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Abstract 

This research presented the deployment of data mining on social media and 

structured data in urban studies. We analyzed urban relocation, air quality and traffic 

parameters on multicity data as early work. We applied the data mining techniques of 

association rules, clustering and classification on urban legislative history. Results 

showed that data mining could produce meaningful knowledge to support urban 

management. We treated ordinances (local laws) and the tweets about them as indicators 

to assess urban policy and public opinion. Hence, we conducted ordinance and tweet 

mining including sentiment analysis of tweets. This part of the study focused on NYC 

with a goal of assessing how well it heads towards a smart city. We built domain-specific 

knowledge bases according to widely accepted smart city characteristics, incorporating 

commonsense knowledge sources for ordinance-tweet mapping. We developed decision 

support tools on multiple platforms using the knowledge discovered to guide urban 

management. Our research is a concrete step in harnessing the power of data mining in 

urban studies to enhance smart city development. 

Keywords: data mining, text mining, ordinances, urban policy, sentiment analysiss. 
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Chapter 1 

1.  Introduction 

1. 1 General Introduction 

This dissertation focuses on applying social media text mining on municipal level policy 

making to support Smart City development. The concept of a Smart City supports current urban 

areas for competitive and sustainable development by addressing the environmental influence 

and increasing management efficiency. Social media text mining provides a unique view to 

examine the interaction between urban policy and resident opinions. The social media posts of 

the common public contain information about the users' reactions to their daily lives, highly 

influenced by urban policy. Text mining and sentiment analysis can extract information from raw 

data. This could provide useful insight into the effectiveness of the policies.  

There are multiple social media platforms. For the purpose of this dissertation, Twitter, 

which is one of the most popular social media platforms with each tweet being limited to 280 

characters, is considered the most suitable for efficient and effective analysis. Tweets published 

by urban residents are suitable for text mining since they are limited in text size. Historical 

tweets are collected by researchers as 1% of the total Twitter stream data (Scott, 2012), called the 

"Spritzer" version. Those historical tweets that contain geoinformation and other location 
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indicators ensure the long term and extensive coverage of the local public opinions. For local 

policy, we choose the ordinances as the research target; municipal level legislatures initial and 

enact the ordinances, making the ordinances highly related to the local public opinions. The 

information of most ordinances is publicly available and free to acquire. In our research, we get 

all the New York City (NYC) ordinances data from the NYC city council website ("The New 

York City Council - Legislation", 2020). We selected NYC because it is one of the most 

populated urban areas in the United States, it would bring enormous benefit if our research could 

increase the effectiveness of NYC's urban management. Figure 1.1 shows how public opinion 

and urban policy interact while social media and ordinances serve as suitable indicators of public 

opinion and urban policy. 

 

Figure 1.1: Role of Social Media and Ordinance 
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One of the main challenges when analyzing the interaction between urban ordinances and 

tweets is the automation of the processes. The number of tweets is vast; extracting the related 

tweets and analyzing their sentiment would take a seemingly infinite amount of time if processed 

by humans. On the other hand, computers are very efficient in processing large amounts of data 

due to hardware and software advancements. However, a computer cannot comprehend and 

connect the tweets and ordinances without proper programming. This research utilizes 

commonsense knowledge (CSK) to build the domain knowledge bases (KB), allowing the 

computer program to identify related tweets containing similar information via the domain KB. 

CSK could be treated as the bridge between human comprehension and computer program logic 

or in other words, a tool to expand the human knowledge so the domain KBs could have enough 

coverage to support the program for identification. 

The mapping between ordinances and tweets also presents the challenge of reducing 

dimensions of connections. Every ordinance should have its domain KB for the most precise 

extraction of related tweets in the ideal condition. However, this is difficult to achieve since 

building domain KBs requires direct inputs at the first step. At this point, a CSK-based tool can 

expand the input to form the final applicable KB. This would be overly time consuming since we 

have hundreds of ordinances. The same approach is even harder for the tweet to ordinance 

mapping due to the vast number of tweets. This research provides an approach to overcome this 

problem: Build a medium of domain KBs between the ordinances and tweets, then categorize 



4 

 

 

 

 

them under the same conditions. This approach would reduce the computing and time 

consumption of the program. This research is conducted to support Smart City development. It 

would thus be suitable if the domain KBs also indicate the development of Smart City. This 

research utilizes a widely accepted system in the literature which divides the Smart City 

development into six dimensions (Giffinger & Pichler-Milanović, 2007). They are Smart 

Governance, Smart Economy, Smart Mobility, Smart Environment, Smart People, and Smart 

Living. Figure 1.2 (Cohen, 2020) shows the six dimensions and related working areas. This 

Smart City concept system enhances the connection between the research outcome and Smart 

City development. It is a comprehensive system that considers environmental, economic, and 

social aspects, which has the potential to form political objectives. 

 

Figure 1.2: Six Dimensions and Related Working Areas of Smart City 

Other structural data analysis could also support the Smart City development, e.g., the 

population data, the urban sprawl parameters, air quality data, and traffic conditions. Data mining 
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there could also provide fruitful results. Accordingly, this research also deploys multiple data 

mining methods on urban parameters to access the driving force of urban sprawl. Association 

rule mining, clustering analysis, and decision tree learning all produce interesting conclusions. 

The data mining results of air quality data and traffic conditions support the development of an 

air quality prediction tool based on decision tree learning. This is an important outcome of this 

dissertation. 

1. 2 Research Objectives 

This research proposes to support Smart City development by analyzing tweets and 

ordinances. Text mining and CSK support the mapping via domain KBs guided by Smart City 

Characteristics (SCCs). The approach can be divided into two primary objectives; 

1. Connect the ordinances to the tweets 

2. Develop decision support tools for urban management 

We propose to develop an approach to connect the tweets and ordinances, which could 

support efficient analysis of urban policy. We propose to develop tools that support the decision 

making of urban management. We gather all data from free public accessible sources, such as the 

NYC city council website and Twitter website. 
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1. 3 Connect the Ordinances and Tweets 

Ordinances and tweets contain information that humans can understand but this is not easily 

comprehensible by computers. However, the large amount of tweets makes it infeasible for the 

analysis to be conducted directly by humans. A proper approach design that combines human 

comprehension and computer computing power is a good choice based on current technology. 

1. 3. 1 Ordinance Source and Preprocessing 

The ordinance source is the New York City council website ("The New York City Council - 

Legislation", 2020); it provides the function to download CSV format ordinance data, which 

contains the information about each ordinance. The file does not contain the initial and 

enactment dates, which are only available on the website. We either manually input them or use a 

web crawler to collect the data. Figure 1.3 shows how to get the ordinance data downloaded and 

where to get the initial and enactment dates.  
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Figure 1.3: Ordinance Website Information 

The title section contains information on what the given ordinance indicates. By utilizing 

the domain experts’ manual input along with the domain KB, we can decide which SCC aspect is 

the primary concern of this ordinance. Because the number of ordinances is not overwhelmingly 

huge, this process can be conducted either by human experts or computer programs guided by 

well-designed domain KBs. Data mining that only analyzes the temporal distribution of different 

SCC categorized ordinances could provide interesting knowledge.  

1. 3. 2 Tweets Data Source and Preprocessing 

Twitter, as the most popular social media website, provides a free search application 
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programming interface (API) to acquire tweets of the past seven days, which is too short for this 

research. The historical tweets are collected via a third party collector called Archive Team 

(Scott, 2012). They provide free historical tweets from 2011 to June-2020 with only one 

disadvantage: This collection is named the Spritzer version and only contains one percent of the 

whole Twitter stream. It could influence the accuracy of the result because it is not the complete 

data; however, this minor negative impact is acceptable; the correlation coefficient r (linear) of 

the Tweets’ percentage on the same topic between two datasets ( Spritzer and the whole stream) 

is around 0.94 for most topics (Leetaru, 2019) 

The raw tweets data, except those cut-and-pasted from the Twitter website, is stored in 

JSON format. This format can be handled by multiple programming languages and can have 

excellent compatibility. The raw tweets are very hard to read by humans since they are in a very 

compact format. Figure 1.4 shows what this looks like in a text editor. 

 

Figure 1.4: Raw Tweets Json File Screenshot 
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The raw tweets contain much interesting information, such as the created date, user 

location, and text. This research uses a python program to preprocess this raw data to be 

convenient for further analysis. However, only a limited number of tweets have spatial 

information and user location. This problem could be improved if we had access to complete 

Twitter data with more information or other location identification methods.  

1. 3. 3 CSK and Domain KBs 

The domain KBs are the core component of SCC mapping between ordinances and tweets. 

They are built by researchers with domain knowledge and other existing domain information. 

Since this research is about Smart City development, we consider the existing well-defined 

Smart City development dimensions as the six major domains. They are also called SCCs in this 

research. There are many indicators for those six domains (Giffinger & Pichler-Milanović, 

2007). We transfer them into the domain KBs with adjustments. The domain expert also modify 

the domain KB with a Topic Model analysis of the ordinance data. The Topic Model analysis 

counts the word frequency in ordinance text (by Python program) and identifies useful topic 

keywords.  

We need to utilize CSK to expand our domain KBs prototype. Those prototype domain KBs 

only contain the words we selected. The CSK expands the coverage of those words to cover the 

most words in the text of the real ordinances and tweets. The CSK source we primarily use is 
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WebChild, which contains commonsense knowledge automatically extracted from Web contents 

("Max-Planck-Institut für Informatik: WebChild", 2018). In addition, we also use WordNet as a 

complementary source for semantic matching. The final domain KBs contain text-based terms, 

which are relevant to six SCCs.  

1. 3. 4 SCC Mapping Approach 

Figure 1.5 shows the whole approach of SCC mapping. The SCC mapping's core function is 

the SCC identification by the six domain KBs, each about one of the six aspects of Smart City 

development. We currently use a computer program to count the number of words related to the 

domain KBs in the text of ordinances or tweets. We assign SCC scores based on the counts of 

terms that match the domain KBs. If the same term appears in multiple SCC domain KBs, the 

count is incremented by one for each related SCC. For each ordinance, this approach connects 

the tweets with similar SCC scores. We will discuss the details of the mapping algorithm in 

Chapter 4. Our research implements this method, which maintains a broad connection based on 

SCCs because the primary research purpose is supporting the Smart City development. Further 

work can address how to build a method to assign weighting factors to different terms in the SCC 

domain KBs.
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Figure 1.5: The SCC Mapping Flowchart 

1. 3. 5 Sentiment Analysis 

To further access the relationship between ordinances and tweets, we need to conduct tweet 

sentiment analysis. Since the ordinances are objective while the tweets can either be objective or 

subjective, the tweets go through the same preprocessing based on the SCC mapping. The 

computer program handles the filtered tweets' text with some existing libraries. For Python, there 

are two primary libraries, Natural Language Tool Kit (NLTK) and Pattern. We will discuss the 

details in Chapter 4. The method we choose is polarity classification, which assigns the whole 

text a score range of [-1,+1]. The "-1" means the most negative and "+1" means the most positive 

("0" =neutral). The principal of the scoring system is based on our SCC mapping domain KBs. 

There are two domain KBs; one is the positive KB; the other is the negative KB. Once the 
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collected tweets go through the polarity classification process, we analyze how the sentiment 

distribution in those tweets. 

1. 4 Decision Support Tools for Urban Management 

The ultimate goal of this research is to support Smart City Development. Mining social 

media and structural data provide useful knowledge, which leads to the development of decision 

support tools. We transfer that knowledge into decision support tools, which could help related 

fields such as urban management and legislature. We will explain the detail of those tools in the 

forthcoming chapters of this dissertation.  

1. 4. 1 Air Quality Prediction Tool 

This tool is designed based on data mining of urban traffic condition data and air quality 

data. We select Particulate Matter (PM2.5) as the indicator of air quality. The traffic data 

selection is based on World Bank data. We will discuss the details in Chapter 2. The decision 

support technique of this tool is decision tree learning. We have built a graphical user interface 

(GUI) to provide convenient access even for novice users. This tool's objective is to support 

multiple level users' comprehension of the relationship between air quality and traffic conditions. 

The decision tree learning provides a transparent explanation of the air quality determination. We 

have also built a questionnaire to determine the users' knowledge level and provide different user 
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support. The demo tool, which only utilizes limited sample data, would achieve an accuracy of 

around 83%. We could improve this tool by using sufficient data resolution and introduce other 

air quality parameters. This tool can bring a broader impact on urban management, such as more 

efficient traffic design and air quality control. 

1. 4. 2 SCC Mapping Tool 

We utilize the domain KBs and CSK knowledge to categorize the tweets and ordinances and 

build connections between them. One of the key components of this process is determining the 

SCC attributes of the target ordinance or tweet. We design a GUI tool, which allows the user to 

input the ordinance or tweet text to determine its SCC relativeness. The current version of our 

tool could identify multiple SCCs from the input text. This tool has the potential to help other 

related studies. Based on expert evaluation, the accuracy is around 80%. We would aim to 

improve the function and accuracy in future research. The technique details will be discussed in 

Chapter 4. 

1. 4. 3 Mobile Application and Web Platform for Dissemination 

The previous SCC mapping tool is only available for computer users. It would bring more 

benefits if we can reach users from other platforms. Thus, a mobile application platform version 

or mobile app could create a significant impact due to the extensive coverage and convenient 
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access to smartphones. Hence, we have built an Android App, which (to the best of our 

knowledge) is the first app disseminating ordinance-tweet text mining with the consideration of 

Human-Computer Interaction(HCI), e.g., the conceptualization of actions, fast and accurate 

navigation, and ubiquitous access. This app would provide users of different knowledge levels 

(e.g., novice, intermediate, expert) convenient legislative information access. This app's broader 

impact contributes to the Smart City development, especially Smart Governance, by making 

urban policy information more transparent and comprehensible. The current version of our app 

only provides an analysis of the NYC area. We can expand the coverage with quick modification. 

We will discuss the technical details in section 5.1. 

We have developed a Web portal to provide user experiences similar to the mobile app. In 

our prototype, we have successfully integrated the SCC mapping function and ordinance results. 

We are working on designing an interactive frequently asked questions (FAQ) system, which 

allows the user to enter questions and get the most relevant answers, as Figure 1.6 shows. This 

FAQ system is based on the Natural language processing (NLP) technique. This portal would be 

further enhanced to accommodate more developments based on future work. 
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Figure 1.6: Interactive FAQ example 

1. 5 Broader Impact 

The ordinance is the local policy tool that serves a significant role in urban management. 

The number of ordinances keeps increasing with each session ("The New York City Council - 

Legislation", 2020); as Table 1.1 shows, the number of ordinances has increased drastically and 

contributes more to urban management in the most recent three complete sessions. Social media 

posts are also increasing year by year. The daily tweets total to almost 500 million per day 

(Sayce, 2020). There is a demand to utilize this valuable big data to discover useful knowledge 

supporting urban management. This research contributes to the assessment between ordinances 

and tweets, which would support the Smart City development from several aspects. The 

knowledge discovered by this research would help urban management agencies identify how 
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their policies affect each Smart City development dimension. This research is trans-disciplinary 

between Environmental management and Computer Science. It could foster future research in 

the related fields. 

Table 1.1: Total Ordinance Enactment of Each Session and Yearly Average 

Session 2006-2009 2010-2013 2014-2017 

Total 287 365 708 

Average 71.75 91.25 177 

The various decision support tools will help the urban management agencies by providing 

novel and useful knowledge discovered by data mining and other techniques. Our research has 

the potential to form a comprehensive decision support system with the power of data mining, 

CSK, and other techniques. This proposed system will be cross-platform capable of handling 

multiple social media data sources and other structural data. In the future, urban management 

will involve more data mining techniques to improve their efficiency; our work is a concrete step 

to achieve this goal. 

1. 6 Summary 

This dissertation utilizes data mining, CSK, sentiment analysis, and other techniques to 

analyze the relationship between urban policy and social media. It is a firm first step for the full 

evaluation of ordinance efficiency via social media mining. The decision support tools reveal the 
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potential power of the knowledge discovered via our work. Future research can subsequently 

improve these tools with enhanced data. This research will lead to more fruitful future works to 

support urban sustainability and Smart City development. Soon, local governments will utilize 

more data mining techniques for efficient management. This research will be one of the pillars 

that supports the coming new era of Smart City development.. 

1. 7 Organization of Dissertation 

 The research completes the research objectives. The Chapters consist of papers; they 

are either accepted or published in Journals or Conference proceedings, except Chapter 

1 and Chapter 7. Here is a brief description of the content of each Chapter. 

 Chapter 2 is "Early Work" and represents two studies. The first study (Du & Varde, 

2015) applies data mining techniques on population relocation data to discover novel 

knowledge related to urban sprawl. The second study (Du & Varde, 2016) is about data 

mining on PM2.5 data and traffic conditions to find useful knowledge, which leads to a 

prediction tool based on decision tree learning.  

 Chapter 3 is "Ordinance Mining" and represents two studies. They are both about data 

mining on ordinance data to discover useful knowledge. The first study (Du et al., 

2017) focuses on applying database management techniques to manage the data. The 

second study's (Du et al., 2017) novel point is applying CSK to categorize the 
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ordinance for data mining.  

 Chapter 4 is "Social Media Text Mining" and represents three studies. The first study 

(Du et al., 2016) is Chapter 2's second study's follow-up; we conduct tweets sentiment 

analysis related to peatland fire air pollution. The second study (Puri et al., 2018) 

focuses on SCC mapping. This study utilizes text mining and CSK to build domain 

KBs according to the Smart City aspects. We connect the tweets and ordinances based 

on their relatedness to each SCC as per the domain KBs. The third study (Puri et al., 

2018) improves the SCC mapping technique, allowing us to assign multiple SCC types 

to ordinances and tweets (instead of a single type) while maintaining similar accuracy. 

In the last two studies, we design and improve the SCC mapping tool. 

 Chapter 5 is "Result Dissemination and Application" and represents three studies. The 

first study (Du et al., 2020) builds a prototype web platform, with the purpose of 

including the SCC mapping and interactive FAQ functions. The demo website already 

has the capabilities for SCC mapping. The second study (Varghese et al., 2020) is about 

integrating the SCC mapping function into a mobile app. This study discusses the HCI 

guided app design and the benefit of mobile apps for convenient access. The third study 

(Gandhe et al., 2018) discusses the possible applications of sentiment analysis on 

various topics that include urban management. This study introduces a hybrid approach 

for sentiment analysis.  
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 Chapter 6 is "Related Work" and represents one study. It is a literature review (Du et al., 

2020) of text mining studies related to Environmental Management. This study 

discusses different social media text mining researches on Environmental Management 

related topics, such as climate change and global warming, urban policy and local laws, 

traffic and mobility issues, and etc. 

 Chapter 7 is about the Conclusion; we also discuss the future works in this chapter. 
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Chapter 2 

2.  Early Work 

2. 1 Mining Multicity Urban Data for Sustainable Population Relocation 

Abstract: In this research, we propose to conduct diagnostic and predictive analysis about 

the key factors and consequences of urban population relocation. To achieve this goal, urban 

simulation models extract the urban development trends as land use change patterns from a 

variety of data sources. The results are treated as part of urban big data with other information 

such as population change and economic conditions. Multiple data mining methods are deployed 

on this data to analyze nonlinear relationships between parameters. The result determines the 

driving force of population relocation with respect to urban sprawl and urban sustainability and 

their related parameters. This work sets the stage for developing a comprehensive urban 

simulation model for catering to specific questions by targeted users. It contributes towards 

achieving sustainability as a whole. 

Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning 

(Chapter 2.1 reused the previously published paper Du, X., & Varde, A. (2015), Mining 

Multicity Urban Data for Sustainable Population Relocation, International Journal on Computer, 

Electrical, Automation, Control And Information Engineering, 9(12), 2441-2448. 

https://doi.org/doi.org/10.5281/zenodo.1110816). 
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2. 1. 1 Introduction 

Intrusive unorganized land use change that happens around the boundaries of urban areas is 

urban decentralization. It is also called as urban sprawl, which leads to the relocation of 

population, employment, transportation, and land use types. The process and result of urban 

decentralization causes many negative outcomes, for example, functional open space shortage, 

farmland loss and habitat fragmentation, traffic congestion and accidents, air pollution and fossil 

fuel consumption, incline of management costs, and lack of social capital [1]. Population 

dynamics play a highly significant role in urban decentralization. Low population density is a 

major phenomenon of urban decentralization policy implementation to reduce urban 

decentralization like smart growth focuses on supporting high density communities and 

regulating low density communities [2]. There are various factors which would influence urban 

population relocation. The traditional theory believes that economic factors, social amenities, 

health services, traffic, employment, and other variables could drive population changes [3]. The 

relationship between them is non-linear and changes among different cities. Recently, the 

population growth in urban areas has been higher compared with rural areas. From 2000 to 2010, 

the urban population in the U.S. grew 12.1%, while the rural population growth rate was just 

0.7% (the total population growth of the U.S. was 9% during that time). This is a significant 

phenomenon due to the reverse direction of the population decentralization, which is the major 
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cause of urban sprawl [2]. Identifying the key parameters of this process would be significant for 

urban sustainability. The relationship between population relocation, urban land use change and 

other conditions would be the major focus of this research. It would provide valuable 

information for urban management and planning agencies to promote more compact urban areas.  

Data Mining involves the discovery of novel, useful, and interesting patterns and trends 

from huge volumes of data. It usually involves large data sets and computing. Previous research 

showed that some methods of data mining can be applied to the calibration of cellular automata 

transition rules [4]. Data mining is a very broad field, which involves statistics, machine 

learning, pattern recognition, numeric search, and scientific visualization [5]. Recently, there are 

many applications of data mining in various research fields due to three major reasons: Firstly, 

the amount of available data is increasing; secondly, there are more powerful computers; thirdly, 

there are pertinent advances in statistical and machine learning algorithms [5]. Data mining is 

suitable for the nonlinear relationship analysis between urban sustainability and urban conditions 

[6]. To process the data mining for urban sustainability research, a proper data set must be 

established. The empirical urban databases provide large amounts of data. However, there are no 

data directly related to urban development trends, usually represented as urban land use change. 

To replenish this data, the research herewith integrates urban simulation models and data mining. 

The urban simulation models would extract urban development trends from raw data in the form 

of indicators, matrix, or rules.  



26 

 

 

 

 

Urban simulation models are the simplified, computed form of the real urban areas. Firstly, 

the goal of simulation models was to determine transportation capacity needs by predicted land 

use trends. Then it transferred to policy objectives like reducing the air pollution. Currently, the 

objectives are predicting and explaining the development trends to support the urban 

management and planning.  

In this research, the major simulation models are the land use change models. There are 

various land use change models: such as the cellular automata based models, statistical analysis 

models, Markov chain models, artificial neural network models, economic-based models, and 

agent-based models. Most of these models have the ability to predict the future change of land 

use, it also means there can extract the development trend and utilize them (land use change 

matrix-Markov chain, transition rules- cellular automata, statistical indicators- statistical analysis 

models and its). These extracted trends can be utilized by the data mining to discover interesting 

knowledge.  

Different cities show different development patterns, and there is no universal pattern of 

urban growth [7]. Various factors influence urban growth and there is no direct linear connection 

between the factors and responses [8]. Due to this, urban simulation models need adjustments for 

each specific city for proper results. Previous research works usually consider ambient variables 

as weighted indexes. The weighted value is determined by statistical methods in single area 

simulations. A proper weighted value brings more accurate results. However, when the location 
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changes, the weight needs to be adjusted. Few urban simulations have involved multiple urban 

areas [9]. For this, illustrating the non-linear connection between urban conditions and urban 

development patterns is helpful to build a proper simulation model, which would provide more 

accurate information for urban environmental management. More importantly, the single urban 

simulation would not be able to provide enough data for the data mining process, both in terms 

of the quantity as well as the quality.  

Population dynamics have a highly significant role in urban decentralization. Low 

population density is a major phenomenon in the urban decentralization process [2]. The 

population ratio between the urban areas and rural areas are an indicator of urban compactness 

[1]. Policy implementation to reduce the urban decentralization like smart growth focuses on 

supporting high density communities and regulating low density communities. There are various 

factors which would influence urban population relocation and existing theories state that 

economic factors, social amenities, health services, traffic, employment and other variables could 

drive population change. The relationship between them is non-linear and changes among 

different cities. To analyze this change, especially the population re-centralization in the United 

States between 2000-2010, the urban simulation models and data mining methods must be 

integrated to provide useful information, which enhances the urban sustainability. 
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2. 1. 2 Problem Definition 

Decision makers and management agencies need the information and knowledge about 

urban population dynamics, urban land use change and urban development to frame proper 

policies, which could ensure sustainable growth patterns. Urban systems are very complicated 

and different cities have different development patterns (Schneider & Woodcock, 2008). Thus, 

the main problem of this research is to build scalable and flexible urban simulation models in 

multicity environments for conducting predictive and diagnostic analysis on relationships 

between spatio-temporal changes of population, land use, and urban development to enhance 

urban sustainability. We define the following sub-problems in this work  

1. Propose methods to analyze multicity big data  

a. Generate complex urban data capturing the required spatial-temporal features and process 

this big data  

b. Develop data mining approaches to reveal relationships between urban conditions and 

urban population relocation  

2. Diagnose the key factors causing urban sprawl  

a. What are the major parameters causing sprawl?  

b. How do these parameters affect each other?  

c. How does sprawl itself impact the parameters again?  
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3. Predict the indicators to enhance sustainability  

a. What are the primary urban sustainability goals?  

b. How do specific changes affect each other?  

c. How exactly do sprawl and sustainability correlate?  

4. Set the stage for a comprehensive urban simulation model to answer potential user 

questions such as  

a. What is the relationship between parameters causing sprawl?  

b. If size of city is a parameter, how does the model alter based on the size?  

c. What is the quantitative relationship between individual factors affecting sustainability? 

(e.g., between population density and number of doctors). 

2. 1. 3 Proposed Solution 

In this research, the ultimate goal is to enhance urban sustainability in a multicity 

environment catering to various objectives such as minimizing sprawl, offering valuable 

information for urban management and planning agencies and improving the environmental 

management aspect of urban areas. In order to achieve this goal, this research aims to conduct 

data mining on complex urban data, which is suitable for analysis of nonlinear relationships 

between urban development activities and urban conditions. It proposes to perform urban 

simulation modeling, which helps us understand the urban development. The proposed approach 
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involves urban land use change simulation modeling by data mining in a multicity environment 

and is depicted in Figure 2.1. 

 
Figure 2.1: Proposed Solution for Analysis 

Firstly, urban data from multicity environments is gathered. For now the most important 

data are the land use data, the population data and other data such as economic and policy data. 

All these data are preprocessed into an urban data map, which is a spatial form of data derived 

from multiple data sources. These provide the stationary information of different time periods. To 

conduct further analysis, such as population relocation and land use change, other information is 



31 

 

 

 

 

required. The urban simulation model gathers this information. The detailed process is explained 

later. The original urban data and intermediate model output are combined as the urban big data 

for further data mining analysis. 

 This research utilizes multiple data mining methods such as association rules, clustering, 

and classification to analyze the nonlinear relationships in the urban big data. Association rule 

mining addresses issues such as the driving force and consequence of population relocation by 

identifying suitable antecedents and consequents through relationships of the type A implies B. 

Cluster analysis identifies various forms of urban population relocation by determining the 

groups or clusters of urban population and their respective relocation. Classification is able to 

predict targets such as the estimated growth of the urban population over a certain period. 

 Once the knowledge of the relationships between land use change, population relocation 

and other parameters are found through the proposed approach. It sets the stage to combine them 

together in a comprehensive urban simulation model which has the ability to predict and explain 

the population relocation with universal capability, since this model is based on the knowledge 

form multicity urban big data. The following sections are the detailed explanation of these steps. 

2. 1. 4 Urban Big Data 

This research identifies the causes and consequences of population relocation. To analyze the non-linear 

relationship among population dynamics, land use change, and other urban conditions by the data mining method, a 
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proper data set must be generated. The data set in this research not only has a large number of urban areas, but also a 

large amount of attributes and indicators. It is a multi-dimensional data set of complex urban information, which 

constitutes urban big data. 

 

A. Multicity System 

 The urban system this research aims to analyze is a system with multiple cities around the 

United States [10]. Different urban areas have different urban population dynamics, urban 

development trends, and conditions. To achieve the goal of this research, a single urban area is 

not suitable, since a single urban area cannot provide enough data for the nonlinear analysis, in 

terms of both quality and quantity. This research intends to produce a comprehensive urban 

simulation model, hence the knowledge form single urban area is not sufficient due to different 

urban have different conditions. 

 Due to the data available and the time limitation, it is not feasible to analyze all the urban 

areas in the United States. In 2014, there was research conducted on a nationwide survey of 

urban sprawls, they analyzed about 200 urban areas [1]. We use some of the results from this 

analysis for further work. 

 B. Data and Databases Description 

 The form of the urban area influences its conditions, which are measured from the 

empirical databases. To analyze the relationship between them, researchers point out many 
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indicator systems to identify and analyze the dynamic of urban development. 

 To analyze the urban areas population dynamic and development trend, there is a large 

requirement of various empirical databases. These data would be obtained from the database 

about population, the database about employment, the database about land use, and the database 

about street distribution. In the USA: The population database is U.S. Census of Population and 

Housing. The employment databases are the Census Transportation Planning Package (CTPP) 

data on employment and the Local Employment Dynamics (LED) database. The land use 

database is the National Land Cover Database (NLCD). The street distribution database is the 

national dataset of street centerlines by TomTom.  

C. Urban Data Map Description 

 All the data collected from the previous steps are combined for data mining analysis, 

which is presented as a multicity urban data map. 

 The land use data from remote sensing is based on the emission and reflection of radiation. 

It has only accounted the impervious surfaces percentage and constructed materials. It would not 

fully represent the land use types. Census data which has the spatial distribution of population, 

income and employment, by interaction with these two layers of data, would generate a more 

reasonable urban data map. Once the land use map is generated, the other information can also 

be easily associated with each of the urban areas. The land use map is part of the urban big data. 

With this explanation, we now describe urban development activities captured by urban 
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simulation models. 

 Different urban simulation models require different forms of data, the economic-base 

model, and statistical analysis model may just need the general report of target areas. Some other 

simulation models like cellular automata and agent-based models require GIS software to 

provide available information to process further analysis. The data table must be presented in 

spatial form for analysis. Figure 2.2 shows an example of transferring population density data 

table to spatial form. The map is from socialexplorer.com. 

 We prefer to use the ArcGIS platform to process the raw data from different databases. 

ArcGIS is the most popular GIS platform and could perform analysis of the data. The urban land 

use simulation models require land use map of different time periods, which can be easily 

achieved by the normal function of ArcGIS. 

The ArcGIS platform preprocesses the raw data in this research. The raw data may not 

always contain all the information we need. For example, some of the raw land use maps may 

just contain remote sensing data with the information of impervious rate and land cover to 

identify the related land use type. No population data are contained in this kind of map. Thus if 

we need to process any urban simulation which requires population, ArcGIS is useful to connect 

all the population information from other databases to the raw map. This process can generate 

more relevant land use maps. ArcGIS can easily achieve this goal by the joint function in the 

attribute table. 
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Figure 2.2: From the data table to the spatial map 

The ArcGIS platform not only serves the purpose of processing data for the simulation, but 

in addition the visualization function could also be utilized for result checking and presentation. 

 D.Urban Data Map to Urban Big Data 

 The urban data map just contains the static information of urban areas. However, the urban 

development trends that are usually represented as the land use changes play a significant role in 

the population dynamics. These can only be captured by applying urban simulation models. 

Different urban simulations measure different indicators and utilize them to explain current urban 
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development and predict future trends. These indicators have different forms and would be 

valuable for data mining analysis since they contain information about the urban development 

trends. The simulation model involved with artificial neural networks is not utilized much here 

due to the fact that it is a black box process. On the other hand, we find that the simulation model 

based on empirical assessment provides valuable knowledge. Examples include the land use 

transition matrix in Markov-chain model and the transition rules of cellular automata model. 

They contain the information about land use change trends. The combination of urban data maps 

and development trends would be treated as urban big data. The data mining methods would be 

applied on these. This following example of development trends extraction is using cellular 

automata method. In 2004, Xia Li, Anthony Gar-On Yeh [4] applied the decision tree learning 

model on the calibration of historical observation data to generate transition rules. This method 

has its own limitation due to being highly adapted to the sample areas. On the other hand, it 

means that the transition rules obtained by this method are highly associated with the sample 

areas and contain the information about local development trends. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  −�
𝐶𝐶𝑗𝑗
𝑆𝑆
∗ log2

𝐶𝐶𝑗𝑗
𝑠𝑠

𝑅𝑅

𝐽𝐽=1

 

If the division is efficient, it will get a smaller entropy value than the previous one. The 

efficient decision tree learning would ensure “the gain ratio is maximized at each node of the 

tree” [4]. This principle would also prevent generating too many transition rules. 
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 We now describe the analysis conducted on this data after generating the urban big data 

through data maps and existing models including transition rules. 

2. 1. 5 Non-Linear Relationship Analysis 

The urban big data from previous step is utilized to discover knowledge about the 

relationships between urban population relocation, urban land use change and other urban 

conditions. These parameters are considered as constraints in the urban simulation and data 

mining. For example, the urban simulation model could generate a data set with population data 

as a constraint, e.g., population above a certain number, the land use type changes etc. 

Furthermore, the data mining methods could discover knowledge about the relationships between 

urban land use change trend and population dynamics. 

 This analysis helps to answer questions such as: “What are the reasons for the differences 

between urban development trends of different cities?” We could find quantifying information, 

which is valuable for a comprehensive urban simulation model. 

 We find that association rule mining is suitable for analysis of nonlinear relationships 

between urban growth and urban conditions. Association rule mining is the technique of 

detecting rules among data sets, the rules are typically of the type: A => B where A is the 

antecedent and B is the consequent [11]. This means that if a trend A occurs, then B is likely to 

occur. These rules have interestingness measures called Confidence and Support. The 
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Confidence C of a rule A=>B is the probability of B given A [i.e., C = P (B|A)], while the 

Support S is the probability of A and B occurring together in the entire data set [i.e., S = P (A ^ 

B)]. This is standard terminology is association rule mining. 

 Now consider this with reference to our work. The urban big data as a data set is: 

𝐷𝐷 = {𝐼𝐼𝑝𝑝,𝑞𝑞} 

Here, the variable I relates to a certain parameter or trend, while p marks cities, and q marks 

certain attributes. Thus, in our context we define C as the confidence between parameters x and y 

which is given as: 

𝐶𝐶 =
�𝐼𝐼1,𝑥𝑥, 𝐼𝐼3,𝑥𝑥, … 𝐼𝐼𝑛𝑛,𝑥𝑥 ∩ 𝐼𝐼1,𝑦𝑦, 𝐼𝐼3,𝑦𝑦, … 𝐼𝐼𝑛𝑛,𝑦𝑦�

��𝐼𝐼1,𝑥𝑥, 𝐼𝐼3,𝑥𝑥, … 𝐼𝐼𝑚𝑚,𝑥𝑥� ∩ 𝐷𝐷�
 

This is the ratio between number of urban areas in which both x and y occur and the number 

of urban areas in which only x occurs. When we measure the confidence as defined herewith, it 

could be utilized for prediction, thus the more similar the urban condition is to the association 

rule, the more likely it is to occur. 

