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Abstract

In this research, we investigated the interlace polynomials of a shell graph as well as other

related graphs. A shell graph, Tn is constructed by adding edges to a cycle graph such that

all vertices are adjacent to one vertex. The main results of this thesis include iterative and

explicit formulas for the interlace polynomial of a shell graph, denoted q(Tn, x). A linear

algebra application using the adjacency matrices of the chosen graphs is also explored.
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Chapter 1

Introduction

1.1 History

Sequencing by hybridization is a method of reconstructing a long DNA string in order

to determine its nucleotide sequence. Arratia, Bollobás, and Sorkin constructed interlace

polynomials motivated by a problem relating to DNA sequencing by hybridization, more

specifically, to find the number of possible reconstructions of a random string. The number

of reconstructions is the number of Euler circuits in a 2-in, 2-out digraph. The problem was

converted to counting the number of 2-in, 2-out digraphs having a given number of Euler

circuits.

The interlace polynomial of a graph is generated from a toggling process on the graph.

Information about a graph G can be given by its interlace polynomial q(G, x), such as,

the number of Euler circuits in a 2-in,2-out digraph, the number of k-component circuit

partitions, and structural properties of the graph through special values. For example,

q(G, 2) gives the number of vertices in the graph G. Interlace polynomials for some well-

known simple graphs like paths, cycles, stars, complete graphs, and certain trees have been

studied.
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The graph I am mostly interested in is called a shell graph. A shell graph on n vertices,

denoted Tn, is constructed by adding n − 3 edges to a cycle graph on n vertices such that

all vertices are adjacent to one vertex. The main goal of this research is to develop formulas

for these types of graphs and study the properties of them.

1.2 Graph Theory Basics

In this section, we list some basic definitions and well known theorems about graphs as well

as provide descriptions of well known graphs.

Definition 1.2.1. A graph G is an ordered pair of sets denoted G = (V (G), E(G)) where

1. V (G) is the vertex set of G and E(G) is the edge set of G which is a set of 2-element

subsets of V (G) where E(G) ⊆ {{u, v} : u, v ∈ V (G)}. When {u, v} ∈ E(G), we use

the notation uv.

2. ∀u ∈ V (G) the neighborhood of u is the set N(u) = {v ∈ V (G) |uv ∈ E(G)}.

3. The degree of a vertex, v, is the number of edges that are incident to that vertex,

denoted d(v).

4. A loop is an edge that connects a vertex to itself.

A set of special graphs are well known and well studied.

Definition 1.2.2. (Special Graphs)

1. A simple graph is a graph containing neither loops nor multiple edges.

2. A path with n edges, denoted by Pn, is a sequence of vertices such that each vertex in

the sequence is adjacent to the vertex next to it. For vertices vi in graph G, a graph

with n edges can be represented as v1v2 . . . vnvn+1.
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3. A cycles with n ≥ 3 vertices, denoted as Cn, is a path G with an added edge vnv1.

4. A star with n edges, denoted Sn, is a tree with one vertex degree n and the other vertices

are leaves.

5. A complete graph on n vertices, denoted Kn, is a simple graph where every vertex is

adjacent to every other vertex.

6. A tree is a connected graph without cycle. A vertex with degree 1 in a tree is called a

leaf.

Some graph theory terms are defined below for later reference.

Definition 1.2.3. 1. a cut vertex is a vertex that, when removed from a graph, results in

a graph with more components than the original graph

2. A matching in a graph is a set of edges without common vertices

Example 1.2.4. A path with 8 edges, P8 is shown below.

v1 v2 v3 v4 v5 v6 v7 v8 v9

P8

From definition 1.2.2, the graph P8 is also a tree. From definition 1.2.3, v2, v3, . . . , v7, v8

are all cut vertices.

Some well-known properties for these special graphs are listed below.

Theorem 1.2.5. Let G = (|V (G)|, E(G)|) be any graph

1.
∑

v∈V (G) d(v) = 2|E(G)|;

2. If G is a tree then |E(G)| = |V (G)| − 1;

3. |E(Kn)| = n(n−1)
2

;
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4. |E(Km,n)| = nm.

For example, in example 1.2.4, the number of edges in P8, |E(P8)|, is 8. Since P8 is a

tree, from theorem 1.2.5,

1.
∑

v∈V (G) d(v) = 2|E(P8)| = 16;

2. |E(P8)| = |V (P8)| − 1 is true.

In this research we only consider undirected graphs.

1.3 Defining the Interlace Polynomial

The definition of the interlace polynomial is described recursively and was defined by

Arratia, Bollobás, and Sorkin in [2]. From now on, all of our graphs are simple graphs. For

an edge ab from a graph G, we denote Va to be the neighborhood of a excluding b, Vb to be

the neighborhood of b excluding a, and Va,b to be in the neighborhood of both a and b. That

is, Va = N(a) \ (N(b) ∪ {b}) , Vb = N(b) \ (N(a) ∪ {a}) , and Va,b = N(a) ∩N(b).

