated within the 

beach utility budget from various sources, including beach badge (access fee) sales, 

parking meter receipts, concession rents, boardwalk tramcar leases, and local tourism 

taxes. Together, these revenues represent the amount of money that users spend at the 

beach over the course of each summer, providing an implicit willingness to pay for beach 

recreation.  

We gather these data for a wide time range as determined by the availability of 

financial documents on each municipality’s website, which in some cases includes up to 

20 years. These annual data are time-corrected for inflation such that all revenues are 

converted to a single year’s dollar value. To correct for any bias introduced by weather-

related variation from one summer to the next, we take the average beach revenue for all 

years, which provides a representative value of their beach recreation.  

 

Commercial vs. Residential Value Ratio 
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From the New Jersey MODIV database encompassed within the State’s Open 

Public Records System (Monmouth County Clerk, 2020), we collect parcel-level property 

information for each community including assessment values and property classes.3 From 

these data, we group properties by class and sum all assessed values for commercial and 

residential classes respectively. The ratio of the total commercial to residential 

assessment values is between zero and one, and serves as a metric for the proportion of 

local tourism in a town. We assume that since many of a New Jersey’s beach 

communities are seasonal, most or all businesses are affected by or dependent on the 

influx of summer tourists, and thus, the total commercial assessment value serves as a 

proxy for the relative importance of the local tourism economy.  

  

 
3 Data collected on assessed property values are in year 2020 dollar values (Monmouth County Clerk, 
2020) 
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Proximity to Tourism Centers 

Using the commercial-residential ratio above, we define a community to be 

tourism-dominated, termed a tourism center, if their ratio is greater than 0.1, or 10% 

commercial value of residential value. All communities below this threshold are 

considered residential-dominated. We calculate the distance from the center of each 

residential-dominated community to the nearest tourism center. This metric provides 

information on the spatial extent of tourism’s impact on non-local beach management 

decisions, including any alongshore spillover from tourism-related beach visits in cases in 

which residential-dominated communities are adjacent or in close proximity to tourism-

dominated communities.  

 

A2.1.4.     Geomorphology: Site and Regional Characteristics 

In addition to the various economic factors listed in the previous sections (A2.1.2-

A2.1.3), other site- and region-specific physical characteristics interact with and reshape 

management interventions in the coastal environment. These underlying conditions can 

limit or supply sediment to the beach and nearshore environment, thereby affecting and 

possibly controlling future management decisions. To test this effect, we gather data on 

the following two metrics: beach nourishment efficiency (i.e., a nourishment project’s 

half-life); and a community’s downdrift distance from the nearest tidal inlet updrift (a 

proxy for the natural sediment supply or deficit as a result of ebb-tidal delta dynamics 

and wave refraction/shadowing). 
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Beach Nourishment Efficiency 

We collect data on beach nourishment efficiency using CoastSat, a shoreline 

extraction tool that gathers imagery from publicly available satellite data (Vos et al., 

2019). This tool employs a machine-learning algorithm that automatically detects ocean 

and terrestrial pixels from Landsat 5, 7, and 8 and Sentinel 2 satellite imagery and 

estimates the shoreline location as the land-sea boundary between these classes. Casting 

transects provides information on shoreline evolution through time. We average these 

position changes across all transects to dampen any meter-scale patterns or perturbations 

in shoreline change.  

We then correct these position changes relative to a representative beach width 

calculated using Google Earth Pro for a specific date in our time-series, i.e., beach area 

for date X / alongshore community length = beach width for date X. We can then track 

the change in average beach width through time, and plot the 50-point moving mean to 

dampen day-scale wave climate effects on beach morphodynamics (Figure A2.1). 

Combined with the years in which communities nourished, known from the 

ASBPA/PSDS datasets, we can pinpoint the seaward extent of a community’s 

nourishment project and track the decay of this nourishment sand through time.  
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Figure A2.1. 50-point beach width moving mean time-series for a representative 
community, Beach Haven.  
 

This information from multiple beach nourishments can then be used to determine 

a representative decay rate, and thus, the half-life of a nourishment project in a 

community (Figure A2.2). We assume this metric is a proxy for the nourishment 

efficiency because it provides information on how long a community can expect to retain 

its artificially added beach sand, which will inform their future actions in terms of the 

volume it should place and frequency of re-nourishment to adequately maintain its beach 

over the long-term.  
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Figure A2.2. Fraction of volume remaining through time with decay rate and half-life 
information.  
 

 We use this approach to calculate the nourishment project’s half-life for each 

community in our dataset. 

 

Natural Alongshore Sediment Supply: Downdrift Distance from Nearest Tidal Inlet 

While previous work tested a community’s distance from tidal inlets to 

understand its access to sediment resources as an economic effect on the decision-making 

process (Qiu et al., 2020), here, we explore the morphodynamic effects of inlet proximity, 

and specifically, the natural supply or limitation of sediments to the beach system via 

alongshore fluxes. Toward this, we calculate each community’s distance downdrift of its 

nearest updrift tidal inlet, assuming that communities closer to tidal inlets will be more 

affected by inlet dynamics and the consequent sediment flux variability, while 

communities further downdrift of tidal inlets will be more isolated from the 
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hydro/morphodynamics. This serves not only as a metric of sediment availability but also 

of both local and non-local geophysical characteristics.  

 

A2.2. Regression Results for Lognormal and Log-log Model Specifications 

A2.2.1. Lognormal Regression 

The second model specification we test is the lognormal regression. We run this 

model with the forward, backward, and stepwise process to determine the set of 

significant parameters that best explain the nourishment rate. We also test all model 

combinations and isolate the model with the lowest root mean square error (RMSE), 

which represents the most accurate model fit of all possible models with our vector of 

independent variables X.  

All regression selection processes suggest the same set of parameters can predict 

the log of the nourishment output, producing similar qualitative results as the normal 

model: 1) the total beachfront wealth; 2) the commercial-residential assessment value 

ratio; and 3) the distance from the nearest tourism center (i.e., nearest community with 

commercial-residential ratio > 0.1). We find that this model is statistically significant 

using the ANOVA test and that each parameter estimate is significant at the 95% 

confidence level (Table A2.2). 
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Table A2.2. ANOVA results and parameter estimates for lognormal model (beachfront 
wealth, com-res ratio, tourism center distance).  

 

 
 

In general, as a community’s total beachfront wealth increases, as its share of 

commercial real estate value increases, or as the community’s distance from the nearest 

tourism center increases, the community will nourish more per year. This suggests that 

socioeconomics and local tourism both have a positive linear impact on nourishment 

policy, while proximity to tourism has an inverse relationship with beach nourishment. 

This latter result could be indicative of the free riding effect whereby communities 

immediately adjacent to tourism centers require less nourishment since neighboring 

tourism-dominated community nourishment rates are so high. This also implies that 

tourism can play a significant role in how a community manages its beach in multiple 

ways and that these various effects likely interact with beachfront wealth differently in 

driving nourishment choices.  
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We test the model’s collinearity among parameters and find that the beachfront 

wealth and the distance from the nearest tourism center are collinear, indicating that some 

of the variation in response could be explained by both variables (Table A2.3). In 

general, as the distance from high tourism zones increases, so too does the beachfront 

wealth, which suggests that tourism might be a disamenity to residential property values, 

and reinforces the theory that tourism-dominant and residential-dominant communities 

are categorically different and likely behave differently.  

 

Table A2.3. Collinearity diagnostics for lognormal model with beachfront wealth and 
com-res ratio.  

 
 

Observed nourishment rates for the lognormal model do not align as well with 

predicted nourishment rates as the normal model, and more variability can only be 

explained by the regression error (Adjusted R-square = 0.29, Figure A2.3). 
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Figure A2.3. Observed vs. predicted nourishment rates for lognormal model with 
adjusted R-square statistics. 
 