 Cluster analysis is helpful in urban simulation as follows. Clustering is a data mining 

technique that divides the entire data set of different objects into groups based on their similarity 

[12]. The urban big data contains information that could be used as indicators of similarity. For 

example, a transition rule may be described as: in city A, non-urban lands have B% chance to 

change into the urban lands when it has C distance to the center of the cities and D% of the 
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neighborhood is urban land. The A, B, C and D are the indicators, and by using cluster analysis, a 

lot of significant knowledge would be revealed. For example: in City A, X….Z, non-urban lands 

have the similar chance to change into urban lands under similar neighborhood conditions. Thus, 

when we build the comprehensive urban model, in the cities similar to City A, X…Z, this 

transition rule is applicable. 

 The classification analysis intends to produce rules which discover the relationships 

between urban land use change, population relocation and other indicators, and help to predict a 

target. For example, it could predict that under certain land use change and economic conditions, 

the amount of population change would be within a certain range. There are various of 

classification analysis methods. A common one is J4.8 decision tree learning [13]. Decision tree 

learning follows an inductive approach to learn from an existing data set and build a stem and 

leaf structure such that root represents a starting point, the intermediate nodes represent certain 

parameters and leaf nodes represent the final outcomes, e.g., in our case this could be urban 

sprawl. 

 With this description of the approach used in our work, we now proceed with a summary 

of our experimental evaluation. 

2. 1. 6 Experimentation 

In 2014, Hamidi and Ewing conducted a research to measure the urban decentralization 
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around the USA from 2000 to 2010 [14]. They analyzed 163 census urbanized areas. We use 

their results as one source of input. The data sets are publicly accessible [15]. They contain four 

main types of numeric indicators as follows [14]. 

 • Density factor: The density factor refers to population, employment and build-up land 

density. 

 • Mix Factor: The mix factor or mix use factor pertains to the condition of population and 

employment land use type mixture. 

 • Center Factor: The center factor or centering factor determines the condition of how the 

population and employment concentrates in the urban center. 

 • Street Factor: The street factor is the condition of accessibility of the urban area. 

 In addition, there is also a Numeric Composite Factor which relates to the urban sprawl. It 

contains information about population and employment (density factor), urban land use/urban 

form (mix and centering factor), and accessibility (street factor). They utilize the statistical 

models to output indicators of population dynamics and urban development, which is suitable as 

a form of urban big data. Thus, we use these factors in our analysis with data mining methods. 

 Based on these inputs and the urban big data that we have generated, we run association 

rule mining, clustering and classification as described next. 

 The association rule mining finds several rules from which we can infer some interesting 

facts as follows. We find that the greater the mix factor, the lower is the tendency of the urban 
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sprawl occurrence. This is due to the composite index being “compact”. This implies that as 

there is a better mix between population and employment land use, the city tends to be more 

compact and less sprawl-prone. Likewise, we discover other interesting trends. Examples of 

association rules discovered from this analysis are shown in Figure 2.3. 

 

Figure 2.3: Examples of Association Rules 

Cluster analysis is then performed on the data set. Snapshots of the results appear in Figure 

2.4 and Figure 2.5. In these figures, Cluster 0 and 3 are compact clusters, Cluster 1 and 2 are 

sprawl clusters, Cluster 4 is the sprawl+ cluster. Based on these figures, it is observed that urban 

areas with high centering factor are more compact, and those with low centering factor tend to be 

sprawl. Thus, urban centering, i.e., concentration of employment and population in the urban 

center would reduce the urban sprawl. Also, we notice that when the street factor improves, 

sprawl would reduce. This can be interpreted as follows. Proper design of streets would limit 
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edge development by stimulating the growth of developed urban areas, thereby decreasing the 

urban sprawl. 

 

Figure 2.4: Clustering Result Example 
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Figure 2.5: Visualization of Clusters 
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Figure 2.6: Visualization of Decision Tree 

Classification analysis is performed with J4.8 decision tree learning for the same data set. A 

partial snapshot of example results appears in Figure 2.6. This example gives a result with 

82.716% correctly classified instances. This result shows that most of the urban areas maintain 

their development conditions in these 10 years and the mix factor and street factor showed 

significant influence on the composite index. Low mix factor urban areas have the tendency to 

become sprawl. The low street factor with medium mix factor would also lead to sprawl. This 

result also follows the previous result as the mix factor and street factor have strong influence of 

the urban development. However, it does not include any influence of the changing trends of the 

factors. This along with other issues is being addressed in ongoing work. 
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2. 1. 7 Related Work 

There is interest in the field of urban sustainability today from several perspectives. Urban 

decentralization has negative outcomes, e.g., traffic congestion, air pollution, lack of social 

capital [1]. Low population density is feature of urban decentralization. Policy implementation to 

reduce decentralization, e.g., smart growth supports high density communities, regulates low 

density communities [2]. Theories claim that economic factors, social amenities, health services 

etc. drive population changes [3]. Recently, there is applied data mining research in many fields 

since amount of available data is increasing, there are more powerful computers and there are 

advances in statistics & machine learning [5]. Prior research showed that data mining can be 

applied to calibration of cellular automata transition rules [4]. Data mining is suitable for the 

nonlinear relationship analysis between urban sustainability and urban conditions [6]. 

 We address issues that have not been predominant in earlier works, e.g., factors affecting 

sprawl and sustainability and the relationships between them. Also, existing research typically 

has single-city environments while we consider a multicity global context. Our work also entails 

analysis of complex urban big data with the generation of the data itself involving multiple 

procedures including using GIS, remote sensing, and data from existing simulation models. 

 Our earlier work on Mining GIS Data to Predict Urban Sprawl [16] appeared in ACM 

KDD 2014. We analyzed data on urban sprawl (overgrowth & expansion of low-density areas 
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with issues like car dependency and segregation of residential & commercial use). 

Spatiotemporal features on real GIS data e.g., population growth & demographics were mined 

using Apriori for association rules [12] and J4.8 for decision tree classification [13], adapted to 

geospatial analysis, with ArcGIS for mapping. Knowledge discovered was used to build a spatial 

decision support system (SDSS) to predict whether “urban sprawl” was likely to occur with 

reasons. In our current work, we delve deeper into specific aspects of urban sprawl and 

sustainability and head towards generating a comprehensive urban simulation model to cater to 

various interesting user questions. Our proposed research activity would contribute to the state-

of-the-art by discovering knowledge useful to environmental scientists, urban planners and other 

interested users. 

 Recently, there is much interest in the development of Smart Cities [17]-[19]. These entail 

several characteristics, among which our work would potentially make contributions to Smart 

Governance and Smart Environment. The Smart Governance aspect includes transparent 

governance and participation in decision-making, where our work on providing useful 

information pertaining to sprawl and sustainability could play a role. The Smart Environment 

aspect includes features such as greenness and energy efficiency [20], conserving natural 

resources and living sustainably [21]. Thus, our work has the effect of contributing in that avenue 

due to the analysis of sustainability parameters and goals of sustainable population relocation as 

a whole. Hence, this work has a broader impact in the context of Smart Cities [17]-[19]. 
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2. 1. 8 Conclusions and Ongoing Work 

In this research, we address the issue of multicity urban simulation. We propose to integrate 

urban simulation and data mining to conduct predictive and diagnostic analysis about the 

relationship between population dynamics, land use change, and urban development. Our 

experimentation reveals that data mining methods have the ability to discover knowledge from 

the national level urban data sets that contain urban development trends and urban conditions. 

The following are some interesting findings from this work. 

 • Greater the mix factor, lower the tendency of urban sprawl occurrence 

 • Urban areas with high centering factor are more compact and those with low centering 

factor tend to cause sprawl 

 • Mix factor and street factor combined have a significant influence on sustainable urban 

development 

 • Proper design of streets is an important indicator of sustainability 

 The outcomes obtained from some experiments could be even further improved by future 

work in this research. With respect to the techniques, we could potentially consider other 

methods such as: an ensemble of classifiers constituting a mixture of experts scenario for 

prediction in the real world; discovering associations and using them to build classifiers; 

clustering followed by classification and more. 
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 With respect to the data, we could enhance the data set itself so that it includes text and 

image data in addition to the sources already considered. We could also mine opinions from 

social media data. This would be very useful given that the public satisfaction is very important 

in aspects such as urban development and population relocation. Public opinions are often 

expressed over social media and hence it would be useful to capture them in the mining process. 

The data on social media itself could consist of textual, numeric and image data. This would 

need more advanced techniques for mining. Thus, we could conduct further analysis with 

enhanced data sets and use that to generate a comprehensive urban simulation model. Mining 

over such data could potentially yield even more interesting results. 

 In order to address this, we need to solve various sub-tasks in this research, e.g., defining 

precise interestingness measures for association rules, selecting appropriate classifiers in an 

ensemble, pre-processing the urban big data to extract relevant information for mining, 

extracting and interpreting important social media data etc. All of this constitutes our ongoing 

research. We claim that this would discover even more interesting knowledge that would be of 

greater value to urban planners and other users 
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2. 2 Mining PM2.5 and Traffic Conditions for Air Quality 

Abstract: Fine particle pollution is related to road traffic conditions. In this work, we 

analyze Particulate Matter with a diameter less than 2.5 micrometers, called PM2.5, along with 

traffic conditions. This is done for multicity data to study the relationships in the context of 

environmental modeling. The goal behind this modeling is to support prediction of PM2.5 

concentration and resulting air quality. We deploy data mining algorithms in association rules, 

clustering and classification to discover knowledge from the concerned data sets. The results are 

used to develop a prototype tool for the prediction of PM2.5 and hence air quality for public 

health and safety. This paper describes our approach and experiments with examples of PM2.5 

prediction that would be helpful for decision support to potential users in a smart cities context. 

These users include city dwellers, environmental scientists and urban planners. Novel aspects of 

this work are multicity PM2.5 analysis by data mining and the resulting air quality prediction 

tool, the first of its kind, to the best of our knowledge.  

Keywords: Air Pollution; Data Mining; Environmental Modeling; Fine Particles; 

Predictive Analysis; Public Health 

(Chapter 2.2 reused the previously published paper Du, X., & Varde, A. (2016), Mining 

PM2.5 and traffic conditions for air quality, 7th International Conference on Information and 

Communication Systems (ICICS), https://doi.org/10.1109/iacs.2016.7476082). 
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2. 2. 1 Introduction 

In order to mitigate the negative effect of airborne fine particles on human health, air 

visibility and global climate, it is useful to have a good prediction tool. This would be in line 

with the modern day concept of making cities smart for prospective users by aiding in decision-

making scenarios. 

 Road traffic in cities is the major source of airborne fine particles while the burning of 

fossil fuel produces both fine particles and its precursors [1]. The traffic would somehow relate 

to economic conditions, which is also significant with respect to fine particle pollution. In traffic 

sites, i.e., areas with high traffic volume, the air has a higher concentration of fine particle 

pollutants [2]. This motivates the development of regulations and standards for heading towards 

a cleaner environment [3]. The Clean Air Act regards particulate matter as a harmful pollutant to 

public health and requires the United States Environmental Protection Agency (EPA) [4] to set 

national air quality standards for PM2.5 and PM 10. Note that the term PM refers to particulate 

matter while the adjacent number refers to its maximum diameter in micrometers. Hence, PM2.5 

is particulate matter with diameter less than 2.5μm. This is found to be particularly harmful to the 

human body since it is relatively harder for the respiratory system to filter this out. Figure 2.7 

shows the penetration of PM2.5 into the lungs (left) and its harmful effects demonstrated by 

observing rat lungs (right). From this figure, it can be seen that pollutants with diameter around 
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10μm penetrate into the nose while those with diameter less than 2.5μm penetrate really deep 

into the lungs. Short term exposure to PM2.5 can cause problems such as asthma attacks and 

acute bronchitis while its long term exposure can cause reducted lung function, chronic 

bronchitis and possibly premature death. Hence, it is important to set standards for PM2.5 

pertaining to health and safety. 

 

Figure 2.7: PM2.5 penetration in lungs and harmful effects of the pollutant 

In 2012, EPA updated the PM2.5 standards range from 15 to 12 microgram per cubic meter 

as the safe limit [4, 5]. Thus, for the environment to be safe from a health standpoint, the amount 

of particulate matter of the 2.5 type should be no more than 12 μg/m3 for a 24-hour period. 
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Figure 2.8: AQI values for PM2.5 as per health standards 

The EPA has an Air Quality Index (AQI) system [5] built for daily prediction and record for 

PM2.5. In Figure 2.8, there is brief depiction of how AQI is related to health impact and the 

PM2.5 concentration. In this figure, AQI Category refers to its description from a health 

standpoint, Index Values define the actual numerical value for AQI, and Revised Breakpoints 

pertain to the PM2.5 concentration for the given index value. 

Data mining, the process of discovering knowledge from data, provides a good approach for 

modeling the relationships between environmental parameters. We consider multiple data mining 

methods in this research for analysis of PM2.5 and traffic conditions with respect to air quality. 

There are multiple sources of PM2.5 and a vast number of factors, which would influence the 

concentration [1, 2, 3]. Traffic is a major source of PM2.5 and automobile exhaust, abrasion, re-
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suspension sources are all traffic related. The analysis between traffic indicators and PM2.5 

concentration would thus reveal useful knowledge and would be valuable for the prediction of 

PM2.5 concentration. This in turn can be used to predict the air quality and its suitability for 

public use along with health and safety issues. This forms the focus of our work and would 

potentially help in making a contribution to smart cities [6] through predictive analysis of air 

quality. 

 The rest of this paper is organized as follows. Section II gives a description of the problem 

we address with its research questions. Section III describes our proposed solution. Section IV 

provides the experimental evalution along with a prototype tool for PM2.5 prediction. Section V 

overviews related work in the area. Section VI states the conclusions and ongoing work. 

2. 2. 2 Problem Definition 

PM2.5 refers to air pollutants consisting of fine partiles having a diameter less than 2.5 

micrometers. High PM2.5 concentration would cause some damage to human health while long 

term exposure to PM2.5 could possibly lead to cardiovascular and respiratory disease and also 

genotoxicity, mutagenicity and cancer. All this could occur due to its high penetration into the 

human body [6]. Since PM2.5 has highly negative effects, it is desirable to avoid it, and thus it is 

smarter to live in an environment with neglible PM2.5 concentration. In this research, we model 

the relationship between PM2.5 and traffic conditions with respect to air quality. Thus, the 



57 

 

 

 

 

problem addressed is divided into 3 research questions as follows. 

 Q1. What is the relationship between traffic parameters and PM2.5 concentration? 

 Traffic contributes to PM2.5 emission via multiple ways: direct emission, abrasion and re-

suspension. Gas pollutants lead to secondary PM2.5. Adequate road density would mitigate 

traffic congestion, which would reduce the exhaust by decreasing the running time. Traffic 

conditions are also related to economic conditions, which would influence the quality of fossil 

fuel and consumption. A proper combination of traffic parameters would lead to reduced PM 

concentration. This research would model these relationships via data mining. 

 Q2. What are the main traffic parameters pertaining to PM2.5 concentration? 

 There are various traffic parameters. It is important to estimate which of these would be the 

major indicators of PM2.5 concentration. It is also useful to understand how the parameters 

interact with other parameters. 

 Q3. How can we utilize the knowledge discovered by data mining for prediction of PM2.5 

concentration? 

 To produce environmental management benefits, the knowledge that has been discovered 

by mining data pertaining to PM2.5 should be used for prediction. It is helpful be able to predict 

PM2.5 concentration based on various environmental factors. A prototype tool would be built to 

address this. 
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2. 2. 3 Proposed Solution 

We propose to utilize data mining methods to discover relationships between PM2.5 and 

traffic conditions. We focus on association rule mining, cluster analysis and classification 

techniques [7]. The proposed approach in our analysis is illustrated in Figure 2.9. As seen here, 

we first collect data on traffic conditions and PM2.5 and preprocessing is conducted on it by 

applying suitable filters and other operations, e.g., attribute selection, instance sampling, 

discretization etc. The resulting data is stored in a preprocessed database. This is then mined 

using the following techniques. 
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Figure 2.9: Proposed Approach for PM2.5 Analysis 

Association rule mining helps discover relationships of the type A=>B [7]. Hence, it can 

discover how one parameter on PM2.5 affects another. Clustering helps grouping instances based 

on similarity [7]. Thus it would form categories based on similar ranges of PM2.5 and related 

parameters. Classification helps in the prediction of a target [7]. This could therefore be used to 

predict the range of PM2.5 given various other attributes. Knowledge discovered by mining is 
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then used to build a prototype prediction tool for decision support. This estimates the PM2.5 

ranges and thereby the air quality based on user inputs. 

Our data sources here are mainly from World Bank [8] and World Health Organization [9] 

online databases. Data gathered from here is combined into a comprehensive data set for data 

mining. In our work, we have joined the PM2.5 concentration data based on country code. The 

original raw data has the following significant aspects as shown in Figure 2.10. 

 

Figure 2.10: Raw Data on PM2.5 from Worldwide Sources 

The original data are all numerical variables. These might not suitable for some data mining 

methods, thus we perform discretization to convert them into nominal data. The US EPA sets the 

standard of 12 μg/m3 for PM2.5 as being safe. We thus use this standard in our analysis. This is 

for knowledge discovery by data mining methods as well as prediction in the prototype decision 

support tool. 
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2. 2. 4 Experimentation 

We provide a summary of the experimental evaluation we conducted with our proposed 

approach. Association analysis was the first data mining method we used to detect the correlation 

among the attributes. We used the well-known Apriori algorithm [10] to conduct association rule 

mining. We discretized the numeric data on PM2.5 using the equal frequency binning method. 

 After conducting analysis, we got some interesting inferences. For example, we found 

regions that have strong connection with PM2.5 concentration. There were rules showing that 

income groups could influence the other traffic conditions. This was reasonable due to the fact 

that the economic conditions directly influence the traffic facility construction. It was also found 

that high diesel consumption was not directly related to high PM2.5 concentration. Examples of 

interesting association rules obtained as the output of Apriori are shown herewith: 

 Region=Europe & Central Asia Vehicles_Per_KM=VERY LOW => PM25_Class=GOOD 

conf:(1) 

 Gasoline_Consumption=VERYLOW Road_Density=VERY LOW 

Cars_Per_K_People=LOW => PM25_CLASS=MODERATE conf:(0.91) 

 The terms GOOD and MODERATE here, pertain to the PM2.5 ranges with respect to their 

impact on air quality index (as shown in Figure 2.8). For example, PM2.5 class = GOOD implies 

that the resulting AQI category is good since its index value is in the range of 0-50, which would 

conf:(1)
conf:(0.91)
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occur with a PM2.5 concentration of 0.0 to 12.0 μg/m3 as a 24-hour average. This is with 

reference to the first row in the table in Figure 3-2. Likewise, we can interpret other ranges. 

 

Figure 2.11: Sample Output of Clustering 

 During cluster analysis, the classical simple k-means algorithm [11] was used. A sample 

output is shown in Figure 2.11. Here the value of k=4, i.e., there are 4 clusters. It is observed that 

Cluster 0 has relatively low traffic indicators, however the medium PM2.5 range has been 

already over safe PM2.5 standards. It showed that in these countries, the traffic is not the major 

source of PM2.5 and the income of this cluster is the lowest. Cluster 2 has the highest PM2.5 

concentration, yet it is not the highest traffic indicator, the countries in this cluster also have 

other significant PM2.5 sources or poor regulation of automobile emission. Cluster 1 and Cluster 

3 both have PM2.5 under the safe standards and also pertain to OECD (Organization for 

Economic Cooperation and Development) countries. It shows that the PM2.5 presence is also 

affected by factors other than the actual traffic concentration.  

Finally, we conducted classification analysis on the data. We used the J4.8 decision tree 

algorithm, the Java version of the C4.5 algorithm for learning by decision tree induction [12]. 
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The main theory behind it is to maximize the information gain of each node of the tree. By 

analyzing the rules of the J4.8 classifier output, it was found that the region attributes have the 

strongest influence. It was also discovered that the PM2.5 pollution is highly associated with 

local conditions. 

An interesting result was the fact that high gasoline and diesel consumption does not 

directly lead to the higher PM2.5 concentration. In fact, contrary to the popular belief it was 

found that medium gas consumption causes greater PM2.5 concentration than high gas 

consumption. After further analysis, it was found that this could be reasoned as follows. High gas 

consumption usually associates with much better economic conditions and better pollutant 

regulations. Further, the income attribute is also significant to these rule distributions. In other 

words, high income groups and high gas consumption groups have better regulatory facilities due 

to which PM2.5 concentration does not increase significantly. Therefore, while low gas 

consumption causes low PM2.5 concentration, the relationship is not linear since other factors 

also influence PM2.5 presence. A partial snapshot of a decision tree obtained in our experiments 

is shown below. 

Region = East Asia & Pacific 

 | Gasoline_Consumption <= 427.7 

 | | IncomeGroup = High income: nonOECD: '(18.43-21.755]' (2.0) 

 | | IncomeGroup = High income: OECD: '(21.755-inf)' (2.0) 
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 | | IncomeGroup = Low income: '(18.43-21.755]' (2.0/1.0) 

 | | IncomeGroup = Lower middle income: '(11.98-15.12]' (2.0) 

 | | IncomeGroup = Upper middle income 

 | | | Diesel_Consumption <= 114.38: '(21.755-inf)' (2.0) 

 | | | Diesel_Consumption > 114.38: '(11.98-15.12]' (2.0) 

 | Gasoline_Consumption > 427.7: '(-inf-5.845]' (5.0) 

In this tree we can see some of the interesting findings mentioned herewith. The region and 

income have significant influence on PM2.5 concentration. Diesel consumption seems to have a 

reverse connection with PM2.5 concentration. Gas consumption has an effect but is not directly 

proportional to the concentration of the PM2.5 pollutants. 

Results from the data mining analysis were then used to develop a prototype prediction tool. 

In our work, the programming for the prediction tool was done in Java. We used the output of the 

experiments conducted herewith to design the tool, useful in decision support. 
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Figure 2.12: Example of predicted output with safe PM2.5 range 

 



66 

 

 

 

 

 

Figure 2.13: Example of moderate PM2.5 range as predicted ouput 

 

Figure 2.14: Example of moderate to potentially unsafe PM2.5 range prediction 
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This tool asks users to input the relevant data and predicts the PM2.5 range as the output 

with suggestions on its health and safety consequences. This Java-based tool has a GUI with an 

interactive, menu-driven screen. Users are allowed to enter the input conditions for prediction of 

PM2.5 ranges. The output helps users even without much professional knowledge, to fathom the 

result, namely, estimated range of PM2.5 based on given inputs with respect to health impacts. 

 The results with sample executions of user inputs are shown in Figure 2.12, Figure 2.13 

and Figure 2.14. The terms “very good”, “moderate” and so on describe the PM2.5 safety range 

in air quality as per the chance of affecting public health. For example, consider Figure 2.12. If 

the user entered inputs for East Asia and Pacific as gas consumption: 182, vehicle concentration: 

700, high income group, road density: 11, vehicles per kilometer: 20, diesel consumption: 467 

and car concentration: 180, the tool would predict that the PM2.5 range is “very good”. This 

would mean that the range is between 0.0 to 12.0 μg/m3, which is well within the safe limits for 

good health, with reference to AQI standards in Figure 2-8. Likewise, the other figures can also 

be interpreted. 

With many such experiments, we found that there were useful predictions provided by this 

prototype tool, as evaluated by domain experts in Environmental Management. The results of 

these predictions would be useful to government bodies in order to estimate PM2.5 levels based 

on various factors and regulate policies accordingly. They would also be useful to urban dwellers 

and prospective residents to get an idea of pollutant concentrations and make decisions about 
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current lifestyles and potential relocation. 

 Furthermore, this tool would provide inputs to scientists in Environmental Management to 

conduct further research. For example, it would propel them to analyze the detailed causes of 

correlations between specific traffic conditions and PM2.5 concentrations. It would also help to 

promote the discovery of approaches for reducing the harmful effects of pollutants and making 

improvements from a health standpoint. 

While these results are good for a prototype, the data in this paper is World Bank and WHO 

data and the data scale is too big for precise analysis. Since the PM2.5 concentration is a major 

concern for urban environmental health, city scale data would be better. Data collected by global 

remote sensing would also be useful. Further, the PM2.5 data only has two time periods: 2005 

and 2010, while the global remote sensing data could yield PM2.5 data for each year. Yet another 

aspect is that the road density data does not incorporate specific details of the road conditions. 

This could also have an impact on the PM2.5 concentration. Finally, some regions have 

significantly less data then the other regions, and streamlining this data to make it more uniform 

could also lead to more accurate prediction. These and other issues provide the potential for 

further research. 

2. 2. 5 Related Work 

Urbanization though desirable has its negative outcomes, e.g., traffic congestion, air 



69 

 

 

 

 

pollution and lack of social capital [13]. Policy implementation in this area e.g., smart growth 

supports high density communities and regulates low density communities [14]. This is in line 

with the concept of smart cities that aim to provide better urban facilities including prior analysis 

useful to potential residents, catering to their smart environment and smart governance 

characteristics [15]. Furthermore, there are various theories claiming that economic factors, 

social amenities and health services are some of the factors that drive urban population changes 

[16]. This motivates conducting research on such factors with the ultimate goal of enhancing 

urban sustainability. 

 Recently, applied data mining research has been found useful in many fields including 

Environmental Management since amount of available data is increasing, there are more 

powerful computers and there are advances in statistics & machine learning [17]. Prior research 

shows that data mining can be applied to the calibration of cellular automata transition rules that 

could potentially relate to specific theories in urban relocation [18]. Moreover, data mining 

techniques such as association rules have been applied for conducting nonlinear relationship 

analysis between various urban conditions [19]. 

 Given this general background on the role of data mining in urban sustainability research, 

we specifically address the issues that have not been the focus of earlier works. Hence, in this 

paper we deal with fine particle air pollutants, more specifically, particulate matter with diameter 

less than 2.5μm. We focus on these due to the fact that the human body cannot easily filter such 
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fine particles and thus they penetrate deep into the respiratory system, thereby being particularly 

harmful. We analyze PM2.5 impact on air quality with respect to the effects on public health. 

Also, much of the existing pollution research caters to single-city environments while in our 

work we consider a multicity global context for pollutant analysis, focusing on real data from 

worldwide sources. 

 Our earlier research on mining GIS data in the context of urban sprawl prediction appeared 

in ACM KDD 2014 (Bloomberg Track) [20]. We analyzed data pertaining to urban sprawl 

(overgrowth & expansion of low-density areas with issues like car dependency and segregation 

of residential & commercial use). Conducting further work in the area, we analyzed urban big 

data considering parameters such as population density, street factors and employment rate, in 

order to discover knowledge useful for sustainable population relocation [21]. This was found to 

be useful from a geoinformatics standpoint. 

 In our current research, we delve deeper into specific aspects of urban sprawl and 

sustainability to head towards smart cities [5]. We thus analyze climate change, a hot topic 

intriguing environmental scientists. Within that, a specific subtopic is air pollution and that 

brings us to analyzing the effects of fine particle pollutants. We also address health and safety 

consequences, to provide suggestions for sustainable population relocation. Our research would 

contribute to the state-of-the-art by discovering useful knowledge on air pollution, climate 

change, its health impacts and the effects on urban population. This knowledge would be very 
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useful to environmental scientists, urban planning agencies and city residents. It would therefore 

have the impact of contributing to the smart cities initiative [5, 14, 15] by helping to provide a 

smart environment that is clean and healthy. It would also help in smart governance through 

better decision support based on predictive analysis in urban planning. 

2. 2. 6 Conclusions and Future Work 

In this paper, we have addressed the issue of modeling the relationships between fine 

particle air pollutants PM2.5 and traffic conditions in urban locations worldwide. This has been 

done with the goal of predicting air quality with respect to the presence of PM2.5 and its impact 

on public safety from a health standpoint. We have used online environmental data on PM2.5 

from cities in a global context and conducted data mining using association rules, clustering and 

classification to model the relationships between various PM2.5 related parameters. The 

knowledge discovered by this environmental modeling has been used to build a prototype tool 

for the prediction of PM2.5 based on environmental conditions entered as user inputs. The tool 

predicts the range of PM2.5 as relevant to air quality with respect to public health. 

 This prototype prediction tool is helpful in analyzing PM2.5 occurrence and its impacts in 

the broad context of smart cities. It would be useful in decision support for existing city dwellers, 

potential residents of urban areas and government agencies such as urban planning departments. 

Additionally, this would provide inputs to environmental scientists for further research. It would 
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also help data mining professionals in real-world case studies. To the best of our knowledge, ours 

is one of the first works to build a prediction tool for air quality. This, along with the fact that we 

delve into multicity PM2.5 research with data mining constitutes the novelty of our initiative. 

 Further research in this area includes expanding this prototype into a large-scale predictive 

analytics tool. This would involve detailed analysis with remote sensing data, social media sites 

and other sources. It would also involve addressing more specific analytical issues with respect 

to the research questions in the pertinent areas to enhance the development of smart cities. It is 

expected this full-fledged predictive analytics tool would have the broader impact of enhancing 

urban sustainability. 
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Chapter 3 

3.  Ordinance Mining 

3. 1 Urban Legislation Assessment by Data Analytics with Smart City 

Characteristics 

Abstract: Smart cities receive great attention today especially in conjunction with 

ubiquitous computing. People feel the need to access information about their cities anywhere 

anytime. They wish to be actively involved with local government bodies for policy decisions 

affecting urban lifestyle. Accordingly, this paper describes our research on urban policy 

management. We analyze urban legislation, more specifically, ordinances or local laws. We 

categorize ordinances based on smart city characteristics they address. This work deploys data 

warehousing, XML data management and data mining over categorized ordinances. Interesting 

findings include relative importance of smart city characteristics considering the focus given by 

urban agencies. This research helps agencies assess their current ordinance policies with decision 

support for the future. It also provides urban residents at-a-glance information about their cities 

and policies with analysis. This work has broader impacts of enhancing smart cities and 

ubiquitous computing by making useful information widely accessible with suitable inferences.  

Keywords: Data Mining; Data Warehousing; Ordinances; Smart City; Urban Policy; XML 

Data Management 
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(Chapter 3.1 reused the previously published paper Du, X., Liporace, D., & Varde, A. 

(2017), Urban legislation assessment by data analytics with smart city characteristics, IEEE 8th 

Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 

https://doi.org/10.1109/uemcon.2017.8248972). 

3. 1. 1 Introduction 

urban management agencies use local level policy tools to perform and support their own 

work. In the USA, laws passed by local level jurisdictions are called ordinances. The ordinances 

enhance and complement federal and state laws. In this paper, we focus on the problem of urban 

policy assessment based on publicly available ordinance data. The goals of this work are 

twofold. First, we aim to provide meaningful access to urban policy data for city residents and 

urban agencies such that they can conceptualize and interpret their legislative activities. The 

second and more important goal is to evaluate the effectiveness of the urban legislative policies 

with respect to smart city characteristics they address. 

These two goals thus constitute our problem definition. In order to address the first goal 

herewith, we deploy data warehousing and XML data management strategies to store and 

exchange local legislature data along with visualization. This helps to make the information 

easily accessible and understandable in a ubiquitous manner. For the second goal, we apply data 

mining techniques on the ordinances to extract useful information in urban management for 
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evidence-based decision-making catering to the characteristics of smart cities. Since data mining 

consists of techniques used to discover novel and useful knowledge from large data sets, it can be 

utilized to find interesting patterns. Data mining is thus very helpful for nonlinear relationship 

analysis [1] which makes it suitable in our work to assess relationships between ordinance data 

and smart city characteristics. 

In this paper we focus on New York City data, since it is the most populated city in the 

United States [2] and its effective urban management is critical. The NYC Council has 35 

standing committees covering many urban administrative aspects [3]. This council has its 

election every four years. The two most recent full sessions are 2006-2009 and 2010-2013 and 

each involve the enactment of hundreds of ordinances. Our research provides urban management 

agencies a unique view of their legislative activity. Connecting each ordinance with one of the 

six smart city characteristics: smart living, governance, economy, mobility, people and 

environment increases awareness and ability in developing a smart city. By assessing the 

relationships of ordinances with smart city characteristics and making that easily accessible to 

the public, this work contributes to urban sustainable development and smart city research with 

ubiquitous access. 

3. 1. 2 Data Description 

Legislative data in our research is found on the NYC council website [4]. Details on 
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ordinances, meetings and committees can be viewed by the general public. Additionally, the 

website provides an export function to allow users to download parts of the raw data. Users can 

select the sessions and types of files in the webpage as Figure 3.1 shows. If the ordinance is 

related to more than one characteristic, we select the closest one. 

 

Figure 3.1: The Data Source Page 

The raw data is as described in Table 3.1. Other data, as seen in Table 3.2 is obtained from 

the website and added to our system manually. In order to connect smart city characteristics with 

ordinances, we first need to understand their definition. We utilize the European Smart Cities 4.0 

standard [5] which suits NYC conditions most closely. This system divides the smart city 

characteristics into six big categories with various sub-categories [5]. As Table 3.3 describes, we 
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associate each individual ordinance with only one of the six smart city characteristics [5] based 

on its content. We select the most closely related one and proceed with the analysis. 

Table 3.1: Raw Data Extracted from Websites 

 

Table 3.2: Additional Ordinances Data 
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Table 3.3: Smart City Characteristics 

 

3. 1. 3 Analytical Methods 

We describe the data analysis conducted with respect to data warehousing, XML data 

management and data mining. This aids storage, exchange and knowledge discovery 

respectively.  

3. 1. 3. 1 Data Warehousing 

As a widely accepted definition [6], “A data warehouse is a subject-oriented, integrated, 

time-variant, non-volatile data collection in support of decision-making processes”. There are 
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many terms in data warehouse design. Among these, the star schema has fact tables with the 

actual facts, i.e., core content of data being analyzed; while dimension tables store data on the 

concerned dimensions, i.e., relevant features [6].  

Urban legislation fits the data warehouse model on several levels. The major subject is 

legislative data. Historical data on past legislative sessions is collected and key structures contain 

the elements of time (see Table 3.2). Also, data is gathered from multiple sources. OLAP (online 

analytical processing) supports the decision-making process of targeted users, mainly urban 

management agencies.  

Raw data is collected from NYC council websites and three databases are formed as the 

foundations of NYC legislation data warehouses. The warehouses in our work are developed 

using the free open source tool phpMyAdmin [7]. The databases in this warehouse are described 

next.  

Database 1 on Ordinances: This database contains all the related information about each 

individual ordinance, e.g., the initialization and enactment dates. It has one fact table and three 

dimension tables. The fact table (Ordinance_Fact) contains three keys: TimeKey, File Key, and 

ContentKey. Each key points back to a dimension table.  

TimeKey  Time_Dimension  

FileKey  File_Dimension  

ContentKey  Content Dimension  
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The Time_Dimension table has date related information about ordinances. We store data 

with details on initialization and enactment dates of ordinances. The File_Dimension table has 

information specific to file number and file type. The Content_Dimension table has information 

on the smart city characteristics and the actual content or description of the ordinances. Each 

dimension table also contains its associated fact table key. This is illustrated in Figure 3.2 below. 

 

Figure 3.2: Star schema of the ordinances database 

Database 2 on Committees: This design has a fact table and two dimension tables. The 

fact table (Committee_Fact) has two keys: CommitteeKey and MemberKey, each pointing back 

to a dimension table as shown next. Figure 3.3 is a star schema of the committee database. 

CommitteeKey  Committee_Dimension  

MemberKey  Member_Dimension 
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Figure 3.3: Star schema of the committee database 

The Committee_Dimension table contains the committee name and the committee session. 

The Member_Dimension contains the names of the committee members, the member sessions 

and their boroughs.  