Figure 1.1: The Toggle Operation at the Edge ab

Definition 1.3.1 (Toggling Process). Let G be a graph and ab be an edge of G. The toggling

process of G on ab means to create a new graph Gab = (V (G), E(Gab)) and for every pair of

4



vertices u, v belonging to different neighborhoods Va, Vb, Vab, uv is an edge of Gab if and only

if uv is not an edge of G. The resulting graph Gab is called the pivot of G at ab.

The interlace polynomial of G is defined by fixing one edge and considering the interlace

polynomial of the smaller graphs G−a and Gab−b. If G is a union of disconnected graphs, it

is known that if G1, G2 are 2 disconnected components of a graph, the interlace polynomial

of G1 ∪G2 is the product of the interlace polynomials of G1 and G2. For the smallest graph

K1, the interlace polynomial is x. Following this rule, the interlace polynomial of the empty

graph En (no edge) is then xn. We adopt the definition from [2].

Definition 1.3.2 (Interlace Polynomial). [2] Let G be any undirected graph with n vertices

and ab be an edge of G. The interlace polynomial q(G, x) of G is defined by

q(G, x) =


xn if E(G) = ∅;

q(G− a, x) + q(Gab − b, x) if ab ∈ E(G)

q(G1, x)q(G2, x) if G = G1∪G2 disjoint union

.

Example 1.3.3. Consider the graph G made up of a cycle C5 with 2 additional cords. The

toggling process for the graph G is shown below on edge ab.

a

b

G a

b

Gab

After removing the vertices a and b, from their corresponding graphs G and Gab, the

following graphs are shown below. The graph Gab − b = P3 is a path of length 3, and the

graph G− a is made of C3 with a leaf attached to one of the vertices.
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b

G− a

a

Gab − b

By this toggling process and by definition 1.3.2, the polynomial of G is q(G, x) = q(G −

a, x) + q(Gab − b, x) where G− a and Gab − b are smaller graphs.

1.4 Existing Results

Research has been done on properties of interlace polynomial of well-known graphs. The

following properties show that the interlace polynomial of a graph G can describe the ground

graph in certain ways.

Theorem 1.4.1. [2] Let G be a graph.

1. The degree of the lowest-degree term of q(G, x) is the number of components of G.

2. If G is a forest with n vertices, then deg(q(G, x)) = n− µ(G), where µ(G) denotes the

size of a maximum matching in G.

3. For any graph G of order n, q(G, 2) = 2n.

4. If G is connected, then the constant is 0.

The interlace polynomials of some well known graphs are given below. After a graph has

been toggled, the well known graphs, Pn, Cn, Kn, Km,n, and Sn can be found.

Theorem 1.4.2. Consider the special graphs Pn, Cn, Kn, Km,n, and Sn.
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1. q(P0, x) = x,q(P1, x) = 2x, q(P2, x) = x2 + 2x and for n ≥ 2, q(Pn, x) = q(Pn−1, x) +

xq(Pn−2, x);

2. q(C3, x) = 4x, q(C4, x) = 3x2 + 2x, q(C5, x) = 5x2 + 6x and for n ≥ 4, q(Cn, x) =

q(Pn−2, x) + xq(Pn−4, x) + q(Cn−2, x).

3. q(Kn, x) = 2n−1x;

4. q(Km,n, x) = (1 + x+ . . .+ xm−1)(1 + x+ . . .+ xn−1) + xm + xn − 1;

5. q(Sn, x) = xn + q(Sn−1, x) = xn + xn−1 + . . .+ x2 + 2x.

Comparing the above two theorems, we note that

1. All of the graphs in Theorem 1.4.2 are connected and their interlace polynomials all

have 0 constant. This confirms Theorem 1.4.1(1);

2. The maximum matching for Sn is 1 and Sn has n+ 1 vertices. From theorem 1.4.1(2),

deg(q(Sn, x)) = n+ 1− 1 = n. From theorem 1.4.2(7), the degree is n;

3. The graph Kn has n vertices. By Theorem 1.4.1, q(Kn, 2) = 2n. By Theorem 1.4.2,

q(Kn, 2) = 2n−1 · 2 = 22.

Some theorems involving special values of q(G, x) already exist. These values have a

connection to properties of the graph G.

Theorem 1.4.3. [1] Let G be a graph on n vertices, An be the n × n adjacency matrix of

a graph G and also let rn = rank(An + In) (mod 2) where In is an n × n identity matrix.

Then

q(G,−1) = (−1)n(−2)n−rn .

The value of q(Pn, x) at x = −1 is described below.