 Using the same approach described in equation (2.5), the standardized lognormal 

model indicates that the order of variable importance is: 1) total beachfront wealth; 2) 

commercial-residential assessment value ratio; and 3) distance from the nearest tourism 

center (Table A2.4). These results complement the standardized normal model’s outcome 

that while socioeconomics is still the primary control on nourishment policies, tourism 

also plays a significant role. 
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Table A2.4. Parameter estimates for the standardized lognormal model, where the total 
beachfront wealth is most important, the commercial-residential ratio is second most 
important, and the tourism distance is third most important. 

 
 

A2.2.2.     Log-log Regression 

The third model specification we test is the log-log regression. We run this model with 

the forward, backward, and stepwise process to determine the set of significant 

parameters that best explain the nourishment rate. We also test all model combinations 

and isolate the model with the lowest root mean square error (RMSE), which represents 

the most accurate model fit of all possible models with our vector of independent 

variables X.  

All regression processes suggest the same set of parameters can predict the log of 

nourishment output: the log of total beachfront wealth, the log of tourism distance, and 

the log of nourishment half-life. We find that this model is statistically significant using 

the ANOVA test and that each parameter estimate is significant at the 95% confidence 

level (Table A2.5). 
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Table A2.5. ANOVA results and parameter estimates for the log-log model (log wealth, 
log tourism distance, log half-life).  

 

 
 

In general, as a community’s total beachfront wealth increases, its nourishment 

rate increases. It’s nourishment rate also increases as it’s distance from a tourism center 

or as its half-life increases. This suggests that communities in close proximity to tourism 

centers or those that are tourism centers will nourish more than communities further from 

these recreation-centric locations.  

This model is also the first indication of our various model specifications that 

underlying nourishment efficiency is a significant determinant of nourishment policy, 

such that more efficient projects allow communities to nourish less, and reduced 

efficiency could drive communities to nourish more than they otherwise would have. Of 

note, however, there is likely a feedback between nourishment efficiency and rate 

whereby higher rates shift shorelines further seaward into deeper water, thus steepening 
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the shoreface and alongshore gradients in sediment transport, which would increase 

cross-shore and alongshore fluxes, reduce nourishment efficiency, and necessitate higher 

re-nourishment rates in the future. Alas, the relationship between nourishment half-life 

and nourishment rate might be endogenous by nature.  

The two site-specific variables that are significant in this model (i.e., the tourism 

distance and the nourishment half-life) suggest that spatial variation is important in how 

communities interact with their natural environment. 

We test the model’s collinearity among parameters and find that none of the 

parameters are collinear, meaning that no independent variables are correlated (Table 

A2.6). 

 

Table A2.6. Collinearity diagnostics for log-log model with log wealth, log tourism 
distance, and log half-life.  

 
 

Observed nourishment rates for the log-log model align the best of all model 

specifications with predicted nourishment rates, and less of the nourishment rate variation 

can be explained by the model’ error term (Adjusted R-square = 0.38, Figure A2.4). 

 



159 
 

 
 

 
Figure A2.4. Observed vs. predicted nourishment rates for log-log model with adjusted 
R-square statistics. 
 

Finally, applying equation (2.1), the standardized log-log model indicates that the 

order of variable importance is: 1) total beachfront wealth; 2) distance from the nearest 

tourism center; and 3) nourishment half-life (Table A2.7). These results highlight that 

while socioeconomics and tourism help explain nourishment decisions, so too do 

underlying geomorphic conditions that affect nourishment project efficiency. 
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Table A2.7. Parameter estimates for the standardized log-log model, where the total 
beachfront wealth is most important, the tourism distance is second most important, and 
the nourishment half-life is third most important. 

 
 

A2.3. Justification for using the Normal Regression as the Representative Model 

We choose the normal regression as the representative model because it has the highest 

adjusted R-square value of the three model specifications while only including 

explanatory variables that are independent of the nourishment rate. While the log-log 

model has a higher adjusted R-square value than the normal model, this regression 

include the nourishment half-life as an explanatory variable, which is difficult to 

implement into the  geo-economic model given that we do not have information on why 

the sand is eroding from the beach or where it is depositing. Within the deterministic 

model framework, a nourishment project’s efficiency can be affected by the diffusivity 

(which governs alongshore sediment transport), the shoreface response rate (which 

governs cross-shore sediment transport), or the background erosion rate associated with 

the sea-level-rise rate and wave climate. All of these processes/forcings can affect the 

nourishment half-life, and without information on the key controls on efficiency, we 

cannot estimate where the nourishment sand will deposit within/outside of the system.  
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In addition, the half-life likely is not only a predictor of nourishment rate, but 

could also be dependent upon nourishment rate. As communities place more sand on their 

beaches per year, shorelines would prograde seaward rapidly and into deeper water, and 

given the intrinsic time lag between shoreline and shoreface toe evolutions, these effects 

would steepen the shoreface and potentially reduce the emergent efficiency. Furthermore, 

the rapid growth of the shoreline in one location relative to the adjacent coastline would 

increase the alongshore gradient, thereby increasing sediment transport rates from the 

nourishment site and reducing the nourishment efficiency. In both scenarios, the 

nourishment half-life might depend, in part, on the nourishment rate, thus describing an 

endogenous feedback between the two system components. As such, we avoid any 

regression models with nourishment half-life as a significant predictor of nourishment 

response. 

 While the log-log model produces the highest adjusted R-square value, it includes 

the variable for nourishment efficiency, so we instead implement the regression model 

with the second highest adjusted R-square value, the normal regression model, which 

includes the beachfront wealth and the commercial-residential ratio as predictors of 

nourishment rate. 
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A2.4. Table of Input Parameters used in Geo-economic Model 

Table A2.8. Physical and economic input parameters including the symbol, feasible range 
of values, representative test values, units, and references.  
Parameters Symbol Feasible 

Range of 
Values 

Test 
Value: 
Fig. 18  

Test Value: 
Figs.  
19—21 

Units References 

Variable Nourishment 
Cost 

ϕN 5—30  5 5—20 $/m3 Gopalakrishnan et al., 
2010; Hillyer, 1996; 
Mcdowell Peek et al., 
2016; PSDS, 2019; 
Slott et al., 2010; 
Williams et al., 2013 

Discount Rate ρ 1—10 3 3 %/yr Landry, 2004; Smith 
et al., 2009; USACE, 
1999; Williams et al., 
2013 

Hedonic Parameter 
(Beach Width) 

β 0.05—
0.8 

0.6 0.6 - Gopalakrishnan et al., 
2010; 
Gopalakrishnan et al., 
2016; Pompe and 
Rinehart, 1995; Slott, 
2008; Smith et al., 
2009 

Hedonic Parameter 
(# cross-shore 
properties) 

ψ 0.0001—
0.8 

0.2 0.2 - Gopalakrishnan et al., 
2010; 
Gopalakrishnan et al., 
2011; Landry and 
Hindsley, 2011; 
Landry et al., 2003 

Background Erosion 
Rate 

γ 0—10 0.5 0.5—4 m/yr Armstrong et al., 
2019; 
Gopalakrishnan et al., 
2010; Hapke et al., 
2013; Murray et al., 
2013; Williams et al. 
2013; Zhang et al., 
2004 

Depth of Closure D 5—20  16 16 M Birkemeier, 1985; 
Brutsché et al., 2014; 
Hallermeier, 1981; 
Kraus and Batten, 
2007; Kraus et al., 
1995; Ortiz and 
Ashton, 2016 

Alongshore Flux 
Coefficient 

K1 10 — 
1,000 

500 500 1,000 
m2/yr 

Ashton et al., 2001; 
Ashton and Murray, 
2006a; Ashton and 
Murray, 2006b; 
Falqués, 2003 

Cross-shore Flux 
Coefficient 

K2 - 2,000 2,000 m2/yr Lorenzo-Trueba and 
Ashton, 2014; 
Miselis and Lorenzo-
Trueba, 2017; Ortiz 
and Ashton, 2016 

Shoreface Equilibrium 
Slope 

θeq - 0.02 0.02 m/m Lorenzo-Trueba and 
Ashton, 2014; 
Miselis and Lorenzo-
Trueba, 2017; Ortiz 
and Ashton, 2016 

Alongshore Community 
Length (Cell Length) 

s - 5,000 5,000 m Inspired by field 
values observed in 
New Jersey 

Number of cross-shore 
property rows 

n - 10 10 - Inspired by field 
values observed in 
New Jersey 
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Chapter 3 Appendix 

Table A1. Field observations from New Jersey communities downdrift of groins that 
respond with either contemporaneous or delayed groin/nourishment interventions of their 
own. These data include the year the interventions occurred, the timing relative to the 
updrift community’s groin construction, the groin lengths and nourishment rates 
normalized to a 300-meter alongshore cell length (as employed by the model), 
socioeconomic parameters such as the baseline property value and the community size, 
and the resultant shoreline behavior observed between 1899 and 2012. 