Database 3 on Meetings: This database has information on meetings held by the council 

committees such as dates and committees. Figure 3.4 illustrates the star schema of the Meeting 

Database. Using a star schema provides an excellent view of the original data with the potential 

of converting to a snowflake schema, i.e., a refinement of a star schema with some dimension 

tables normalized to reduce redundancy [6] 
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Figure 3.4: Star schema of the meeting database 

This can be further enhanced into a fact constellation, i.e., a conceptual model in database 

design where multiple fact tables share dimension tables [6]. In the example depicted in Figure 

3.5, we see relevant parts of the fact constellation for our given star schemas. This structure helps 

us infer how many ordinances about a given characteristic have been initialized in a certain time 

frame via the fact constellation functions. Thus, the conceptual modeling of databases through 

star / snowflake schemas and fact constellations enhance the visualization and at-a-glance 

analysis of the data for ubiquitous access. 
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Figure 3.5: Partial snapshot of fact constellation 

3. 1. 3. 2 XML Data Management 

The eXtensible Markup Language (XML), an industry standard developed by W3C: World 

Wide Web Consortium, uses tree structures to store data. Descriptive tags called elements capture 

the semantics. The tags can be extended by adding attributes to include more information. In our 

work, XMLSpy [8] is used to create three XML databases in the same categories as the data 

warehouse. These XML DB structures are illustrated next.  

XML DB1 on Ordinances: In the XML DB for Ordinances, the root element in the 

conceptual model is “Ordinance”. There are eight child elements: Initial Time, Enacted Time, 

Related Committee, Description, Sponsor, Smart City Related Aspects, File Number and Law 

Number. Initial Time is a complex element and is further divided into Year, Month, and Day. 

This is illustrated in Figure 3.6. 
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Figure 3.6: XML DB structure for ordinances 

XML DB2 on Committees: In the Committees XML DB structure, the root element 

(conceptual model) is “Committee”. There are three child elements: Committee Name, Session 

and Member. Member is a complex element, consisting of name attributes used in XML to 

provide further information. The structure of this XML DB appears in Figure 3.7. 
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Figure 3.7: XML DB structure for committees 

XML DB3 on Meetings: In the Meetings XML DB structure, the root element is 

“Meeting”. There are four child elements: Date, Committee, Attendance, and Session. Date and 

Attendance are complex type elements and are further broken down to Year, Month, Day and 

Attend Member, Absent Member. There can be one or more names associated with a meetings 

attendance. This is shown in Figure 3.8. 
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Figure 3.8: XML DB structure for meetings 

Compared with data warehousing, XML databases cannot directly provide a very deep view 

of the data. However, XML storage facilitates worldwide data sharing. It makes the data easily 

publishable and enhances information exchange through a lingua franca for the Web. XML files 

can be utilized by different platforms, thus expanding the potential application of the datasets. 

Hence, for deeper analytical operations on urban legislative data, we prefer data warehouse 

design while for easy data exchange and publishing among data analysts, legislators and other 

users, we prefer XML formats. Both these methods enhance the ubiquitous aspects of data 

storage and processing with respect to urban legislature. 
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3. 1. 3. 3 Data Mining 

The data warehouses and XML databases serve as the basis for data mining by selecting, 

processing and pre-analyzing the relevant data. In our analysis herewith, we have selected ten 

significant attributes to perform association rule mining with the classical Apriori algorithm. 

Apriori is used to discover association rules such as A => B (A implies B) by the analysis of the 

frequent items in the given data sets. It is useful in our analysis since it helps to discover 

relationships among various features of legislative activities and corresponding smart city 

characteristics. In our work we use the implementation of Apriori in the WEKA tool [9]. The ten 

selected attributes as listed in Table 3.4 are obtained using WEKA filters, further guided by 

domain knowledge. 

Table 3.4: Apriori Data Attributes 
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Figure 3.9: Ordinance data after filtering 

The visualization of attributes in ordinance data after filtering is shown in Figure 3.9 

herewith. By observing this filtered data, we find that the first year of each session usually has 

the highest number of initialized ordinances while the last year of each session has the highest 

number of enacted ordinances. Further, the first half of each year within a given session has a 

higher percentage of initialized ordinances whereas December has the highest percentage of 

enacted ordinances. Such views of the data are useful for ubiquitous analysis. 
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3. 1. 4 Results and Discussion 

In our analysis with urban legislative data, we build the structured data warehouses and 

XML databases as described herewith. Thereafter, we generate the relevant ten-attribute table for 

conducting data mining. 

 We use rule confidence and rule support as the metrics to discover interesting rules. In a 

rule A => B, rule confidence is the number of times B occurs, given A occurs while rule support 

is total number of times A and B both occur in the whole data set [9]. Given these details and all 

the experiments we conduct, association rule mining in our work produces the following 

interesting rules. 

1. Meeting='(143.625-inf)' 94 => Committee=Committee on Finance 94 <conf:(1)> lift:(6.86) lev:(0.12) [80] conv:(80.3)  

2. TimeSpan='(-inf-39.5]' Committee=Committee on Finance 35 => Meeting='(143.625-inf)' 35 <conf:(1)> lift:(6.86) lev:(0.05) [29] 

conv:(29.9)  

3. Committee=Committee on Sanitation and Solid Waste Management 34 => Meeting='(46.75-66.125]' 34 <conf:(1)> lift:(3.31) lev:(0.04) 

[23] conv:(23.72)  

4. Committee=Committee on Parks and Recreation 33 => Meeting='(46.75- 66.125]' 33 <conf:(1)> lift:(3.31) lev:(0.04) [23] conv:(23.02)  

5. Committee=Committee on Transportation 68 => SCC=Mobility 60 <conf:(0.88)> lift:(5.17) lev:(0.08) [48] conv:(6.27)  

6. Committee=Committee on Environmental Protection 42 => SCC=Environment 36 <conf:(0.86)> lift:(5.58) lev:(0.05) [29] conv:(5.08)  

7. Committee=Committee on Housing and Buildings 108 => SCC=Living 83 <conf:(0.77)> lift:(2.93) lev:(0.08) [54] conv:(3.07) 23  

8. Committee=Committee on Transportation SCC=Mobility 60 => Meeting='(85.5-104.875]' 41 <conf:(0.68)> lift:(4.69) lev:(0.05) [32] 

conv:(2.56)  

9. Committee=Committee on Transportation 68 => Meeting='(85.5-104.875]' 44 <conf:(0.65)> lift:(4.44) lev:(0.05) [34] conv:(2.32)  

10. SCC=Economy 84 => Committee=Committee on Finance 51 <conf:(0.61)> lift:(4.17) lev:(0.06) [38] conv:(2.11)  

11. SCC=Economy 84 => Meeting='(143.625-inf)' 51 <conf:(0.61)> lift:(4.17) lev:(0.06) [38] conv:(2.11)  

12. SCC=Economy 84 => Committee=Committee on Finance Meeting='(143.625-inf)' 51 <conf:(0.61)> lift:(4.17) lev:(0.06) [38] 

conv:(2.11)  

13. Committee=Committee on Transportation 68 => Meeting='(85.5- 104.875]' SCC=Mobility 41 <conf:(0.6)> lift:(9.49) lev:(0.06) [36] 

conv:(2.27) 
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Note that SCC here is Smart City Characteristic. Measures seen near the rules (e.g. conf for 

confidence) with their values denote experimental parameters in our work. By analyzing these 

rules, we discover some patterns as listed next. 

 1. Ordinances of some committees are focused on specific smart city characteristics. Rules 

5, 6, 7 and 10 support this claim. For instance, the committee on transportation enacts ordinances 

mainly about mobility. This corroborates the link between smart mobility and transportation 

ordinances. 

 2. Some committees have almost the same number of meetings across two sessions. Rules 

1, 3, 4, 8, 9, 11, 12 and 13 corroborate this claim. For example, the committee on finance has 

over 143 meetings in each session. 

 3. Ordinances of some smart city characteristics have shorter time spans. Rule 2 favors this 

claim, e.g., the committee on finance has some ordinances passed in as few as 40 days.  

Likewise, other inferences can be drawn from the analysis of this data. Association rule 

mining in our work helps to relate smart city characteristics to ordinances and to make other 

observations about certain patterns in the data.  

Based on all the detailed ordinance analysis conducted, examples of which are shown 

herewith, we now summarize the results pertaining to sessions and smart city characteristics. 

Figure 3.10 illustrates a distribution of ordinances addressed in the two legislative sessions 

analyzed here, namely, Session 2006- 2009 and Session 2010-2013, with respect to the addressed 
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six characteristics of smart cities 

 

Figure 3.10: Ordinance distribution in sessions as per smart city characteristics 

From this figure, we can infer that four characteristics get greater focus in the later session: 

smart governance, people, mobility and environment; while the two characteristics of smart 

living and economy have more focus in the earlier session. Another interesting observation is that 

the smart city characteristic with maximum attention in the earlier session is smart living and that 

with minimum attention is smart people. In the later session, most ordinances addressed are on 

smart governance while the fewest ones are on smart people.  

Based on all these findings, one suggestion to potentially offer urban management agencies 

is that they could focus more on issues related to smart people, e.g., education, lifelong learning, 
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ethnic plurality etc. Note that this characteristic does receive a little more attention in the later 

session than the earlier one, though still less compared to other characteristics. It is to be noted 

that providing such analysis with visualization makes it very convenient for several urban users 

including residents and agencies to analyze performance of the legislature at-a-glance in a 

ubiquitous manner.  

Our analysis on ordinance data therefore serves useful as evident from our methods and 

results. This work helps to conceptualize legislative activities by modeling them with respect to 

parameters such as ordinances, committees and meetings, thus providing suitable views of data 

for ubiquitous access by city residents and urban agencies. Furthermore, it helps to assess how 

much the urban policy legislations lead to smart city development. This analysis, in addition to 

giving urban residents overviews of how well their legislators perform, also helps the urban 

management agencies evaluate their own effectiveness and support future decision-making. For 

instance, as stated earlier, the agencies could start focusing more on legislations that have 

received relatively less attention on a certain smart city characteristic (smart people here). 

Conversely, they could continue to give greater focus to those that have already received 

significant attention on a specific characteristic, hence aiming to make their city among the 

smartest in that perspective. For example, considering the analysis herewith, urban legislators in 

NYC could continue to focus more on smart governance ordinances aiming to make NYC among 

the leaders in that aspect. Since this entails transparency and public involvement in governing the 
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city, it is corroborated by the fact that the current NYC mayor reaches out to city residents 

through a mailing list to gather their opinion on various issues. Thus, a continued focus by urban 

agencies on smart governance would be good. 

3. 1. 5 Related Work 

Data mining techniques have been applied to urban sustainability research in multiple ways. 

Earlier research has deployed association rule mining on various types of urban data: i.e. 

population data, traffic data and social media data [10, 11, 12] and produced reliable results. 

However, to the best of our knowledge, this paper is among the first to conduct data analytics on 

urban legislature with various perspectives that include data warehousing, mining and XML 

processing.  

Researchers of legislative events usually try to extract the patterns of legislative activity and 

establish prediction models. They regard legislators and bills as points in the representative 

spatial model [13]. The prediction is performed by analyzing relative positions of legislators and 

bills. Multiple researchers improve the accuracy and data utilization based on this type of 

prediction model considering legislators’ political profiles and other suitable data [14, 15]. These 

research works produce reliable prediction models for bills with respect to their chance to be 

passed. However, research about the whole legislative body activity, i.e., types of bills and the 

number of those types to be passed are not fully addressed. We address these and other issues in 
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our work with the aim of providing inputs potentially useful to urban agencies. 

Smart city research is attracting much interest in recent years. Melbourne in Australia is 

supposedly among the finest “knowledge cities” [5, 16]. The term knowledge city is many times 

used interchangeably with smart city, yet there are distinguishing factors [16]. Emphasis is more 

on ubiquitous knowledge dissemination in the first term while it is on several smart city 

characteristics in the second term. In this work, we focus on the knowledge city as well as smart 

city aspects since we provide ubiquitous access with convenient interpretation and data 

visualization; while also catering to the individual characteristics of smart cities in our analysis.  

There are many smart cities in Europe. For instance, buses from Barcelona in Spain run on 

routes that maximize energy efficiency [5]. In some cities, e.g., Saarbruecken in Germany, 

customers are given money back for returning recyclable items such as empty plastic bottles, 

thus motivating them with respect to the financial as well as environmental factors to head 

towards smart city goals [17]. Also, solar panels are installed on rooftops in many cities, e.g., 

Paris in France, as a means to achieve greater energy efficiency mechanism [5, 17]. Our work in 

this paper adds to such smart city contributions from a computational perspective. It assists in 

dissemination of useful information to city residents and urban agencies and also helps to assess 

the effectiveness of urban policies for the smart city paradigm as a whole. Including common 

sense knowledge [17] to further enhance smart cities from various perspectives is part of our 

future work. 
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3. 1. 6 Conclusion 

In this paper, we address urban legislative research from a smart city angle. The deployment 

of data warehousing and XML databases provides convenient sources for data mining of 

ordinances. Using these methods, researchers can generate multiple data tables for mining. By 

utilizing the relationship analysis through mining, researchers can extract patterns of legislative 

activity in datasets. This makes data available for ubiquitous access with easy interpretation and 

visualization.  

Data mining yields valuable knowledge for urban residents to better understand and judge 

their government policies. It guides urban management agencies by helping them conduct self-

assessment, especially with reference to smart cities. This work thus provides a novel method to 

analyze activities of urban management agencies to support decision-making. It could be further 

augmented with other research, e.g., public opinion surveys, which constitutes future work. Note 

that in this research we assign each ordinance to the most relevant smart city characteristic. An 

improved score system could assign ordinances based on multiple smart city characteristics with 

relative importance. This could provide enhanced results for decision-making, another aspect of 

future work.  

This paper would be interesting to urban researchers and data analysts. To the best of our 

knowledge, it is among the first works to conduct data analytics on urban legislative activity 
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from a smart city angle with data warehousing, XML databases and data mining. It contributes 

on the whole to the realms of ubiquitous computing and smart city development. 
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3. 2. Mining Ordinance Data from the Web for Smart City Development 

Abstract: In this research, we aim to discover knowledge from ordinances, i.e., local laws 

on urban policy. This is useful in policy assessment which we address especially with respect to 

smart cities. To analyze the publicly available ordinance data from websites guided by human 

judgment, we use common sense knowledge from a repository called WebChild and its domain-

specific knowledge bases in relevant areas, e.g., town planning. Much of this ordinance data 

maps to smart city characteristics, e.g., smart environment. Hence, based on mining using 

association rules and other methods, we give feedback to urban agencies for decision support, 

particularly in a smart city context. To the best of our knowledge, this is among the first works to 

conduct ordinance mining.  

Keywords: Association Rules; Classification; Common Sense Knowledge; Decision 

Support; Urban Policy 

(Chapter 3.2 reused the previously published paper Du, X., Varde, A., & Taylor, R. (2017), 

Mining Ordinance Data From the Web for Smart City Development, In CSREA Press, 

International Conference on Data Mining DMIN (pp. 84-90), Las Veges, NV). 

3. 2. 1 Introduction 

Public policy has produced many laws that support the goals of environmental management. 

Ordinances, i.e., local laws at municipal levels, are direct policy tools developed by urban 



103 

 

 

 

 

management agencies and passed by local-level jurisdictions. The legislation and amendment of 

those laws are interactive and related with local public opinions [1, 2].  

Analyzing the relationship between ordinances and conducting related studies would thus 

support efficient urban management. We address this issue, particularly with the intention of 

heading towards the development of smart cities. A smart city is typically expected to have the 

characteristics [3] as shown in Figure 3.11.  

 

Figure 3.11: Typical smart city characteristics 

These characteristics are smart governance, smart environment, smart mobility, smart 
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living, smart people, and smart economy [3, 4]. Smart Governance pertains to government 

effectiveness, including transparency and public participation in decisions. Smart Environment is 

concerned with energy efficiency, pollution control, sustainable resources etc. Smart Mobility 

focuses on transport issues such as local accessibility with sustainable and safe systems. Smart 

Economy is concerned mainly with competitiveness, innovative spirit, productivity and 

maintaining cost savings while meeting imperative demands. Smart Living deals with public 

health, safety, housing quality etc. The Smart People characteristic entails social and human 

capital, qualification, creativity and related aspects. 

There are many smart cities all over the world. Figure 3.12 shows an example of a smart 

city Amsterdam in the Netherlands where street lamps allow municipal councils to dim and 

brighten lights based on pedestrian usage [4]. This would certainly enhance transportation by 

providing more sustainable systems, thus catering to the smart mobility characteristic of smart 

cities. 
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Figure 3.12: Smart city example – Amsterdam 

Given this overall framework, the issues in urban policy can also be divided into these 

different categories in order to address a smart city context. Considering this, our problem goals 

are as follows. 

 Investigate ordinances passed by urban agencies in a given location over multiple time 

spans based on enactment, initialization and other relevant aspects.  

 Gauge the effectiveness of ordinances with respect to urban policy considering the 

respective smart city characteristics they address 

Our source of data for ordinances is public websites. We consider these ordinances over 

multiple time spans. We aim to conduct mining over the data that can be used to answer 

questions of interest to urban agencies, e.g., “Which ordinances in a given year cater to smart 

environment?”; “What is the average time span of an ordinance legislation in a given session?”; 
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“Which smart city characteristic has received the greatest attention over all the years?”; “What 

is the relationship between the initialization and enactment of an ordinance over a certain time 

period?”; “How have ordinances on smart mobility changed in the last five years?” etc. This 

would help urban agencies investigate their overall performance and also assess where they stand 

in developing a smart city, i.e., which characteristics are considered and how they are addressed.  

The rest of this paper is organized as follows. Section II describes our approach on mining 

of ordinances. Section III summarizes the experimental results we obtain. Section IV outlines 

related work in the area. Section V states the conclusions and ongoing research. 

3. 2. 2 Approach for Ordinance Mining 

3. 2. 2. 1 Overview of Approach 

The approach we deploy for mining location-specific temporal ordinance data is illustrated 

in Figure 3.13. We propose the use of common sense knowledge (CSK) since it helps in mapping 

the ordinances to smart city characteristics. For instance, an ordinance on an aspect of energy 

consumption may not have the words “smart environment” or its terms in Figure 3.11. By using 

CSK, it is possible to find this mapping and hence enhance the mining on ordinances pertaining 

to smart city characteristics.  
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Figure 3.13: Illustration of ordinance mining approach 

Data on ordinances obtained from the Web is subjected to processing guided by common 

sense knowledge. Hence, this is mapped to relevant smart city characteristics. It is then subject to 

data mining using statistical approaches, association rules, clustering and classification. The 

knowledge discovered is reported as ordinance and smart city findings and can be used to answer 

questions useful to urban management agencies for decision support. We now explain its detailed 

steps.  

3. 2. 2. 2 Harnessing Common Sense Knowledge 

In order to utilize CSK, we use WebChild, a huge commonsense knowledge base built from 
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Web contents [5]. It has a browser with which users can search information on real world 

concepts, their common properties and related terms with pictures. Figure 3.14 is a snapshot of 

the WebChild browser [5]. This has been used to create domain-specific knowledge bases 

(domain KBs) in relevant areas [6] with ground truth constituting common sense concepts on 

urban policy. Given a file with terms from a probabilistic domain classifier, relevant domains are 

selected and concepts in those domains entered as elaborated in [6] and briefly illustrated in 

Figure 3.15 and Figure 3.16 respectively. 

 

Figure 3.14: Snapshot of WebChild browser 
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Figure 3.15: Relevant domains selected in KB 

 

Figure 3.16: Concepts entered in domains 
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3. 2. 2. 3 Data Processing and Smart City Mapping 

Considering CSK and domain KBs, we proceed as follows. As shown in Figure 3.13, we 

start with the publicly available ordinance data comprising the location-specific historical 

information over different time spans. This raw data on ordinances is processed by our program 

using the terms in WebChild [5] and its related domain KBs [6].  

Note that common sense knowledge and related domain specific knowledge bases play a 

twofold role here. First, they drastically reduce the data set size for mining by selecting only 

pertinent data on “Related Domains” (see Figure 3.13) and filtering out the rest, thus making the 

process more effectual. This is done by incorporating relevant CSK and domain KB terms into 

the programs that access the respective websites to produce the ordinance data in a format 

suitable for mining. Second, they also map the ordinances to their smart city characteristics 

analogous to a human, but more efficiently. For example, consider the following ordinance found 

on a website [2]: “A local law to amend the New York City building code in relation to requiring 

carbon monoxide detectors in certain apartments is hereby passed.” This would be found relevant 

to the domain KB on “buildings” with its specific concept being “apartment complex’. Hence, 

the concerned program would map this to the smart city characteristic of smart living which 

comprises public health, safety, housing quality etc., taking into account CSK which relates 

“building” to “housing”. Details of all mappings are not shown herewith but occur on similar 
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lines, thus helping to generate processed data in the format shown in Table 3.5. 

Table 3.5: Processed Data on Ordinances 

 

This table depicts a data set for a specific location over multiple timespan. It exemplifies the 

processed data stored as intermediate output from Web based ordinances and is maintained in 

databases for further analysis. 

3. 2. 2. 4 Deployment of Mining Methods 

The processed data sets are subjected to exploratory data mining with statistical analysis [7] 

including temporal factors, median calculations, minimum and maximum value observations and 

other aspects. Association rules, clustering and classification are also conducted over the data [7]. 

We select these data mining techniques for the following reasons.  

Since association rule mining finds relationships of the type A => B, it is expected to be 

useful in identifying how one feature of the urban policy relates to another. Clustering places 

items in groups based on their similarity and hence is likely to help in finding similarities among 

the ordinances by grouping the relevant ones together. Classification predicts a target based on 
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analysis of existing data and thus is found potentially suitable with respect to categorization. In 

other words, it would help to specifically categorize an ordinance based on its smart city 

characteristic addressed.  

Outputs provided by data mining are therefore expected to help in understanding 

relationships between various aspects of the ordinances passed by urban management agencies 

and in assessing them with reference to smart city characteristics. This would guide decision 

support for these urban agencies. 

3. 2. 3 Experimental Results 

We conducted experiments using our approach for ordinance mining as described herewith 

in the subsections on statistical analysis with clustering; association rules and classification 

respectively. In this paper, we focused on New York City as the location and considered its 

council data [2]. We chose NYC since it is the most populous city in the USA, has systematic 

ordinance data publicly available on the Web and also has many urban policy issues addressed. 

An example of the NYC council data used in our work appears in Figure 3.17. 
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Figure 3.17: Example of NYC ordinance data 

3. 2. 3. 1 Statistical Analysis with Clustering 

We conducted exploratory data mining on the legislative activity related to the ordinances 

by the NYC council from 2006 to 2013 using statistical analysis [7] taking into account the time 

factor. The time period corresponded to the two latest full NYC city council sessions. We thereby 

analyzed the distribution of the ordinances by different urban committees over time. We also 

calculated the days that the city council spent to enact each ordinance. The results of this analysis 
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are summarized in Figure 3.18. Here the dotted line indicates the ordinances initialized in the 

respective years and the solid line indicates the ones enacted that year. 

 

Figure 3.18: Statistical plot of enacted and initialized ordinances 

Furthermore, these ordinances were subjected to a simple clustering [7] by grouping them 

with respect to sessions between 2006-2009 and 2010-2013. The results of this process are 

visualized in Figure 3.19 and Figure 3.20 respectively. The dotted and solid lines represent the 

same aspects as in Figure 3.18. 

 

Figure 3.19: Visualization of ordinances clustered from 2006-2009 
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Figure 3.20: Visualization of ordinances clustered from 2010-2013 

From this temporal statistical analysis and basic session related clustering we found that the 

first year of each session had the highest number of initialized ordinances while the last year had 

the highest number of enacted ordinances. Also, some additional observations from the statistical 

analysis revealed that the total number of ordinances increased from 287 in earlier the time 

period of 2006-2009 to 358 in the later time period of 2010-2013. This indicated that urban 

agencies passed more ordinances as time progressed. 

Temporal statistical analysis of the legislation time span presented other interesting results. 

It was found that the average time span of ordinance legislation increased from 204 to 222 days 

in the two respective sessions. The median number had a drastic change from 89 to 131 days. 

These results indicated that, on the whole, ordinance legislation took a longer time in the later 

sessions. 

Considering the distribution of ordinances by committees, the top three committees of 

session 2006-2009 were found to be the Committee on Finance, Committee on Housing and 
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Buildings and Committee on Environmental Protection, the percentages being 17.07%, 16.72% 

and 9.41% respectively. The top three committees of session 2010-2013 were the Committee on 

Housing and Buildings, Committee on Finance and Committee on Transportation, the 

percentages being 16.76%, 12.57% and 12.29% respectively. This showed an interesting change, 

i.e., an increase in the number of transportation ordinances being passed in the 2010-2013 

session. 

The average legislation time span of the top three committees from 2006-2009 were 89, 192 

and 406 days respectively while the time span of the 2010-2013 respective committees were 176, 

133 and 283 days. We noticed that the average time span of all the ordinances in those two 

sessions were 204 and 222 days respectively. This indicated that the ordinances of the Committee 

on Finance had a much shorter time span of legislation (89d&204d, 133d&222d) respectively 

while those of the Committee of Environment Protection had a longer time span (406d&204d, 

355d&222d) respectively. Thus, financial legislations were found to be faster while the 

environmental ones were much slower, probably indicating that there was a significantly greater 

demand to speed up financial policies. 

3. 2. 3. 2 Association Rule Mining 

We conducted association rule mining using the classical Apriori algorithm [7] which 

follows the principle of frequent item sets and their supersets. The mining was done in two steps. 
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We first mined the plain committee-based data. This was done by discretizing the time span into 

ten bins based on equal width and using the Apriori algorithm with suitable parameters. 

Examples of rules obtained are shown below. 

1. Committee=Finance 94 => TimeSpan='(-Inf-143.6]' 77 <conf: (0.82) > lift: (1.4) Lev: 
(0.03) [22] Conv: (2.17)  

2. EnactM=7 45 => TimeSpan='(-inf-143.6]' 35 <conf:(0.78)> lift:(1.33) lev:(0.01) [8] 
conv:(1.7)  

3. EnactM=5 49 => TimeSpan='(-inf-143.6]' 34 <conf:(0.69)> lift:(1.19) lev:(0.01) [5] 
conv:(1.27)  

4. EnactM=10 58 => TimeSpan='(-inf-143.6]' 40 <conf:(0.69)> lift:(1.18) lev:(0.01) [6] 
conv:(1.27)  

5. EnactM=6 67 => TimeSpan='(-inf-143.6]' 46 <conf:(0.69)> lift:(1.17) lev:(0.01) [6] 
conv:(1.27)  

6. IniM=12 56 => TimeSpan='(-inf-143.6]' 35 <conf:(0.63)> lift:(1.07) lev:(0) [2] 
conv:(1.06)  

7. IniM=5 76 => TimeSpan='(-inf-143.6]' 46 <conf:(0.61)> lift:(1.04) lev:(0) [1] 
conv:(1.02)  

8. IniM=3 65 => TimeSpan='(-inf-143.6]' 38 <conf:(0.58)> lift:(1) lev:(0) [0] conv:(0.96)  
9. IniM=6 111 => TimeSpan='(-inf-143.6]' 63 <conf:(0.57)> lift:(0.97) lev:(-0) [-1] 

conv:(0.94)  
10. IniM=4 58 => TimeSpan='(-inf-143.6]' 32 <conf:(0.55)> lift:(0.94) lev:(-0) [-1] 

conv:(0.89) 

The useful knowledge extracted from here was that the ordinances initialized and enacted 

during the middle of the year had a relatively short legislation time span. The rules 2, 3, 5, 7 and 

8 seemed to support this fact. Also rule 1 supported our previous inference from the statistical 

analysis that the ordinances passed by the Committee of Finance had a shorter legislation time 

span.  

As a next step, we added more dimensions to the data for association rule mining, i.e., the 
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relevance to smart city characteristics (pertaining to Table 3.5). Accordingly, we conducted 

association rule mining on the processed data incorporating the respective smart city terms. It 

generated a different set of rules, examples of which are shown next. 

11. Committee=Transportation 68 => Concept=Mobility 60 <conf:(0.88)> lift:(5.17) 
lev:(0.08) [48] conv:(6.27)  

12. Committee=Environmental Protection 42 => Concept=Environment 36 <conf:(0.86)> 
lift:(5.58) lev:(0.05) [29] conv:(5.08)  

13. TimeSpan='(-inf-143.6]' Committee=Housing and Buildings 59 => Concept=Living 47 
<conf:(0.8)> lift:(3.06) lev:(0.05) [31] conv:(3.36)  

14. Committee=Finance Concept=Economy 51 => TimeSpan='(-inf- 143.6]' 40 
<conf:(0.78)> lift:(1.34) lev:(0.02) [10] conv:(1.77)  

15. Committee=Housing and Buildings 108 => Concept=Living 83 <conf:(0.77)> 
lift:(2.95) lev:(0.09) [54] conv:(3.07)  

16. TimeSpan='(-inf-143.6]' Concept=Economy 61 => Committee=Finance 40 
<conf:(0.66)> lift:(4.5) lev:(0.05) [31] conv:(2.37)  

17. Concept=Economy 84 => Committee=Finance 51 <conf:(0.61)> lift:(4.17) lev:(0.06) 
[38] conv:(2.11)  

18. Concept=Living 168 => TimeSpan='(-inf-143.6]' 101 <conf:(0.6)> lift:(1.03) lev:(0) 
[2] conv:(1.03)  

19. Concept=Governance 162 => TimeSpan='(-inf-143.6]' 92 <conf:(0.57)> lift:(0.97) 
lev:(-0) [-2] conv:(0.95)  

20. Committee=Housing and Buildings Concept=Living 83 => TimeSpan='(-inf-143.6]' 47 
<conf:(0.57)> lift:(0.97) lev:(-0) [-1] conv:(0.93)  

21. Concept=Mobility 110 => TimeSpan='(-inf-143.6]' 61 <conf:(0.55)> lift:(0.95) lev:(-
0.01) [-3] conv:(0.91) 

These rules depicted the relationships between the respective committees and smart city 

characteristics. It was thus found that the Committee on Transportation, Committee on 

Environmental Protection, Committee on Housing and Building and Committee on Finance had 

a strong correlation with smart mobility, smart environment, smart living and smart economy 

respectively, which was not surprising. These rules also showed the connection between time 
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span as observed in the statistical analysis with respect to the relevant smart city concepts. It was 

found that the ordinances related to smart economy and smart living took a shorter time to enact. 

The ordinances related to smart governance and smart mobility, on the other hand, had a 

relatively longer time span. It could thus be inferred that ordinances related to smart economy 

and smart living were probably found to be more demanding and thus needed faster legislation.  

3. 2. 3. 3 Decision Tree Classification 

We conducted classification analysis of the data using J4.8 decision tree classifiers [7]. As is 

well known in the data mining community, decision trees provide a stem and leaf structure with 

the stems representing the paths based on attributes of the data and the leaves representing the 

decisions or the classification targets. The J4.8 algorithm for classification is a Java based 

extension of C4.5 which follows the principle of entropy in inducing a decision tree given a data 

set [7]. In our data sets, the classification targets were designed to be the smart city 

characteristics. A summary of the findings is listed below as observed. 

Committee = Committee on Finance: Economy (94.0/43.0)  
Committee = Committee on Housing and Buildings: Living (108.0/25.0)  
Committee = Committee on Sanitation and Solid Waste Management: Environment 

(34.0/8.0)  
Committee = Committee on Contracts: Governance (10.0/3.0)  
Committee = Committee on Parks and Recreation: Mobility (33.0/8.0)  
Committee = Committee on Standards and Ethics: Governance (2.0)  
Committee = Committee on Governmental Operations: Governance (34.0/3.0)  
Committee = Committee on Transportation: Mobility (68.0/8.0)  
Committee = Committee on Mental Health, Developmental Disability, Alcoholism, 
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Substance Abuse and Disability Services: Living (2.0)  
The numbers here can be interpreted as follows. Consider the first finding. Here, among the 

94 ordinances passed by the Committee on Finance, 43 were classified as addressing the smart 

economy characteristic of smart cities. Likewise, it can be inferred from the results of the overall 

classification analysis seen here that various smart city characteristics were addressed to some 

extent in the urban policy ordinance data mined herewith.  

3. 2. 3. 4 Summary of Observations 

Based on the ordinance data mining conducted so far, we tabulated the results with 

reference to the smart city characteristics as shown next. Table 3.6 herewith depicts an overall 

distribution of the ordinances addressed in each session with respect to the characteristics of 

smart cities. 

Table 3.6: Ordinance Distribution W.R.T. Smart City 

 

Thus, we found that the smart city characteristic achieving the greatest attention in the 
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2006-2009 session was “smart living” while that with the least attention was “smart people”. 

Likewise, in 2010-2013, the maximum ordinances passed were on the “smart governance” 

characteristic, while the minimum ordinances were on “smart people”. Thus, the urban 

management agencies can potentially be provided with the suggestion that they need to focus 

more on urban policy issues related to the “smart people” characteristic such as social and 

human capital, 21st century education etc. Note that this characteristic did receive somewhat 

more attention in the later time period than the earlier one, though still significantly less 

compared to the others.  

Based on our experiments we can conclude the following. The data mining on the 

ordinances does reveal useful information. First, it helps to explore the statistical aspects of the 

ordinances with respect to time, e.g., trends in the enacted versus initialized ordinances over the 

years, maximum number of ordinances in a given session etc. Second, it helps to determine how 

much the urban policy issues head towards developing a smart city. This mining would thus help 

to answer some questions useful to urban management agencies as stated in the introduction. It 

would help the agencies assess their effectiveness and enable them to gauge how close they are 

in catering to smart city characteristics. It also would have the future impact of making them pass 

ordinances that head towards making their city smarter. Thus, data mining on the ordinances 

would potentially guide decision support for the urban management agencies in the overall 

development of smart cities. 



122 

 

 

 

 

3. 2. 4 Related Work 

The paradigm of smart cities is receiving tremendous attention today. The city of Melbourne 

in Australia is considered to be one of the finest “knowledge cities” as gathered from the 

literature, e.g., [4, 8]. The term knowledge city is often used synonymously with smart city, 

however, it does have subtle differences [8], the focus being more on ubiquitous knowledge 

dissemination in the first case versus several smart city characteristics in the second one. Many 

smart cities are found in Europe catering to several characteristics. For example, buses in 

Barcelona operate on routes designed to optimize energy efficiency [4]. Recycling is encouraged 

in some cities by giving customers money back for returning recyclable items such as empty 

plastic bottles. Solar panels are installed on rooftops in many places as an energy efficiency 

mechanism.  

Consequently smart city research is certainly motivated. A framework for automating 

implicit requirements in software engineering has been built [9] based on common sense 

knowledge along with text mining and ontology and has an application in the development of 

smart city tools. Since these requirements are implicit as opposed to explicit ones, they take into 

account subtle aspects that users often desire but not state upfront, therefore they are found to be 

crucial in the adequate functioning of software systems and would be particularly useful in smart 

city applications, catering to various characteristics. Global sustainability has been addressed 
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from an agricultural perspective [10]. Issues such as food security; urban versus rural agriculture; 

and carbon footprints are discussed with the important conclusion that under-used roof space in 

large global cities can be used to grow food. This heads towards making a city smarter by more 

effective use of resources for meeting population needs. In our work in this paper we are in line 

with these general paradigms, addressing the specific issue of urban policy ordinances.  

Computational analysis and data mining have helped significantly in geographic studies. 

