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Abstract 

 

 The dynamic role of bacteriophage in different environmental areas poses 

important questions about viral interactions with and control of bacteria. Bacteriophage 

play a vital role in the evolutionary track of bacteria. The evolutionary role of 

bacteriophage is affected by lysogenic conversion, transduction, mediated gene transfer, 

and the exertion of selective pressures. The objective of this research was to determine if 

there were changes in growth of the bacterial host Mycobacterium smegmatis and its 

bacteriophage Jenika given isolated changes in environmental conditions.  Growth of the 

host, M. smegmatis, was documented using changes in optical density and growth of one 

of its bacteriophages, Jenika, was documented using viral titer. Additionally, changes in 

bacteriophage morphology were documented using electron microscopy. There were 

differences in the rate of growth of Mycobacterium smegmatis among different 

temperatures. Specifically, the M. smegmatis culture grown at 25  C showed significantly 

less growth than all other temperatures.  However, despite these differences, all cultures 

began the exponential phase at approximately hour 15 after inoculation. The titer of 

Jenika was also affected by temperature as a result of the host changes; it showed a shift 

in the time necessary to start its exponential growth. Temperatures below the standard 

growth temperature showed a one-hour shift in when the exponential phase started. The 

electron microscopy showed similar tail lengths and head diameters for isolated phage. 

However, given the low statistical power of the sample size, an ANOVA was not 

performed on the results. The electron microscopy work should be repeated in the future 

with the goal of obtaining measurements on a larger sample size to increase statistical 
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power.   The results presented here suggest that changes in temperature may have an 

effect on the growth of the bacterial host and its bacteriophage’s ability to attach to 

and/or infect its host.   
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CHAPTER ONE 

INTRODUCTION 

 The dynamic role of bacteriophage in different environmental conditions poses 

important questions about the virus’ interactions with and control of their bacterial hosts. 

Bacteriophage play a vital role in the evolutionary track of bacteria (León & Bastías 

2015). The evolutionary role of bacteriophage is affected by lysogenic conversion, 

transduction, mediated gene transfer, and the exertion of selective pressures (León & 

Bastías 2015 and Ogunseitan et al. 1990). Bacteriophages are also central in the control 

of bacterial populations (Yu et al. 2017). Studies have shown how they infect and 

replicate in ways that drive changes in bacterial populations environmentally, such as 

recent studies showing populational culling of V. cholerae as a result of bacteriophage 

increases (Silva-Valenzuela & Camilli 2018).  These studies support the idea that on a 

microbial level, bacteriophage drive many aspects of bacterial communities in the 

environment. 

 Bacteriophages are central not only for bacterial evolution but also in the shaping 

of ecosystems (Silva-Valenzuela & Camilli 2018). For instance, humans interact with 

various microbes, either in ways that are beneficial, neutral, or harmful. Studies have 

investigated the medical and industrial aspects of these relationships in detail, as well as 

the relationships between bacteriophage and environmental conditions within organisms 

and natural and man-made environments. One such study, conducted by Fisher et al. 

(2016), investigated the environmental effects on P100 bacteriophage as a control 

mechanism for Listeria monocytogenes. However, there seems to be a gap in the 

ecological and environmental knowledge of naturally occurring bacteriophage in 
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changing conditions. After investigating the literature revolving around bacteriophage, it 

appears that there are no published studies on how environmental variations in natural 

soil ecosystems can affect bacteriophage and their bacterial hosts. Given consistent 

increases in global temperatures (Banerjee & Sharma 2021), it is important to understand 

how these changes will affect bacteriophage.  

 Changing environmental factors around the globe have begun to affect many 

aspects of life on Earth. These changing environmental factors include temperature 

changes and the availability of nutrient resources. The global temperature has risen 1.8⁰F 

from 1901 – 2016 and is predicted to continue rising (USGCRP 2018). Nutrient 

availability is also changing as a response to climate change, and a recent example of this 

has been documented in a forest ecosystem. Forests, which are important carbons sinks, 

can start to become carbon sources as a result of increased temperature, droughts, and 

other climate changes (Jansson & Hofmockel 2020). Given that soil microbes have 

important roles in nutrient cycles, they have been seen to respond to these climate and 

nutrient changes, including decreases in abundance and diversity as a result of the shifts 

in nutrient availability (Freedman et al. 2015, Frey et al. 2014, Llado et al. 2017, Wu et 

al. 2015). There are still questions that lie in how the environment plays a role in the 

bacteriophage itself (such as in biochemistry, gene expression, growth/replication rate 

and morphology). These questions pose importance for environmental studies because 

any changes in the bacteriophage due to environmental conditions may affect how the 

bacteriophage interacts with its host or the bacteriophage’s ability to infect its host. 