Community: 
Downdrift 
(Updrift) 

Groin 
Construction 
Year: 
Downdrift 
(Updrift) 

First Nourishment 
Year: Downdrift 
(Updrift) 

Groin 
Length* 
[m]: 
Downdrift 
(Updrift) 

Nourish 
Rate* 
[m3/yr]: 
Downdrift 
(Updrift) 

Downdrift 
Baseline 
PV* [$] 

Downdrift 
# Property 
Rows 

Groin 
Delay 
[yrs] 

Nourish 
Delay 
[yrs] 

References 

Sea Bright 
(Monmouth 
Beach) 

1915 
(1915) 

1962  
(1963) 

46  
(32) 
 

21388 
(11192) 

104577 9 0 47 ASBPA, 2020; 
Dallas et al., 2013; 
Donohue et al., 
2004; NJDEP, 
n.d.; Pilkey and 
Wright III, 1988; 
PSDS, 2019; 
Rankin, 1952; 
Rice, 2015; US 
Census Bureau 
2010  

Deal 
(Allenhurst) 

1933 
(1921) 

2016  
(-) 

157  
(102) 
 

128891  
(-) 

489775 21 12 95 ASBPA, 2020; 
Messaros et al., 
2018; NJDEP, 
n.d.; PSDS, 2019; 
USACE, 1988; US 
Census Bureau, 
2010 

Asbury Park 
(Ocean 
Grove) 

1915 
(1915) 

2001  
(-) 

172 
(203) 
 

11023 
(-) 

197589 116 0 86 ASBPA, 2020, 
Farrell et al., 
2004b; NJDEP, 
n.d.; PSDS, 2019; 
Rankin, 1952; 
Rice, 2015; 
Stauble et al., 
2005; US Census 
Bureau, 2010  

Bradley 
Beach (Avon 
by the Sea) 

1915 
(1915) 

1958  
(1947) 

131 
(239) 
 

4540  
(7040) 

251950 49 0 43 ASBPA, 2020; 
Donahue et al., 
2004; Farrell et al., 
2004b; NJDEP, 
n.d.; PSDS, 2019; 
Rice, 2015; 
Stauble et al., 
2005; US Census 
Bureau, 2010 

Belmar 
(Spring 
Lake) 

1928 
(1919) 

1967  
(1959) 

105 
(173) 
 

3126 
(2652) 

193679 45 9 48 ASBPA, 2020; 
Farrell et al., 
2004b; NJDEP, 
n.d.; PSDS, 2019; 
Rayner, 1952; 
USACE, 1995; US 
Census Bureau, 
2010 

Sea Girt 
(Manasquan) 

1962 
(1939) 

1962  
(1999) 

123 
(131) 
 

4236 
(6764) 

590139 35 23 23 ASBPA, 2020; 
Farrell et al., 
2004b; NJDEP, 
n.d.; PSDS, 2019; 
Rayner, 1952; 
Stauble et al., 
2005; US Census 
Bureau, 2010  

Loveladies 
(Harvey 
Cedars) 

1963 
(1925) 

1962  
(1954) 

97 
(96) 
 

4706 
(11869) 

301155 23 38 37 ASBPA, 2020, 
Miller 1980, 
NJDEP n.d., PSDS 
2019, Rice 2015, 
USACE 1999, US 
Census Bureau 
2010 

Ship Bottom 
(Surf City) 

1963 
(1920) 

1956  
(1962) 

76 
(69) 
 

4726 
(8233) 

285581 29 43 36 ASBPA 2020, 
Miller 1980, 
NJDEP n.d., PSDS 
2019, Rice 2015, 
USACE 1999, US 
Census Bureau 
2010 

Holgate 
(Beach 
Haven) 

1947 
(1920) 

1962  
(1962) 

119 
(66) 

11406 
(4172) 

301155 23 27 42 ASBPA 2020; 
Miller, 1980; 
NJDEP, n.d.; 
PSDS, 2019; Rice, 
2015; USACE, 
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1999; US Census 
Bureau, 2010 

Ventnor City 
(Atlantic 
City) 

-  
(1948) 

2004  
(1936) 

- 
(200) 
 

26195 
(8604) 

269197 75 - 56 ASBPA, 2020; 
NJDEP, n.d.; 
PSDS, 2019; 
Rankin, 1952; US 
Census Bureau, 
2010 

Sea Isle City 
(Strathmere) 

1923 
(1920) 

1962  
(1950) 

130 
(136) 
 

3128 
(13145) 

345432 25 3 42 ASBPA, 2020; 
Everts et al., 1980; 
NJDEP, n.d.; 
PSDS, 2019; 
USACE, 1978; 
USACE, 2001; US 
Census Bureau, 
2010  

South Cape 
May (Cape 
May City) 

-  
(1924) 

-  
(1967) 

- 
(114) 

- 
(10478) 

- - - - NJDEP, n.d.; 
Tischler, 2006 

*Value normalized to a 300-meter compartment size for comparison amongst 
communities. 
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Codes 

A4.1 Chapter 1 

All field observations, model codes, data produced by model experiments, and scripts 

used to generate manuscript figures are available at our Github repository page 

https://github.com/aryejanoff/Nourishment-Coordination. 

 

  

https://github.com/aryejanoff/Nourishment-Coordination
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A4.2 Chapter 2 

A4.2.1 SAS Codes 

NJ_nourishmentrate.sas (Normal Regression Model) 

/*Nourishment Rate*/ 
 
libname NJ '/folders/myfolders/Projects'; 
 
/***State***/ 
PROC IMPORT OUT= NJ.nrate 
            DATAFILE= "/folders/myfolders/Projects/NJ_SAS_inputs.xlsx"  
            DBMS=XLSX REPLACE; 
SHEET="Sheet1"; 
 
data a; 
set NJ.nrate; 
log_rate=log(Nourishment_Rate); 
log_BR=log(Average_Beach_Revenue); 
log_wealth=log(Average_Total_Bfrnt_Wealth); 
log_tourdist=log(Distance_to_Tourism_Center); 
log_inletdist=log(Distance_to_nearest_inlet); 
log_halflife=log(Nourishment_Half_life); 
proc contents; 
proc print; 
proc corr data=a;  
 var Nourishment_Rate log_rate Nourishment_Half_life log_halflife; 
run; 
proc reg outest=est1; 
 model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 output out=out1 p=p r=r; run; quit; 
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proc reg outest=est2; 
 model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 output out=out2 p=p r=r; run; quit; 
  
proc reg outest=est3; 
 model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 output out=out3 p=p r=r; run; quit; 
  
proc reg outest=est4; 
 model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
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proc reg outest=est5; 
 model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
 
data both; set est4 est5;  run;        
proc sort data=both; by _rmse_; run;        
proc print data=both(obs=10); run;  
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NJ_lognourishmentrate.sas (Semilog Regression Model) 

/*Nourishment Rate*/ 
 
libname NJln '/folders/myfolders/Projects'; 
 