Nagy et al. [11] analyze urban and rural gradients in the USA. They consider various social, 

economic and environmental aspects along with some relevant responses from an ecological 

perspective. Many of these have been found useful in geographic data analysis. Pampoore-

Thampi et al. address the issue of predicting urban sprawl based on data in geographic 

information systems (GIS) [12]. They estimate factors causing urban sprawl considering the state 

of NY with sprawl affected areas over different time spans. They consider factors such as 

population, employment and transportation with respect to the bidirectional impact on sprawl. In 

[13], assessing air quality by mining data on fine particle pollutants and related attributes is 

conducted, especially with respect to public health and safety standards recommended by EPA, 

the Environmental Protection Agency of the USA. Our work in this paper falls under the same 

broad realm. We conduct mining on Web based temporal and location-specific urban policy 

ordinance data with respect to the characteristics of smart cities, use common sense knowledge 

in the overall process and aim to provide inputs for urban management agencies based on the 
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results.  

Researchers have conducted several studies to test the capability of social media mining and 

sentiment analysis, such as preferences for candidates, interests on certain topics or goods and 

political opinions [14]. Often, positive correlations have been found between the mining results 

and reality outcomes. On the other hand, some researchers criticized the method [15] indicating 

that social media mining and sentiment analysis is not perfect and still has room for 

improvement.  

However, the critics have still asserted that this will be a very good complement to the 

traditional methods. The supporters as well as the critics agree that full-fledged user surveys in 

the real world are extremely time-consuming. Therefore, extracting useful knowledge from 

public opinion expressed in cyberspace seems a better alternative. We intend to address this in 

our future work by mining social media data on public reaction to ordinances. This would help to 

assess public satisfaction on urban policy issues through opinion mining, thus providing 

additional suggestions for decision support. 

3. 2. 5 Conclusion 

In this paper, we mine data on location-specific ordinances over different time spans in 

order to assess the effectiveness of urban policy in a smart city context. We deploy common 

sense knowledge along with related domain specific knowledge bases for selecting pertinent 



125 

 

 

 

 

ordinances, and also for mapping them to the concerned smart city characteristics.  

The analysis conducted in our work would potentially help in answering questions to guide 

urban management agencies in decision support for urban policy in general and especially for the 

development of smart cities. To the best of our understanding, this paper is among the first works 

to perform data mining on urban policy ordinance data in particular, thereby presenting 

interesting applied research.  

 A few interesting findings from this research are listed herewith with respect to NYC 

ordinance mining. 

 Urban agencies passed more ordinances during the 2010-2013 time span than during 

2006-2009, hence indicating an increase in the need for urban policies as time 

progressed.  

 Finance-related ordinances were passed in the shortest span of time, thus implying a 

greater focus on speeding up policies in “smart economy” so far.  

 Ordinances initialized and enacted around the middle of a year seemed to progress 

faster in legislation, thereby providing a potentially useful suggestion to urban agencies 

to pass more ordinances around that time to ensure faster progress in the future.  

 The smart city characteristic receiving the least attention in both sessions was on “smart 

people”, which could serve as an input to urban agencies to give greater attention to its 

aspects such as 21st century education.  
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 The characteristic of “smart living” got the maximum attention in the 2006-2009 

session, but dropped to 2nd place in the 2010-2013 session having fewer ordinances on 

it passed than in the earlier session, thus offering a potential suggestion to give it more 

importance unless the public seems really satisfied.  

 The “smart governance” characteristic topped the list overall, receiving greater 

attention in the 2010-2013 session with 101 ordinances passed, which is a good 

observation and should be well-maintained by urban agencies henceforth. 

Note that these observations and the related suggestions are intended to support the future 

decisions of the urban management agencies while helping them assess their current 

performance. The disclaimer is that the analysis in this paper does not actually translate to 

making decisions for these agencies, it would be up to their discretion. However, these 

suggestions would help in heading more towards smart cities, further corroborated with public 

opinion as needed.  

It is also to be noted that the methods in our analysis here relate each ordinance with just 

one smart city characteristic. While this discovers interesting knowledge, it presents some 

limitations, as many ordinances could potentially relate to multiple smart city characteristics. 

This would be addressed in future work. An integration of clustering and association rule mining 

could probably be helpful here.  

Future work would also include mining social media data to discover knowledge from 
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public opinion on ordinances. This would constitute sentiment analysis to assess the satisfaction 

of the public on urban policy in a general context and with particular emphasis on smart city 

characteristics. All this work is geared towards decision support for urban management agencies, 

especially in providing inputs to build and enhance smart cities. 
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Chapter 4 

4.  Social Media Text Mining 

4. 1 Air Quality Assessment from Social Media and Structured Data 

Abstract: This paper describes our work on mining pollutant data to assess air quality in 

urban areas. Notable aspects of this work are that we mine social media and structured data in a 

domain-specific context, incorporate commonsense knowledge in mining media opinions and 

focus on the urban planning domain in a multicity environment. The results of mining are useful 

for predictive analysis in urbanization. A significant contribution is that we provide useful 

information on urban health impacts.  

Keywords: Air Pollution, Commonsense Knowledge, Health Impacts, Opinion Mining, 

Predictive Analysis, Urban Planning 

(Chapter 4.1 reused the previously published paper Du, X., Emebo, O., Varde, A., Tandon, 

N., Chowdhury, S., & Weikum, G. (2016), Air quality assessment from social media and 

structured data: Pollutants and health impacts in urban planning, IEEE 32nd International 

Conference on Data Engineering - Workshops (ICDE Workshops), 

https://doi.org/10.1109/icdew.2016.7495616).  
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4. 1. 1 Introduction 

The quality of air in urban regions is important with respect to health impacts. A significant 

aspect of air quality is the presence of pollutants and their effects on human health [1]. Given 

this, an important sub-problem in our work is to mine real data on pollutants from structured 

repositories to assess air quality. We propose an approach entailing the classical data mining 

paradigms of association rules, clustering and classification for this purpose.  

Another important aspect today is public reaction typically expressed through social media. 

Opinions entered by urban residents on sites such as Twitter give an idea of user satisfaction. 

This brings us to another interesting sub-problem, i.e., mining social media data on pollutants to 

assess air quality. One of the biggest challenges here is to review relevant information intuitively 

as a human would. We thus incorporate commonsense knowledge [2] in this process and develop 

domain-specific knowledge bases in order to guide the social media mining. We also incorporate 

lexical databases [3] of words with sentiments to mine public opinions.  

The results of these mining processes can be used to help urban residents plan lifestyles, 

assist government bodies in urban policies and give inputs to environmental scientists for 

research. Accordingly, we conduct predictive analysis based on the results of mining. The 

broader impact of this work includes developing smart cities catering to the smart environment 

characteristic [4] by monitoring air quality, enhancing greenness and improving health. Domain 
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KBs developed here can be useful in smart governance [4] by promoting automation and 

providing at-a-glance information for decision support. To the best of our knowledge, this is one 

of the first works to incorporate structured data mining and public opinion mining for urban 

planning. 

4. 1. 2 Mining Structured Data on Pollutants 

4. 1. 2. 1 Background and Goals 

In the first sub-problem, we focus on mining pollutant data. More specifically, we consider 

fine particle pollutants PM2.5 (Particulate Matter, diameter < 2.5 µm). Finer pollutants are worse 

as the human respiratory system cannot easily filter them [1]. High PM2.5 concentration could 

cause severe health problems; long term exposure to it could lead to cardiovascular and 

respiratory diseases, genotoxicity, mutagenicity and cancer. Since PM2.5 has highly negative 

effects, it is desirable to avoid it, thus it is smart to live in a city with negligible PM2.5 

concentration [1]. A major source of PM2.5 is traffic in urban areas. Hence, we collect real data 

on traffic conditions from structured sources and mine it with the following goals:  

 Analyze the causes of PM2.5 occurrence in air based on multicity traffic conditions  

 Predict the impact of PM2.5 presence on air quality with respect to health standards  
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4. 1. 2. 2 Data and Standards 

We propose to use the AQI (Air Quality Index) by EPA (Environmental Protection Agency, 

USA) [5] as ground truth. This is because it is a widely accepted global standard and is 

recommended by experts in Environmental Management for health impacts. This is shown in 

Table 4.1. For example, an index of 401-500 implies that PM2.5 concentration is between 350.5 

and 500 µg/m3. This is “Hazardous” for health. Note that color coding is significant (e.g., green: 

good, red: unhealthy).  

The structured data sources for PM2.5 used here are from WHO (World Health 

Organization) [6] and World Bank [7]. The time frame of this data is mainly the last ten years 

and the geographic scope is worldwide. Attributes analyzed are: Region, Income Group, Diesel 

Consumption, Gasoline Consumption, Road Density, Cars per k people, Vehicles per k people, 

Vehicles per km and PM2.5 Range (µg/m3). Region is the area analyzed, e.g., East Asia, Middle 

East etc. Income Group is categorical: it considers OECD (Organization for Economic 

Cooperation & Development) countries and others. 
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Table 4.1: AQI Standards for Health based on Pm2.5 

 

4. 1. 2. 3 Approach and Experiments 

We propose an approach of combined analysis with classical mining paradigms. We deploy 

Apriori for association rules, k-means for clustering and decision trees for classification.  

We mine association rules with Apriori, as we need to study potential impact of parameters 

on each other. For this, we discretize numeric data with equal frequency binning. After 

discretizing continuous data into ranges, we assign categorical values to a few variables, e.g., 
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“high”, “low” etc. for gas consumption using domain-specific mapping [5]. After running 

experiments with Apriori, we get useful inferences. There are rules showing that income groups 

could influence other traffic conditions. This is reasonable as economic conditions affect traffic 

facility construction. It is also found that high diesel consumption is not directly related to high 

concentration of PM2.5 in air. Examples of interesting rules are shown below.  

Region=Europe & Central Asia Vehicles_Per_KM=VERY LOW => PM25_Class=GOOD 

conf:(1)  

Gasoline_Consumption=VERYLOW Road_Density=VERY LOW 

Cars_Per_K_People=LOW => PM25_CLASS=MODERATE conf: (0.91)  

The terms GOOD and MODERATE, pertain to the PM2.5 ranges with respect to their 

impact on air quality index (see Table 4.1). For example, PM2.5 class = GOOD implies that the 

resulting AQI category is good since its index value is in the safe range of 0-50, which occurs 

with PM2.5 concentration of 0.0 to 12.0 µg/m3. Likewise, we can interpret the other ranges.  

Clustering is performed with k-means, an algorithm well-suited to numerical attributes, as 

found in this data set. We disregard the Region attribute here to avoid obvious clusters. An 

example of experimental results with clustering is shown in Table 4.2. The numbers in brackets 

are the number of items in each cluster. We note a few interesting observations as listed next.  

 Cluster 0 has relatively low traffic indicators, yet its PM2.5 range is not within safe 

standards  
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 Income of Cluster 0 is the lowest  

 Cluster 2 has the highest PM2.5 concentration, yet it is not the highest traffic 

indicator  

 Countries in Cluster 2 may have other significant PM2.5 sources or poor regulation 

of car emission  

 Cluster 1 and cluster 3 both have the PM2.5 within safe standards and are OECD 

countries 

Table 4.2: Partial Snapshot of Clustering 

 

In these observations, it is signficant that high gas consumption does not associate with high 

PM2.5 concentration. In fact, medium gas consumption is associated with higher PM2.5 

concentration. With further analysis, this can be reasoned as:  

 High gas consumption usually associates with better economic conditions and better 

pollutant regulations  
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 The Income attribute is also significant  

 High income groups & high gas consumption groups have better regulatory facilities, 

so PM2.5 concentration does not rise much  

Decision tree classification is conducted with J4.8, the Java version of the classical C4.5 

algorithm, to inductively learn a decision tree from categorical attributes. This is useful because 

we aim to learn potential causes of the PM2.5 range, which thus forms the classification target. 

Mapping from numeric to categorical attributes is done in a manner similar to that for association 

rules. A partial snapshot of results is shown below. It is found that the Region attribute has the 

strongest influence here. It is also discovered that PM2.5 pollution is highly associated with local 

conditions. 

Region = East Asia & Pacific  
| Gasoline_Consumption <= 427.7  
| | IncomeGroup = High income: nonOECD: '(18.43- 21.755]' (2.0)  
| | IncomeGroup = High income: OECD: '(21.755-inf)' (2.0)  
| | IncomeGroup = Low income: '(18.43-21.755]' (2.0/1.0)  
| | IncomeGroup = Lower middle income: '(11.98-15.12]' (2.0)  
| | IncomeGroup = Upper middle income  
| | | Diesel_Consumption <= 114.38: '(21.755-inf)' (2.0)  
| | | Diesel_Consumption > 114.38: '(11.98-15.12]' (2.0)  
| Gasoline_Consumption > 427.7: '(-inf-5.845]' (5.0) 

Thus, we have analyzed the causes of PM2.5 occurrence in air based on traffic conditions, 

which caters to the first goal of this sub-problem. The results of this are used for predictive 

analysis to address the second goal, i.e., predicting the health impact of PM2.5 on air quality, as 

elaborated in Section 4.1.4. 
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4. 1. 3 Opinion Mining on Pollution from Social Media 

4. 1. 3. 1 Motivation and Problem Definition 

Opinion mining or sentiment analysis deals with automated discovery of knowledge about 

public reactions from sites such as weblogs, review pages etc. This is important to assess user 

satisfaction. It motivates us to mine social media based on entries relevant to our issue, i.e., 

pollution and air quality. We focus on Twitter here, since it is a micro-blogging site with concise 

information. Thus, the goals of this sub-problem are:  

Analyze tweets on pollutants and related terms to discover knowledge useful in air quality 

assessment  

Use the discovered knowledge to predict potential health impacts in the context of urban 

planning  

4. 1. 3. 2 Proposed Methodology 

We propose a two-phase approach for opinion mining. Phase 1 involves developing domain-

specific knowledge bases (domain KBs) bootstrapped from Commonsense Knowledge (CSK). 

These provide the background knowledge to classify domain specific information. This 

background knowledge comprises the concepts and instances (named entities) within our 

domain. Phase 2 involves a domain-specific tweet crawler using the background knowledge of 
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phase 1 (e.g., spotting concepts and instances in a tweet), and analyzing sentiments in the 

crawled tweets, followed by data visualization.  

1) Developing Domain-Specific Knowledge Bases: We propose using domain KBs to 

employ background knowledge like an expert. The KB creation is outlined in the steps below.  

a) Harnessing Commonsense Knowledge: Humans possess the ability to tell apart relevant 

content (in our case, relevant tweets) due to CSK. On the other hand, machines do not possess 

such knowledge. We propose to provide this background commonsense knowledge through a 

large, automatically mined commonsense knowledge repository, WebChild [2], which contains 

commonsense facts about concepts. WebChild provides a mapping from a domain to concepts 

and commonsense properties of these concepts.  

b) Slicing WebChild: WebChild comprises a large list of domains (illustrated in Table 4.3) 

however, we require a subset of these domains. We thus manually specify a smaller list of 

WebChild domains that are relevant to our context (urban planning). This is depicted in Table 

4.4. It is conceivable to automate this process via a probabilistic domain classifier [1, 8] to 

derive a subset of domains, but would be an overkill for our usecase herewith. Thus, are now left 

with a slice of WebChild that contains concepts relevant to urban planning.  
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Table 4.3: Potential List of Domains (Partial Snapshot) 

 

Table 4.4: Curated List of Relevant Domains for KB Slicing 

 

c) Curating the sliced WebChild: The selected domains provide us with a list of concepts for 

the given domain (e.g., pollutant for the domain environment). The sliced WebChild can be 

incomplete or noisy for certain concepts. We curate this slice of WebChild by designing a smart 

GUI (see Figure 4.1) that assists the curator by automatically proposing relevant attribute values. 

For example, using the WebChild knowledge, the GUI knows that small is a size and that a 

pollutant is comparable to a toxin. Figure 4.1 shows an example of curation for the concept 

pollutant in the domain environment. As discussed in [8], this curated knowledge about our 

urban planning domain is used to propose relevant Wikipedia categories. These Wikipedia 

categories lead to the Wikipedia entries where the categories appear, enabling the compilation of 

encyclopedic entries for concepts, e.g., PM2.5.  
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Figure 4.1: Example of populating domain specific KB 

d) From domain KB to tweets: We propose a mapping from Commonsense Concept 

Classes→Wiki Categories→Wiki entries→Hashtags to set the stage for mining social media [8]. 

In essence, we spot the presence of a domain relevant encyclopedic entry (e.g., PM2.5) or a 

domain relevant commonsense concept (e.g., pollutant) in a tweet’s hashtag which highlights the 

main topic or subject of a tweet. If there is an overlap of the tweet’s hashtag in our domain 

vocabulary, we consider that the tweet is relevant to our domain. As explained in [8], it is 

conceivable to make a more sophisticated model (e.g., a language model over our domain) that 

estimates whether a given tweet can be generated by the language model representing the big 

context (urban planning). Note that besides being useful in opinion mining from social media, 
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domain KBs can be helpful in broader settings. This includes giving inputs to smart cities for 

smart environment and smart governance; utility in machine learning to automate various 

learning processes; and providing domain knowledge to mine visual commonsense from 

multimodal content [4, 8].  

2) Building a Sentiment Analyzer: Using the domain KBs, NLP and other resources, the 

analyzer is built as follows.  

a) Tweet Collection with Hashtags: To collect tweets, we use a Twitter API and a script 

written in Python. The Twitter API gives us access to user tweets using the OAuth, while the 

Python script collects tweets with keyword combinations and hashtags. These hashtags are 

derived from domain KBs, currently using the domain-specific commonsense concepts and 

encyclopedic entities as a dictionary. We have a tunable support threshold, the higher the support 

sup (at least sup number of dictionary entries are expected in the tweet), the higher the accuracy 

and lower the coverage. As described in [8], an alternative approach is to construct language 

models over domain-specific data to estimate the likelihood of the language model to generate 

the tweet. This step is crucial in filtering tweets and collecting only pertinent ones. For example, 

from 750 million tweets, we got 2.5 million urban domain-specific tweets, with sup being set to 

1.  

b) Storage and Cleaning: Once pertinent raw tweets are collected, the file is downloaded, 

converted into CSV and imported to a MySQL database for further computation. The data on 
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tweets is then cleaned before further processing. Unnecessary characters, hashtags, usernames 

are removed. Any duplicate posts such as retweets and identical tweets are removed as well. It is 

important to clean the tweets to enhance classification accuracy by removing unwanted details 

that do not contribute to sentiment analysis. Consequently, any URLs in tweets are also removed. 

It is possible to design a more complex system that deeply analyzes the content of URLs. 

However, our design decision was simplicity and efficiency, as this is a pre-processing step. 

Also, we do not want URL content to affect polarity classification through sentiwords.  

c) Text Processing of Tweets: We use a sentence level model for processing (not document 

level) because Twitter is a microblogging site where a tweet is at most 140 characters, therefore a 

sentence level model is preferable over a document level model. Text processing of tweets is 

conducted with TextBlob, a Python library that provides a consistent API for common NLP tasks 

including part-of-speech tagging, noun phrase extraction, classification, translation and more.  

d) Polarity Classification with Sentiwords: The Sentiwords lexicon is used to analyze 

sentiments expressed in tweets. Sentiwords are words pertaining to emotions. We use 

SentiWordNet 3.0 from LREC [3] for this purpose. The sentiwords are mapped to the content of 

the tweet to determine whether it is closest to expressing a positive or negative or neutral 

sentiment. Thus, the polarity of tweets is classsified into one of the three categories and used for 

further analysis.  

e) Analysis and Visualization: The information about the polarity of each tweet is computed 
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and stored in a json file. A Python script is written to aggregate this information, thus as an 

output, we get a set of positive, negative and neutral tweets. Using this polarity information, we 

plot graphs with the given data (discussed in the next section). Graph plotting is done using 

IPython Notebook. The plotted results displayed in graphical form allow users to see public 

reaction at-a-glance.  

4. 1. 3. 3 Experiments and Observations 

We summarize our experiments pertaining to tweets in South East Asia on pollution caused 

by peatland fires [9]. We briefly explain the background for our experiments here. Peatlands have 

vast organic matter due to low decomposition of plant residue. Indonesia has the most peatlands 

in South East Asia. Pollutants due to these fires also affect neighboring countries, e.g., Malaysia 

and Singapore. Thus, Indonesian Peatland Fires (IPFs) are considered to be an international 

problem in Environmental Management. Pollution caused by airborne particulates is of primary 

concern. Studies show that rhinitis, asthma, and respiratory infections increase when particulate 

concentration is of hazardous level [10]. Singapore has built an air quality system called 

Pollutant Standards Index (PSI), which incorporates six pollutants: sulphur dioxide (SO2), 

particulate matter (PM10), fine particulate matter (PM2.5), nitrogen dioxide (NO2), carbon 

monoxide (CO) and ozone (O3). The Singapore national environment agency publicly publishes 

the PSI level hourly through websites (e.g., haze.gov.sg). Twitter is one of the most visited social 
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media sites. People get the information about PSI levels through this, and more importantly, 

express their reaction to the daily PSI level and air quality. We thus use this Twitter data in the 

experiments shown here. Note that it is important to conduct this analysis, since it also has the 

broader impact of catering to smart cities. Public opinion expressed through social media is 

useful for the smart governance characteristic. Also, counterbalancing the effect of hazards to 

maintain public health and safety is important in the smart environment characteristic.  

In the experiments shown here, we collect pertinent tweets using hashtags and store them in 

a MySQL database. Based on KB knowledge, some hashtags used in collection of these tweets 

are: CO2, clean air, air pollution, Singapore, climate change, etc. The tweet collection parameters 

are as follows: 

i) q=air+pollution+singapore+%22air+pollution%22+%23 Singapore; This shows the query 
used  

ii) lang= en; This is the language, which in our case is English  
iii) count =100; The number of tweets to return per page, up to a max of 100  
iv) until =2015-10-01; Returns tweets generated before the given date.  
v) since_id= ? Returns results with an ID greater than (i.e., more recent than) the specified 

ID 

These tweets are limited by geographical range, in our case, Singapore (though we consider 

a multicity context, tweets are collected from Singapore for experiments here; yet they reflect 

reactions of people in other cities also, constituting multicity analysis). The date range for these 

tweets is the end of October to the first week of December, 2015. The tweets are then fetched 

from the table one by one for cleaning. Figure 4.2 shows a code snippet of the functions used for 
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cleaning the tweets. Once the cleaning is completed, the clean tweets undergo classification 

either as positive, negative or neutral tweets. These results of sentiment analysis are then 

visualized by graphical plotting as the last step of the analyzer. Figure 4.3 shows an example of 

visualization. This provides an at-a-glance view of mining public opinion in the area. 

 

Figure 4.2: Code snippet of functions for cleaning tweets 

From this figure, it appears that policies to counter-balance the effect of pollution seem 

fairly satisfactory since 61% of users have expressed positive sentiments. However, there is 

scope for improvement due to 25% of the users being neutral and 14% being negative. This 

opinion mining thus provides useful inputs to government bodies in urban planning and also to 

prospective residents and environmental scientists. 
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Figure 4.3: Example of visualizing opinion mining results 

4. 1. 3 Predictive Analysis and Discussion 

Results from the mining can be used for predictive analysis in Environmental Management, 

more specifically urban planning. To demonstrate this, we develop a prototype prediction tool. 

Programming for this tool is done in Java. We summarize the evaluation herewith. Sample 

executions are shown in Figure 4.4 and Figure 4.5. Users enter input conditions and the tool 

estimates the range of PM2.5 based on health impacts. We use terms “very good”, “moderate” 

etc. to describe PM2.5 safety range as per the chance of affecting public health based on AQI 

(see Table 4.1). For example in Figure 4.4, if a user enters East Asia & Pacific with gas 

consumption: 582, vehicles per k people: 700, high income OECD group, road density: 11, 

vehicles per km: 20, diesel consumption: 467 and cars per k people: 550, the tool predicts that 

PM2.5 range is “very good”. It means that, as learned by mining over existing data, the PM2.5 

range for the given user entry is predicted as 0 - 12.0 µg/m3, which is within safe limits for good 
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health. Similarly, we can interpret Figure 4.5.  

Many experiments are conducted with the prototype tool and useful predictions are 

obtained. This tool is evaluated by scientists in Environmental Management who consider it to be 

helpful in urban planning. For example, government bodies can get an idea of how PM2.5 

concentration is affected by change in traffic conditions with respect to health impacts. This can 

help them plan policies. Residents can estimate air quality based on various inputs to plan their 

current lifestyles and prospective future moves. 

 

Figure 4.4: Evaluation example with good PM2.5 range 

 

Figure 4.5: Evaluation example with moderate PM2.5 range 

Likewise, the polarity classification of tweets on air quality is also very useful in predictive 

analysis. As an output of the social media mining, the tweets are stored in a database along with 
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their polarities. Visualization of opinion mining results is also stored. This serves as the basis to 

perform predictive analysis. For example, in the specific scenario here, it enables studying the 

correlations between users’ sentiments and the actual PSI (Pollutants Standards Index) level.  

Furthermore, this helps predict potential concern of users given certain PSI levels (based on 

opinion mining of existing data and correlation). In other words, if a particular PSI level is 

maintained, it helps estimate whether user sentiments would be positive, negative or neutral. This 

predictive analysis is useful in urban planning by allowing government bodies to estimate public 

opinion in advance while making regulations. It helps in catering to the satisfaction of current 

and future residents. It also provides inputs to environmental scientists for research, e.g., factors 

leading to PSI and potential measures for improvements from a health standpoint. 

4. 1. 4 Related Work 

Applied data mining research appears in many fields today as the amount of available data 

increases and there is also a need to automate analysis from a domain perspective, e.g., in 

Environmental Management [11]. In urban planning, mining is applied in calibration of cellular 

automata transition rules that potentially relate to theories on relocation [12]. In this paper, we 

address issues that are the not the focus of earlier works. We consider fine particle pollutants as 

these are especially harmful due to not being easily filtered by the respiratory system. Also, prior 

research focuses mostly on single cities while we consider a multicity global context.  
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An overview of sentiment analysis appears in [13]. They describe approaches for opinion-

oriented IR. In SentiWordNet 3.0, a lexical resource to support sentiment classification is 

developed [3]. It is the result of annotating WordNet synsets by degrees of positivity, negativity 

and neutrality. In [14] they use an approach to extract sentiments with polarities for specific 

subjects from a document. They have a syntactic parser and sentiment lexicon for finding 

sentiments in Web pages and news. Our work fits in this category, orthogonal to the existing 

literature. We do opinion mining in a domain specific context, incorporating commonsense 

knowledge to extract concepts from social media as a human expert would. We build domain 

KBs useful for other tasks as well.  

Studies have been conducted on pollutants. Zhou et al. analyze relationships of indoor and 

outdoor pollutant concentration, finding that they depend on individuals’ situations [10]. Forsyth 

analyzes articles from representative newspapers in affected nations to help provide public 

opinions to pollutant problems [15]. This shows that public reaction is significant to develop 

urban regulations. Our research takes a step ahead and mines public reaction from online social 

media. Since this reaction is crucial in the urban planning area, our paper makes an important 

contribution here through public opinion mining.  

4. 1. 5 Conclusions 

In this paper, we conduct mining on pollutant data from social media and structured sources 
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to discover knowledge on air quality from a health standpoint. We use association rules, 

clustering and classification to mine structured data from global sources on urban air pollution. 

In social media mining we use Twitter, incorporate CSK and build domain KBs to guide 

extraction as a human expert would. We use this domain knowledge, lexical databases and text 

processing for polarity classification of tweets and visualize the results. Knowledge discovered 

by mining is useful in predictive analysis. To demonstrate this, we build a prototype tool to 

estimate air quality with respect to health standards. This is evaluated by domain experts and 

found useful in urban planning. Estimation from predictive analysis can be helpful to 

government bodies for urban polices, residents for lifestyle decisions and environmental 

scientists for further research. Notable contributions of this work include: mining social media 

and structured data in a domain-specific context; using CSK for mining tweets; addressing a 

multicity environment in urban planning; and conducting predictive analysis on air quality for 

human health. Ongoing work includes enhancing domain KBs to provide inputs to smart cities, 

using CSK in the automation of learning processes and potentially deploying CSK with domain 

KBs for mining from photo-blogs. Another ongoing task is the use of CSK and social media 

mining to automate identification of IMRs (Implicit Requirements) in Software Requirement 

Specifications for inputs to AI tools.  
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4. 2 Mapping Ordinances and Tweets Using Smart City Characteristics to Aid 

Opinion Mining 

Abstract: This research focuses on mining ordinances (local laws) and public reactions to 

them expressed on social media. We place particular emphasis on ordinances and tweets relating 

to Smart City Characteristics (SCCs), since an important aim of our work is to assess how well a 

given region heads towards a Smart City. We rely on SCCs as a nexus between a seemingly 

infinite number of ordinances and tweets to be able to map them, and also to facilitate SCC-

based opinion mining later for providing feedback to urban agencies based on public reactions. 

Common sense knowledge is harnessed in our approach to reflect human judgment in mapping. 

This paper presents our research in ordinance and tweet mapping with SCCs, including the 

proposed mapping approach, our initial experiments, related discussion, and future work 

emerging therein. To the best of our knowledge, ours is among the first works to conduct mining 

on ordinances and tweets for Smart Cities. This work has a broader impact with a vision to 

enhance Smart City growth.  

CCS Concepts • Information systems → Data mining; Content analysis and feature 

selection; Clustering and classification;  

Keywords: Social media, Enterprise Intelligence, Knowledge bases, Local laws, NLP, 

Sentiment analysis, Text mining 
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(Chapter 4.2 resued the previously published paper Puri, M., Du, X., Varde, A., & de Melo, 

G. (2018), Mapping Ordinances and Tweets using Smart City Characteristics to Aid Opinion 

Mining. Companion Volume of The Web Conference - WWW '18, 

https://doi.org/10.1145/3184558.3191632). 

4. 2. 1 Introduction 

This research addresses the task of mining urban policy. Our vision is to analyze ordinances 

or local laws from websites with respect to the public reaction to them expressed on social 

media. This enables tangential surveys to assess opinions of residents, reflecting their satisfaction 

and views on urban policies. An important focus in our work is to determine to what extent such 

ordinances contribute to establishing the relevant urban region as a Smart City. Hence, we aim to 

categorize these ordinances based on their pertinent Smart City Characteristics (SCCs), of which 

a small snapshot with highlights is shown in Figure 4.6 (image source [19]). Public opinion is 

gathered from Twitter, given its role as a micro-blogging site with over 330 million active users. 

The specific objective of the present research is to relate the ordinances to the respective tweets 

on Twitter that express the public reaction to them. 
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Figure 4.6: Smart City Characteristics – Highlights 

We aim to connect ordinances to relevant tweets by drawing on their semantic relatedness. 

This is non-trivial, as ordinances and tweets both involve highly intricate and rather 

heterogeneous natural language, so simple keyword matching does not suffice. Traditional 

machine learning techniques [36] and related advances are not found suitable for learning this 

sort of mapping, as they require vast amounts of training data.  

Since ours is pioneering work in ordinance mining, we do not have such prior training data. 

To overcome these challenges, we propose a two-step approach for mapping that exploits the 

transitive nature of the connection between ordinances and tweets considering their relationship 

with SCCs. Specifically, the transitive property we invoke is that: if the ordinance relates to a 

given SCC and any tweet relates to the same SCC, then the ordinance bears a connection to the 

tweet. This approach is proposed because classical sources of SCC data, e.g. [16, 19] are finite 
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and are restricted to a limited set of identifying features that can be relied upon for mapping (see 

Figure 4.6). Thus, this transitive approach is more feasible than attempting to directly relate a 

seemingly infinite number of tweets to ordinances from various websites.  

As a first step, we discover connections between SCCs and ordinances using classical SCC 

sources guided by common sense knowledge (CSK) from web-based repositories. In a second 

step, we consider the mapping of tweets to SCCs, again drawing on such CSK. This approach 

then enables us to directly relate ordinances and the tweets to the pertinent aspects of Smart 

Cities and also sets the stage for sentiment polarity classification [10, 23] and sentiment aspect 

analysis [34] of pertinent tweets using suitable methods to assess public opinion.  

This work aims for broader impact by contributing to the development towards Smart 

Cities. If we identify which SCCs are being addressed by the local laws or ordinances passed by 

urban agencies, we are able to provide feedback on how well their urban policies head towards 

Smart City development across various categories.  

Moreover, this work relates to the theme of Social Sensing. Public reactions inferred from 

opinion mining (to be conducted after connecting ordinances to tweets using SCCs) can further 

enable involved urban councils and management agencies to judge public satisfaction. This can 

allow for assessing the appeal of Smart City ordinances from a public opinion standpoint, thus 

providing useful feedback to the agencies that may enable them to enhance their policies for 

Smart City development. To achieve this sort of analysis, we draw on artificial intelligence 
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aspects of text mining, natural language processing, and common sense knowledge. The rest of 

this paper is organized as follows. Section 2 describes pertinent related work. Section 3 explains 

our proposed mapping approach to connect ordinances and social media postings. Section 4 

summarizes its evaluation through experiments and discussion. Section 5 gives the conclusions, 

including our findings and a description of ongoing research. 

4. 2. 2 Related Work 

While there has been ample work on mining social media, most previous work differs 

substantially from the task we consider here.  

There is a long history of research on link prediction in social networks [2, 35]. These 

methods, however, are geared towards creating links between homogeneous sorts of nodes, such 

as predicting friendship connections between pairs of social network users. The same applies to 

most of the research on the even longer standing problems of entity resolution [7] and alignment 

between resources [8]. Only few approaches have targeted open-domain linking between 

arbitrary entities and concepts [1, 4, 9, 25, 26]. However, these typically assume structured data 

as input, i.e. entities with a series of attributes. In our case, we are attempting to connect two 

forms of unstructured natural language text. On the one side, we have public ordinances 

expressed using highly formal language, replete with legal terminology. On the other side, we 

have social media posts consisting of text that is typically very informal in nature, including 
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embedded hashtags, URLs, etc.  

For social media text, one important line of inquiry has focused on unsupervised topic 

modeling and trend detection in social media [15]. In [38], a fuzzy-based approach is used to 

preprocess and analyze hashtags in Twitter with the resulting fuzzy clusters being studied to 

investigate temporal trends on hashtag popularity. Such works however cannot easily be applied 

to the task of mapping tweets to a pre-existing set of ordinances, which we consider in our 

research. Neural vector-based representations of documents [5] also fail when the two items are 

as heterogeneous as in our case.  

Some recent approaches on linking social media text have relied on supervised 

classification. While standard methods can be applied to predict links between heterogeneous 

items [36], an important challenge is that large training sets are required to accurately cope with 

the short length (leading to data sparsity) and variability of tweets. To overcome this, the 

TweetSift system [18] classifies tweets by topic while exploiting external entity knowledge and 

topicenhanced word embeddings. The latter leads to topic-specific word embeddings such that 

the different senses of ambiguous words obtain different representations. However, this assumes 

that the knowledge base can provide highly pertinent signals about entities such as specific 

Twitter users. Our model in contrast exploits generic common sense knowledge and does not 

require a detailed labeled training set.  

Furthermore, previous work has not considered the setting of ordinances (with tweets) and 
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Smart City Characteristics, along with their challenging use of language. To the best of our 

knowledge, our work is therefore among the pioneering research in this area.  