 This study investigated the effects of temperature change on the growth of a soil-

dwelling bacteria, Mycobacterium smegmatis (M. smegmatis) as well as one of its 
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bacteriophages, Jenika. This study was done to gain an initial understanding as to how 

environmental stressors of the host translate to the bacteriophage. M. smegmatis is a non-

pathogenic bacterium that is used as a model to identify possible bacteriophage that could 

be used to treat the congeneric pathogen Mycobacterium tuberculosis (Fujiwara et al., 

2012). Jenika was isolated by Jessica Eucker and Nikita Patel from a soil sample as part 

of the Howard Hughes Medical Institute’s SEA-PHAGES program at MSU. Jenika is a 

clone of the bacteriophage ShiVal, isolated by Shivani Patel and Valerie Paschalis as part 

of the Howard Hughes Medical Institute’s SEA-PHAGES program at MSU.  The specific 

goals of this study were to investigate the effects of different temperatures on the growth 

rates of M. smegmatis and Jenika, and to determine the effects of these temperatures on 

the morphology of Jenika. Understanding how these conditions affect bacteriophage can 

help lead to a more comprehensive understanding on how long-term changes in 

environmental conditions can take its toll on soil microbiomes and affect the role 

bacteriophage play in them. 
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1 Jenika Stock Culture   

 In order to create a stock culture of Jenika, a 2.5μl initial high lysate titer was 

collected using previously acquired lysate stored at 4℃. In order to propagate the 

bacteriophage, a web plate was made on a Luria agar plate using 3ml top agar, 250 μl of a 

saturated M. smegmatis culture, and 2.5μl of Jenika lysate. The top agar was made with 

20 mL of 2X TA (Top Agar), 20 mL of 7H9 Neat and 1ml of 0.1M CaCl2. To prepare the 

top agar, both the 2X TA and 7H9 Neat were brought to the same temperature of 50℃. 

Once the 2X TA and 7H9 Neat were at equal temperature, 20μl of each were added to a 

50 mL conical tube. After incubation for 24 hours at 37℃, the plate was flooded with 

3mL of 1X phage buffer. The 1X Phage buffer consists of 10 mL 1M Tris at pH 7.5, 10 

mL 1M MgSO4, 4g NaCl, and 980ml of ddH2O, with the addition of 1ml 0.1M CaCl2 

before use. The plate was incubated for 4 hours at room temperature to maximize 

bacteriophage concentration, then filtered through a 0.22 μm syringe filter to isolate 

purified bacteriophage. The titer was then determined by calculating the plaque forming 

units per milliliter of culture (pfu/mL). The pfu/mL is calculated by taking the number of 

plaques counted at the highest dilution, divided by the amount plated in milliliters times 

the dilution. The titer of the final stock using these calculations was 2x1010 pfu/mL. 

2.2 Mycobacterium smegmatis Growth Curves 

 The growth curves of M. smegmatis were assessed at 22, 25, 37, and 40℃ by 

measuring the optical density of cultures hourly using a GENESYS 20 spectrophotometer 

by Thermo Scientific over the course of 24 hours. A 50ml flask of 7H9 complete media 
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was made using 44.5mL of 7H9 Neat, 5ml of AD supplement, 0.5ml of 100μM CaCl2, 

and 5μl of carbenicillin (CB) and cycloheximide (CHX). CB and CHX are an antibiotic 

and antifungal, respectively. The 7H9 complete media was then inoculated with 250μl of 

M. smegmatis from a previously made saturated working culture grown at 37℃. The 

cultures were incubated at their appropriate temperatures in a shaker at 225 RPM. The 

first curve generated was the standard at 37℃, the optimal temperature for M. smegmatis. 