/***State***/ 
PROC IMPORT OUT= NJln.nrateln  
            DATAFILE= "/folders/myfolders/Projects/NJ_SAS_inputs.xlsx"  
            DBMS=XLSX REPLACE; 
SHEET="Sheet1"; 
 
data a; 
set NJln.nrateln; 
log_rate=log(Nourishment_Rate); 
log_BR=log(Average_Beach_Revenue); 
log_wealth=log(Average_Total_Bfrnt_Wealth); 
log_tourdist=log(Distance_to_Tourism_Center); 
log_inletdist=log(Distance_to_nearest_inlet); 
log_halflife=log(Nourishment_Half_life); 
proc contents; 
proc print; 
proc reg outest=est1; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 output out=out1 p=p r=r; run; quit; 
 
proc reg outest=est2; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
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 model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 output out=out2 p=p r=r; run; quit; 
  
proc reg outest=est3; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 output out=out3 p=p r=r; run; quit; 
  
proc reg outest=est4; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
  
proc reg outest=est5; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
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 model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 *model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
 
data both; set est4 est5;  run;        
proc sort data=both; by _rmse_; run;        
proc print data=both(obs=10); run;  
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NJ_lognourishmentrate_logparams.sas (Log-log Regression Model) 

/*Nourishment Rate*/ 
 
libname NJlnln '/folders/myfolders/Projects'; 
 
/***State***/ 
PROC IMPORT OUT= NJlnln.nratelnln 
            DATAFILE= "/folders/myfolders/Projects/NJ_SAS_inputs.xlsx"  
            DBMS=XLSX REPLACE; 
SHEET="Sheet1"; 
 
data a; 
set NJlnln.nratelnln; 
log_rate=log(Nourishment_Rate); 
log_BR=log(Average_Beach_Revenue); 
log_wealth=log(Average_Total_Bfrnt_Wealth); 
log_tourdist=log(Distance_to_Tourism_Center); 
log_inletdist=log(Distance_to_nearest_inlet); 
log_halflife=log(Nourishment_Half_life); 
proc contents; 
proc print; 
proc reg outest=est1; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 output out=out1 p=p r=r; run; quit; 
 
proc reg outest=est2; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
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 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic; 
 output out=out2 p=p r=r; run; quit; 
  
proc reg outest=est3; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 output out=out3 p=p r=r; run; quit; 
  
proc reg outest=est4; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
  
proc reg outest=est5; 
 *model Nourishment_Rate = Average_Beach_Revenue 
Average_Total_Bfrnt_Wealth Com_Res_Ratio Distance_to_Tourism_Center 
Distance_to_nearest_inlet Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
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 *model log_rate = Average_Beach_Revenue Average_Total_Bfrnt_Wealth 
Com_Res_Ratio Distance_to_Tourism_Center Distance_to_nearest_inlet 
Nourishment_Half_life / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 model log_rate = log_BR log_wealth Com_Res_Ratio log_tourdist log_inletdist 
log_halflife / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
 
data both; set est4 est5;  run;        
proc sort data=both; by _rmse_; run;        
proc print data=both(obs=10); run;  
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NJ_nourishmentdischarge_standardized.sas (Standard Normal Regression Model) 

/*Nourishment Discharge*/ 
 
libname NJst '/folders/myfolders/Projects'; 
 
/***State***/ 
PROC IMPORT OUT= NJst.ndischargest 
            DATAFILE= "/folders/myfolders/Projects/NJ_SAS_inputs_standardln.xlsx"  
            DBMS=XLSX REPLACE; 
SHEET="Sheet1"; 
 
data a; 
set NJst.ndischargest; 
proc contents; 
proc print; 
proc corr data=a;  
 var Standard_Dischargeln Standard_Half_life; 
run; 
 
proc reg outest=est3; 
 model Standard_Discharge = Standard_BR Standard_Wealth Standard_CR_Ratio 
Standard_Tourism_Distance Standard_Inlet_Distance Standard_Half_life / white collin 
slstay=0.15 slentry=0.15  
 selection=stepwise ss2 sse aic; 
 output out=out3 p=p r=r; run; quit; 
  
proc reg outest=est4; 
 model Standard_Discharge = Standard_BR Standard_Wealth Standard_CR_Ratio 
Standard_Tourism_Distance Standard_Inlet_Distance Standard_Half_life / white collin 
slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq; 
 output out=out p=p r=r; run; quit; 
 
data both; set est4;  run;        
proc sort data=both; by _rmse_; run;        
proc print data=both(obs=10); run;   
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NJ_geointeractions_sppcombos.sas (Half-life Geo-interaction) 

/*Nourishment Rate*/ 
 
libname NJ '/folders/myfolders/Projects'; 
 
/***State***/ 
PROC IMPORT OUT= NJ.geointeract 
            DATAFILE= "/folders/myfolders/Projects/NJ_SAS_inputs.xlsx"  
            DBMS=XLSX REPLACE; 
SHEET="Sheet1"; 
 
data a; 
set NJ.geointeract; 
proc contents; 
proc print; 
run; 
proc reg outest=est1; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio 
CR_Half_life_Div / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 output out=out1 p=p r=r; run; quit; 
 
proc reg outest=est2; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio 
CR_Half_life_Div / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic;  
 output out=out2 p=p r=r; run; quit; 
  
proc reg outest=est4; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio  
CR_Half_life_Div / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq;  
 output out=out p=p r=r; run; quit; 
  
proc reg outest=est5; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio 
CR_Half_life_Div / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq;  
 output out=out p=p r=r; run; quit; 
 
data both; set est4 est5;  run;        
proc sort data=both; by _rmse_; run;        
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proc print data=both(obs=10); run; 
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NJ_geointeractions_sppcombos.sas (Inlet Distance Geo-interaction) 

/*Nourishment Rate*/ 
 
libname NJ '/folders/myfolders/Projects'; 
 
/***State***/ 
PROC IMPORT OUT= NJ.geointeract 
            DATAFILE= "/folders/myfolders/Projects/NJ_SAS_inputs.xlsx"  
            DBMS=XLSX REPLACE; 
SHEET="Sheet1"; 
 
data a; 
set NJ.geointeract; 
proc contents; 
proc print; 
run; 
proc reg outest=est1; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio 
Wealth_logInlet_Mult / white collin slstay=0.15 slentry=0.15  
 selection=forward ss2 sse aic; 
 output out=out1 p=p r=r; run; quit; 
 
proc reg outest=est2; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio 
Wealth_logInlet_Mult / white collin slstay=0.15 slentry=0.15  
 selection=backward ss2 sse aic;  
 output out=out2 p=p r=r; run; quit; 
  
proc reg outest=est4; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio  
Wealth_logInlet_Mult / white collin slstay=0.15 slentry=0.15  
 selection=adjrsq sse aic adjrsq;  
 output out=out p=p r=r; run; quit; 
  
proc reg outest=est5; 
 model Nourishment_Rate = Average_Total_Bfrnt_Wealth Com_Res_Ratio 
Wealth_logInlet_Mult / white collin slstay=0.15 slentry=0.15  
 noint selection=adjrsq sse aic adjrsq;  
 output out=out p=p r=r; run; quit; 
 
data both; set est4 est5;  run;        
proc sort data=both; by _rmse_; run;        



179 
 

 
 

proc print data=both(obs=10); run; 
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A4.2.2 Matlab Codes 

maincode.m 

function [behavior,NB2,W,Eff,Nrate]=maincode(PV,comres) 
  