Much attention is being given to Smart Cities in recent years. Buses in Barcelona are 

designed to run on routes optimal for power consumption [19]. Canal lights in Amsterdam 

automatically brighten and dim based on pedestrian usage [19]. The work in [22] addresses the 

potential enhancement of automated vehicles by embedding them with common sense 

knowledge. Such initiatives contribute mainly to the Smart Mobility characteristic. There is also 

significant research on making use of technology in fighting crime, e.g. the monitoring system to 

identify and categorize crime-related events in text documents [24] that was developed within 

the EU ePOOLICE project. Such research contributes to the Smart Living characteristic. The 

work in [21] targets the Smart Environment characteristic through cloud computing solutions for 

data centers (instead of on-premise servers). They analyze scenarios where cloud models provide 

greater energy efficiency, yet meeting productivity targets. Security, privacy, and availability 

issues are discussed for cloud usage in the greening of data centers. Free cooling for data centers 

as addressed in [20] by considering temperature, humidity and other parameters, also contributes 

to Smart Environment. The work in [37] has a tangential influence on Smart Economy. The 

authors propose a mathematical model to minimize trips in scheduled pickups and deliveries by 

cooperation. This is a cost-effective method useful in urban delivery systems to reduce 

operational expenses in a cooperative mode. Likewise, the research conducted in [33] has an 
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indirect impact on the Smart People characteristic by addressing an aspect of 21st century 

education through collocation-based writing aids for second language learners of English, as they 

constitute a large part of the population in cities worldwide. The work of [12] while primarily 

impacting Smart Environment through its estimation of air quality by analyzing pollutant data, 

also has a secondary impact on Smart Living since it addresses issues from a health standpoint. 

Thus, several researchers are conducting studies to augment the characteristics of Smart Cities.  

Our work in this paper seeks to make a notable impact here, by advocating for the 

deployment of common sense knowledge in the realm of Smart Cities. While works such as [11, 

17] motivate the need for common sense in the areas of Smart Mobility and Economy, 

respectively, the actual use of such knowledge in these paradigms remains at the stage of 

inception, e.g. [22]. As addressed in several works on common sense in machine intelligence 

(acquisition, representation, and application) surveyed in [31], the increased usage of CSK in 

many areas would promote much smarter machines. Our research in this paper aims to take a 

significant step along this avenue, with the overall goal of enhancing Smart Cities. 

4. 2. 3 Proposed Mapping Approach 

The approach we propose for ordinance to tweet mapping through Smart City 

Characteristics (SCCs) is illustrated in Figure 4.7. It is described in detail in the following 

subsections. 
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Figure 4.7: Proposed approach for SCC mapping 

4. 2. 3. 1 CSK — SCC based KB Development 

The SCC source used in our approach is derived from the widely accepted technical report 

from TU Wien [19], which enumerates six SCCs. These are Smart Governance (or Government), 

Smart Economy, Smart Mobility, Smart Environment, Smart People, and Smart Living, 

respectively.  
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Consider, for instance, the SCC Smart Governance. This encompasses the features listed 

next, some of which are also included among the highlights listed in Figure 4.6.  

• Transparency in government  

• Optimizing public service and administration  

• Direct involvement in public policies  

• Citizen participation  

• Positive and open communication channel with citizens  

• More informed decisions by feedback and engagement 

 

Figure 4.8: Relevant partial screenshot of WebChild 

Thus, if ordinances reference any of the above features, we infer that they likely relate to 

Smart Governance. However, these expressions are not particularly likely to be observed in the 
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ordinances literally. If human users were to inspect these ordinances, they could draw relevant 

connections, which are often quite subtle, by relying on linguistic knowledge and common sense. 

To automate this process, we draw on common sense knowledge (CSK) web sources, 

specifically, the large WebChild repository [28, 30] with common sense concepts mined from 

vast amounts of data on the Web along with their properties and relationships. A partial 

screenshot of the WebChild browser appears in Figure 4.8. This depicts a relevant concept 

economy, which pertains to a specific SCC.  

Using WebChild as the main CSK source along with requisite information for knowledge 

base development [32] and other common sense related sources such as the lexical database 

WordNet [14], we build domain-specific knowledge bases on Smart City Characteristics 

(Domain KBs with SCC). These KBs are text-based and contain terms relevant to specific Smart 

City Characteristics derived from CSK repositories and SCC sources, using NLP and semantic 

matching. Note that one could also apply techniques such as knowledge base extraction from text 

[27, 29] and rule mining [6] to increase the size of these domain KBs. Figure 4.9 shows a subset 

of our Domain KBs with terms relevant to the characteristics of Smart Environment and Smart 

Mobility 
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Figure 4.9: Part of Domain KBs with SCC (Subset of Smart Environment and Smart Mobility terms) 

 

Algorithm 1:  Linking algorithm 

4. 2. 3. 2 Linking using SCCs and CSK 

Using these domain KBs, CSK concepts are deployed to semantically relate terms x in 
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ordinance textT to SCCs. We denote this asC(T , x). For example, if the ordinance text includes 

the term smoke detector, then CSK concepts help to semantically relate this with the SCC Smart 

Environment through the CSK properties of smoke detector that have features relevant to this 

SCC. This information is found in the domain KBs derived from the SCC and CSK sources.  

The same ordinance can also have features that relate to other SCCs. It is possible that some 

terms in ordinances may overlap with multiple SCCs. In that case, they would be observed in the 

KBs of each of those SCCs. If such concept terms are discovered in the ordinances, their 

occurrences are counted towards multiple categories. For example, if a term such as 

sustainability occurs in an ordinance, then that ordinance would be counted under the 

characteristics of Smart Mobility as well as Smart Environment (see Figure 4.9). Thus, the counts 

for both of these SCCs would be updated in this particular example. Finally, all the aggregate 

SCC counts are examined and each ordinance is accordingly linked to the SCC with the 

maximum number of relevant features. CSK plays a crucial role in finding semantic relatedness 

for this mapping through concepts, properties, etc. Likewise, we map tweets to SCCs following a 

similar CSK-guided procedure. Using this, we finally aim to output the linkages between 

ordinances and tweets via mutual SCC connections. Thus, we emphasize that: an ordinance 

broadly links to a particular tweet if they both map to the same SCC.  

This mapping approach used for linking them is summarized in Algorithm 1 herewith. As of 

now, for simplicity, we emit only the closest matching SCC for the ordinances and tweets as 
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output. 

4. 2. 4 Evaluation of The Mapping 

We conduct an evaluation of mapping ordinances and tweets with SCCs using large 

amounts of real data from publicly accessible websites on ordinances and tweets. A summary of 

our experimental evaluation is presented in the following.  

4. 2. 4. 1 Ordinance to SCC Mapping 

Large amounts of historical data on ordinances are gathered from the website of the NYC 

council [3], which is openly available to the public. A small portion of this is shown in the 

screenshot that appears in Figure 4.10. These ordinances are first extracted into a machine-

readable form and then subjected to a preprocessing step such that only their textual content is 

retained. The other attributes such as “Prime Sponsor”, “Council Member Sponsor”, etc. (see 

Figure 4.10) are filtered out during this preprocessing phase. The textual content of the 

ordinances then serves as input to our algorithm that conducts the ordinance to SCC mapping. 

The algorithm interfaces with the SCC KB and uses the relevant terms for mapping. This inking 

procedure is formalized within Algorithm 1. It accordingly counts all such matches to output the 

SCC with the maximum counts as the closest matching one. 
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Figure 4.10: Sample of NYC Council website 

Shown herewith is an excerpt from an ordinance (Ord. 1) from the aforementioned NYC 

council website, along with its closest matching SCC (Table 4.5) based on quantifying relevant 

ordinance terms with SCC features.  

Ord. 1: A Local Law to amend the administrative code of the city of New York, in relation to 

amending the district plan of the Downtown – Lower Manhattan business improvement district to 

change...  

With reference to this ordinance excerpt, our algorithm relies on the SCC Domain KBs and 

comes to the conclusion that the only term relevant to the Smart Economy characteristic is 

business, while many terms are relevant to Smart Governance, including, among others, law, 

administrative, district plan, improvement, etc., as summarized in Table 4.5. Thus, the SCC that 
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is returned as the closest matching one in this example is Smart Governance.  

Table 4.5: A Sample Ordinance and its SCC Mapping 

 

Numerous further ordinances are analyzed following the same pattern. Note that in our 

execution so far, only the closest matching SCC is offered as the ordinance mapping output, for 

simplicity. The same holds for the mapping of tweets to SCCs.  

We evaluate of a subset of NYC council data that encompasses two recent ordinance 

sessions, namely, 2006 to 2009 and 2010 to 2013. Based on this evaluation, we obtain a 

summary plot of ordinance to SCC mappings given in Figure 4.11. 



171 

 

 

 

 

 

Figure 4.11: Summary plot of ordinance SCC mapping 

The observations in this summary plot are useful to provide some feedback to urban 

management agencies on the extent to which their ordinances cater to various aspects of Smart 

Cities. For example, from the results, one can conclude that the Smart City Characteristic 

receiving the greatest attention is Smart Living in the first session and Smart Governance in the 

second session. In both of the sessions, the SCC supposedly receiving the least attention is Smart 

People. This may help the urban agencies to plan their future policies such that they make 

progress on policies pertaining also to those characteristics that have been received comparably 

little attention so far, in this case the Smart People characteristic. Details on various aspects of 

urban legislation impacts with respect to such analysis appear in [13] catering mainly to a 

domain-specific angle. This is an important motivation for our current research with ordinances, 

tweets and SCCs. 



172 

 

 

 

 

4. 2. 4. 2 Tweet to SCC Mapping 

We extract thousands of tweets posted by the public on Twitter pertaining to NYC location-

specific data. The Twitter Streaming API feature labeled Filter Realtime Tweets is used for 

conducting the extraction. The tweets are extracted to a text file and further processed using NLP 

techniques such as regular expressions. The relevant parts of the tweets such as their textual 

content and hyperlinks are retained. These are stored as cleaned tweets. The SCC mapping is 

then performed on the cleaned tweets using the concerned part of our approach as depicted in 

Algorithm 1. In Figure 4.12, we show only a small subset of cleaned tweets used among over 

1,000 tweets extracted in our experiments. 
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Figure 4.12: Subset of tweets analyzed from NYC sites 

Based on these tweets, Figure 4.13 depicts a partial snapshot of our program mapping these 

cleaned tweets to their most relevant SCC, with reference to the relevant part of the process in 

Algorithm 1. This is interpreted as follows. Among tweets processed herewith, the overall 

mapping indicates that 37 of them are on Smart Economy, 25 are on Smart Environment, 208 on 

Smart Living, etc. These are obtained by the processing shown in the figure, e.g., features of the 

Smart Living SCC include the terms: home, benefits, tourist, building, etc., while those of Smart 

Environment include: energy, sustainable, etc. (The terms are obtained from KBs built using 

CSK and SCC sources). It is observed in this figure that, overall, 352 tweets are mapped to SCCs 
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(37+25+. . .+208). Hence, many tweets among approximately 1000 cleaned ones analyzed in 

these experiments are not mapped to any SCC. This could be due to the fact that not all tweets 

published by users pertain to SCCs. It could also be that some mappings are not precisely 

identified in the initial experiments conducted herewith. 

 

Figure 4.13: Partial snapshot of tweet to SCC mapping 

4. 2. 4. 3 Assessment and Discussion 

In order to facilitate judging the correctness of the mappings, we have developed very 

simple GUIs in our initial execution. We illustrate a relevant part of our Tweet Mapping GUI 

next. This accepts a tweet as the input and emits the closest matching SCC from the user as its 
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output, or “No matches” if none gets matched. Figure 4.14 shows an example of a tweet and its 

SCC identified as Smart Environment, while an example of a non-matching tweet is given in 

Figure 4.15. Both of these are partial GUI screenshots. 

 

Figure 4.14: Example of SCC mapping identified 

 

Figure 4.15: Example of no matches for any SCC 

Considering several tweets entered and SCCs identified through this GUI, the correctness of 

these mappings is assessed by domain experts from Earth and Environmental Studies. A similar 

Ordinance Mapping GUI is provided for the ordinance to SCC mappings for enabling at-a-

glance displays. These mappings are also assessed by the domain experts.  

The actual calculation of accuracy is done using an Accuracy metric as follows. Considering 

the judgment provided by domain experts, if an ordinance or tweet is mapped to a given SCC by 
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our proposed approach (or if it returns a No Match) and this is verified as correct by the expert, it 

is considered a True Mapping (TM). If the expert labels this mapping as incorrect, it is a False 

Mapping (FM). For example, if the approach indicates that the SCC is Smart Governance, but 

the expert states that it is Smart Economy or that it is a No Match, it would be a False Mapping. 

Also, if the approach indicates a No Match, but the expert states that it maps to a given SCC, it is 

still considered a False Mapping. In other words, the ground truth is defined by experts for the 

data analyzed herewith.  

With this justification, we proceed to calculate 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

and this is used for measuring the effectiveness of our proposed mapping approach. This is 

analogous to the classical notion of true positives and false positives in data mining and machine 

learning techniques [36]. (We do not consider true negatives and false negatives at this point in 

our research, since their appropriate definition needs further insights and discussions with 

domain experts. This is an aspect of future work). Based on the given definition of Accuracy 

herewith, we obtain the evaluation scores as listed in Table 4.6.  
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Table 4.6: Accuracy of Ordinance and Tweet Mapping 

 

Thus, the ordinance to SCC mapping, as verified by domain experts, is found to be accurate 

for around 85% of the ordinances. This is considered satisfactory on the whole, although there is 

scope for improvement. The main reasons for the difference are that some ordinances can 

actually map almost equally to multiple SCCs, and hence it is possible that our approach 

identifies one particular SCC as the top match, while an expert identifies another. 

 The accuracy of the tweet to SCC mapping is in the range of around 70%, which seems 

fairly reasonable for a start. However, it is much lower than that of the ordinance to SCC 

mapping. We present a few examples of tweets below that are classified incorrectly or return no 

match, thereby adversely affecting the performance of the tweet to SCC mapping in our 

approach. 

• "Wind 0.0 mph N. Barometer 30.134 in, Falling slowly. Temperature 26.1 °F. Rain today 

0.00in. Humidity 94%"  

• "RT @worldclassEXO: Listen, Moon Jae-in aka SK president won’t allow SM to bribe the 
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Olympics bcs that’s gonna ruin the country’s reputation. . ."  

• "@FoxNews No DACA until Wall is built."  

• "Our February STEM Hero is... #STEMed #STEM #SciEd #ScienceEd @polyprep 

https://9O7Gf5sZP7. . ."  

Inspecting such examples, an important observation is that the problem of inaccurate 

mapping (or that of no matches being found) occurs mainly due to challenges such as ambiguity, 

informal language, excessive use of acronyms and hashtags, etc. These issues pose significant 

challenges in the execution of the mapping. This calls for further research on the tweet to SCC 

mapping process. We have encountered the challenges listed next in the tweet mapping part of 

our research.  

(1) Tweets use informal language, which makes their extraction and analysis difficult.  

(2) The length restrictions imposed on tweets results in users resorting to an excessive use 

of acronyms.  

(3) There is limited coverage, e.g., 1/3 of mentions on the web cannot be linked to 

Wikipedia (around 30% loss).  

(4) NEE (Named Entity Extraction) and NED (Named Entity Disambiguation) involve 

many degrees of uncertainty.  

Addressing these non-trivial challenges, while also aiming to improve the ordinance to SCC 

mapping accuracy and considering the semantic proximity to multiple SCCs via rankings, 
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constitutes our ongoing work. We further aim to drill down to a finer level in the mapping, which 

would entail identifying fine-grained aspects of the individual features in the SCCs as opposed to 

the entire SCC per se. This is likely to yield better performance. 

4. 2. 5 Conclusion 

This paper proposes an approach to map ordinances to tweets expressing public opinion, 

based on Smart City Characteristics (SCCs) relevant to both of them. The execution of our 

approach with initial experiments yields an accuracy of ordinance to SCC mapping of around 

85%, while that of the tweet to SCC mapping is approximately 70%, both confirmed by domain 

experts.  

Ongoing research includes addressing challenges in the tweet to SCC mapping, improving 

the accuracy of the ordinance to SCC mapping, considering the mapping of both ordinances and 

tweets to multiple SCCs with ranking, and also attaining a finer granularity in the mappings 

besides the broad categorizations considered here. This would enable us to draw more specific 

conclusions from the results, particularly when they are used for polarity classification of tweets 

to assess the public reaction.  

The long term vision of our research is to provide urban agencies useful feedback on how 

well they are doing in policy decisions (based on this mining) and hence indicate how closely the 

given urban region heads towards a Smart City. In summary, our research makes the following 
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contributions:  

(1) addressing the mining of local laws or ordinances and their public reaction through 

tweets to give urban agencies useful feedback, which is pioneering work in the area;  

(2) proposing an approach for ordinance to tweet mapping using Smart City Characteristics 

as a nexus, deploying the transitive property of semantic relatedness between them;  

(3) conducting a study with genuine ordinance data from the NYC council, with mapping 

accuracy of around 85% (ordinance to SCC) and 70% (tweet to SCC) respectively;  

(4) motivating the need for mapping ordinances and tweets to multiple SCCs with ranking, 

and dealing with finer levels of granularity in SCC features for enhanced performance  

Ultimately, we envision our work as contributing to the development of Smart Cities on the 

whole as a broader impact. 
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4. 3 Smart Governance through Opinion Mining of Public Reactions on 

Ordinances 

Abstract: This work focuses on the area of Smart Governance in Smart Cities, which entails 

transparency in government through public involvement. Specifically, it describes our research 

on mining urban ordinances or local laws and the public reactions to them expressed on the 

social media site Twitter. We mine ordinances and tweets related to each other through their 

mutual connection with Smart City Characteristics (SCCs) and conduct sentiment analysis of 

relevant tweets for analyzing opinions of the public on local laws in the given urban region. This 

helps assess how well that region heads towards a Smart City based on (1) how closely 

ordinances map to the respective SCCs and (2) the extent of public satisfaction on ordinances 

related to those SCCs. The mining process relies on Commonsense Knowledge (CSK), i.e., 

knowledge that is obvious to humans but needs to be explicitly fed into machines for automation. 

CSK is useful in filtering during tweet selection, conducting SCC-based ordinance tweet 

mapping and performing sentiment analysis of tweets. This paper presents our work in mapping 

ordinances to tweets through single or multiple SCCs and opinion mining of tweets along with 

an experimental evaluation and a discussion with useful recommendations.  

Keywords: Big Data; Classification; Commonsense Knowledge; Data Mining; Local Laws; 

Machine Learning; Sentiment Analysis; Smart Cities; Social Media; Urban Policy 
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(Chapter 4.3 reused the previously published paper Puri, M., Varde, A., Du, X., & de Melo, 

G. (2018), Smart Governance Through Opinion Mining of Public Reactions on Ordinances, 

IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 

https://doi.org/10.1109/ictai.2018.00131). 

4. 3. 1 Introduction  

This paper centers on enhancing Smart Governance, which falls under the umbrella of 

Smart Cities. Specifically, we seek to analyze tweets about ordinances or local laws in a given 

urban region, which represent opinions of people on related topics. This aids in understanding 

people’s reactions to the respective urban policies addressed in these ordinances. An important 

goal of this work is to assess how well the concerned urban area is progressing towards being a 

Smart City based on the ordinances passed and the public reactions to them. Figure 4.16 shows 

different Smart City Characteristics, as widely accepted in the literature [1, 2]. 
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Figure 4.16: Smart City Characteristics [3] 

Twitter is one of the biggest sources for data mining, with about 350 million users and over 

500 million tweets sent per day on a variety of topics. Hence, Twitter is a valuable source of data 

on public reactions to ordinances. Its micro-blogging nature is useful with respect to the brevity 

of the information to be analyzed, since each tweet is limited to 280 characters 

We map tweets to corresponding ordinances through their mutual connection with 

respective Smart City Characteristics based on a measure of semantic relatedness. A trivial 

keyword matching approach of trying to connect ordinances directly to tweets does not suffice as 

they both contain intricate and heterogeneous natural language. Moreover, ordinances and tweets 

both constitute big data, as there are thousands of ordinances and millions of tweets. Hence, 

obtaining a direct mapping is challenging. Existing techniques from the field of machine learning 
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[4] are not useful to learn these mappings, as they need significant volumes of data to train the 

models. Ours is pioneering work in the area of ordinance mining and hence we do not possess 

such large volumes of training data for our mapping task. 

Instead, our proposed mapping technique takes into account generic connections between 

ordinances and tweets, through SCCs. We rely on a transitive property: “If ordinances map to 

one or more SCCs and if tweets map to the same SCCs, the ordinances are likely to be broadly 

related to the respective tweets”. This is due to the finite nature of classical sources of SCC data 

[1, 2] which possess a limited set of identifying features that can be used for mapping. Hence, 

this transitive mapping approach seems more feasible, since by using this, we can bypass having 

to map millions of tweets to thousands of ordinances directly. 

Since a single ordinance or tweet can map to one or more SCCs, we develop an algorithm 

for SCC mapping accordingly. In the process of ordinance–tweet mapping, we make use of 

Commonsense Knowledge (CSK) from sources such as WebChild [5] and WordNet [6]. The use 

of CSK is vital to measure semantic relatedness in a more informed way. The terms encountered 

in classical SCC sources may not directly appear in relevant ordinances and tweets. For example, 

an ordinance or tweet may contain the term “Pre-Kindergarten for all”, which pertains to the 

characteristic of Smart People (since one feature of this SCC is “21st century education”). 

Humans can intuitively make the connection upon reading the content of the ordinances or 

tweets and the SCC features. However, to automate the mapping, this knowledge needs to be 
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explicitly fed to the algorithm, which is done by deploying concepts, properties and relationships 

in the CSK source WebChild [5]. 

Likewise, CSK also helps in filtering out unwanted tweets from among the millions of 

tweets initially obtained through the use of terms in SCC Domain KBs (derived using CSK and 

SCC sources). Accordingly, after finding relevant tweets and mapping them to their respective 

ordinances, our next step is sentiment analysis. Here we conduct a sentiment polarity based 

classification of tweets, using SentiWordNet [7] derived from the CSK source WordNet [6], in 

order to gauge public opinion. CSK plays a role here by connecting relevant terms to appropriate 

sentiment words, thereby capturing subtle human judgment. The outcome of the sentiment 

analysis can be used to provide feedback to urban agencies on their policies. 

Our research is thus potentially useful to urban agencies for assessment in relevance to 

Smart Cities. By the identification of SCCs addressed in local laws, information can be provided 

on how well urban policies are aiming towards Smart City development. Further, the knowledge 

discovered by mining data on Twitter and mapping ordinances to tweets is helpful to urban 

agencies to evaluate public contentment. This would help them determine their Smart City public 

appeal and accordingly enforce appropriate legislation to enhance urban management as needed. 

This work thus falls under the characteristic of Smart Governance (or Smart Government), which 

embodies the involvement of the public in decision making and transparency of the whole 

governing process. 
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The rest of this paper is organized as follows. Section II overviews related work in the area. 

Section III describes our approach on mapping ordinances and tweets through SCCs. Section IV 

focuses on sentiment analysis of tweets. Section V summarizes our experimental evaluation, 

while Section VI presents discussion and challenges. Section VII states the conclusions and 

ongoing work. 

4. 3. 2 Related Work 

Recently, there has been significant interest in Smart Cities, and a number of developments 

have occurred in this field. For example, in Barcelona, buses are now configured to run on 

optimal routes for better power consumption [2]. In Amsterdam, there are canal lights that adjust 

their brightness automatically depending on how often they are used by pedestrians [2]. These 

initiatives fall under the category of Smart Mobility, whereas other works in this area consider 

decisions for autonomous vehicles [8] or saving trips in delivery and pickup [9]. Copenhagen 

(ranked number one in the 2017 Smart City Index) has buildings with sensors for air quality and 

climate control and smart meters for intelligent control of energy consumption [10]. Health and 

safety issues, considering AQI (Air Quality Index) standards for human health, are addressed in 

[11]. Such works bridge the areas of Smart Living and Smart Environment. Further research 

affects the Smart Environment domain by relying on cloud computing solutions rather than on-

site storage solutions for mid-sized data centers [12]. In Smart Economy, cost savings and profit 
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distribution has been studied [9], as well as important issues for business and household taxation 

[13] and data center cost savings [14]. Another study [15] considers urban policy data, modeling 

it using data warehousing and XML databases, and conducts preliminary data mining using 

classical techniques such as association rules and decision tree classifiers [4]. This heads towards 

Smart Governance. 

Various studies have been conducted on data mining from social media. An important piece 

of work in this field focuses on unsupervised modeling and trend detection in social media [16]. 

In an experiment in 2015, a fuzzy-based method was used to pre-process and analyze Twitter 

hashtags so as to study trends in hashtag popularity [17]. However, such approaches are not 

feasible in our current project, which involves mapping tweets to a pre-existing set of ordinances 

without existing training data. Another example of research in this field focuses on supervised 

classification. While standard methodologies exist [4], these require massive training sets to 

account for the short length and variability of tweets. Another approach is in the TweetSift 

system [18], which classifies tweets by topic and uses external entity knowledge and word 

embeddings that are topic-enhanced. These lead to topic-specific word embeddings such that 

different senses of equivocal words obtain different representations. This process also comes 

with the assumption that the knowledge bases provide very relevant signals regarding different 

entities, such as particular uses on Twitter. In contrast to this, our approach uses generic 

Commonsense Knowledge and does not need labeled training data. In addition, works by other 
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researchers have not considered the setting of ordinances and Smart City Characteristics. Hence, 

our work is among the first to explore this area. 

The use of Commonsense Knowledge in the domain of Smart Cities is in its early stages as 

well, with important opportunities to enhance a number of research areas. Works in the field [19, 

20] describe the use of CSK for various tasks such as: enhancement of autonomous vehicles that 

can contribute to Smart Mobility; and machine translation in writing aids that have the potential 

to impact the Smart People characteristic. The use of CSK would enhance the reasoning 

capabilities of machines, which would enable them to solve several challenging problems. The 

use of such CSK-enabled machines in various aspects of automation in Smart Cities would make 

them even smarter. Our work in this paper addresses the theme of Commonsense Knowledge in 

Smart Cities. We make use of CSK in various parts of the ordinance and tweet mining process, 

including mapping as well as sentiment analysis. 

4. 3. 3 Approach for Mapping 

4. 3. 3. 1 SCC Based Mapping Process 

Our proposed approach for mapping tweets and ordinances to each other through SCCs is 

illustrated in Figure 4.17. The main source for the SCCs in our approach is a technical report [2] 

published by the Vienna University of Technology. This report describes Smart Cities as having 

six different Smart City Characteristics: Smart Mobility, Governance, People, Living, Economy 
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and Environment. 

 
Figure 4.17: Illustration of the Mapping Process 

Our own work in this research project is on transparency in government through public 

involvement, which falls under the realm of Smart Governance. Hence, we enumerate its 

specifics, just to give an example of SCC features. 

Smart Governance  

• Transparency in government  

• Optimization of public service and administration  

• Direct involvement in public policies  

• Citizen participation  
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• Positive and open communication channel with citizens  

• More informed decisions by feedback and engagement 

4. 3. 3. 2 Role of Commonsense Knowledge 

Considering the SCC Smart Governance elaborated herewith, if ordinances or tweets relate 

to any of the specifics described above, they are most likely related to Smart Governance. 

However, most tweets and ordinances may not directly contain these specific features such as 

citizen participation in their descriptions and hence machines may not be able to recognize them. 

Humans, through common sense, will be able to spot such features and thus infer that an 

ordinance or tweet maps to one or more SCCs. Hence, to automate the mapping process, we 

make use of a commonsense knowledge (CSK) repository called WebChild [5]. This consists of 

various commonsense concepts derived from vast quantities of data available on the Web, as well 

as their properties and relationships. A snapshot of the WebChild browser is given in Figure 4.18, 

which depicts results related to the concept 
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Figure 4.18: Partial Screenshot of WebChild 

In order to induce a mapping of ordinances and tweets using Smart City Characteristics, we 

construct domain specific knowledge bases (Domain KBs) using various SCC sources guided by 

CSK. Sample Domain KBs for three SCCs are shown in Figure 4.19. WebChild is the primary 

source for CSK in our research. We also use the lexical database WordNet [6] while building the 

KBs. By using these SCC Domain KBs, CSK principles are used to find connections between 

terms x in every ordinance text O and SCCs. This is denoted by C(O, x). For example, if the 
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ordinance text includes the term unemployment, the CSK concepts are useful to find its semantic 

relatedness with the SCC Smart Economy. This is because the terms in the corresponding SCC 

Domain KB have been derived from classical SCC sources as well as the CSK source WebChild 

to help make the connection. These Domain KBs guide the mapping of ordinances and tweets 

through SCCs in our algorithm, as outlined next. 

 

Figure 4.19: Sample SCC Domains 

4. 3. 3. 3 Mapping with Single or Multiple SCCs  

An ordinance or a tweet can relate to one or more SCCs. Accordingly, each ordinance / 

tweet is mapped to SCCs with the most relevant number of features. Mapping to different SCCs 

is based on the weights of relevant terms assigned to them. For instance, if an ordinance/tweet 

has two terms related to Smart Economy and one related to Smart Governance, the ratio of 
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mapping Smart Economy:Smart Governance is 2:1. If an ordinance or tweet consists of a 

significant number of terms related to a single SCC, the other terms may be ignored as they may 

not be relevant to the intention of the tweet. This is determined by a threshold, which can be 

adjusted as needed. 

Based on this discussion, our proposed algorithm for mapping ordinances tweets through 

SCCs is as follows. 

 

Hence, this algorithm incorporates the transitive property such that if ordinances map to one 

or more SCC(s) and tweets map to the same SCC(s), then the ordinances broadly map to the 

tweets. This can thus be used to determine the actual ordinance to tweet mapping on a broad 

scale, which is the final output of our mapping process. Note that we do not deal with the finest 

levels of granularity in this ordinance-tweet mapping as of now. We maintain a more generic 

connection at the level of relevance to SCCs, since an important aspect of this work entails 

heading towards Smart Cities. 
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4. 3. 4 Sentiment Analysis of Tweets 

4. 3. 4. 1 Process of Sentiment Analysis 

Sentiment analysis of the text involves determining the emotion expressed in a particular 

piece of writing. The specific task of sentiment polarity classification focuses on assessing 

whether the sentiment is “positive”, “negative” or “neutral”, and sometimes the extent to which it 

heads in that respective direction, i.e., “strongly positive” etc. This often serves the purpose of 

opinion mining, i.e., discovering knowledge from people’s opinions or reactions. Sentiment 

analysis has a number of applications in different areas as follows.  

• Business: Used by companies to obtain product, service and brand satisfaction from 

customers  

• Politics: To gauge the population’s interest in various political events  

• Social events: To understand people’s reactions to economic and social events in general  

4. 3. 4. 2 Opinion Mining using CSK 

In our research, we conduct sentiment analysis to discover knowledge specifically with 

respect to opinion mining of tweets on ordinances. This is conducted after the mapping of 

ordinances to tweets (as explained in the previous subsection). The primary database used for 

Sentiment Analysis in this work is SentiWordNet [7]. The SentiWordNet source has been built 



202 

 

 

 

 

for guiding sentiment classification and opinion mining. This is an enhanced version of the CSK 

source WordNet [6]. It groups words into synonym sets (synsets) annotated by how positive the 

terms are. Accordingly, words are classified as positive, negative or neutral based on polarity of 

terms.  

In SentiWordNet, different meanings exhibited by the same word can have different 

sentiment scores. For example, the word estimable when relating to computation has a neutral 

score of 0.0, while the same word in the sense of deserving respect is assigned a positive score of 

0.75. The process we deploy for sentiment analysis of tweets constitutes a semisupervised 

learning method using SentiWordNet. Through this, subtle human judgment through 

commonsense in understanding emotions is embodied in the mining processes with specific 

reference to context.  

4. 3. 4. 3 Algorithm for Polarity Classification 

Based on the given discussion, our proposed algorithm for sentiment analysis of tweets 

through polarity classification is as follows. 
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Based on this algorithm, we classify thousands of tweets that we obtain from Twitter. Note 

that the selection of relevant tweets and also the mapping of tweets to their respective ordinances 

is guided by CSK. The SCC Domain KBs derived from WebChild and WordNet serve to filter 

out unwanted tweets as a first step, followed by the mapping of tweets to relevant ordinances 

using SCCs as a next step. The results of our polarity classification using this approach are 

presented in the experimental evaluation section, after the results of ordinance and tweet 

mapping through SCCs. 

4. 3. 5 Experimental Evaluation 

4. 3. 5. 1 Ordinance to SCC Mapping 

The source of the ordinances in our experiments herewith is the NYC metropolitan 

legislative council website [21]. A partial snapshot of this is seen in Figure 4.20. Consider the 

following sample ordinance obtained from this NYC source. 
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Figure 4.20: NYC Ordinance Website 

Sample Ordinance: A Local Law to amend the administrative code of the city of New York, 

in relation to recycling outreach, education and enforcement; and to repeal subdivisions d and e 

of section 16-305 and section 16-311 of the administrative code of the city of New York, relating 

to source separation of recyclable materials and recycling centers.  

The mapping of this sample ordinance to its relevant SCC(s) is shown in Table 4.7. 
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Table 4.7: Mapping of a Sample Ordinance to SCC(s) 

 

Thus, it can be seen that we get the following mapping results for this ordinance: Smart 

Economy = 0%, Smart Environment = 80%, Smart Governance = 0%, Smart People = 0%, Smart 

Mobility = 0%, Smart Living = 20%. Hence, we observe that the given ordinance maps most 

closely with Smart Environment, but also to some extent with Smart Living. Based on the 

threshold used in this execution, it is mapped to Smart Environment:Smart Living with a ratio of 

80:20, stating the outputs as percentages. 

4. 3. 5. 2 Tweet to SCC Mapping 

We extract location-specific geo-tagged tweets posted by the general public from NYC and 

map these to SCCs using the process described in the previous section. We mine approximately 

5,000 tweets in the experiments shown here. An small random subset of tweets as mined before 

mapping (regardless of the their relevance to ordinances) is given below. 

Tweet T1: ”RT @OccAware: @RachelNotley I am contacting you to tell your government 

does not have my support to put BC land, water and our tourist economy at risk while trashing 
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indigenous rights”  

Tweet T2: ”RT @verge: Elon Musk made history launching a car into space. Did he make 

art too?”  

Tweet T3: ”Concerns about HB1319 the predatory lending bill. High interest rates, short-

term loans for poor. Veterans groups social service gps have spoken against.”  

Tweet T4: ”Adding plants to your home or office has so many benefits such as reducing 

stress and increasing productivity! Not to mention they add a personal touch to your 

surroundings. ”  

Tweet T5: ”RT @CoachKCullen: A1 a strong non-digital learning environment is needed 

before you introduce digital learning environment. Bad practices can just multiply the more 

technology is introduced satchat” 

 

These tweets are subjected to mapping using Algorithm 1. Each tweet can have terms 

related to one or more SCC(s). Different SCC terms from the input tweets are considered and 

accordingly weights are assigned to each SCC. These determine the relevance of the tweets to 

the SCC(s) based on the threshold levels used in the experiments. 

We have developed a GUI that accepts a tweet as the input and determines the closest 

matching SCC(s) as the output, or returns “No matches” if absolutely no SCC gets matched 

during the mapping process. Figure 4.21 shows an example of tweet to SCC mapping using this 
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GUI. 

 

Figure 4.21: Screenshot of GUI for Tweet to SCC Mapping 

4. 3. 5. 3 SCC Mapping Assessment  

After the mapping is conducted, its outcomes are assessed by domain experts from the 

department of Earth and Environmental Studies. Ground truth is defined by the experts such that 

a mapping is identified as correct if is agrees with the judgment of the expert and incorrect 

otherwise. For example, if the system identifies the mapping as Smart Economy:Smart 

Governance with a ratio of 60:40 and the expert agrees, this is considered to be a correct 

mapping. On the other hand, if the expert disagrees with the single or multiple SCC(s) identified 

in the mapping, or considers their ratios to be highly inappropriate, this is treated as an incorrect 

mapping. Assessment is then conducted using the standard Precision metric [4] as the ratio of 

correct mappings to all mappings. Thus, Precision = Correct Mappings / (Correct Mappings + 

Incorrect Mappings). Based on this evaluation, Figure 4.22 shows a chart summarizing the 
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domain expert assessment of tweet and ordinance mappings with respect to the SCCs. 