7H9 complete media was used as a blank for all spectrophotometer measurements for this 

portion of the study. At each time point, one mL of the bacterial culture was removed and 

added to a 1ml plastic cuvette and measured at a wavelength (λ) of 600 nm. Before each 

measurement, the blank was checked to make sure the spectrophotometer was calibrated. 

There were 20 total time points, one for inoculation and every hour after. Following the 

creation of a standard growth curve under standard conditions, the approximate start to 

exponential growth was identified. Following the construction of the growth curve at 

37℃, curves for 40, 25, and 22℃ were generated from hours 0 to 19 under the same 

conditions as the initial standard curve.  The curves and 95% confidence intervals were 

created using RStudio and the ggplot2 package (v3.3.3; Wickham, 2016). 

2.3 Jenika Titer Curves 

 To create bacteriophage titer curves, bacterial cultures were made for each 

temperature following the methods used to generate the growth curves for M. smegmatis. 

In addition, each culture was inoculated with 2.5 μl of the stock lysate with titer of 2x1010 

pfu/mL. At each time point, 1ml of the culture was removed and filtered through a 0.22 

μm syringe filter into a 3ml Eppendorf tube. After the culture was syringe filtered, the 

lysate was then serial diluted seven times to achieve a -7 dilution. This was done by 
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putting 90 μl of phage buffer in seven 1.5ml microcentrifuge tubes, then taking 10 μl of 

the original lysate and performing serial dilutions in each tube. The tubes were vortexed 

briefly between each dilution, after which, a spot titer plate was prepared by mixing 250 

μl of M. smegmatis with 3ml of 1X Top Agar. Once the agar was solidified, the bottom of 

the plate was marked in a grid pattern to show 9 sections of the plate. Each section was 

labeled to identify the plated dilutions. In each area of the grid, 5μl of lysate was dropped 

onto the plate. The plates were then incubated for 24 hours at 37⁰ C. At 19 hours for each 

temperature, 1ml of the culture was collected and placed at -80⁰ C to use for Electron 

Microscopy. The curves and 95% confidence intervals were created using the RStudio 

packages ggplot2 and ggpubr (v0.4.0; Kassambara, 2020 & v3.3.3; Wickham, 2016).  

2.4 Jenika Electron Microscopy 

 The electron microscopy of Jenika, cultured at each temperature, was conducted 

by Dr. Laying Wu using a NANOSPRT12 electron microscope. All usable images of 

intact bacteriophage were analyzed for tail length and head diameter. The measurements 

were taken by hand using a ruler. The head, tail, and image scale bar were all measured in 

millimeters and then converted to nanometers based on the scale bar for that image. 
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CHAPTER THREE 

RESULTS 

3.1 Mycobacterium smegmatis Growth Curves 

 The growth of the host was observed at the standard and experimental 

temperatures using optical density readings at hourly intervals. The optical density data 

for the standard growth curve were collected first and showed the growth of M. 

smegmatis at 37℃ in 7H9 complete medium. This set a standard that was used to 

compare the effects of experimental temperatures on host growth. As seen in Figure 1, 

the approximate start of exponential growth began at approximately hour 14 – 15 for all 

temperatures. This provided a starting point for observation of Jenika during the host 

exponential phase. The results also show that there is notable similarity between the OD 

readings for 37℃ and 40℃.  

 Growth curves for 37° C and 22° C were very similar for hours 1 to 15.  However, 

growth curves for these temperatures began to diverge around hour 15 with 37° C growth 

decreasing and 22° C growth continuing to increase.  The growth curve for 40° C began 

with less growth compared to 22° and 37° C until approximately hour 15.  At hour 15, the 

40° C culture had growth similar to 22° C and higher growth than 37° C. Throughout all 

time points, 25° C had the lowest growth compared to all other temperatures.  A one-way 

ANOVA was performed using RStudio, resulting in a P-value of 0.0284. A paired one 

tailed T-Test between all the temperatures results in a P-value of , 
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, , between the temperatures of 37 and 25, 40 and 25, and 25° C 

and 22° C, respectively. Given that 25° C was the common temperature between the 

statistically significant T-tests, 25° C had the greatest effect on optical density readings.   

Figure 1 fix axis m smeg and spelling 
 
The above graph displays the OD measurements of Mycobacterium smegmatis at 600nm 
wavelength with 95% confidence intervals shown in gray. The measurements were taken hourly 
starting 9 hours after inoculation. 