% %Nourishment Rate Sensitivities 
% Nrate_min=0; 
% Nrate_max=300000; 
% dN=100; 
% Nrate_vector=Nrate_min:dN:Nrate_max;  
% nr=length(Nrate_vector);  
% NB_storage=NaN(1,nr);  
% behavior_storage=NaN(1,nr); 
% N_efficiency_storage=NaN(1,nr); 
%  
% parfor iN=1:numel(Nrate_vector) 
        %% Input Physical Pmarameters %% 
        lot_size=30;  
        w_init=30; 
        beta=0.6; %beach width hedonic parameter  
%         PV=0.01e6; 
%         comres=0.0; 
        alpha2=PV/(w_init^beta); %385000; % 
        s=[2500 5000 2500]; %alongshore compartment length (m) 
        rows_along=s(2)/lot_size; 
        rows_cross=10; %# of cross-shore proeprty rows 
        properties_total=rows_cross*rows_along; 
        comm_width=rows_cross*lot_size; %initial Community Width (m) 
        psi=0.2; 
        D=16; %depth of closure (m) 
        gamma=1; %erosion rate (m/yr) 
        d=500000; %alongshore flux coeff 
        K=2000; %cross-shore flux coeff 
        phi=20; %sand cost ($/m^3)  
        rho=0.03; %discount rate 
        TBW=PV*rows_along; 
        Nrate=max(0,-7800.23119+0.00015081*TBW+223965*comres); %Nourishment 
Rate Nrate_vector(iN); % 
        nu=0; %beach width decline beyond max threshold 
        theta_eq=0.02; %equilibrium shoreface slope 
        k2=0; 
        k3=0; 
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        %% Computational Parameters %% 
        tmax=50; dt=0.01; t=0:dt:tmax; n=length(t);  
        Smax=3; ds=1; S=1:ds:Smax; m=length(S); 
        A2=alpha2*rho;  
        theta=zeros(n,m); qL=zeros(n,m); qC=zeros(n,m); q_loss=zeros(1,n); 
fS=zeros(n,m); fT=zeros(n,m);  
        xS=zeros(n,m); xT=zeros(n,m); xH=zeros(n,m); w=zeros(n,m); 
        B=zeros(n,m); B_disc=zeros(n,m); TB=zeros(n,m); 
        C=zeros(n,m); TC=zeros(n,m); 
        nb=NaN(n,m); N_h=zeros(n,m);         
        volume=zeros(n,m);  
        V_nourish=zeros(1,n); V_loss=zeros(1,n); efficiency=zeros(1,n); 
        TQL_out=zeros(1,n); TQC_out=zeros(1,n); TQ_out=zeros(1,n); 
        nb2=NaN(1); nb3=NaN(1); behavior=NaN(1); NB2=NaN(1); NB3=NaN(1); 
TNB=NaN(1); 
  
        %% Initial Conditions %% 
        xS(1,:)=comm_width+w_init;  
        xT(1,:)=xS(1,:)+(D/theta_eq); 
        xH(1,:)=comm_width; 
        N_h(1,:)=rows_cross; 
        w(1,:)=xS(1,:)-xH(1,:); 
        volume(:,2)=Nrate; 
  
        %% Main Code %% 
        for i=1:n-1 
            for j=2:m-1                            
                %% Nourishment Initiation + Volume 
                V_nourish(i+1)=V_nourish(i)+(2*(volume(i,2))/(s(2)*D)); 
                 
                %% Fluxes (Along/Cross-shore) and Shoreface Dynamics 
                qL(i,j)=d*((xS(i,j-1)-xS(i,j))/((s(j-1)+s(j))/2)); qL(i,1)=d*((xS(i,m)-
xS(i,1))/((s(j-1)+s(j))/2)); qL(i,m)=d*((xS(i,m-1)-xS(i,m))/((s(m-1)+s(m))/2));  
                theta(i,j)=D/(xT(i,j)-xS(i,j)); theta(i,1)=D/(xT(i,1)-xS(i,1)); 
theta(i,m)=D/(xT(i,m)-xS(i,m));  
                qC(i,j)=K*(theta(i,j)-theta_eq); qC(i,1)=K*(theta(i,1)-theta_eq); 
qC(i,m)=K*(theta(i,m)-theta_eq); 
                q_loss(i)=((2*(qL(i,1)-qL(i,2)))/s(j))+((4*(qC(i,2)+qC(i,3)))/D)+gamma; % 
                
V_loss(i)=(dt/3)*(q_loss(1)+4*(sum(q_loss(2:2:end)))+2*sum(q_loss(2:1:end))+q_loss(e
nd)); 
                efficiency(i)=100*(1-V_loss(i)./V_nourish(i)); 
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                %% ODE's ((2*d/(s^2))*(xS(i,m)-2*xS(i,1)+xS(i,2)))-(4*K*(theta(i,1)-
theta_eq)/D) 
                fT(i,j)=(4*K*(theta(i,j)-theta_eq)/D)-gamma; fT(i,1)=(4*K*(theta(i,1)-
theta_eq)/D)-gamma; fT(i,m)=(4*K*(theta(i,m)-theta_eq)/D)-gamma; 
                fS(i,j)=((2*d/(((s(j-1)+s(j))/2)*((s(j)+s(j+1))/2)))*(xS(i,j-1)-
2*xS(i,j)+xS(i,j+1)))-(4*K*(theta(i,j)-theta_eq)/D)-gamma+((2*volume(i,2))/(D*s(2))); 
fS(i,1)=((2*d/(((s(m)+s(1))/2)*((s(1)+s(2))/2)))*(xS(i,m)-2*xS(i,1)+xS(i,2)))-
(4*K*(theta(i,1)-theta_eq)/D)-gamma; fS(i,m)=((2*d/(((s(m-
1)+s(m))/2)*((s(m)+s(1))/2)))*(xS(i,m-1)-2*xS(i,m)+xS(i,1)))-(4*K*(theta(i,m)-
theta_eq)/D)-gamma;  
  
                %% Numerical Approximations 
  
                xT(i+1,j)=xT(i,j)+dt*fT(i,j); xT(i+1,1)=xT(i,1)+dt*fT(i,1); 
xT(i+1,m)=xT(i,m)+dt*fT(i,m); 
                xS(i+1,1)=xS(i,1)+dt*fS(i,1); xS(i+1,j)=xS(i,j)+dt*fS(i,j); 
xS(i+1,m)=xS(i,m)+dt*fS(i,m);  
                if xS(i,j)<=lot_size 
                    volume(i,j)=0; volume(i+1,j)=0; N_h(i,j)=0; xH(i,j)=0; N_h(i+1,j)=0; 
xH(i+1,j)=0; %xS(i,j)=0; xS(i+1,j)=0;  
                elseif xS(i,j)<=xH(i,j)+0.5 
                    xH(i+1,j)=xH(i,j)-lot_size; N_h(i+1,j)=N_h(i,j)-1; 
                else 
                    xH(i+1,j)=xH(i,j); 
                end 
                w(i,j)=xS(i,j)-xH(i,j); w(i,1)=xS(i,1)-xH(i,1);  
  
                %% Housing Lines  
                N_h(i,j)=xH(i,j)/lot_size; N_h(i,1)=xH(i,1)/lot_size; 
N_h(i,m)=xH(i,m)/lot_size; 
                 
                %% Benefit  
                B(i,2)=rows_along*A2*((w(i,2)).^beta)*((N_h(i,2)).^psi)-(nu*(w(i,2).^2));  
                B_disc(i,j)=B(i,j)*exp(-rho*t(i));  
                
TB(i,j)=(dt/3)*(B_disc(1,j)+4*(sum(B_disc(2:2:end,j)))+2*sum(B_disc(2:1:end,j))+B_di
sc(end,j));  
  
                %% Cost  
                C(i,j)=volume(i,j)*phi*exp(-rho*t(i));  
                if N_h(i,j)==0 
                    C(i,j)=0; 
                end 
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                TC(i,j)=sum(C(:,j)); 
  
                %% marginal net benefit  
                nb(i,j)=TB(i,j)-TC(i,j);  
  
                %% Net Benefit 
                NB2=nb(i,2);  
            end 
        end 
         
        %% Identify Behavior 
        if max(xS(end-1,2))>comm_width+w_init 
            behavior=0; %seaward growth 
        elseif max(xS(end-1,2))<=comm_width+w_init && xH(end-1,2)-xH(1,2)==0 
            behavior=3; %hold the line 
        elseif  (xH(end-1,2)-xH(1,2)<0) && Nrate~=0 
            behavior=6; %slow retreat 
        elseif (xH(end-1,2)-xH(1,2)<0) && Nrate==0 
            behavior=9; %retreat 
        end 
  