 

Figure 4.22: Summary of Mapping Assessment 

The evaluation of the mapping results obtained can be interpreted as follows. With respect 

to Expert 1, around 88% of the ordinances are correctly mapped to their respective multiple 

SCCs, while approximately 78% of the tweets are appropriately mapped. Hence, the ordinance to 

tweet mapping precision on a broad range would be at best 78%, considering their mutual 

connection with multiple SCCs, as per the ground truth defined by this expert. Likewise, on the 

whole, the ordinance to multiple SCC mapping precision is observed to be in the range of the 

higher 80s, while that of the tweets to multiple SCC is around the lower 80s. Thus, the ordinance 

to tweet mapping precision through mutually relevant SCCs would be at best in the lower 80s. 

Note that this is an enhancement over our early work [22], where we considered mapping of 
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ordinances and tweets to single SCCs only, based on the closest match. It was concluded therein 

[22] that the mapping precision needs to be higher to conduct opinion mining of tweets with 

respect to relevant ordinances and SCCs. Thus, we proposed enhanced algorithms in this paper 

and also refined domain KBs on SCCs with more intricate CSK concepts 

4. 3. 5. 4 Ordinance to Tweet Mapping Output 

The precision ranges obtained in the ordinance to SCC and tweet to SCC mappings are 

considered acceptable by our domain experts to proceed with further work. Hence, it is feasible 

to use these mappings in order to output the ordinance–tweet mappings. We present examples 

herewith of broadly related correct ordinance to tweet mappings as determined through their 

mutual SCC connections. 

Mapping Example 1: In this excerpt, both the ordinance and tweet map to Smart Economy.  

Ordinance: A Local Law to amend the administrative code of the city of New York, in 

relation to authorizing an increase in the amount to be expended annually in seven business 

improvement districts and two special assessment districts.  

Tweet: @DowntownNYC is one of NYCs largest Business Improvement Districts, which 

works to enhance the quality of life in #LowerManhattan. Attend our #YLG #SecretsofSuccess on 

5/11 ft. @JessLappin for an exclusive talk about what it’s like to lead a #BID.  

Mapping Example 2: Here, the ordinance and tweet both map to Smart Mobility as well as 
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Smart Living.  

Ordinance: A Local Law to amend the administrative code of the city of New York, in 

relation to parking violations issued for the failure to display a muni-meter receipt.  

Tweet: The new NYC Parking Ticket: Pay or Dispute app makes the process of paying or 

disputing a violation easier and faster. #nycpayordispute  

Likewise, various such ordinance-tweet mappings through their semantic relatedness with 

the SCC(s) set the stage for sentiment analysis of tweets to analyze public opinion. 

4. 3. 5. 5 Results of Sentiment Analysis on Tweets 

In the experiments shown here, we use tweets from the NYC region after filtering out 

unwanted ones guided by SCC domain KBs derived through CSK. We map these to ordinances 

through our proposed mapping approach in Algorithm 1. Sentiment analysis of these tweets is 

then conducted using Algorithm 2. Examples of these are summarized next. 

NYC Tweet Example 1:  

”#FairFares is just common sense. What it will do is level the playing field so every #NYC 

resident can access the @MTA. Pretty simple idea. Not only is it the right thing to do but it will 

also help to grow our economy. #nowisthetime”  

This tweet maps to Smart Mobility and Smart Economy. For this tweet, the net score is 

0.43. It obtains a positive score of 0.72 and a negative score of -0.29. 
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NYC Tweet Example 2:  

”#NewYork’s statue of Liberty was RED before pollution turned it green”  

This tweet maps to Smart Environment. For this tweet, the net score is -0.21. Its positive 

score is 0.15, while its negative score is -0.36. 

Likewise, based on several examples, the combined results of sentiment analysis on tweets 

are obtained. These are illustrated in Figure 4.23. The pie chart in this figure summarizes the 

overall public reactions as determined from tweets across all SCCs. Since the percentage of 

positive tweets is the greatest among these, we can conclude that the people of NYC seem to 

approve of the concerned policies (to a greater extent than complaining about them or being 

neutral). However, positive sentiments are expressed by less than half the public, which means 

that there is potential for improvement with respect to heading towards a Smart City. 

 

Figure 4.23: Polarity Classification of Tweets on all SCCs 
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Additionally, we analyze specific public contentment for each SCC and obtain the results as 

shown in Table 4.8. These numbers help urban agencies assess how satisfied people are on 

matters pertaining to each individual SCC. For example, here the public seems least satisfied 

with issues related to Smart Environment. Thus, feedback can be provided to urban agencies that 

they need to address policies to make the environment smarter, e.g., develop more energy 

efficient systems. 

Table 4.8: Public Contentment for Each SCC 

 

On the whole, public contentment seems fine considering the various SCCs in our sample. 

Hence, from this analysis, we can infer that based on our data used and the accuracy of our 

results that the metropolitan region of NYC seems to tend fairly well towards being a Smart City, 

with scope for further enhancement. A summary of these results can be provided as feedback to 

urban agencies to help them make decisions in outlining further legislative policies. 
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4. 3. 6 Discussion and Challenges 

The overall evaluation in this paper reveals that many ordinances and tweets get correctly 

mapped to each other on a broad level of semantic relatedness. Domain experts confirm that this 

is acceptable for current use, although it could get better in the future. Accordingly, upon closer 

observation we find that a few mappings of ordinances and tweets are imprecise with respect to 

their SCC identification. Tweet mapping particularly needs further refinement. Moreover, some 

ordinance–tweet mapping outputs are found to be imprecise, in spite of their correct mutual SCC 

connection being identified in the ordinance–SCC and tweet–SCC mappings. 

In order to address these issues, we need further research with respect to the refinement of 

the content in the SCC Domain KBs and also the levels of granularity in ordinance to tweet 

mappings. SCCs can still be used as a mutual connection; however, this could be done with more 

specific features that refer to their actual details. Direct mapping of ordinances to tweets can be a 

next step addressing intricate natural language and other aspects. Note that our proposed SCC-

based mapping approach substantially narrows down the sample space for potential direct 

ordinance–tweet mappings. In the absence of this approach, the large quadratic number of pairs 

is very challenging, given ordinances and tweets in the order of thousands and millions, 

respectively. 

Sentiment analysis of tweets has also been assessed by our domain experts through a 
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process similar to that of mappings (details not shown herewith). The polarity classification is 

found to be accurate for the most part, i.e., if the overall classification of a tweet is positive as 

identified by our approach, it indeed expresses a positive sentiment with respect to ground truth 

defined by experts etc. Due to this, we have considered it feasible to use the results of sentiment 

analysis for summarizing the public reactions on ordinances as shown in Figs. 10 and 11. We can 

therefore use these outcomes to provide recommendations to urban agencies. However, it is to be 

noted that we have found a few incorrect polarity classifications. This can be attributed to the 

fact that tweets in general do not follow a systematic grammar structure, making it difficult to 

derive semantic patterns in some cases. 

Based on our work, we outline the following challenges in dealing with tweets for mapping 

and polarity classification.  

• The usage of informal language in tweets makes it difficult for pre-processing using basic 

Natural Language Processing (NLP) techniques.  

• There is rampant usage of acronyms in Twitter, which do not relate to standard vocabulary 

sources.  

• Tweets show ambiguous characteristics with respect to NEE (Named Entity Extraction) as 

well as NED (Named Entity Disambiguation). 

Addressing these challenges and the other ongoing tasks is nontrivial and constitutes further 

work. Ongoing research involves addressing these issues for enhanced knowledge discovery 
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from ordinance and tweets in the future. 

4. 3. 7 Conclusions 

In this paper, we mine ordinances and their public reactions to gauge how well a given 

urban region tends towards a Smart City. The novelty of this work includes: (1) being among the 

first to address ordinance mining, especially for Smart Cities; (2) implementing single and 

multiple SCC-based ordinance to tweet mapping; and (3) deploying commonsense knowledge in 

mining (for tweet selection, mapping processes and polarity classification). The overall 

challenges include: (1) dealing with intricate natural language in ordinances and tweets; (2) 

handling big data of the order of thousands and millions respectively; and (3) considering further 

issues in tweets, e.g., acronyms and ambiguity. 

We evaluate our work with real data from NYC sources. The ordinance to SCC mapping 

precision is found to be in the higher 80% range while tweet to SCC mapping precision is in the 

lower 80s on an average. The polarity classification of tweets suggests that the majority of the 

public is satisfied with the topics that the ordinances cover. Yet, positive sentiment amount to 

lower than 50%, implying scope for improvement. Through this analysis, feedback can be 

provided to urban agencies for policy decisions. This work contributes to Smart Governance, by 

public involvement entailing transparent decision-making. 

Our ongoing work seeks to enhance the mapping precision and to address finer levels of 
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granularity in the ordinance– tweet mapping. We aim to improve tweet sentiment analysis, 

incorporating advanced concepts in NLP and Machine Learning. The long-term goal of our 

research is to aid urban regions in enhancing legislation related to Smart Cities. This constitutes 

multidisciplinary work in Artificial Intelligence and Environmental Management. 
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Chapter 5 

5.  Result Dissemination and Application 

5. 1 LSOMP: Large Scale Ordinance Mining Portal 

Abstract: We propose a novel scalable Web portal called LSOMP (Large Scale Ordinance 

Mining Portal) to analyze ordinances and their tweets (of the order of thousands and millions). It 

entails commonsense knowledge (CSK) and natural language processing (NLP), disseminating 

ordinance-tweet mining results via interactive graphics and Question Answering (QA). 

(Chapter 5.1 reused the previously published paper Du, X., Kowalski, M., & Varde, A. 

(2020), LSOMP: Large Scale Ordinance Mining Portal. In IEEE International Conference on Big 

Data (IEEE BigData 2020), Atlanta, GA). 

5. 1. 1 Problem Definition 

The complex legalese in ordinances (local laws) on urban policy and their informally toned 

public reactions (often expressed on Twitter) need analysis so that a broad spectrum of users can 

comprehend them. This motivates mining big data on ordinances and their tweets to discover 

knowledge, e.g., how well the enacted ordinances enhance the urban area into a smart city and to 

what extent the public is satisfied. A reliable Web portal is beneficial to ensure convenient access 

for users to analyze the results, allowing for seamless extensions. 
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5. 1. 2 Proposed Solution 

We propose a Web portal called LSOMP to disseminate results of mining ordinances and 

tweets. We have designed a mining approach leveraging domain-specific knowledge bases (KBs) 

built for ordinances and smart city characteristics (SCCs) using publicly available sources, e.g. 

[1]. These, in addition to commonsense knowledge (CSK) from sources such as WordNet and 

WebChild [2] serve as guidelines to map ordinances and tweets, SCCs being the nexus. 

Figure 5.1 portrays SCCs used in this work as widely accepted worldwide [1]. For example, 

if an ordinance includes “air pollution”, then CSK and domain KBs help to identify this 

ordinance as relevant to ”Smart Environment” analogous to human commonsense reasoning. The 

same process applies to tweets. We claim there is a link between tweets and ordinances that share 

a similar SCC, and fine-grained analysis is conducted for direct mapping with minimal linkage 

complexity in our approach called TOLCS (Tweet Ordinance Linkage by Commonsense and 

Semantics) [3]. Sentiment analysis on tweets occurs by CSK-based polarity classification to 

gauge the effectiveness of ordinances via public opinion. A single ordinance or tweet can map to 

one or more SCC(s). 
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Figure 5.1 Widely accepted SCCs: Smart City Characteristics (adapted from [1]) 

 

LSOMP serves as our dissemination center with interactive graphics and QA, entailing NLP 

and CSK to fathom the text and proffer responses based on the mining results. To the best of our 

knowledge, LSOMP is the first Web portal on ordinance-tweet mining. Figure 5.2 portrays its 

system architecture. 
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Figure 5.2 System architecture of the Web portal: LSOMP 

5. 1. 3 Demo and Experiments 

We conduct experiments [4], our source being ordinance data from the New York City 

council public website. We present herewith the analysis of ordinance sessions 2006- 2009 and 

2010-2013. Ordinances and tweets are mapped with SCCs to obtain their mutual semantic 

relatedness. This serves as the basis for opinion miming of tweets pertaining to the ordinances 

via polarity classification of the tweets. Domain experts have evaluated the accuracy of our 

ordinance-tweet SCC mappings. They have confirmed that the accuracy is very good as tabulated 

here (see Table 5.1). 
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Table 5.1 Mapping Accuracy of Ordinances and Tweets 

 

We have built a prototype of LSOMP, integrating its mapping functionality. This 

incorporates interactive graphics and Web QA. In Figure 5.3 we present a summary of the overall 

ordinance-SCC mapping results of two recent NYC ordinance sessions, i.e. 2006-2009 and 2010-

2013, as disseminated in this portal based on our corresponding analysis [5]. We later aim to 

expand data coverage on ordinances and tweets. 

 

Figure 5.3 Portal depiction of mapping ordinances to SCCs 

Mapping of tweets to SCCs is illustrated in this portal via real-time pie-chart generation. 

Figure 5.4 portrays results of tweet-mapping with a single SCC while Figure 5.5 and Figure 5.6 
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depict mappings with multiple SCCs. The extent of the tweet’s mapping with each SCC is 

illustrated within the chart (e.g. this is equal for all SCCs in Figure 5.5 while there is a greater 

mapping with one SCC compared to another in Figure 5.6). Such graphics are automatically 

constructed in real-time when a tweet is entered in the portal. These mappings are derived by 

incorporating knowledge from commonsense KBs and domain KBs as depicted in the system 

architecture (see Figure 5.2). An important functionality in LSOMP is Web QA as exemplified in 

Figure 5.7. Here, the user inputs a question and the portal finds the corresponding answer. Such 

answers are based on knowledge discovered via ordinance-tweet mining in our work [3], [4], [5], 

embedded in this portal for dissemination. 
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Figure 5.4 Real-time graphics: tweet to single SCC mapping 
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Figure 5.5 Real-time graphics: tweet to multiple SCCs with equal mapping 
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Figure 5.6 Real-time graphics: tweet to multiple SCCs with unequal mapping 
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Figure 5.7 Example query in Web QA: pertaining to public satisfaction 

5. 1. 4 Scalable Extension: Historical Analysis 

Motivated by the success of our research in this area, we hereby propose a scalable 

extension to this work that entails the analysis of historical data on ordinances and tweets. This 

proposed extension is summarized in Figure 5.8. Users would enter a specific ordinance number 

or search by keywords. The matching ordinance would be displayed as a result of the ordinance 

search functionality. Users would be allowed to select the duration of tweet analysis before and 

after the given ordinance. Accordingly, the results of the polarity classification of the respective 

tweets that map to the given ordinance would be displayed to express the distribution based on 
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the sentiment analysis. Note that this diagram simply depicts the summary of the extension in 

one snapshot to conceptualize the process. In practice, there would be multiple screens for user 

interaction that would convey the ordinance search results, tweet polarity classification based on 

opinion mining etc. This scalable extension leverages approaches similar to those described in 

this work for ordinance-tweet mapping and tweet sentiment analysis guided by CSK and domain 

knowledge on ordinances and SCCs. It would also encompass NLP for interaction between the 

user and the system, as well as for deciphering the ordinances and tweets, given their complex 

legalese and informal tone respectively. The TOLCS approach [3] that provides tweet ordinance 

linkage by significantly reducing mapping complexity for the big data on ordinances and tweets 

would be useful here. We anticipate that this extension would be even more useful in ordinance-

tweet mining, taking into account smart city perspectives. Accordingly, the LSOMP portal for 

dissemination would also be enhanced based on this extended analysis. 
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Figure 5.8 Extension: Historical data analysis of ordinances and tweets 

5. 1. 5 Related Work 

There is much work in sentiment analysis of social media data. Nuortimo [6] conducts 

opinion mining to gauge public acceptance of a system “Case Carbon Capture and Storage” for 

energy conservation. Huang et al. [7] synthesize social media posts, remote sensing data and 

Wikipedia with spatial data mining cum text mining for disaster analysis of past and future 

events. Gu et al. [8] propose a classifier-based method for tweet mining to get traffic incident 

data for highways and small roads. While these works address social media, as far as we know, 

ours is pioneering work on ordinance mining per se in conjunction with tweets, deploying CSK. 

It is in line with recently surveyed works on commonsense knowledge [9]. 
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5. 1. 6 Discussion and Roadmap 

The Web portal LSOMP is seamlessly extensible for expansion, e.g. KBs require updates 

for good mapping, and such functions are inbuilt. Historical analysis of ordinances and tweets, 

based on data mining guided by CSK and NLP incorporating smart city perspectives, is on our 

immediate roadmap. Further enhancement includes deep learning for better mapping accuracy 

and advanced NLP features for Web QA. Future work entails analysis of big data on COVID-

related ordinances and tweets, e.g. post-COVID policy reshaping. This would incur substantial 

big data on ordinances and tweets where our approaches can be scaled with modifications. 
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5. 2 An Ordinance-Tweet Mining App to Disseminate Urban Policy 

Knowledge for Smart Governance 

Abstract: This paper focuses on how populations by the use of technology, more 

specifically an app, can comprehend the enactment of ordinances (local laws) in an urban area 

along with their public reactions expressed as tweets. Furthermore, they can understand how well 

the area is developing and enhancing as a Smart City. The main goal of this research is to 

develop an Ordinance-Tweet Mining App that disseminates the results of analyzing ordinances 

and tweets about them, especially related to Smart City Characteristics such as Smart 

Environment, Smart Mobility etc. This app would be beneficial to various users such as 

environmental scientists, policy makers, city committees as well as the common public in 

becoming more aware of legislative bodies, and possibly contributing in different aspects to 

make the urban area improve as a Smart City. This work fits the realm of Smart Governance due 

to transparency via public involvement.  

Keywords: App development, Human Computer Interaction (HCI), Legislative information, 

Opinion mining,  Twitter data, Smart cities, Urban policy 

(Chapter 5.2 reused the previously published paper Varghese, C., Varde, A., & Du, X. 

(2020), An Ordinance-Tweet Mining App to Disseminate Urban Policy Knowledge for Smart 

Governance, Lecture Notes in Computer Science, Conference on e-Business, e-Services and e-
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Society, I3E 2020, Vol. 12067, 389-401. https://doi.org/10.1007/978-3-030-45002-1_34).  

5. 2. 1 Introduction 

The paradigm of Smart Governance leverages transparency through public inclusion. This is 

gaining impetus with Smart Cities [1, 2]. It is thus important to disseminate knowledge on urban 

policy to the public. Ordinances (local laws) are often publicly available, e.g. [3], yet many 

residents view them as impervious due to complex legalese. Thus, ordinances need mining to 

discover knowledge that a wide spectrum of users can comprehend. A related aspect is public 

opinion on social media. It is important to gauge public reactions on issues related to ordinances 

by opinion mining. The results of mining ordinances and their public reactions need 

dissemination to be easily accessible and understandable. This is the focus of our overall research 

[4, 5]. We address ordinances from publicly available sites, and reactions to them expressed on 

Twitter. We conduct mining on these to discover knowledge on how well the ordinances enhance 

the given area into a Smart City, and to what extent the public is satisfied with the ordinances. 

We conduct such ordinance and tweet mining, guided by commonsense knowledge (CSK) 

[6] to capture subtle human reasoning. We use CSK sources, along with the well-known 

word2vec [7] for ordinance-tweet mapping, and with sentiment polarity classification for mining. 

Based on this, we develop an Ordinance-Tweet Mining App, to disseminate the analysis. In this 

paper, we describe the app development using principles from HCI (Human Computer 
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Interaction), e.g. [8, 9]. We explain the mining of ordinances and tweets leading to useful 

legislative information disseminated by the app. This app provides QA (Question Answering) on 

interesting issues in urban policy. It is user-friendly, including interactive graphs and FAQs 

(Frequently Asked Questions) that facilitate comprehension by the public and experts. Targeted 

users, including the common public and domain experts in environmental management evaluate 

this app. In this paper, we focus on disseminating the results of mining NYC ordinances 

available on its public legislative council website [3]. We collect tweets from NYC through 

location-based data available on Twitter. We consider NYC since it is the financial capital of the 

USA, one of the major metropolitan cities in the world and a leading Smart City (see Figure 5.9) 

[3, 10]. As per world rankings, NYC is among the top 25 smart cities worldwide [11]. This is a 

good achievement. Yet there is scope for enhancement. We address this in the mining of 

ordinances and tweets, and in the corresponding app. 

We present the development and experimentation of our Ordinance-Tweet Mining App 

herewith. To the best of our knowledge, ours is the first app disseminating the outcomes of 

ordinance-tweet mining, leveraging HCI. This app contributes to Smart Governance by making 

information on urban policy ubiquitous and comprehensible. 
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Figure 5.9: NYC (New York City) as a prominent smart city [left] and NYC council website [right] 

5. 2. 2 Overview of Ordinance and Tweet Mining 

In our earlier works, we propose methods for mining of ordinances from websites [4, 12] 

and furthermore, the mining of public opinions about them expressed on Twitter [5, 13, 14]. We 

use these methods for ordinance-tweet mining within NYC and conduct evaluation as included in 

our papers [4, 5, 12–14]. As stated in [5, pp. 1721–1722], “an important focus in our work is to 

determine to what extent such ordinances contribute to establishing the relevant urban region as a 

Smart City. Hence, we categorize ordinances based on their pertinent Smart City Characteristics 

(SCCs). We aim to connect ordinances to relevant tweets by drawing on their semantic 

relatedness. This is nontrivial, as ordinances and tweets both involve highly intricate and rather 

heterogeneous natural language, so simple keyword matching does not suffice. We propose a 

two-step approach for mapping that exploits the transitive nature of the connection between 

ordinances and tweets considering their relationship with SCCs. Specifically, the transitive 
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property we invoke is that: if the ordinance relates to a given SCC and any tweet relates to the 

same SCC, then the ordinance bears a connection to the tweet. This approach is proposed 

because classical sources of SCC data e.g., [1, 2] are finite and are restricted to a limited set of 

identifying features that can be relied upon for mapping. Thus, this transitive approach is more 

feasible than attempting to directly relate a seemingly infinite number of tweets to ordinances 

from various websites. As a first step, we discover connections between SCCs and ordinances 

using classical SCC sources [2] guided by commonsense knowledge (CSK) from web-based 

repositories [15, 16]. In the second step, we consider the mapping of tweets to SCCs, again 

drawing on such CSK. This approach then enables us to directly relate ordinances and the tweets 

to the pertinent aspects of Smart Cities and also sets the stage for sentiment polarity 

classification” [5, pp. 1721–1722]. Based on this, our mapping algorithm is Algorithm 1, as 

presented herewith [5]. 
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As stated in [13, pp. 841–842], “we conduct sentiment analysis to discover knowledge 

specifically with respect to opinion mining of tweets on ordinances. This is conducted after the 

mapping of ordinances to tweets. The primary database used for An Ordinance-Tweet Mining App to 

Disseminate Urban Policy Knowledge 391 Sentiment Analysis in this work is SentiWordNet [17]. This is 

an enhanced version of the CSK source WordNet [15]. It groups words into synonym sets 

(synsets) annotated by how positive the terms are. Accordingly, words are classified as positive, 

negative or neutral based on polarity of terms. In SentiWordNet, different meanings exhibited by 

the same word can have different sentiment scores. For example, the word estimable when 

relating to computation has a neutral score of 0.0, while the same word in the sense of deserving 

respect is assigned a positive score of 0.75. The process we deploy for sentiment analysis of 

tweets constitutes a semi-supervised learning method using SentiWordNet. Through this, subtle 

human judgment through commonsense in understanding emotions is embodied in the mining 

processes with specific reference to context” [13, pp. 841–842]. Accordingly, our algorithm for 

polarity classification of tweets is Algorithm 2 as presented next [13]. 
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As further stated in [13, pp. 841–842], “based on this algorithm, we classify thousands of 

tweets that we obtain from Twitter. Note that the selection of relevant tweets and also the 

mapping of tweets to their respective ordinances is guided by CSK. We construct SCC-based 

Domain KBs (Domain-Specific Knowledge Bases) [5, 13, 14] derived from WebChild [16] and 

WordNet [15], to filter out unwanted tweets as a first step, followed by the mapping of tweets to 

relevant ordinances using SCCs as a next step” [13, pp. 841–842]. We start mapping groups of 

ordinances to tweets [5, 13], and then connect them with each other at finer levels of granularity 

[14] by mapping individual ordinances to tweets. This is via ordinance KBs in addition to SCC 

KBs, incorporating pragmatics and semantics through CSK and domain knowledge respectively 

[14]. The mining in our work is on ordinances and tweets from NYC, using a public council site 

[3] and Twitter location-based data. The results of the SCCbased ordinance analysis and tweet 

polarity classification comprise significant inputs for building the Ordinance-Tweet Mining App. 

We now describe its design process. 
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5. 2. 3 Approach for App Design 

With the advancement in technology over the years, we are now benefiting from the “The 

Digital Age” which gave rise to the Internet and various mobile devices. This has digitized many 

institutions over the past few decades with governments processing applications via e-

government websites that help people process their applications faster and avoid long wait 

periods. Retail stores today have e-commerce websites that help them reach a global audience. 

This progress has evolved the manner in which we do business on a higher scale. New 

technologies emerging in AI will help improve urban policies significantly [18], especially with 

respect to outreach initiatives. Users today often wish to have ubiquitous access to information. 

This leads to the development of apps. Accordingly, in the realm of e-government, an app for 

disseminating the results of ordinance-tweet mining is useful. 

Based on this background and the overview of our ordinance and tweet mining research, we 

explain our proposed approach to design an Ordinance-Tweet Mining App. We comprehensively 

use principles from Human Computer Interaction (HCI) [8, 9, 19, 20] to create a user experience 

that would be all encompassing for various users. An important concept in HCI is Fitt’s Law [9, 

pp. 518–519], i.e., “T = k log2 (D/S + 1.0) where T = time to move the pointer to a target, D = 

distance between the pointer and the target, S = size of the target, k is a constant of 

approximately 200 ms/bit”. We incorporate Fitt’s Law in our app design. Thus, we design items 
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in the app such that they are big enough to enable users to spot them fast, especially as 

navigation proceeds further from the opening screen. Yet, these items are small enough to fit on 

the required screens, and hence users do not need to spend much time while searching. 

For the layout of the app, we use another HCI concept, i.e. “mockup designs”. Mockups are 

multiple designs created by interviews with “stakeholders” that give an overview of the blueprint 

of the app [8]. Stakeholders in HCI terminology are various influential groups such as domain 

experts who have a thorough knowledge of the field; students/working professionals involved in 

providing data; and end-users ranging from novice to expert, and casual to frequent [8]. Among 

the mockups, we select the best designs for the app layout and screens. Other HCI aspects we 

incorporate are the simplicity and efficiency of the interface [20]. These include navigation, the 

time spent to find an answer to a question asked by the user, and the analytical graphs displayed. 

Considering HCI, some principles used in the app adhere to the guidelines of Google’s material 

design [19] to ensure that the app is up to date with the current and latest software, and to 

warrant that the app runs smoothly without errors or bugs. Another HCI aspect is a “metaphor” 

[9]. The term metaphor refers to conceptualization of actions, typically for the interface. For 

example, a shopping cart is an interface metaphor used for checkout in online shopping. We 

incorporate metaphors in our app for various purposes, e.g. to depict different ordinance 

departments and smart city characteristics. 

Good design of this app entails navigating pages without spending too much time on 
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locating the options that the users need [20]. Based on HCI principles, Figure 5.10 illustrates the 

navigation of the app in an efficient manner to access the given information. For details, please 

see [21]. This navigation keeps the users engaged and alert. Another important factor is the 

specific usage to assess the emotions of users while navigating the app and seeing the results. In 

order to incorporate this, we make sure that the intermediate pages and end-results focus on 

inclusion and interactive design elements [19]. 

 
Figure 5.10: App navigation flowchart 

5. 2. 4 Implementation of the App 

For the implementation of the Ordinance-Tweet Mining App, we use Android Studio [22, 
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23] as the Integrated Development Environment (IDE). Android Studio provides useful features 

that make the actual programming of app very convenient and efficient. The IDE facilitates 

development and use for anyone ranging from a beginner to a fullfledged software engineer [24]. 

Some features of Android Studio are:  

• Code Completion  

• Creation of Templates  

• Instant App Run  

• Fast Emulator  

• Smart Code Editor  

• Kotlin Programming Language Support  

Based on these features, we implement the Ordinance-Tweet Mining App deploying 

Android Studio. Figure 5.11 illustrates the implementation process using UML for Android 

Development [23] with a self-explanatory diagram. For a more detailed explanation, please see 

[21]. Given this implementation, Figure 5.12 shows a snapshot of the app layout. The left screen 

in the figure serves as a landing and welcome page with a call to action button labeled “Get 

Started”. This lets the users know that they can access the app and navigate to the desired 

location. The center screen gives a brief description of the app. Once the users are ready to select 

an option, they can click on “Select Ordinance Session”. The right screen serves as an action 

sheet. Action sheets are helpful whenever there are multiple actions [20]. They work well on this 
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screen, since it shows the different options for the region and the sessions that the users can 

select. 

 

Figure 5.11: Implementation process of the app using the Android platform 

 

Figure 5.12: Layout screens of the Ordinance-Tweet Mining App 

Figure 5.13 depicts the screens with FAQs and corresponding results of ordinance mining 
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for the NYC ordinance passing sessions considered [3], i.e. Session 1 (2006– 2009) and Session 

2 (2010–2103). The leftmost screen includes general questions that users may have for example, 

“What is a smart city?” “What specific characteristics does a smart city have?” and so on. The 

other screens depict the outputs from the mining of the specific sessions and the combined 

results from mining both the sessions. 

 

Figure 5.13: FAQs for various selection categories in the app 

5. 2. 5 Experiments and Discussion 

In order to evaluate the app, we conduct user surveys [21]. We create survey questions using 

a Likert Scale format [9]. We summarize the results in Figure 5.14, Figure 5.15 and Figure 5.16. 

These encompass the feedback of 34 participants with an assortment of computer and 
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environmental scientists, students, lawyers, policymakers and researchers. The main questions 

are as follows with responses on a scale of 1–5 [1: Strongly Agree… 5: Strongly Disagree]  

• Q1: Do you find this app, quick and easy to use?  

• Q2: Does this work increase public awareness of urban policy?  

• Q3: Do you feel NYC is getting better as a smart city? 

 

Figure 5.14: Responses to Q1: “Do you find the app quick and easy to use?” 

 

Figure 5.15: Responses to Q2: “Does this work increase public awareness of urban policy?” 
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Figure 5.16: Responses to Q3: “Do you feel NYC is getting better as a smart city? 

As seen in these figures, the user survey results indicate favorable responses towards this 

app. After collecting the data from the surveys, it is evident that the app is feasible for use and 

makes users more aware of urban policy. Many users feel that NYC is getting better as a smart 

city while some are neutral. In addition to the Likert scale evaluation, some comments included 

by the users in the survey are as follows.  

• “This can be useful in courses on urban policy”  

• “This app looks great – simple and informative is what New Yorkers need. I would have 

liked to have access to links to the researcher’s published work, if available or maybe lists of 

smart city ordinances as a resource.”  

• “Very good usage of graphics, makes data easier to understand”  

• “Great work you are doing. Well-done”  

• “I am interested in understanding the technology behind this product” 

Based on these survey results and the general feedback received from the users we can infer 

that the work on extracting ordinance data and conducting sentiment analysis through mining of 
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tweets have proven useful by reaching a larger audience and by disseminating information that 

may not have been readily available to the public earlier. Please note that our research on 

ordinance-tweet mining as well as the development of this app both constitute pioneering work 

in the area, to the best of our knowledge. Hence, we do not conduct comparative studies for the 

mining or the app development.  

All this work is in line with the recent concept of greater awareness and more transparency 

in governance. Some local celebrities have played their part by influencing laws that improve 

society. Tim Tebow, a quarterback for NY Jets inspired South Carolina legislators to pass the 

Equal Access to Interscholastic Activities act in May 2012. Also known as the “Tim Tebow Law” 

[25], this allows homeschooled children to participate in public school extracurricular activities. 

Candy Lightner founded the “Mothers against Drunk Driving (MADD)” organization to ensure 

sterner laws against drunk driving [26]. Due to the media attention this organization received 

with Candy’s story, it raised more awareness of driving responsibly. Likewise, our Ordinance-

Tweet Mining App, the first of its kind, is likely to play an important role in making the public 

more aware of legislative policies and take action needed for enhancement. This concept fits the 

realm of Smart Governance [1, 2], a characteristic of Smart Cities that leverages greater 

transparency in governing processes via more public involvement.  
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5. 2. 6 Related Work 

Social media users generate massive amounts of information in their daily life. Scientists 

consider that as valuable data for various studies on urban policy, traffic, energy conservation, 

climate change, disaster management etc. Social media text mining is therefore a powerful tool 

to extract useful knowledge.  

Gu et al. [27] propose a method to use tweets for gathering road incident information. They 

build an API (Application Programming Interface) to compare incidents recorded on social 

media and in traditional databases. This not only validates existing incident information but also 

finds new incidents, thus supplementing the data in databases. Gandhe et al. [28] conduct 

sentiment analysis of data from Twitter on political scenarios, urban events etc. As stated in [28, 

p. 57], the “proposed approach entails a hybrid learning method for classification of tweets based 

on a Bayesian probabilistic method for sentence level models given partially labeled training 

data”. The advantage is that the approach is semi-supervised, and works even with partly labeled 

data. Nuortimo [29] studies social media data from multiple platforms to understand public 

reactions for a system called Case Carbon Capture and Storage, to control carbon dioxide 

emissions. Results show that the overall reactions are positive. This study indicates that social 

media mining could be a great tool to measure public awareness and acceptance for topics 

related to energy and climate. Huang et al. [30] assess disaster analysis of historical and future 
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events. They gather social media, remote sensing and Wikipedia data, performing spatial analysis 

and social media mining. Their results show that social media mining enhances disaster analysis 

and provides real-time tracking. 

All these works demonstrate the potential of social media mining. Accordingly, if an app 

disseminates knowledge from such mining for public outreach, it would have broader impacts on 

sustainability and Smart Cities [1, 2, 11], especially with reference to Smart Governance [2]. It 

would foster building other related apps. The sharing of data via such apps would benefit 

pertinent research. Various useful mobile apps for Androids exist in the literature, as described in 

recent work [31]. Our design and development of the Ordinance-Tweet Mining App contributes 

to this overall realm.  

Various aspects of AI can make an impact on Smart Cities as surveyed in the literature [2, 6, 

18, 32–34]. AI can help record car activity, foot traffic, types of shoppers that go to different 

retailers, their preferences, availability of parking spots etc. These are minor details yet they 

make big impacts to create efficient solutions [18]. AI can contribute to autonomous and semi-

autonomous driving through incorporation of CSK-based techniques for enhanced decision-

making [6, 32]. AI can play a role in augmenting object detection for Smart Mobility in Smart 

Cities with neural models, deep learning, CSK and adversarial datasets [6, 33, 35]. Another 

major aspect is AI in lighting. NYC has bright lights, which imply significant energy 

consumption. Thus, if lamppost design occurs with sensors, these can adjust their brightness 
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depending on the amount of traffic within the area. In some cities such as Amsterdam, canal 

lights dim and brighten based on pedestrian usage [2]. Likewise, AI can contribute to several 

aspects of Smart Cities [34]. Our work in this paper is a step in this direction, using HCI-based 

app design and disseminating the results of mining ordinances along with their public reactions. 