3.2 Jenika Titer Curves 

 Following the incubation period, the plaques were counted at each dilution and 

the titer was calculated. The titer is measured with the unit pfu/mL, also known as plaque 

forming units/mL (Fig. 2). In order to calculate the titer in this unit, the number of 

plaques counted at the highest dilution is divided by the amount plated in milliliters times 

the dilution. An example of this is the calculations used to find the stock titer, 

 . This results in a titer of  pfu/mL. The results at each 

temperature were then graphed with a 95% confidence interval as seen below in Figure 3. 
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Figure 2 

An example of the spot titer performed at each time point in order to generate the titer curve. The 
resulting titer is  pfu/mL. 

As seen in Figure 3, the titer changed relative to the growth of the host at varying 

temperatures. The starting point in which the exponential phase of bacteriophage 

propagation is seen shifts as temperature decreases. The overall titer after 19 hours also 

decreases as the temperature deviates further from the optimal 37℃. The graph was split 

for Figure 3 due to the large variation in the Y-axis. A one-way ANOVA was performed 

using RStudio, resulting in a P-value of 0.0405. A paired one tail T-test between all the 

temperatures showed no statistical significance for any particular temperature. 
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Figure 2 
 
The above graph displays the titer of Jenika at each timepoint under the varying temperature 
conditions after 24 hours of incubation at 37℃ with 95% confidence intervals shown in gray. 

 

3.3 Jenika Electron Microscopy 

 The Electron Microscopy showed the morphology of bacteriophage Jenika after 

exposure to each temperature condition for 18 hours. The head of Jenika at 37, 40, and 

25⁰ C measured 71.4, 76.5, and 77.8 nm, respectively. The tail of Jenika at 37, and 40⁰ C 

measured at 278.6, and 241.2 nm, respectively. Statistical tests were not run on these 

measurements due to the low statistical power of such small sample sizes. Due to image 

quality, the tail was not measurable at 25⁰ C.  No usable images were obtained for Jenika 

cultured at 22° C.   
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Figure 4 

Electron Microscopy image of Jenika after 18 hours of treatment at 37℃. Line A 
represents the diameter of the head, which measures at 71.4 nm. Line B represents the 
length of the tail, which measures approximately at 278.6 nm. 
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Figure 5 

Electron Microscopy image of Jenika after 18 hours of treatment at 40℃. Line A 
represents the diameter of the head, which measures at 76.5 nm. Line B represents the 
length of the tail, which measures approximately at 241.2 nm. 
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Figure 6 

Electron Microscopy image of Jenika after 18 hours of treatment at 25℃. Line A 
represents the diameter of the head, which measures at 76.5 nm. The tail was not clearly 
visible in any image, and thus was not measured. 

CHAPTER FOUR 

DISCUSSION 

4.1 Mycobacterium smegmatis Growth Curves 

 The overall growth for Mycobacterium smegmatis increased over the course of 

the 19 hours as expected. The observable point at which the exponential phase began 

based on the optical density data was shown to be in the same approximate time frame 
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despite the temperature conditions. This is important as it narrows down an observational 

point for Jenika replication. The variability and decreases in OD towards the end of the 

curves can be attributed to clumping of bacterial cells. Mycobacterium smegmatis clumps 

together as the culture becomes more saturated despite the presence of a detergent in the 

solution. This can also account for the optical density readings showing the growth 

curves for these temperatures diverging around hour 15 with the optical density at 37 ⁰ C 

growth decreasing while the 22 ⁰ C growth continuing to increase. Clumping of M. 

smegmatis is a possible explanation for the apparent decrease in population size over 

time. Despite any possible clumping by Mycobacterium smegmatis, the confidence of the 

curves tightened showing an increase in accuracy as the culture propagated. Overall, the 

growth curves at varying temperatures have the expected results of a general increase in 

M. smegmatis cells until a point of saturation is reached when clumping may begin.  

 A one-way ANOVA was performed with temperature being the dependent 

variable, resulting in a P-value of 0.0284. Given that this value is below 0.05, the null 

hypothesis is rejected, and we see there is a statistically significant difference in optical 

density measures as a result of temperature. The results of the pairwise T-tests showed P-

values of , , , between the temperatures of 37 and 25, 

40 and 25, and 22° C and 25° C, respectively. These results suggest 25° C had the most 

significant effect on the growth of M. smegmatis.   