        %% Nourishment Efficiency 
        if Nrate~=0 
            Eff=efficiency(end-1); 
        elseif Nrate==0 
            Eff=NaN; 
        end 
%         ind=find(w(2:end-1,2)-w_init<=0.5*(w(2,2)-w_init)); 
%         halflife=min(t(ind)); 
  
        %% Shoreline Change 
        W=xS(end-1,2)-xS(1,2); 
  
%         %% Output Storage 
%         N_efficiency_storage(iN)=Eff; 
%         NB_storage(iN)=NB2; 
%         behavior_storage(iN)=behavior; 
% end 
% %% find optimum 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % coordinated 
% maxNB=max(NB_storage(:)); 
% index=find(NB_storage==maxNB); 
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% Nrate_star=Nrate_vector(index);  
% NB_star=NB_storage(index); 
% behavior_star=behavior_storage(index); 
% Neff_star=N_efficiency_storage(index); 
% PV=5e6; 
% comres=0.02; 
% rows_along=5000/30; 
% TBW=PV*rows_along; 
% Nrate_emp=max(0,-7800.23119+0.00015081*TBW+223965*comres); 
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PV_comres_sensitivities.m 

PV_vec=linspace(1e4,7e6,150); 
TBW_vec=PV_vec*5000/30; 
comres_vec=linspace(0,0.6,150); 
nn=length(PV_vec); 
mm=length(comres_vec); 
behavior_storage=zeros(nn,mm); 
NB2_storage=zeros(nn,mm); 
W_storage=zeros(nn,mm); 
Eff_storage=zeros(nn,mm); 
Nrate_storage=zeros(nn,mm); 
%% Main code %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
parfor ii=1:numel(PV_vec)  
    behavior_vector=zeros(1,mm); 
    NB2_vector=zeros(1,mm); 
    W_vector=zeros(1,mm); 
    Eff_vector=zeros(1,mm); 
    Nrate_vector=zeros(1,mm); 
    for jj=1:numel(comres_vec) 
        PV=PV_vec(ii); 
        comres=comres_vec(jj); 
        [behavior,NB2,W,Eff,Nrate]=maincode(PV,comres); 
        %% Storage %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        behavior_vector(jj)=behavior; 
        NB2_vector(jj)=NB2; 
        W_vector(jj)=W; 
        Eff_vector(jj)=Eff; 
        Nrate_vector(jj)=Nrate; 
    end 
    behavior_storage(ii,:)=behavior_vector; 
    NB2_storage(ii,:)=NB2_vector; 
    W_storage(ii,:)=W_vector; 
    Eff_storage(ii,:)=Eff_vector; 
    Nrate_storage(ii,:)=Nrate_vector; 
end 
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A4.3 Chapter 3 

base_code_timesens.m 

% function 
[NB_star,tcritg_star,behavior_star,decision_star,shoreline_change_star]=base_code_time
sens(alpha2,rows_cross,Nrate1,Nrate2,L1,L2,t_crit_n_up,t_crit_n_down,t_crit_g_up) 
function 
[NB_star,tcritg_star,tcritn_star,behavior_star,decision_star,shoreline_change_star]=base_
code_timesens(phi_g,gamma) 
% function 
[NB_star,tcritg_star,tcritn_star,behavior_star,decision_star,shoreline_change_star]=base_
code_timesens(alpha2,rows_cross) 
% function 
[NB_star,tcritg_star,behavior_star,decision_star,shoreline_change_star]=base_code_time
sens(rows_cross) 
tt=linspace(0,99,100); %197 
tcritg_vec=[tt NaN];  
mm=numel(tcritg_vec); 
tcritn_vector=linspace(0,99,100); %197 
tcritn_vec=[tcritn_vector NaN]; 
kk=numel(tcritn_vec); 
NB_storage=NaN(mm,kk); %(1,mm);  
behavior_storage=NaN(mm,kk); %(1,mm);  
decision_storage=NaN(mm,kk); %(1,mm); 
shorelinechange_storage=NaN(mm,kk); %(1,mm);  
parfor ii=1:numel(tcritg_vec) 
    NB_vec=zeros(1,kk); 
    behavior_vec=zeros(1,kk); 
    decision_vec=zeros(1,kk); 
    shorelinechange_vec=zeros(1,kk); 
    Nh_final_vec=zeros(1,kk); 
    for in=1:numel(tcritn_vec) 
        %% Input Physical Parameters %% 
        lot_size=30;  
        w_init=30; 
        beta=0.5; %beach width hedonic parameter  
        alpha1=1e6/(w_init^beta); 
        alpha2=277519; %0.1e6/(w_init^beta);  
        s=[300 300]; %alongshore compartment length (m) 
        rows_along=s(2)/lot_size; 
        rows_cross=38; %# of cross-shore proeprty rows 
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        properties_total=rows_cross*rows_along; 
        comm_width=rows_cross*lot_size; %initial Community Width (m) 
        psi=0.2; 
        D=16; %depth of closure (m) 
%         gamma=2; %erosion rate (m/yr) 
        d=500000; %alongshore flux coeff (m^2/yr) 
        K=2000; %cross-shore flux coeff (m^2/yr) 
        phi_n=5; %sand cost ($/m^3) 
        Nrate1=8415; %Nourishment Rate (m^3/yr) 
        Nrate2=18614; %Nourishment Rate (m^3/yr) 
%         phi_g=100000; %groin cost ($/m) 
        rho=0.03; %discount rate 
        nu=0; %beach width decline beyond max threshold 
        theta_eq=0.025; %equilibrium shoreface slope 
        deg=75; %breaking wave angle 
        rad=deg*pi/180; 
        H=1; %Wave Height (m) 
%         T=10; %Wave Period (s) 
        qin=d*(H^(5/2))*cos(rad)*sin(rad); 
        k1=0; 
        k2=0; 
        L1=135; 
        L2=100; 
        t_crit_g_up=0; %24; 
        t_crit_g_down=tcritg_vec(ii); %time of groin construction downdrift 
        t_crit_n_up=0; %61; %time of first nourishment downdrift 
        t_crit_n_down=tcritn_vec(in); %time of first nourishment downdrift 
      
        %% Computational Parameters %% 
        tmax=100; dt=0.05; t=0:dt:tmax; n=length(t);  
        Smax=2; ds=1; S=1:ds:Smax; m=length(S); 
        A1=alpha1*rho; A2=alpha2*rho;  
  
        L=zeros(1,m); theta=zeros(n,m); qL=NaN(n,m); qC=zeros(n,m); fS=zeros(n,m); 
fT=zeros(n,m);  
        xS=zeros(n,m); xT=zeros(n,m); xH=zeros(n,m); w=zeros(n,m); 
        B=zeros(n,m); B_disc=zeros(n,m); TB=zeros(n,m); 
        C=zeros(n,m); TC=zeros(n,m); 
        nb=NaN(n,m); N_h=zeros(n,m);         
        volume=zeros(n,m); nE=zeros(n,m); Vtotal=zeros(n,m); 
        TQL_out=zeros(1,n); TQC_out=zeros(1,n); TQ_out=zeros(1,n); 
        share1=NaN(1); share2=NaN(1);  
        behavior=NaN(1);  decision=NaN(1); 
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        NB1=NaN(1); NB2=NaN(1); TNB=NaN(1); 
        time_groin=NaN(1); time_drown=NaN(1); w_crit_g=NaN(1); Nh_crit=NaN(1); 
shoreline_change=NaN(1); 
         
        %% Initial Conditions %% 
        xS(1,:)=comm_width+w_init;  
        xT(1,:)=xS(1,:)+(D/theta_eq); 
        xH(1,:)=comm_width; 
        N_h(1,:)=rows_cross; 
        w(1,:)=xS(1,:)-xH(1,:); 
        C(1,1)=phi_g*L1; 
         
        %% Main Code %% 
        for i=1:n-1 
            for j=1:m                            
                %% Groin Lengths 
%                 L(:,1)=L1; 
                %% Nourishment Initiation + Volume 
                if t(i)>=t_crit_n_up 
                    volume(i,1)=Nrate1; 
                else 
                    volume(i,1)=0; 
                end 
                if t(i)>=t_crit_n_down 
                    volume(i,2)=Nrate2; 
                else 
                    volume(i,2)=0; 
                end 
                Vtotal(i+1,2)=Vtotal(i,2)+volume(i,2); 
                 