Hence, this paper makes an impact on Smart Governance in Smart Cities. 

5. 2. 7 Conclusions 

This paper addresses the development of an Ordinance-Tweet Mining App that disseminates 

knowledge discovered by mining ordinances in a given region and tweets about them, especially 

relevant to Smart Cities. Through this app, users from various backgrounds can obtain quick and 

easy access to legislative information. Via the app the public can make better decisions and 

contributions, e.g. by understanding policies and public reactions, they can participate city 

council committees, or support their region through financial means and community outreach. In 

addition, this app can provide decision support to lawmakers by providing ubiquitous 

information, and can enhance the scope of study for researchers through future issues emerging 

from the work here. To the best of our knowledge, ours is the first ever Ordinance-Tweet Mining 

App. While this app focuses on NYC in particular, it can foster the development of similar or 

related apps for other cities, by reuse of the approaches and data with modification.  

Future work includes embedding intricate NLP (Natural Language Processing) along with 
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semantics and pragmatics in order to facilitate direct QA (Question Answering) beyond static 

FAQs (Frequently Asked Questions) and keywords. This would encompass advances in the field 

of CSK (Commonsense Knowledge) to fathom the QA text and give enhanced responses in the 

app based on the mining results. This An Ordinance-Tweet Mining App to Disseminate Urban Policy Knowledge 

399 constitutes part of our ongoing research. In general, our work in this paper makes a broader 

impact on Smart Governance. 
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5. 3 Sentiment Analysis of Twitter Data with Hybrid Learning for 

Recommender Applications 

Abstract: This paper proposes a sentiment analysis approach to extract sentiments of tweets 

based on their polarity and subjectivity, classify them and visualize results graphically. This helps 

to understand opinions of existing users that can be helpful in future recommendations. Our 

proposed approach entails a hybrid learning method for classification of tweets based on a 

Bayesian probabilistic method for sentence level models given partially labeled training data. For 

implementation, we use AWS to extract data from Twitter, store extracted data in MySQL 

databases and code Python scripts in order to implement the analyzer. The graphical models are 

viewed using IPython Notebook. The results of this work would be helpful in providing 

recommendations to users for product reviews, political campaigns, stock predictions, urban 

policy decisions etc. The novelty of this research lies mainly in the hybrid learning method for 

sentiment analysis. We present our approach along with its implementation, evaluation and 

applications.  

Keywords: Data Analytics; Hybrid Learning; Recommenders; Opinion Mining; Social 

Media; Twitter; Urban Policy 

(Chapter 5.3 reused the previously published paper Gandhe, K., Varde, A., & Du, X. (2018), 

Sentiment Analysis of Twitter Data with Hybrid Learning for Recommender Applications, 



260 

 

 

 

 

In 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication 

Conference (UEMCON) (pp. 57-63), New York City, NY, USA, 

https://doi.org/10.1109/UEMCON.2018.8796661). 

5. 3. 1 Introduction 

Sentiment Analysis refers to the automated study and investigation of evaluative text and 

tracking of predictive judgments therein. [1]. Due to the advent of social media, people enter 

their feeds on various events, products, current affairs and so on. These feeds are the actual 

opinions of influential people who feel free to express their views on social networking sites 

such as Twitter, Facebook etc. If we analyze these feeds, we are often likely to get truer, clearer 

opinions of people than from a guided survey [2]. Results of such analysis can be useful in 

various areas as follows.  

Product Reviews: “What do people think about a particular product?” We can find reviews 

of any product/event/movie etc. from sentiment analysis. These results can be useful to the buyer 

as well as the seller. The buyer can pick up the best product as per their requirement. The seller 

can keep a closer watch on the product reviews, which can be used to improve the quality of the 

product.  

Political Elections: “What are the public sentiments about the candidate/campaign?” The 

mood of the public is especially important during political campaigns. The results in this case 
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can be extremely useful for candidates to design or alter their campaigns. Candidates can get a 

clear picture of the issues that really concern people. Also, the results can be used for prediction 

of the winner.  

Search Engine Optimization (SEO): “What are people talking about as trending news?” 

Creating SEO friendly content is the key for any Website to get a high rank. From sentiment 

analysis, we can figure out the hot topics that interest people and that should be displayed on 

search engine home pages as headlines.  

Stock Market: “What stocks should we invest in to maximize our gains? Market sentiment 

is the attitude of investors. Nowadays, investors are known to measure market sentiment through 

the use of news analytics, which include sentiment analysis on textual stories about companies 

and sectors. Thus, sentiment analysis can be used to find the market sentiment and hence predict 

the price development in stock markets.  

Urban Policy: “What is the reaction of the city residents to various policies implemented by 

their legislators? These policies could pertain to the urban legislations are passed with respect to 

issues such as managing the environment, making information accessible to the public, imparting 

education, making healthcare more affordable and providing a good quality of life to residents on 

the whole. They could be related to general legislation on the whole, or to specific action 

pertaining to certain significant events. The opinions expressed by the public on Twitter can offer 

insights into their extent of satisfaction with urban policy matters. The analysis of these public 
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sentiments can be useful for providing recommendations to urban agencies for decision making. 

Given this background, we focus on our goals. We consider Twitter to get social media feeds. 

Tweets constitute microblogging with maximum character limits. Thus, we find that tweets being 

compact are very good for efficient sentiment analysis. Our goals are thus to: 

 Analyze tweets and discover useful knowledge for various areas such as product 

reviews  

 Provide inputs that could be potentially useful for recommender applications in these 

areas 

5. 3. 2 Related Work 

A broad overview of the existing work in sentiment analysis is presented in [3]. The authors 

describe existing techniques and approaches for an opinion-oriented information retrieval. In [4], 

the authors use Weblogs as datasets for sentiment analysis and use emoticons assigned to blog 

posts as indicators of users’ moods. The authors apply SVM (support vector machines) and CRF 

(conditional random field) learners to classify sentiments at the sentence level and then 

investigate several strategies to determine the sentiment.  

The work in [5] uses emoticons to form a training set for sentiment classification. They 

collect texts containing emoticons from Usenet newsgroups. Datasets are divided into “positive” 

(texts with happy emoticons) and “negative” (texts with sad or angry emoticons) classes. 
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Emoticon-trained classifiers, SVM and Naive Bayes, are able to obtain up to 70% accuracy on 

the test set.  

The authors [6] use Twitter to collect training data and perform a sentiment search. They 

construct corpora by using emoticons to obtain “positive” and “negative” samples, and then use 

various classifiers. The best result is obtained by the Naive Bayes classifier. The authors are able 

to obtain up to 81% accuracy on their test set. In the work [7], the authors use the Twitter corpus 

to predict political elections in Germany. Their results show that Twitter is indeed used 

extensively for political deliberation.  

In the research by [8], the authors augment accuracy of sentiment analysis by properly 

identifying semantic relationships between sentiment expressions and subjects. They are able to 

achieve precision of 75%-95% depending on inputs. The dataset they use consists of about a half 

million Web pages and a quarter million news articles. They do not use Twitter datasets.  

In [9], the focus is on Twitter for the task of sentiment analysis. They use a method for the 

automatic collection of a corpus that can be applied to train a sentiment classifier. They use 

TreeTagger for POS-tagging and observe the difference in distributions among positive, negative 

and neutral sets. The classifier they use is based on the multinomial Naive Bayes that uses N-

gram and POS (part-of-speech) tags as features.  

Our work is somewhat orthogonal to the existing literature. We consider sentiment analysis 

on tweets in particular. The novelty of our research is that we propose a hybrid learning approach 
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that works even when pre-labeled training data is not fully available. The goals are specifically to 

mine the opinions of users with the intention of providing good recommenders for applications. 

5. 3. 3 Sentiment Analysis Models and Methods 

We first describe the models and methods that exist in the literature on sentiment analysis in 

order to propose our specific approach in this paper. 

5. 3. 3. 1 Document Level Model 

In this model, whole document is classified as positive or negative. Documents can be 

opinionated. A document may be a review on a Website such as Trip-advisor or another source 

such as a company whitepaper. Consider the example shown in Figure 5.17. In this example, the 

user has posted review of a hotel. This review has multiple sentences. It includes some positives 

(“Beautiful hotel”, “great location”) and some negatives (“sad service”, “just painful”). The 

overall opinion of the review is calculated in document level classification. Due to multiple types 

of sentiments, classifying a document can be challenging task. 
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Figure 5.17: Example of document level model 

5. 3. 3. 2 Sentence Level Model 

This model classifies a single sentence as positive, negative or neutral. Since a single 

sentence is generally likely to have only one sentiment (positive or negative), it is easier to 

classify than document. Also, it is more accurate than document level classification. An example 

of this model appears in Figure 5.18. 

 

Figure 5.18: Example of sentence level model 

In sentence level classification, two sub-tasks are performed:  

1. Subjectivity classification: Determine whether the sentence is a subjective or an objective 
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sentence,  

2. Sentence-level sentiment classification: If the sentence is subjective, determine whether it 

expresses a positive or negative opinion.  

For instance, in Figure 5.18 the tweet is highly subjective and has a positive sentiment.  

5. 3. 3. 3 Supervised Learning Method for Analysis 

In sentiment analysis, supervised learning involves techniques of learning from human-

annotated labeled training data (as in supervised learning elsewhere). The training datasets have 

examples with a text and label pair. Consider the example shown in Figure 5.19. 

 

Figure 5.19: Example of training set in supervised learning for sentiment analysis 

In this example, the reviews and the polarity of reviews are used as training data. These 

training data reviews are classified manually. When these datasets are used for training, the 

learning technique uses the concerned functions to map these to new unseen examples (input). 

The respective algorithm would then classify the unseen input correctly. We can collect the 
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correct datasets, determine the input features, select the algorithm to be used and run the 

algorithm on training data. Once this is done, the accuracy of the algorithm can be evaluated 

using test data.  

5. 3. 3. 4 Unsupervised Learning Method for Analysis 

This type of learning for sentiment analysis does not need human-annotated data. It uses 

lexical methods to classify the unlabeled data. Opinion words and phrases are the dominating 

indicators for sentiment classification. Unsupervised learning in sentiment analysis is generally 

based on such opinion words and phrases. It performs classification based on some fixed 

syntactic phrases likely to be used to express opinions. (e.g., noun phrases) Unsupervised 

learning overcomes the limitation of supervised methods (where pre-labeled training datasets are 

essential). 

5. 3. 4 Proposed Approach: Hybrid Learning 

We propose a hybrid approach combining supervised and unsupervised learning in 

sentiment analysis. This is because we intend to take advantage of labeled training data whenever 

available but also need to classify tweets that lack specific labels. The approach is described 

next.  
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5. 3. 4. 1 Overview of Approach 

We strongly prefer sentence level models in this proposed approach of hybrid learning for 

sentiment analysis. This is because are useful for microblogging sites such as Twitter, since the 

maximum limit of a tweet is 280 characters. Thus, a sentence level model would fit better as a 

sentence would typically have less than 140 characters (very few documents are that small). 

Sentence level models would also be more precise for sentiment classification due to likely 

having only one sentiment per tweet.  

We propose to build a classifier for sentiment analysis deploying the classical Naive Bayes 

concept [10]. The Naive Bayes algorithm uses some probability theory aspects explained as 

follows.  

P(Cj|D) = P(D|Cj) P(Cj) / P(D)  

where, P(Cj|D) = probability of instance D being in class Cj  

P(D|Cj) = probability of generating instance d given class Cj  

P(Cj) = probability of occurrence of class Cj  

P(D) = probability of instance D occurring  

Thus, in the case of unlabeled samples in the training data, Naive Bayes can find the 

probability of them being either positive or negative based on similar pre-classified data. In 

many practical applications, parameter estimation for Naive Bayes models uses the method of 
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maximum likelihood. Thus, it calculates all the probabilities of a feature being positive or 

negative using the training dataset. The probability of a sentence in test data to be positive or 

negative is calculated based on the formula herewith. For multiple feature data sets, Naive Bayes 

assumes that each feature is independent of other features in the dataset.  

Thus, in our context, Naive Bayes would be interpreted with an example as follows. Given 

that a person expresses an opinion in a university Website tweet, we need to know whether the 

person is male or female, furthermore whether he/she is a professor or a student. This 

classification is performed based on learning from pre-classified datasets of tweets with the 

gender and occupation included, by applying the probability concepts herewith.  

Based on these concepts, we build a classifier to conduct sentiment analysis, focusing on 

specific words in the tweets that correspond to features in the item of interest with respect to the 

given domain. The steps of our hybrid approach for sentiment analysis are explained next.  

5. 3. 4. 2 Steps of Sentiment Analyzer 

We build the sentiment analyzer with the following steps:  

1. Create a Twitter Developer Account: Twitter requires authentication by OAuth (Open 

Authorization) to use the Twitter API for any application. To collect tweets using this, the user 

needs to authenticate requests. We thus create a developer account to get the authentication.  

2. Collect the Tweets: To collect tweets, we use Twitter API and Amazon Web Services 
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[AWS]. For this, we create the S3 bucket and then code Python scripts to collect tweets with 

keywords, e.g., iPhone, Samsung Galaxy, Amazon Fire etc.  

3. Store the Tweets in a Database: Once the desired data is in the S3 bucket, we download 

the files, convert to CSV files and import them to a MySQL Database for further computation.  

4. Implement the Analyzer: We implement the sentiment analyzer using TextBlob, a Python 

library for processing textual data. The details of the implementation are explained in the next 

section.  

5. Analyze the Results: We get the information about the polarity of each feature in a tweet, 

which is stored in json file. The Python script calculates and classifies the features with polarities 

from this file. Thus, as an output, we get the number of positive and negative tweets about 

features of a product, e.g., for a given model of the iPhone, it gives the average polarity of tweets 

for its battery, camera etc.  

6. Visualize the Output: Using polarity information, we visualize the data and present it in a 

user-friendly manner. Graph plotting can be done using IPython Notebook, MatLab etc. GUI 

development can be done as needed. This extends the console-based approach to interactive 

computing in a qualitatively new direction, providing Web-based applications suitable for 

capturing the computation process: developing, documenting, executing code and 

communicating the results.  

After building the sentiment analyzer using these steps, the results plotted in graphical form 
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allow the end users to easily detect which features are good or bad in an item. This can be helpful 

for making decisions. 

5. 3. 5 Implementation of Sentiment Analysis Approach 

We implement the sentiment analyzer using TextBlob. This is a Python library for text data 

processing that provides a consistent application programming interface (API) for diving into 

common NLP (natural language processing) tasks such as POS (part-of-speech) tagging, noun 

phrase extraction and further analysis. TextBlob stands on the giant shoulders of NLTK and 

Pattern. NLTK is the Natural Language Tool Kit for Python that helps to build Python programs 

to work with human language data. Pattern is Python’s Web mining module with tools for 

machine learning, data mining, network analysis and more.  

In this implementation, we use the TextBlob classifier module to classify the tweets as 

positive or negative. Tweets are stored in MySQL database. MySQL DB module of Python is 

used to communicate with database. Using this, MySQL connection is established, tweets are 

fetched from table and each tweet is processed as follows.  

First, the tweet is cleaned. For example, consider a tweet from 2014: “Yes it’s true, the 

revolutionary iPhone6 is up for launch, finally! \\Have you Pre-registered? \#iPhone6india 

@MehekMahtani”. We need to remove hashtags, usernames etc. If there is any URL, we should 

remove that as well. Also, extra spaces, multiple characters should be removed. We use following 
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two functions as shown in Figure 5.20 for tweet cleaning. 

 
Figure 5.20: Functions to clean the tweets 

First, we convert each tweet into lowercase. Then we check if it contains any URL by 

searching for www and https in the tweet. If found, we just remove the URL. Similarly if we find 

@username, we remove it as we do not need the username to classify polarity. We also replace 

hashtag with a normal word that describes the hashtag. By processing each tweet in this manner, 

we minimize clutter and provide clean tweets to Textblob for better accuracy. Pattern, the Web 

mining module of Python is used to find repetitions of particular characters in a tweet. We 

replace the repeated characters for better accuracy. After cleaning the tweet, we pass the tweet to 

Textblob for classification.  
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Once the tweet is classified, we extract features from the tweet (e.g., Battery Life, Size, 

Looks etc.). For this, we make use of Sentiword [11] which is a huge lexical source of words and 

their respective sentiments. We extract Nouns and Verbs from the tweet and check the feature list 

to find out whether any of the features are present in the tweet. An example of a feature list 

appears in Figure 5.21 

 

Figure 5.21: Feature List Example 

If a token matches, we store the features with polarity, subjectivity and sentiwords (if any) 

of tweet in json file. Thus, we get the class (positive / negative) and the feature of the tweet. For 

this we download the positive and negative words and import them in the database. We find that 

adjectives and adverbs in the tweet (ADJ and ADV) show the actual sentiment / opinion about 

the feature (Noun / Verb) in the tweet. To store sentiwords, we classify them in two categories. 

The sentiment is 1 if the word is positive and it is 0 if the word is negative. Figure 5.22 shows a 

partial snapshot of a sentiword table in a MySQL database. 
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Figure 5.22: Partial snapshot of a sentiword table 

After conducting this implementation, we get an output file which stores the polarities of 

the tweets. Figure 5.23 shows an example of a json file used to store the output. 
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Figure 5.23: Example of output file 

This output is with reference to the iPhone 6 product example from 2014. A Polarity of 1.0 

means that the statement is 100% positive while negative polarity is denoted by -1.0. Also, the 

statement is either subjective or objective. If the tweet is objective, it is denoted by 0.0 whereas 

the extent of subjectivity is expressed by the term “subjectivity” in output file. Thus, higher the 

number, higher is the subjectivity of the tweet. The output can be used for visualizing the results. 

Visualization can be done by graph plotting and helps to make the output more appealing to the 

end users at-a-glance. An example of graph plotting is shown in the experimental results as 

described next. 

5. 3. 6 Experimental Evaluation 

We conduct the performance evaluation of our sentiment analyzer with real data from 
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Twitter. A summary of our evaluation is presented herewith.  

An important category of our experiments involves collecting tweets in the smartphone 

domain. This is with the goal of providing recommendations to buyers and sellers of various 

smartphones and helping product launches. We collect real data from tweets and process it as 

follows.  

5. 3. 6. 1 Data on iPhone 6 

The datasets we download here consist of around 7000 tweets (2000-iPhone6, 2000-

iPhone6 plus, 1000-Samsung Galaxy, 1000-Amazon Fire, 1000-HTC) from the year 2014. These 

tweets are analyzed and used to find the sentiments about the products. We plot the results of 

sentiment analysis in graphical form, so as to enable the end users to easily analyze which 

features are good or bad in the products.  

An example of such a graphical plot appears in Figure 5.24. This figure shows that 

according to tweets, sentiments are positive for iPhone6 model in general (0.2) but are negative 

specifically for its Camera (-0.8) and its Battery (-0.4). Thus, we can infer that influential users 

entering these tweets are more interested in the overall outlook of the iPhone 6 per se than in 

some of its individual features. Such information can be used in product recommendations. 
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Figure 5.24: Graph plotted from sentiment analysis for iPhone 6 product review 

In retrospect, we find that these recommendations have actually been useful. The iPhone6 in 

2014 did indeed get very well-received by customers overall, however its battery seemed to pose 

some problems and its camera was often rated relatively low as compared to that of other 

products (such as Samsung Galaxy). Thus, the experimental evaluation presented herewith based 

on sentiment analysis conducted corroborates the real reception of the product. This confirms the 

validity of the sentiment analysis. 
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5. 3. 6. 2 Data on Peatland Fires 

Peatlands have much organic matter caused by decomposition of plant residue. Indonesia 

has the maximum peatlands in South East Asia. Pollutants from these fires affect neighboring 

areas, e.g., Singapore due to which Indonesian Peatland Fires (IPFs) are considered international 

hazards in Environmental Management. Airborne particulates pollution is a major concern. 

Research shows that rhinitis, asthma, and respiratory infections increase if particulate 

concentration is of hazardous level [12]. Thus, regulatory policies have been passed by 

Singaporean urban agencies to counterbalance the hazardous impact of IPFs. Singapore has an 

air quality system PSI (Pollutant Standards Index) with 6 pollutants: sulphur dioxide (SO2), 

particulate matter (PM10), fine particulate matter (PM2.5), nitrogen dioxide (NO2), carbon 

monoxide (CO) and ozone (O3). Their environmental agency publishes PSI levels hourly 

through websites such as haze.gov.sg. People get this PSI information through and tweet their 

reaction on daily PSI level and air quality.  

We use this Twitter data in the experiments shown here and analyze it based on the 

approach described in this paper. This gauges the sentiments of the public expressing their 

opinion on the policies taken by their agencies to deal with this event, namely Peatland fires. The 

results of the sentiment analysis are summarized in Figure 5.25. The data shown in this chart is 

based on two different user groups in the same region but different time periods, separated by six 
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months. 

 

Figure 5.25: Area Chart for Sentiment Analysis of IPF Impact 

The chart shows that policies to counterbalance the effect of IPF-based pollution appear to 

be fairly good since around 60% of users express positive sentiments. Yet, there is potential for 

improvement as around 25% of users are neutral and 15% are negative in their sentiments. This 

opinion mining thus provides useful inputs to government bodies in the respective region and 

also to its prospective residents.  

5. 3. 6. 3 Data on NYC Ordinances 

We investigate data on ordinances or local laws in the NYC metropolitan area [13]. In the 

experiments shown here, we collect around 5000 tweets posted by the public in NYC pertaining 

to ordinances on various general policies pertaining to the economy, transportation etc. These 
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tweets are subject to sentiment analysis using the approach explained herewith. The results are 

summarized in the pie chart in Figure 5.26. 

 

Figure 5.26: Pie Chart on Public Reactions to NYC Ordinances 

It is clear from this pie chart that the percentage of positive tweets is the highest of all, thus 

we can infer that residents of NYC seem to approve of their urban policies on the whole. 

However, note that positive sentiments are conveyed by less than half the total number of 

residents here, which means that there is scope for further enhancement with respect to urban 

policy. Such charts can serve as recommendations to the urban management agencies. Further 

details can be provided on the specific aspects in which there is need for improvement, e.g., 

similar charts expressing sentiments on policies in the economic sector alone or transportation 

sector alone etc. Thus, if the greatest percentage of negative tweets come from a particular sector, 

it can be inferred that there is need for better policies in that sector. Conversely, if the public 

seems highly satisfied with policies on a given aspect, e.g., environment, that serves as positive 
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feedback in recommendations.  

Likewise, several experiments have been conducted. The results of these experiments have 

actually been found useful in providing recommendations to prospective users.  

5. 3. 7 Recommender Applications 

Based on sentiment analysis conducted with real data, we now describe its targeted 

applications in recommenders.  

5. 3. 7. 1 Product Reviews 

We consider reviews from the angles of sellers, buyers and product launches.  

Seller: Our sentiment analysis approach can predict how the product is doing in the market. 

For example, by studying the graphical plot shown in Figure 5.24, a seller can determine that 

users are interested in the iPhone6 overall. Likewise, with other such plots, Apple can get an idea 

of how well a given iPhone model is received by public, what features should be incorporated in 

next model etc.  

Buyer: From a buying angle, our approach can help in comparing features from various 

sellers to decide which product or service best suits their needs, e.g., if features pertaining to 

hotel reviews from Websites like tripadvisor.com are visually depicted (analogous to Figure 

5.24), users can select a hotel based on previous reviews.  
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Product Launch: Our approach can make existing users affect new product launches. For 

instance, controversies related to movies can lead to a good start. Referring to Figure 5.24, if 

there were negative tweets about a movie (as for cameras and batteries here), its launch would 

likely succeed (as the iPhone 6 launch did). This is because existing viewers would convince 

new ones to watch the movie to find controversies.  

5. 3. 7. 2 Political Elections 

We focus on outcome prediction and campaigning processes in political elections where 

recommendations matter.  

Outcome Prediction: The sentiments expressed by influential users on social media can be 

used to predict victory in elections. For example, if a candidate is as well-received as an iPhone 6 

(in Figure Figure 5.24), he or she is quite likely to win. This is because people freely express 

their views about candidates / parties on social media, so if their sentiments are positive, that 

reflects well about candidates.  

Campaigning Processes: Influential users create awareness among people about positive 

and negative changes. For instance, candidates not leading based on tweets, can outline strategies 

referring to positive sentiments expressed about their opponents, and build campaigns 

accordingly.  
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5. 3. 7. 3 Search Engine Optimization 

In applications for SEO, i.e., Search Engine Optimization, we consider market trends and 

blogging. 

Market Trends: Trends in the market pertaining to hot topics can be captured using our 

sentiment analysis approach. For example, with reference to our experiments, if we find that 

iPhone occurs more frequently than HTC, we can conclude that people are more excited about 

the iPhone than the HTC smartphone. Adding these keywords in Website contents will lead to 

more hits which in turn will help in increasing the page rank, through SEO.  

Blogs: Several blogs become popular if the content is interesting. Our sentiment analysis 

approach can help find topics in which people are interested. Thus, bloggers can get information 

about people’s choices. This information can be used to create new blogs and improve existing 

ones.  

5. 3. 7. 4 Stock Market 

In the stock market area, we focus on two aspects, namely, bulls & bears, and price changes. 

We see how recommenders impact these applications.  

Bulls & Bears: When a high proportion of investors express a bearish (negative) sentiment, 

some analysts consider it to be a strong signal that a market bottom may be near. Likewise, if 

sentiment is bullish (positive), analysts consider that market will go up. Our sentiment analysis 
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experiments taking into account such polarities with graphical plots (see Figure 5.24) can thus be 

helpful in estimating bulls & bears in the stock market.  

Price Changes: Investors and stockholders measure sentiments by analyzing and mining 

textual stories about companies and sectors. Positive sentiments could lead to increase in stock 

prices whereas negative sentiments about the company could lead to decrease in prices. Our 

sentiment analysis approach could thus cause influential users to have an impact on stock prices.  

5. 3. 7. 5 Urban Policy 

In this work, we consider urban policy issues related to specific events and general 

legislation.  

Specific Events: Policy makers often take certain measures to act upon significant events 

that have occurred, e.g., flood, famine, fire etc. The sentiments expressed by users on social 

media sites such as Twitter enable us to gauge the reaction of the public on the satisfaction with 

these policies, with respect to how much they cater to addressing the respective issues pertaining 

to the corresponding events. Sentiment analysis on this can provide recommendations to policy 

makers on these specific aspects, so they can enhance current policies as needed and plan for 

future occurrences accordingly.  

General Legislation: Urban regions often have local laws that affect the general lifestyle of 

the public on a daily basis. These could pertain to transportation systems, healthcare issues, use 
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of mobile devices, education facilities and so on. Residents often express their opinion on such 

policy matters through social media to make their voice heard. Sentiment analysis of such data 

can enable legislators to get a good idea of the impact their legislation makes on the common 

public. This can be useful for recommendations to enable better decision making through public 

involvement.  

5. 3. 8 Conclusions 

Microblogging has emerged as a major type of communication today. Large amounts of data 

in microblogging sites provide useful inputs for sentiment analysis. In our work on sentiment 

analysis in this paper, we make the following contributions: Present a method for opinion mining 

that would be useful in various recommender applications. 

 Propose a hybrid learning approach with Naive Bayes for sentiment analysis, using 

probabilistic estimates where exact labels are not available  

 Conduct evaluation on real data relevant to product reviews and urban policy  

 Visualize the results of sentiment analysis for easy depiction to end users to facilitate 

recommendations  

Ongoing work includes conducting more experiments with other domains. Some of our 

ongoing research also entails incorporating commonsense knowledge in sentiment analysis to 

simulate human judgment in opinion mining [14, 15]. As future work, we could consider 
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enhancing our approach further to include a combination of classifiers in an ensemble. 

5. 3. 9 References 

© 2018 IEEE. Reprinted, with permission, from Ketaki Gandhe, Aparna Varde and Xu Du, 

Sentiment Analysis of Twitter Data with Hybrid Learning for Recommender Applications, IEEE 

Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (IEEE 

UEMCON 2018), Nov 2018, DOI: 10.1109/UEMCON.2018.879666.1 

[1] Das, S. and Chen, M. 2001. Yahoo! for Amazon: Extracting market sentiment from stock 

message boards. Asia Pacific Finance Association Annual Conference (APFA), pp. 79-86.  

[2] Whitelaw, C., Garg, N., Argamon, S. 2005. Using appraisal groups for sentiment 

analysis. ACM CIKM, pp. 625-631.  

[3] Pang, B. and Lee, L. 2004. A sentimental education: sentiment analysis using 

subjectivity summarization based on minimum cuts. ACL), Article 271.  

[4] Yang, C., Lin, K. H., and Chen, H. 2007. Emotion classification using web blog corpora. 

IEEE/WIC/ACM Intl. Conf. Web Intelligence (WI), pp. 275-278.  

[5] Read, J. 2005. Using emoticons to reduce dependency in machine learning techniques 

for sentiment classification. ACL Student Workshop, pp. 43-48.  

[6] Go, A., Bhayani, R., and Huang, L. 2009. Twitter sentiment classification using distant 

supervision. Technical report, Stanford Digital Library Technologies Project.  



287 

 

 

 

 

[7] Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M. 2010. Predicting Elections 

with Twitter: What 140 Characters Reveal about Political Sentiment. AAAI Conference on 

Weblogs and Social Media, pp.178-185.  

[8] Nasukawa, T., and Yi, J. 2003. Sentiment Analysis: Capturing Favorability Using 

Natural Language Processing. K-CAP, pp. 70-77.  

[9] Pak, A., and Paroubek, P. 2010. Twitter as a Corpus for Sentiment Analysis and Opinion 

Mining. LREC, pp. 19-21.  

[10] Russell, S. and Norvig, P. 2003. Artificial Intelligence: A Modern Approach. 2nd 

Edition. Prentice Hall.  

[11] Baccianella, S., Esuli, A. and Sebastiani, F. 2010. Sentiwordnet 3.0: An enhanced 

lexical resource for sentiment analysis and opinion mining. LREC.  

[12] Zhou, J., Chen, A., Cao, Q., Yang, B., Victor, W., Chang, C. and Nazaroff, W. 2015. 

Particle Exposure during the 2013 Haze in Singapore: importance of the built environment. J. of 

Building & Environment, pp. 14-23.  

[13] NYC Council.Legislature http://legistar.council.nyc.gov/, 2018.  

[14] Tandon, N., Varde, A. and de Melo, G. 2017. Commonsense Knowledge in Machine 

Intelligence. ACM SIGMOD Record, 46(4): 49-52.  

[15] Puri, M., Du, X., Varde, A. and de Melo, G. 2018. Mapping Ordinances and Tweets 

using Smart City Characteristics to Aid Opinion Mining. The Web Conference WWW Companion 



288 

 

 

 

 

Volume, pp. 1721-1728. 

  



289 

 

 

 

 

Chapter 6 

6.  Related Work 

6. 1 Public Opinion Matters: Mining Social Media Text for Environmental 

Management 

Abstract: Social media mining has proven useful in multiple research fields as a tool for 

public opinion extraction and analysis. Such mining can discover knowledge from unstructured 

data in booming social media sources that provide instant public responses and also capture long-

term data. Environmental scientists have realized its potential and conducted various studies 

where public opinion matters. We focus our discussion in this article on mining social media text 

on environmental issues, with particular emphasis on sentiment analysis, fitting the theme of 

Data Science and Sustainability. The data science community today is interested in topics that 

overlap with environmental issues and their broader impacts on sustainability. Such work appeals 

to scientists focusing on areas such as smart cities, climate change and geo-informatics. Future 

issues emerging from this research include domain-specific multilingual mining, and advanced 

geo-location tagging with demographically focused sentiment analysis. 

(Chapter 6 reused the previously published paper Du, X., Kowalski, M., Varde, A., de Melo, 

G., & Taylor, R. (2020), Public opinion matters, ACM SIGWEB Newsletter, (Autumn 2019), pp. 

1-15, https://doi.org/10.1145/3352683.3352688). 
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6. 1. 1 Introduction 

The rapid growth of the social media industry has attracted vast numbers of users, offering 

valuable insights to researchers. The total number of social media users is over 2 billion 

worldwide. The data therein have proven pivotal due to the vast amounts of timely information 

as well as of long-term data for longitudinal studies. Social media mining provides opportunities 

to extract opinions on topics such as political issues, consumer products, emergency incidents 

and environmental concerns. In light of this, many environmental scientists emphasize the power 

of opinions expressed on social media. These include researchers on urban policy, energy 

conservation, transportation aspects, health issues, sustainable living, and smart cities [Zou et al. 

2018; Taylor 2012; Gandhe et al. 2018].  

This survey article aims to provide a review on social media text mining applications from 

an environmental perspective. This encompasses aspects such as climate change, smart cities, 

traffic management, urban policy and energy conservation, thereby fitting Data Science and 

Sustainability, a prevalent theme today. For instance, ACM KDD 2014 had Data Science for 

Social Good as its the theme, while ACM CIKM 2017 had the theme Smart Cities, Smart 

Nations, which is closely related.  
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6. 1. 2 Environmental Applications 

6. 1. 2. 1 Climate Change and Global Warming 

The public often expresses concern via social media posts related to climate change and its 

adverse impacts on sustainable living. Recent NYC TV News during climate week in September 

2019 showed numerous students from local schools joining peaceful protest marches on climate 

change related issues. They carried banners with slogans such as \There is no Planet B" voicing 

their views about having nowhere to go if planet Earth deteriorated drastically in the future due 

to climate change and global warming. Likewise, many users post climate change-related 

opinions on social media platforms such as Twitter. These hence facilitate public opinion mining 

across time and space, since geo-tagged postings contain timestamps and geographic coordinates 

of latitude and longitude.  

In a recent study [Dahal et al. 2019], geo-tagged tweets with keywords on climate change 

are mined using topic modeling and sentiment analysis. LDA is deployed for topic modeling to 

draw inferences from various discussion issues, while a Valence Aware Dictionary and Sentiment 

Reasoner are applied to conduct sentiment analysis for gauging the feelings and attitudes in the 

tweets.  

LDA (Latent Dirichlet Allocation) is a well-known technique for topic modeling, widely 

surveyed in many studies [Rozeva and Zerkova 2017]. It is a generative statistical model used for 
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sets of observations to be explained by unobserved groups that describe why some portions of 

data are similar to others. For example, if observations are words gathered within documents, 

LDA postulates that each document is a combination of a few topics and that the presence of 

each word is caused by one of the topics in the document. LDA can thus be used for topic 

modeling in environmental studies to find the prevalence of subjects in public posts.  

Sentiment analysis often takes the form of polarity classification, i.e., judging whether the 

concerned sentiment in the text is positive, negative or neutral, and often the extent to which it 

heads in that direction, e.g., strongly positive etc. For instance, with reference to environmental 

management, users may state that they are “dissatisfied” with a climatic occurrence or legislative 

policy, which is a negative emotion, versus that they are “infuriated”, which is a much stronger 

negative emotion.  

The authors perform a comparison between climate change discussions across several 

countries over different time periods. Not surprisingly, the overall sentiment in the tweets is 

negative. This negative sentiment is even more emphatic when users express opinions on 

“political situations” affecting climate change or on events related to “extreme weather 

conditions”. Interestingly, the study reveals that the climate change discussion is diverse, yet 

some topics are more prevalent, e.g., climate change posts in the USA are less focused on policy-

related topics than corresponding posts in other countries. A broader impact of this study could 

entail further investigation on policy-related matters in climate change. It is important to fathom 
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why the public currently expresses fewer opinions on policy-related issues in the USA in 

comparison with other parts of the world. 