4.2 Jenika Titer Curves 

 The titer of Jenika after host exposure at each temperature was reflective of the 

growth of the host population. When compared to the growth curves of Mycobacterium 
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smegmatis, the temperatures that showed lower overall host growth showed lower overall 

titers. Lower overall titers as a result of the overall host growth suggests that stress on the 

host can translate to the bacteriophage.  Reduced host growth is also a plausible 

explanation for a notably different y-axis for the 37 and 40 ⁰ C cultures compared to those 

of the 22 and 25 ⁰ C conditions. This could also be due to a direct effect on the 

bacteriophage. It is possible that Jenika is directly experiencing the effects of the 

temperature change, possibly resulting in a decreased ability to attach and/or infect the 

host.  

 A one-way ANOVA was performed with temperature being the dependent 

variable, resulting in a P-value of 0.0405. Given that this value is below 0.05, the null 

hypothesis is rejected, and we see there is a statistically significant difference in 

bacteriophage titer as a result of temperature. Given the ANOVA showing a statistical 

significance, paired one tail T-tests were performed. The T-tests showed no individual 

temperature having a significant statistical value. This shows an observable trend, 

however due to small sample size of only one measurement at each time point for each 

temperature the statistical tests may be unreliable.  

 The titer curves also showed at what time point the bacteriophage population 

began to exponentially grow. The beginning of the exponential curve for each 

temperature varies despite a similar starting point in the host curves. This could indicate 

that there could be more affects despite changes in population increases relative to those 

of the host or independently as a result of temperature. It is possible that the changes in 

temperature conditions could cause any of the bacteriophage mechanisms, such as 

attachment or infection, to move at an altered pace.  
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 A change in Jenika’s ability to attach to or infect M. smegmatis could lead to 

decreases in population control that bacteriophage exert on bacterial populations in 

environments where temperature may be decreased. Global warming and increased 

temperatures can lead to sudden drops and increased winter severity as seen in a recent 

study by Cohen et al. (2018). Their work linked the warmer artic episodes as a result of 

increased temperatures to an increase in the frequency of extreme winter weather in the 

United States (Cohen et al. 2018). Given the importance of bacterial populations in 

nutrient cycling, changes in overall population sizes of different species in soil 

microbiome can cause adverse effects on other species in that given environment. It can 

also lead to disproportional abundance in a soil microbiome, leading to altered soil 

conditions which may further affect other species in the area. Sudden changes in 

environmental temperatures may have a negative impact on a both the bacterial host and 

its bacteriophage’s ability to attach and/or infect the host.   

4.3 Jenika Electron Microscopy 

The electron microscopy of bacteriophage Jenika after each temperature treatment 

showed no noticeable change in the morphological shape. The length of the tails and the 

diameter of the head were measured for each of the images. There appear to be minimal 

differences in the length and diameter, however due to the small sample size and missing 

images for the 22 ⁰ C treatment, no statistical tests were able to be performed. These 

conditions should be repeated in the future with the aim of attaining a higher sample size. 

If a repeat of these test shows a significant difference in a one-way ANOVA, pairwise 

comparisons will be done between the measurements to determine statistical differences 

between each temperature. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 

 Based on the results presented here, there appears to be a negative effect of 

temperature on growth of the bacterial host M. smegamatis, and a corresponding negative 

effect on the replication of its bacteriophage, Jenika.  Changing environmental 

conditions, especially temperature, may have a negative impact on other bacterial hosts 

and their respective bacteriophage in natural environments.  Given the essential role 

bacteria play in nutrient cycling and given the essential role bacteriophage play in the 

control of bacterial populations, future work should focus on investigating the effects of 

additional temperatures on host/bacteriophage growth (particularly additional higher 

temperatures).  Additionally, future work should also focus on investigating how 

changing temperature may be affecting host and bacteriophage growth by specifically 

looking at differences in gene expression of host and bacteriophage genes. Retesting of 

the titer curves in order to increase the statistical power of the sample size is another 

focus that should be done. Given the inability to find statistical significance using T-tests 

despite ANOVA results, larger sampling to create curves that use average readings would 

help better understand the effect temperature has in the bacteriophage. 
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