                %% Fluxes (Along/Cross-shore) and Shoreface Dynamics 
                if xS(i,2)<=comm_width+L(1) && xS(i,1)<=comm_width+L(1) && L(1)~=0 
                    qL(i,1)=qin*((xS(i,1)-xH(i,1))./L(1));  
                elseif xS(i,2)>comm_width+L(1) || xS(i,1)>comm_width+L(1) || L(1)==0 
                    qL(i,1)=d*(H^(5/2))*cos(rad-atan((xS(i,1)-
xS(i,2))/(0.5*s(1)+0.5*s(2))))*sin(rad-atan((xS(i,1)-xS(i,2))/(0.5*s(1)+0.5*s(2)))); 
                end 
                if xS(i,2)<=comm_width+L(2) && L(2)~=0 %(xS(i,2)-xH(i,2))<=L(2) && 
(xS(i,3)-xH(i,3))<=L(2) && L(2)~=0 
                    qL(i,2)=qL(i,1)*((xS(i,2)-xH(i,2))./L(2));  
                elseif xS(i,2)>comm_width+L(2) || L(2)==0 %(xS(i,2)-xH(i,2))>L(2) || 
(xS(i,3)-xH(i,3))>L(2) || L(2)==0 



189 
 

 
 

                    qL(i,2)=qin; %d*cos(rad-atan((xS(i,2)-
xS(i,3))/(0.5*s(2)+0.5*s(3))))*sin(rad-atan((xS(i,2)-xS(i,3))/(0.5*s(2)+0.5*s(3))));  
                end  
                theta(i,j)=D/(xT(i,j)-xS(i,j)); %theta(i,1)=D/(xT(i,1)-xS(i,1)); 
theta(i,m)=D/(xT(i,m)-xS(i,m)); 
                qC(i,j)=4*s(j)*K*(theta(i,j)-theta_eq); %qC(i,1)=4*s*K*(theta(i,1)-theta_eq); 
qC(i,m)=4*s*K*(theta(i,m)-theta_eq); 
                 
                %% ODE's ((2*d/(s^2))*(xS(i,m)-2*xS(i,1)+xS(i,2)))-(4*K*(theta(i,1)-
theta_eq)/D) 
                fT(i,j)=(4*K*(theta(i,j)-theta_eq)/D)-gamma; %fT(i,1)=(4*K*(theta(i,1)-
theta_eq)/D)-gamma; fT(i,m)=(4*K*(theta(i,m)-theta_eq)/D)-gamma;  
                fS(i,1)=((2/(D*s(1)))*(qin-qL(i,1)))-(4*K*(theta(i,1)-theta_eq)/D)-
gamma+((2*volume(i,1))/(D*s(1)));  %((2/(D*s(1)))*(qL(i,3)-qL(i,1)))-(4*K*(theta(i,1)-
theta_eq)/D)-gamma;  % 
                fS(i,2)=((2/(D*s(2)))*(qL(i,1)-qL(i,2)))-(4*K*(theta(i,2)-theta_eq)/D)-
gamma+((2*volume(i,2))/(D*s(2))); 
  
                %% Numerical Approximations 
  
                xT(i+1,j)=xT(i,j)+dt*fT(i,j); %xT(i+1,m)=xT(i,m)+dt*fT(i,m); 
                if xS(i,j)<=lot_size 
                    volume(i,j)=0; volume(i+1,j)=0; N_h(i,j)=0; xH(i,j)=0; N_h(i+1,j)=0; 
xH(i+1,j)=0; %xS(i,j)=0; xS(i+1,j)=0;  
                elseif xS(i,j)<=xH(i,j)+5 
                    xH(i+1,j)=xH(i,j)-lot_size; N_h(i+1,j)=N_h(i,j)-1; 
                else 
                    xH(i+1,j)=xH(i,j); 
                end 
%                 if volume(i,1)~=0 
%                     xS(i+1,1)=xS(i,1)+xN1; 
%                 elseif volume(i,1)==0 
%                     xS(i+1,1)=xS(i,1)+dt*fS(i,1); 
%                 end 
%                 if volume(i,2)~=0 
%                     xS(i+1,2)=xS(i,2)+xN2; 
%                 elseif volume(i,2)==0 
%                     xS(i+1,2)=xS(i,2)+dt*fS(i,2); 
%                 end 
%                 xS(i+1,3)=xS(i,3)+dt*fS(i,3); 
                xS(i+1,j)=xS(i,j)+dt*fS(i,j); 
                w(i,j)=xS(i,j)-xH(i,j); w(i,m)=xS(i,m)-xH(i,m); 
                %% Housing Lines  
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                N_h(i,j)=xH(i,j)/lot_size; N_h(i,m)=xH(i,m)/lot_size;  
                 
                %% Groin Construction  
                if t(i)>=t_crit_g_up 
                    L(1)=L1; 
                end 
                if t(i)>=t_crit_g_down 
                    L(2)=L2; 
                end 
                if t(i)==t_crit_g_down && L2~=0 && volume(i,2)==0 
                    C(i,2)=phi_g*L(2)*exp(-rho*t(i)); 
                elseif t(i)~=t_crit_g_down && volume(i,2)~=0   
                    C(i,2)=(volume(i,2)*phi_n)*exp(-rho*t(i));  
                elseif t(i)~=t_crit_g_down && volume(i,2)==0  
                    C(i,2)=0; 
                elseif t(i)==t_crit_g_down && L2~=0 && volume(i,2)~=0   
                    C(i,2)=(phi_g*L(2)+volume(i,j)*phi_n)*exp(-rho*t(i));  
                elseif t(i)~=t_crit_g_down && L2~=0 && volume(i,2)==0   
                    C(i,2)=0; 
                end 
                if isnan(t_crit_g_down)==0 && t_crit_g_down>0 
                    w_crit_g=w(t_crit_g_down/dt,2); 
                    Nh_crit=rows_cross-N_h(t_crit_g_down/dt,2); 
                elseif t_crit_g_down==0 
                    w_crit_g=w(1,2); 
                    Nh_crit=rows_cross-N_h(1,2); 
                elseif isnan(t_crit_g_down)==1 
                    w_crit_g=NaN; 
                    Nh_crit=NaN; 
                 end 
  
                %% Benefit  
                B(i,1)=rows_along.*A1.*((w(i,1)).^beta)*((N_h(i,1)).^psi); 
B(i,2)=rows_along.*A2.*((w(i,2)).^beta)*((N_h(i,2)).^psi);  
%                 if xS(i,2)>2 
%                     B(i,2)=rows_along.*A2.*((w(i,2)).^beta); 
%                 elseif xS(i,2)<=2 
%                     B(i,2)=0; 
%                 end 
                B_disc(i,j)=B(i,j)*exp(-rho*t(i)); %B_disc(i,m)=B(i,m)*exp(-rho*t(i)); 
                
TB(i,j)=(dt/3)*(B_disc(1,j)+4*(sum(B_disc(2:2:end,j)))+2*sum(B_disc(2:1:end,j))+B_di
sc(end,j)); 
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%TB(i,m)=(dt/3)*(B_disc(1,m)+4*(sum(B_disc(2:2:end,m)))+2*sum(B_disc(2:1:end,m)
)+B_disc(end,m)); 
  
                %% Cost  
%                 C(i,j)=(c+volume(i,j)*phi_n)*exp(-rho*t(i));  
%                 C(i,m)=(c+volume(i,m)*phi_n)*exp(-rho*t(i));  
%                 if volume(i,j)==0 
%                     C(i,j)=0; 
%                 end 
%                 if volume(i,m)==0 
%                     C(i,m)=0; 
%                 end 
%                 if N_h(i,j)==0 
%                     C(i,j)=0; 
%                 end 
%                 if N_h(i,m)==0 
%                     C(i,m)=0; 
%                 end 
                TC(i,j)=sum(C(:,j)); %TC(i,m)=sum(C(:,m)); 
  