In another interesting study [Wang et al. 2015], a supervised classification method is 

designed to process 76 million Weibo posts on climate change, aiming to discover connections 

between public responses and air pollution levels. The authors collect 93 million messages from 

74 cities, finding that the volume of relevant posts is connected to pollution levels. Potentially 

relevant words on \pollution" from a probabilistic topic model are shown in Figure 6.1. These 

words are utilized to filter the Weibo posts. The study builds a 2-level classifier with randomly 

selected messages as the training data: the 1st level is designed to distinguish between related 

and unrelated messages; the 2nd level is meant to classify the related messages into “request-for-

action” category versus a “pollution-experience” type. The authors suggest that combining a 

supervised method with an unsupervised method using LDA for topic modeling can yield higher 

correlations. As a broader impact, their research indicates that social media mining can be 

effective for air pollution monitoring even with a light-weight method. 
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Figure 6.1: Topics about pollution learned from a probabilistic topic model [Wang et al. 2015] 

There is interesting work on air quality assessment by mining over structured data and 

unstructured social media text [Du et al. 2016]. In this work, the authors apply association rules, 

clustering, and decision tree classification over structured data sources on fine particle air 

pollutants. They also conduct opinion mining on tweets about Indonesian Peatland Fires (IPF) 

and their impact on the nearby country of Singapore, since these may affect the climate. The 

results are used for air quality analysis from a health standpoint by using worldwide AQI (Air 

Quality Index) standards. A commonsense knowledge repository called WebChild [Tandon et al. 

2014] is consulted to build domain-specific knowledge bases that capture useful domain 

knowledge and enable subtle human reasoning in opinion mining. A sentiment polarity 

classification of tweets is conducted to analyze public responses using SentiWordNet 3.0 
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[Baccianella et al. 2010], a lexical resource. Methods in this work can be applied to social media 

text mining on related topics, e.g., water quality (analogous to air quality) gauging crucial 

sentiments of the public, with demographics. 

A related study [Sachdeva et al. 2016] conducts research on social media activity in 

response to the 2014 King fire in northern California. The authors induce topic models with 

unsupervised feature selection methods to scrutinize users’ behavior on Twitter. They compare 

spatial and temporal variations of the most frequent topics in tweets. The results show that there 

are significant differences between tweets of users from regions closer to vs. further from the 

fire. Also, discussions about arson and threatened houses are not as persistent as air quality 

concerns and potential health impacts. The authors conclude that a deeper sentiment analysis of 

tweets with wider data coverage could yield better results. As broader impacts, they suggest that 

combining social media text mining and spatio-temporal analysis can support inferences on 

related issues about the environment. 

 

6. 1. 2. 2 Urban Policy and Local Laws 

Social media serves as a powerful tool for urban residents to express views on policies 

passed by their legislature. Likewise, the public also expresses opinions on various urban trends, 

including population growth/decline, and associated policies. 
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Figure 6.2:  NYC Council ordinance website (left) and approach for ordinance–tweet mapping (right) [Puri et 

al. 2018] 

In urban policy mining, a process for analyzing ordinances (local laws) and their public 

reactions expressed via tweets has been proposed in recent work [Puri et al. 2018]. Ordinances in 

this study stem from the publicly available NYC Council ordinance website. The authors aim to 

analyze how closely a given urban region heads towards developing into a smart city by mapping 

groups of ordinances and tweets to smart city characteristics (SCCs) and conducting sentiment 

analysis of tweets on the respective SCCs to assess public satisfaction. They consider a set of six 

SCCs: Smart Environment, Smart Governance, Smart Living, Smart Mobility, Smart People, and 

Smart Economy, as defined in the literature [TU-Wien 2015]. The mapping process is depicted in 
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Figure 6.2. It entails adopting commonsense knowledge from sources such as WebChild [Tandon 

et al. 2014] and WordNet [Fellbaum 1998] to harness human judgment involved in mapping, in 

line with the concept of deploying humanoid common sense within the realm of machine 

intelligence [Tandon et al. 2017]. The authors map groups of ordinances with tweets using the 

transitive property: \If ordinances map to SCCs and if the tweets map to the same SCCs, the 

ordinances are likely to be broadly related to the respective tweets" . This substantially reduces 

the sample space for ordinance–tweet mapping, since ordinances and tweets are of the order of 

thousands and millions, respectively. Further mapping is conducted with the word2vec approach 

(widely used by many researchers, see Rozeva and Zerkova [2017]), for finding contextual 

similarity in the reduced mapping space. 

This mapping sets the stage for sentiment analysis on the tweets by polarity classification 

encompassing commonsense knowledge [Tandon et al. 2017]. Results of the ordinance– tweet 

mining reveal the overall public satisfaction on ordinances related to various SCCs. The results 

suggest a positive public sentiment towards New York City as a smart city. The authors also 

analyze avenues for potential improvement based on public feedback. This information can be 

useful to urban agencies to adjust policies accordingly. This concept addresses smart 

governance, a smart city characteristic, that leverages transparency in urban decision-making 

through public involvement. More generally, the proposed approach [Puri et al. 2018] can be 

useful to map other data for opinion mining, e.g. News and tweets, since it is desirable to assess 
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public reactions to various news articles, current and historical. The approach herein for mapping 

formal legalese in ordinances to informal acronym-ridden tweets, is potentially helpful for 

mapping news and tweets since these also feature formal and informal text, respectively. This 

mining of public opinion on news leverages smart governance to a considerable extent, since it 

entails news scrutiny in order to assess public feedback. 

In a relatively recent working paper [Hollander and Renski 2015], the authors conduct 

exploratory research on attitudes of people in urban areas. They focus on a study in the Urban 

Attitudes Lab, where micro-blogging data from Twitter are assessed with quantitative and 

qualitative methods, such as content analysis and advanced multivariate statistics. These methods 

are used for a detailed study on urban experience and its implications for public policy. The 

authors apply a propensity scoring mechanism to create matched pairs of mid-sized cities in the 

Northeast and Midwest United States, where the most significant difference between each pair is 

that of population decline. The outcome is a group of 50 declining cities paired with 50 

growing/stable cities. More than 300,000 tweets over a 2-month time span are analyzed, for 

positive or negative sentiment. The authors conduct difference of means tests, concluding that the 

sentiment in declining cities does not vary much in a statistically significant manner compared to 

that in stable and growing cities. These findings, though rather surprising, present the scope for 

further research. They indicate that opportunities are available to enhance the comprehension of 

urban attitudes based on sentiment analysis of tweets from the respective areas. Reasons for a 
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lack of significant differences among attitudes of growing vs. declining cities would potentially 

be interesting to urban planning agencies, environmentalists and data scientists. Hence, this 

exploratory research presents promising avenues for future work on studies related to urban 

population growth/decline and urban policy. 

The proposition of a sentiment analysis approach to extract emotions in tweets based on 

polarity and subjectivity, using partially labeled data, is described in recent work [Gandhe et al. 

2018]. The authors put forth a hybrid approach combining supervised and unsupervised learning 

to take advantage of labeled training data if available, while also classifying tweets that lack 

specific labels. They build a classifier for sentiment analysis based on the Naive Bayes machine 

learning algorithm. They analyze tweets on issues such as political elections, stock markets and 

urban policy. The urban policy tweets are on general legislation as a whole, and on specific 

actions related to significant events, e.g., disasters. They implement this using TextBlob, a 

software library for text data processing that builds on NLTK (the Natural Language Toolkit) to 

better handle human language data. This research contributes to the idea of sustainable urban 

development being made smarter by mining social media data. This is achieved using hybrid 

approaches that produce useful results even when fully labeled training data are not easily 

available.  
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6. 1. 2. 3 Traffic and Mobility Issues 

Social media users often post reactions about incidents that occur on the road. Issues on 

traffic and mobility also pertain to population relocation. Thus, sentiment analysis of the text in 

these posts can produce valuable results to support sustainable development and traffic 

optimization.  

A classification based method is proposed by Gu et al. [2016] for mining tweets to extract 

incident information for highways and smaller roads. This method offers cost-effective data 

collection (see Figure 6.3) based on the Twitter API to obtain tweets and related information, 

especially location data. Using these data and metadata, the authors compare the tweets to an 

existing dataset to observe whether any discussed traffic incident matches with regard to the 

details and specifications, i.e., to authenticate its validity based on facts vs. opinions. They are 

also able to use this process to find additional incidents absent in the dataset but commonly 

discussed in the tweets. This sets the stage for further investigation on such incidents. This 

research is a leap in the direction of sustainable development and optimization of traffic 

management, by offering cost-effective social media text collection and propelling investigatory 

studies based on the workflow. 
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Figure 6.3: Workflow of Twitter data acquisition, processing and analysis for traffic problems [Gu et al. 2016] 

The idea of utilizing large-scale social media data and valuable information therein 

(geolocations, times, dates and places) to infer land use within a given area has been the basis of 

appealing research [Zhan et al. 2014]. The researchers focus on collecting tweets having geo-

locations in NYC and deploying a 3rd-party location-based service Foursquare to get more 

accurate location information from the tweets. If a user on Foursquare performs a \check-in" at a 

specific location, the user can share that information on Twitter. Then, by referencing the geo-

location of the tweet alongside the Foursquare data within the tweet, the proposed approach can 

draw inferences about the content of a tweet and its neighborhood. As these tweets are 
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continuously collected, they are categorized with respect to one of the following categories: 

home, work, eating, entertainment, recreation, shopping, social service, education, and travel. 

After this sorting, the approach obtains specific details from each category, and thus performs 

intricate land use inference. The authors suggest that similar approaches would allow cities of 

varying sizes to analyze land use and interaction in a given area, thus providing greater insights 

into the precise activities therein. This fits the theme of smart living in smart cities [TU-Wien 

2015]. 

[Wang et al. 2017] present a new method to report traffic conditions, addressing 

shortcomings of prior approaches. The authors base their research on the idea that while GPS 

(Global Positioning System) probe data are extremely useful in our everyday lives, they prove 

rather inadequate at fully estimating traffic conditions due to the low sampling frequency. To 

overcome this problem, the authors propose using social media to collect further information on 

traffic events not common within the geological area. To correlate the GPS probe data with social 

media, they focus on a deep analysis of the incoming social media data. This entails dissecting 

the social media posting text such that significant traffic-related phrases and locations can be 

separated and stored. Using these processed texts, they take the GPS probe data and fill in the 

missing data. From here, interesting patterns can be discovered about traffic conditions, which 

can be used to gain a deeper understanding of traffic commonalities in a given area. This 

research highlights that the process of collecting texts from social media in conjunction with 
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GPS probes, and utilizing them to analyze specific issues, bears substantial potential in our 

modern world. Although the study focuses on GPS data, it exemplifies the fact that social media 

data can be used to augment other data sources for enhanced mining. This work caters to the 

smart mobility aspect of smart cities [TU-Wien 2015] due to the relevance of smart monitoring 

of traffic 

 

Figure 6.4: Interactive map of New York State with display of sprawl affected regions generated from GIS data 

[Pampoore-Thampi et al. 2014] 

The works of [2016], Zhan et al. [2014], and Wang et al. [2017] additionally highlight the 

potential for a deeper analysis on related issues such as urban sprawl. The term urban sprawl 

mainly implies the unrestricted growth of housing, transportation and commercial development 
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over vast expanses of urban land. Researchers aim to study sprawl-causing parameters to 

mitigate its effects. The study by Pampoore-Thampi et al. [2014] investigates sprawl using 

association rules and decision tree classifiers with GIS (Geographic Information System) 

sources. The authors generate interactive maps (using the classical ArcGIS software) that 

superimpose sprawl data on the respective geographic areas to provide at-a-glance views of 

sprawl-affected regions (see Figure 6.4 for New York State). Based on these data, they analyze 

the impact of various sprawl-related parameters on each other and on the sprawl itself. These 

parameters are various spatio-temporal features related to real GIS data, e.g., population growth, 

travel time to work, number of vehicles etc. These are mined to discover knowledge for a spatial 

decision support system (SDSS). This SDSS provides a predicted output on whether urban 

sprawl is likely to occur, given input parameters. It also estimates values of pertinent sprawl-

related parameters to help understand their mutual impacts. 

 Research such as this can potentially benefit from sentiment analysis of social media text 

relevant to sprawl. For example, in addition to mining sprawl-related parameters, the mining of 

pertinent social media posts may yield further information to augment knowledge discovery. The 

reactions of the common public, legislators and scientists on sprawl, its causes and effects can be 

beneficial in understanding the gravity of certain aspects and assessing the relative importance of 

sprawl-related parameters. Such information can potentially be used to enhance systems such as 

the SDSS therein, to provide more well-informed decision support based on opinion mining. 
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These studies thus relate to sustainable living 

6. 1. 2. 4 Energy and Resource Conservation 

Fossil fuel combustion is a major source of ambient carbon dioxide (CO2) concentrations. 

The increasing public awareness of greenhouse gas emissions leads to concerns about energy 

types and conservation of natural resources. Social media mining can provide valuable 

information about public opinions on energy usage and natural resources.  

Understanding public reactions on energy and resources can be extremely powerful. In the 

thought-provoking study by Nuortimo [2018], the authors argue that collecting data from various 

social media platforms is beneficial when insight on a given topic is needed, especially if that 

topic is rather complex. They propose a system called Case Carbon Capture and Storage to 

reduce harmful CO2 emissions. Such emissions can cause widespread environmental problems. 

The stages in their proposed system focus on: capture and compression of CO2 from power 

stations; transportation of CO2; and storage of this captured CO2 in a manner that keeps it out of 

the atmosphere. While the introduction and development of the system in this work is not being 

actively investigated by regulators due to low incentives, the research makes use of public 

reactions to emphasize the need for such a system, hoping that it will allow the project to gain 

more traction. In order to obtain these public reactions, text mining of social media is performed. 

As the social media texts are entered, the processing is conducted such that only information on 
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the concerned system (Case Carbon Capture and Storage) is retained. From here, an analysis is 

conducted to observe public opinions on this environmental system.  

Figure 6.5 provides a snapshot of opinion mining results on this system, based on posts 

from Social Media (SoMe). As seen here, the majority of the posts convey positive sentiments, 

however this majority is less than 50% of the total. While the number of negative posts are 

somewhat less than positive ones, they outnumber the mixed and neutral posts. This could 

potentially yield the inference that considerable further work might be needed for a much more 

widespread acceptance of the proposed technology by the public. Since concerns of many people 

expressed via social media are heavily opinionated, critical and often specific, important insights 

are gained into specific aspects needed to increase the public acceptance of the given system. 

Similar arguments can be applied to other such systems. Hence, in this work, sentiment analysis 

of social media text serves as a tool to increase the public awareness and potential acceptance of 

a new technology in environmental management, geared towards solving critical energy related 

problems. 
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Figure 6.5: Summary of sentiment analysis over social media posts about the Case Carbon Capture and Storage 

system [Nuortimo 2018] 

Researchers often focus on opinion mining to better understand the psychological 

determinants of social acceptance of environment-based technologies. In useful energy-related 

research, Nuortimo and Harkonen [2018] focus on an analysis of failed technologies in which 

social acceptance has been a primary factor in the failure. This allows for better predictability 

during the introduction of new technology. This work emphasizes that early acceptance of a 

technology by the public is extremely important as new work is developed. Public opinions are 

obtained via machine-based social media data mining and analysis. This research furthers the 

idea that social media mining offers valuable insights in assessing eco-friendly technologies. 
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This can be applied to sustainable computing, where the public often has mixed views about 

“greenness and energy conservation” versus “productivity and efficiency”. Social media mining 

can reveal highly useful results here on the universal acceptance of eco-friendly technologies and 

policies. 

In order to gain awareness for wildlife conservation, environmental scientists in China [Wu 

et al. 2018] applied social media to their research. They considered WeChat, one of China’s 

largest social networking platforms, studying online news and relevant public comments in 

media posts about “Sousa chinesis” (Indo-Pacific humpback dolphin), a flagship species in 

China. They analyze media releases on dolphins straying into the Dongping, Beijiang and Baisha 

rivers of China. They deploy Content Analysis (CA) to discover knowledge from wildlife 

conservation information found in articles and public opinions. Their results suggest that the 

public feels highly doubtful about conservation efforts proposed by government bodies and 

experts. This is a useful and rather unfortunate observation. An interesting finding of this study is 

that greater efforts are needed to promote awareness on wildlife conservation, e.g., rescue 

operations, so as to reduce public misunderstanding. This seems quite a debatable issue on 

whether the public is right in expressing views on governmental lack of concern for conservation 

efforts, or whether the government is right in issuing appropriate conservation measures that 

simply need better dissemination. This work has broader impacts on sustainable living. Findings 

from this research prove that social media posts are valuable in analyzing wildlife conservation, 
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where the public is highly opinionated, and consequently various debates continue. 

6. 1. 2 .5 Disaster and Resilience 

Researchers of environmental management pay attention to the issue of disasters, since it 

influences natural resources and human society. Disaster-related events often propel further 

social media activities. By analyzing these, knowledge about efficient disaster responses can be 

discovered to support environmental management. The concerned studies can also help in 

enhancing resilience, which enables a faster recovery and may mitigate the damage brought by 

the disaster. 

Wang et al. [2018] remark that the scarcity of hyper-resolution data for urban flooding 

prevents a detailed flood risk analysis. To address this issue, the authors introduce social media 

and crowdsourcing data into the mix. They apply NLP (Natural Language Processing) and 

computer vision techniques to the data they collect from Twitter and from a crowdsourcing app 

called MyCoast. From there, they utilize the processed data to complement existing data. In 

particular, they validate the extracted information against precipitation data and road closure 

reports to examine the quality of the data, and then utilize the results as required. The 

introduction of this approach for the procurement of fresh and easy-to-collect data is extremely 

beneficial to current environmental management techniques, in terms of its broader impacts. The 

application of social media in conjunction with crowdsourcing to augment data collection of 
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otherwise rare datasets, is a useful contribution. 

 

Figure 6.6: Workflow for a disaster event database [Wang et al. 2018] 

The framework of Huang et al. [2017] synthesizes multi-sourced data (including social 

media postings, remote sensing data and Wikipedia) with spatial data mining and text mining for 

a solution that supports disaster analysis of historical and future events. This is illustrated in 

Figure 6.6. While Wikipedia is a primary source in their work, data from Twitter and other social 

media platforms are also utilized to obtain more information on disasters. Using all the collected 

data enables the discovery of patterns in disasters through various pattern mining methods. This 

allows us to obtain further information that may be missing from historical reports. This 

framework offers advantages for disaster analysis, since data sources are added through social 

media and other platforms in addition to historical reports on disasters. The authors claim that a 

more intricate analysis and processing can facilitate real-time event tracking, highly useful for 

enhanced performance in disaster management and recovery. 



311 

 

 

 

 

In disaster resilience on hurricane activity, there is research [Zou et al. 2018] that focuses on 

mining public reactions via Twitter. The authors focus on spatio-temporal patterns of Twitter 

activities during Hurricane Sandy that impacted the Northeastern USA in October 2012. The 

study leverages 126 counties impacted by Sandy. An important finding is that social and 

geographic disparities are prevalent in Twitter usage. Public communities with higher 

socioeconomic status are found to post more hurricane-related tweets. This study also derives 

common indexes from Twitter data including normalized ratios to facilitate comparison across 

regions, and to aid in emergency management and resilience analysis. Adding Twitter indexes to 

a damage estimation model is found to enhance the performance. The authors thus conclude that 

social media data can benefit post-disaster damage estimation, provided other pertinent 

environmental and socioeconomic parameters are also included. Although their research 

addresses one particular hurricane, their results and the knowledge gained from the study can 

yield extremely valuable insights into strategies for using social media to increase disaster 

resilience. This ability is imperative in understanding how a disaster truly affects the public and 

how social media can be used for a deep analysis of the concerned reactions. Disaster control and 

resilience are by far the most critical aspects of environmental management. The works surveyed 

here demonstrate that social media mining plays a vital role in providing additional data for 

analysis beyond other recorded sources. Moreover, it helps in monitoring public reactions on 

disaster repercussions and the availability of recovery mechanisms, which constitute the true 



312 

 

 

 

 

tests of a good disaster management system. 

6. 1. 3 Discussion on Open Issues 

 Based on the above survey of the literature, we outline several thought-provoking ideas on 

social media text mining that offer the scope for future work from a generic web and text mining 

standpoint, as well as a domain-specific angle.  

Demographics of posts: In the works on urban policy and local laws, it is useful to address 

the demographics of location-based social media posts in order to analyze public reactions to 

urban policies based on the backgrounds of people that post online. This could pertain to their 

educational, social and cultural background, as well as age and gender.  

Historical diagnosis: Urban policy research can potentially entail the diagnosis of 

information pertaining to the historical analysis of various ordinances and their respective media 

posts, i.e., gauging public opinion before and after ordinance passing to assess the opinions of 

the public. Similar issues apply to the analysis of news and social media, i.e., these posts can be 

analyzed before and after a given news item is published.  

Levels of granularity: While addressing the relevance of various social media posts to 

specific aspects of interest (e.g. tweets with regard to smart city characteristics [Puri et al. 

2018]), it would be beneficial to consider the posts at a finer level of granularity. For instance, 

one might consider posts relating to the notion of smart environment in response to a given news 



313 

 

 

 

 

item or a local law. It would be interesting to focus on a specific aspect within smart 

environment, such as green energy, and thereby assess its impacts. The same reasoning can apply 

to analyzing media posts in response to news etc. considering other aspects, such as climate 

change or disaster recovery.  

Automated geo-tagging: Third-party services for collecting data on social media mining 

(e.g. [Zhan et al. 2014]) may not be as effective as utilizing the social media platform itself. Not 

all media posts have geo-locations attached to them. Thus, methodologies can be formulated for 

better approaches in automatically geo-tagging the posts, which would further help in more 

precisely mapping a mined post to a given location. This would also propel advanced 

demographic analysis.  

Crowdsourcing and monitoring: If the utilization of crowdsourcing apps and social media 

is required in the enhancement of hyper-resolution monitoring in some applications (e.g. [Wang 

et al. 2018]), issues would arise if a certain geographical area does not have a multitude of 

people providing constant updates via these apps. This motivates further research in methods 

used for crowdsourcing, with the goal of promoting better monitoring and analysis.  

Veracity of posts: While investigating matters such as disaster recovery and resilience, data 

being collected via social media must be filtered and verified to avoid data manipulation. False 

data on such highly sensitive topics can result in misunderstandings. Hence, more research is 

needed on addressing the veracity of each social media post, especially pertaining to sensitive 
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issues such as disaster repercussions and resilience. While there is much research on veracity in 

general, and it constitutes one of the Vs of big data, some of this research needs to target a more 

domain-specific angle, especially for sensitive subjects.  

Multilingual and multicultural issues: In current studies on social media text mining, the 

influence of language and culture has not been an item of significant focus. There is a lack of 

research providing comparisons of social media posts on a given topic among people speaking 

different languages and emerging from various cultures. This could be a potential topic of 

ongoing and future research, that forms multilingual and multicultural domain-specific social 

media analysis, driven by recent advances in cross-lingual natural language processing [de Melo 

2017; Dong and de Melo 2019]. This is particularly relevant in our current era of increasing 

globalization.  

Irony and sarcasm: Sentiment identification in social media text mining does not 

particularly emphasize linguistic subtleties such as irony and sarcasm. These aspects are rather 

difficult to measure in media posts. Also, expressions of irony as well as sarcasm may vary 

across different languages and cultures. These present avenues for further research, where the 

state-of-the-art in idiomatic expressions and emotion detection from formal written texts can play 

a significant role. Such analysis in informal texts, especially on domainspecific aspects such as 

environmental issues, can be quite challenging. This calls for further research.  

Error correction tools: Social media text is usually noisy, with both spelling errors and 
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erroneous or non-standard grammar. Hence, progress on techniques to cope with these issues has 

the potential to benefit social media analytics in numerous different domains.  

Abbreviations and acronyms: Excessive usage of abbreviations and acronyms in social 

media text often presents difficulties in mining. This challenge is even more pronounced when 

multiple domains are involved, each with different meanings of acronyms, thus leading to greater 

degrees of ambiguity and adding to the confusion caused by colloquial terms in public posts. 

Existing techniques in Named Entity Extraction (NEE), Named Entity Disambiguation (NED) 

and related areas need further research to be applicable to such informal language in social media 

posts, particularly with reference to context.  

Big versus small data: Much of social media mining utilizes only small parts of the big 

data on social media. In many published studies, there is a lack of discussion about whether the 

small sample of data used is sufficiently robust and whether the exclusion of the bulk of 

remaining data can lead to adverse impacts and incorrect inferences with respect to the result 

interpretation. This calls for further research and discussion. For example, big data is useful to 

understand the big picture in a given context along with its hidden correlations. Small data may 

be too specific here. Hence, focusing on analyzing big data in social media with respect to the 

several Vs such as volume, velocity, variety etc. could present more interesting insights into 

social media mining. Some of these could be useful in domain-specific applications, where 

obtaining the big data itself could pose considerable challenges. 
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Multiple media sources: Very few studies use data from multiple sources of social media 

to address a single common topic. The comparison between posts on different social media 

sources (e.g., Twitter and Facebook) on the same topic could potentially be addressed in greater 

depth. This may yield even more meaningful and interesting results than analyzing each source 

individually, since the sources could provide a broader perspective on the opinions expressed. 

Such in-depth text mining over multiple media across a common thread of topics could be an 

aspect of future work. 

6. 1. 4 Conclusion 

This survey paper disseminates an overview of social media text mining applications in the 

environmental management area. It covers a number of facets, including climate change and 

global warming, urban policy and local laws, traffic and mobility issues, energy and resource 

conservation, as well as disaster and resilience. The topics discussed herein have significant 

broader impacts, as outlined in the respective subsections. These encompass news scrutiny, 

pollution monitoring, healthcare related decision-making, legislative transparency, traffic safety, 

climate change investigation, disaster repercussions, dataset enhancement for analysis, public 

acceptance of policies, sustainable computing issues, and the development of smart cities.  

The papers surveyed in this article present the scope for future research on several topics 

such as multilingual domain-specific social media mining, enhanced geo-location tagging with 
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advanced demographic analysis, subtle issues such as irony and sarcasm in social media, veracity 

related to sensitive subjects, crowdsourcing research in conjunction with social media mining 

etc. We anticipate that addressing such topics for future research can make social media text 

mining an even more impactful area, with greater benefits to the data science community and 

various application domains. 
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Chapter 7 

7.  Conclusions and Future Work 

7. 1 Conclusions 

In this research, we conducted data mining on urban policy based on structured data and 

social media. The data mining on air quality data and traffic conditions showed that the data 

mining techniques could serve prediction purposes and decision support. The mining on 

ordinance data showed that data mining could reveal interesting urban legislative activity 

patterns, potentially supporting urban policy decision-making processes. Because we connected 

the Smart City development aspect to the ordinance, the results could also improve sustainable 

city development. 

In short the main contributions of this dissertation based on our major tasks are as follows: 

1. Analyzing multicity urban traffic data pertaining to sustainable population relocation as 

early work. 

2. Conducting data mining on PM2.5 fine particle air pollutants for prediction of air 

quality incorporating health standards and building a tool for result dissemination.  

3. Modeling and mining publicly available ordinance data from NYC deploying data 

mining techniques of association rules, clustering and classification and assessing how 

well they make the region head towards a Smart City. 
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4. Mapping ordinances with their pertinent tweets expressed on social media, using Smart 

City Characteristics as a nexus, incorporating commonsense knowledge and text mining. 

5. Performing sentiment analysis on the tweets for opinion mining to gauge to the 

reactions of the public on their respective ordinances. 

6. Disseminating the results of our analysis through the development of an Android app for 

ordinance-tweet mining and a Web portal for QA (question answering) along with 

interactive graphics.     

This dissertation would be the good step for further analysis of the interaction between 

urban policy and public opinions. Sentiment analysis also yielded interesting results, proving it 

can support future work, such as analyzing the change in sentiment of tweets related to the 

specific ordinance. The decision support tools developed based on the knowledge discovered 

through the research have acceptable accuracy; however, there would be a massive improvement 

in accuracy and application range with advanced methods and extended data sources. Thus, we 

propose future works to enhance the impact of this research, further contributing to Smart City 

development. 

The Important findings of this dissertation are as follows: 

1. The journal about multicity population relocation (Du & Varde, 2015) had findings that 

proper street design could mitigate urban sprawl; the mix between residential and 

employment land use types could lead to a compact city, and urban areas with 
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population and employment concentrated in the center had less chance of sprawl. 

2. The ICICS 2016 paper about traffic conditions and air quality (Du & Varde, 2016) had 

findings that higher gas consumption usually indicated better economic conditions and 

more strict pollutant regulations, thus contributing to lower PM2.5 concentration; high 

income also contributed to low PM2.5 concentration; high diesel consumption did not 

always associate with high PM2.5 concentration.  

3. The IEEE ICDE 2016 workshop paper about social media mining of peatland fires (Du 

et al., 2016) had findings based on sample tweets about Singapore's air pollution where 

61% of collected tweets had a positive sentiment; yet there was room for improvement 

since 25% of the tweets were neutral, and 14% were negative. 

4. The two papers about ordinance mining (Du et al., 2017; Du et al., 2017) had findings 

that data mining could discover meaningful patterns from the legislative activities data 

e. g., some committees focused on ordinances with specific Smart City Characteristics 

(SCCs), and ordinances on Smart Economy had shorter timespans while ordinances on 

Smart Environment had more extended timespans. 

5. The IEEE UEMON 2017 paper about ordinance mining and database management (Du 

et al., 2017) had findings that the two sessions focused on different SCCs, and that the 

Smart People characteristic received the least legislative attention overall since the 

number of ordinances related to the SCC of Smart People was observed to be the lowest 
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for both sessions. 

6. The DMIN 2017 paper about ordinance mining and applying CSK for efficient 

ordinance categorization (Du et al., 2017) had findings that the overall number of 

ordinances increased from 287 in session 2006-2009 to 358 in session 2010-2013; the 

average timespan of ordinances increased from 204 to 222 days; the first year of both 

sessions had the highest number of initialized ordinances in each session while the last 

year had the highest number of enacted ordinances. 

7. The WWW 2018 paper about applying CSK on mapping ordinances and tweets (Puri et 

al., 2018) had findings that only 35% of tweets could be categorized to different SCCs 

(which shows that not all the tweets published by users relate to any SCCs); among the 

ones that did relate, the SCC mapping method achieved an accuracy of around 80% as 

confirmed by domain experts. 

8. The IEEE ICTAI 2018 paper on mapping ordinances and tweets (Puri et al., 2018) had 

findings that there were 48% positive tweets and 27% negative tweets based on the 

collected samples, which showed the overall public opinion was positive. Moreover, 

Smart Living had the highest positive percentage (52%) for each specific SCC while 

Smart Environment had the lowest positive percentage (33%). In this paper we 

improved the mapping method such that it allowed the SCC mapping tool to assign 

multiple SCCs to ordinances and tweets (instead of a single SCC) leading to equal or 
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higher mapping accuracy. 

9. The I3E 2020 paper about Android App design with the SCC mapping function 

(Varghese et al., 2020) had findings that it was the first app about ordinance-tweet 

mining with respect to Smart City development; it helped users acquire useful Smart 

City knowledge conveniently at-a-glance with ubiquitous access; and the positive user 

feedback on the app proved that it could increase public awareness of urban policy 

hence broadly contributing to Smart City development. 

10. The IEEE Big Data 2020 poster paper about a web portal prototype (Du et al., 2020) 

with the SCC mapping had findings that the approach in our web portal could provide 

real-time SCC mapping results with integrated SCC mapping functions; the portal was 

capable of updating with new data while maintaining accuracy as long as there were 

research improvements; and that the portal is a good step towards real-world 

applications of our research with contributions to Smart City development.  

11. The recently submitted journal paper titled “Prediction Tool on Fine Particle Pollutants 

and Air Quality for Environmental Engineering” (Du et al.) has findings that discover 

valuable relationships between urban traffic and PM2.5 data, that e.g. traffic volume per 

se is not directly proportional to PM2.5 emissions; "region" attributes have significant 

effects on PM2.5 concentrations; high gasoline and diesel consumption does not always 

cause unsafe PM2.5 ranges; and economic conditions highly influence the presence of 
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PM2.5 in air. Some of these are supplementary to our findings from conference papers 

on this topic. 

12. In general, a very important finding of this dissertation is that ordinance-tweet mining is 

pioneering work conducted by our team of researchers, and it leads to essential 

contributions from Smart City perspectives. This dissertation establishes the claim that 

this method of mining public reactions on ordinances or local laws is a significant aspect 

of urban policy research. Overall, this dissertation has tremendous scope for further 

research and development, such as conducting the historical analysis of ordinances and 

tweets, addressing subtle nuances in the language within them, and pursuing potential 

social media mining in multilingual contexts as well. Some future issues are listed in 

this dissertation. 

7. 2 Future Work 

Method Improvement and Extended Data Coverage: This research conducted SCC 

mapping and decision support tools development. We counted the appearances of terms that 

belonged to domain KBs in ordinances or tweets to assign SCC scores. The current method 

defines every term with the same score. However, we know that some terms should be more 

significant. We need to design a weighting factor system to assign different SCC scores to the 

terms in the domain KBs. This improvement will enhance the accuracy of our mapping and 
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contribution to Smart City development. 

The data we used are primarily NYC data and only two sessions of ordinances. It will 

improve the impact of environmental management if we apply the same technique to other areas. 

The air quality tool uses PM2.5 as the air quality indicator. For the air quality tool, we proposed 

to include other common air pollution indicators, e.g., PM10, for a more comprehensive 

prediction and decision support, which benefits the Smart City development. 

Before and After Analysis of Tweets Sentiments: We utilized social media mining and 

CSK to identify the related tweets. The sentiment changes of related tweets, primarily those 

published before and after the enactment date of the ordinance, could be considered highly 

associated with that ordinance. We proposed to design a website or software that automatically 

identifies the ordinance and output sentiment changes of the related tweets. Ordinances, the 

powerful tools of urban governments, can be evaluated accurately and conveniently. The 

efficiency of urban management will be enhanced. 

The foundation of our approach is that we believe that Twitter users express their feelings 

about different aspects of their daily lives by posting tweets. The ordinances are also related to 

the daily lives of urban residents. By building connections with tweets and ordinances, we can 

connect urban management with urban residents. We have designed the concept program, as 

Figure 7.1 and Figure 7.2 portray herewith.  
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Figure 7.1: Input Interface Concept 

 

Figure 7.2: Output Interface Concept 
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We plan to ask the Ph.D. students of Earth and Environmental Studies to test this program 

as the first step. We will test the tool with an urban management agency after this test. We plan to 

let the users operate the program for 15 minutes each and give their opinions based on the user 

experience. An informal survey will help in the design of the metrics. There will be two groups 

of questions: 1. Easy to use. 2. How useful it is. Each group will have 2-5 questions with a score 

of 1-5. After finishing the test, we will analyze the overall score of the tool and improve it. 

Enhance and Combine the Decision Support Tools: The Internet of Things (IoT) 

connects and exchanges data between different devices, systems, and platforms via the Internet. 

This means cross-platform information gathering and sharing. We have designed decision 

support tools with various data sources and platforms (Desktop system, Android system, 

Website). We could combine all the functions from our multiple tools and provide access to 

multiple platforms. It will contribute even more to Environmental Management and Smart City 

Development. To fully achieve IoT of decision support tools, we also need an automated 

information gathering agent, such as the web crawler to collect data since ordinances and tweets 

update constantly. The concept of a proposed enhancement is shown in Figure 7.3 here.  
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Figure 7.3: Proposed Enhancement 

With all these potential open avenues presenting the scope for further research, considerable 

future work emerges from this dissertation. This can entail areas such as decision support, urban 

policy, data mining, and Smart Cities.  
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