                %% marginal net benefit  
                nb(i,j)=TB(i,j)-TC(i,j); %nb(i,m)=TB(i,m)-TC(i,m); 
%                 if w_crit_g>L(2)  
%                     nb(i,2)=NaN;  
%                 end 
  
                %% Net Benefit 
                NB1=nb(end-1,1); NB2=nb(end-1,2); TNB=NB1+NB2; 
                share1=NB1/TNB; share2=NB2/TNB; 
                 
                %% behavior determination 
                if xS(end-1,2)>xS(1,2) && (Nrate2~=0 || L(2)~=0) 
                    behavior=0; 
                elseif xS(end-1,2)<=xS(1,2) && N_h(end-1,2)==N_h(1,2) && (Nrate2~=0 || 
L(2)~=0) 
                    behavior=1; 
                elseif N_h(end-1,2)<N_h(1,2) && (isnan(t_crit_g_down)==0 || 
isnan(t_crit_n_down)==0) 
                    behavior=2; 
                elseif N_h(end-1,2)<N_h(1,2) && isnan(t_crit_g_down)==1 && 
isnan(t_crit_n_down)==1 
                    behavior=3; 
                end 



192 
 

 
 

                 
                %% decision determination 
                if isnan(t_crit_g_down)==1 && isnan(t_crit_n_down)==1 
                    decision=0; %no groin; no nourishment 
                elseif isnan(t_crit_g_down)==0 && t_crit_g_down==0 && 
isnan(t_crit_n_down)==1 
                    decision=1; %initial groin; no nourishment 
                elseif isnan(t_crit_g_down)==0 && t_crit_g_down~=0 && 
isnan(t_crit_n_down)==1 
                    decision=2; %delayed groin; no nourishment 
                elseif isnan(t_crit_g_down)==1 && isnan(t_crit_n_down)==0 && 
t_crit_n_down==0 
                    decision=3;  %no groin; initial nourishment 
                elseif isnan(t_crit_g_down)==0 && t_crit_g_down==0 && 
isnan(t_crit_n_down)==0 && t_crit_n_down==0 
                    decision=4; %initial groin; initial nourishment 
                elseif isnan(t_crit_g_down)==0 && t_crit_g_down~=0 && 
isnan(t_crit_n_down)==0 && t_crit_n_down==0 
                    decision=5; %delayed groin; initial nourishment 
                elseif isnan(t_crit_g_down)==1 && isnan(t_crit_n_down)==0 && 
t_crit_n_down~=0 
                    decision=6; %no groin; delayed nourishment 
                elseif isnan(t_crit_g_down)==0 && t_crit_g_down==0 && 
isnan(t_crit_n_down)==0 && t_crit_n_down~=0 
                    decision=7; %initial groin; delayed nourishment 
                elseif isnan(t_crit_g_down)==0 && t_crit_g_down~=0 && 
isnan(t_crit_n_down)==0 && t_crit_n_down~=0 
                    decision=8; %delayed groin; delayed nourishment 
                end 
                shoreline_change=(xS(end-1,2)-xS(1,2))./tmax; 
            end 
        end 
        NB_vec(in)=nb(end-1,2); 
        behavior_vec(in)=behavior; 
        decision_vec(in)=decision; 
        shorelinechange_vec(in)=shoreline_change; 
        Nh_final_vec(in)=N_h(end-1,2); 
    end 
    NB_storage(ii,:)=NB_vec; %NB_storage(ii)=nb(end-1,2);  
    behavior_storage(ii,:)=behavior_vec; %behavior_storage(ii)=behavior;  
    decision_storage(ii,:)=decision_vec; %decision_storage(ii)=decision;  
    shorelinechange_storage(ii,:)=shorelinechange_vec; 
%shorelinechange_storage(ii)=shoreline_change;  
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end 
NB_star=max(NB_storage(:)); 
[row,col]=find(NB_storage==NB_star); %ind=find(NB_storage==NB_star);  
  
% if max(col)~=101 || max(row)~=101 
    tcritg_star=tcritg_vec(row); %tcritg_star=tcritg_vec(ind); 
    tcritn_star=tcritn_vec(col); 
    behavior_star=behavior_storage(row,col); %behavior_star=behavior_storage(ind);  
    decision_star=decision_storage(row,col); %decision_star=decision_storage(ind);  
    shoreline_change_star=shorelinechange_storage(row,col); 
%shoreline_change_star=shorelinechange_storage(ind);  
% elseif max(col)==101 && max(row)==101 
%     Nh_final_star=0; 
%     tcritg_star=NaN; 
%     tcritn_star=NaN; 
%     behavior_star=max(max(behavior_storage(row,col))); 
%     decision_star=min(min(decision_storage(row,col))); 
%     shoreline_change_star=shorelinechange_storage(max(row),max(col)); 
% end   
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alpha2_Nh2_sensitivities.m 

tic 
alpha2_vec=linspace((1e3)/(30^0.5),(5e6)/(30^0.5),20); 
Nh2_vec=linspace(1,120,20); 
nn=length(alpha2_vec); 
mm=length(Nh2_vec); 
NBmax_storage=zeros(nn,mm); 
tcritg_storage=zeros(nn,mm); 
tcritn_storage=zeros(nn,mm); 
behavior_storage=zeros(nn,mm); 
decision_storage=zeros(nn,mm); 
shoreline_change_storage=zeros(nn,mm); 
  
%% Main code %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for ii=1:numel(alpha2_vec)  
    NBmax_vector=zeros(1,mm); 
    tcritg_vector=zeros(1,mm); 
    tcritn_vector=zeros(1,mm); 
    behavior_vector=zeros(1,mm); 
    decision_vector=zeros(1,mm); 
    shoreline_change_vector=zeros(1,mm); 
    for jj=1:numel(Nh2_vec) 
        alpha2=alpha2_vec(ii); 
        rows_cross=Nh2_vec(jj); 
        
[NB_star,tcritg_star,tcritn_star,behavior_star,decision_star,shoreline_change_star]=base_
code_timesens(alpha2,rows_cross); 
        %% Storage %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        NBmax_vector(jj)=NB_star(end); 
        tcritg_vector(jj)=tcritg_star(end); 
        tcritn_vector(jj)=tcritn_star(end); 
        behavior_vector(jj)=behavior_star(end); 
        decision_vector(jj)=decision_star(end); 
        shoreline_change_vector(jj)=shoreline_change_star(end); 
    end 
    NBmax_storage(ii,:)=NBmax_vector; 
    tcritg_storage(ii,:)=tcritg_vector; 
    tcritn_storage(ii,:)=tcritn_vector; 
    behavior_storage(ii,:)=behavior_vector; 
    decision_storage(ii,:)=decision_vector; 
    shoreline_change_storage(ii,:)=shoreline_change_vector; 
end 
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%% figures 
  
%% save data 
time_elapsed=toc; 
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Nh2_sensitivites.m 

tic 
Nh2_vec=linspace(1,120,120); 
nn=length(Nh2_vec); 
NBmax_storage=zeros(1,nn); 
tcritg_storage=zeros(1,nn); 
behavior_storage=zeros(1,nn); 
decision_storage=zeros(1,nn); 
shoreline_change_storage=zeros(1,nn); 
  
%% Main code %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for jj=1:numel(Nh2_vec) 
    rows_cross=Nh2_vec(jj); 
    
[NB_star,tcritg_star,behavior_star,decision_star,shoreline_change_star]=base_code_time
sens(rows_cross); 
    %% Storage %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    NBmax_storage(jj)=NB_star(end); 
    tcritg_storage(jj)=tcritg_star(end); 
    behavior_storage(jj)=behavior_star(end); 
    decision_storage(jj)=decision_star(end); 
    shoreline_change_storage(jj)=shoreline_change_star(end); 
end 
  
%% save data 
time_elapsed=toc; 
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