From theorem 1.4.2(2), q(P0, x) = x, q(P1, x) = 2x, and q(P2, x) = x2 + 2x. It would

follow that q(P0,−1) = −1, q(P1,−1) = −2, and q(P2,−1) = −1.
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1.5 Results on q(Pn, x)

A recursive formula for the interlace polynomial of the path Pn is given in Theorem 1.4.2.

Other useful results on q(Pn, x) are given below.

Theorem 1.5.1. For any positive integer n, The polynomial q(Pn, x) is of degree
⌊
n+2
2

⌋
and

can be described explicitly as

q(Pn, x) =

bn/2c∑
r=0

[(
n− r
r

)
+

(
n− r − 1

r

)]
xr+1.

The value of q(Pn,−1) is given below.

Proposition 1.5.2. For any integer n ≥ 0

1. If n ≡ r (mod 6), where 0 ≤ r < 6, then q(Pn,−1) = q(Pr,−1);

2. q(Pn,−1) = −σn−1 − τn−1, where σ = 1+i
√
3

2
and τ = 1−i

√
3

2
.

Definition 1.5.3. The interlace polynomial of a path q(Pn, x) is denoted by

q(Pn, x) = bn,jnx
jn + bn,jn−1x

jn−1 + . . .+ bn,1x,

where jn = deg(q(Pn, x)) and bn,i is the coefficient of the xi-term of q(Pn, x).

Lemma 1.5.4. Consider a path Pn with n ≥ 0, then

1. jn = bn
2
c+ 1

2. the leading coefficient of q(Pn, x), bn,jn, is

bn,jn =

 1 if n is even

n+3
2

if n is odd
;

8



3. the second leading coefficient of q(Pn, x), bn,jn−1, is

bn,jn−1 =


n2+6n

8
if n is even

(n2−1)(n+9)
48

if n is odd
;

4. the third leading coefficient of q(Pn, x), bn,jn−2, is

bn,jn−2 =


n4+12n3−4n2−48n

384
if n is even

n5+15n4−10n3−150n2+9n+135
3840

if n is odd
;

5. the x coefficient of q(Pn, x) is bn,1 = 2.

6. The ith coefficient of q(Pn, x) is given by bn,i =
(
n−i+1
i−1

)
+
(
n−i
i−1

)
. This result comes

directly from Theorem 1.5.1.

7. The value of q(Pn, x) mod 6 when x = −1,

q(Pn,−1) =



1 if n ≡ 3, 5 (mod 6)

−2 if n ≡ 1 (mod 6)

−1 if n ≡ 0, 2 (mod 6)

2 if n ≡ 4 (mod 6)

;

1.6 Graphs of Interest

Our main graphs of interest is called a “shell graph” which is built from a cycle. The shell

graph is defined below.

Definition 1.6.1. Let n be a positive integer at least 3. Consider the cycle Cn = v1v2 . . . vnv1

with n edges. Define Tn to be the resulting graph by adding n − 3 edges, all adjacent to vn,

vnv2, vnv3, . . . vnvn−2, to Cn. We call this graph the shell graph with n vertices. Precisely,
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Tn = (V (Tn), E(Tn)), where V (Tn) = {v1, v2, . . . , vn} and

E(Tn) = {vivi+1, vnvi, for i = 2, 3, . . . , n− 2, v1v2, v1vn, vn−1vn}.

This particular graph is given the name shell graph because its appearance is similar to

a scallop shell. All the lines(threads) of the scallop start from a point(beak) and end at the

margin. Below are examples of shell graphs.

Example 1.6.2. Shell graphs on 7 and 8 vertices, T7 and T8.

v2

v3 v4

v5

v6

v7

v1

v2

v3 v4

v5

v6

v7
v8

v1

Figure 1.2: The graphs T7 and T8.

Cycles with a tail were developed in order to study the interlace polynomial of wheel

graph.

Definition 1.6.3. Let r, s be two integers with r ≥ 3 and s ≥ 0. Let Dr,s be the graph

obtained by gluing the cycle Cr and the path Ps at one vertex of Cr and one end vertex of Ps.

Example 1.6.4. Cycles C3, C4, and C5 with respective tails P1, P2, and P3. These are

labeled respectively D3,1, D4,2, and D5,3.

10



v3

v1 = u0v2

u1
v4v3

v2 v1 = u0

u1

u2

v4

v3

v2 v1 = u0

v5 u1

u2

u3

Figure 1.3: The graphs D3,1, D4,2, and D5,3.

A labeled graph Dr,s is given in Figure 1.4.

v3

v4

v1 = u0v2

vr−1

vr

· · ·

Cr

u1 us−1 us
· · · · · ·

Figure 1.4: The Labeled Graph Dr,s.

Note that s ≥ 0 and Dr,0 = Cr.

A wheel graph on n vertices is denoted by Wn. The graph is constructed by adding one

vertex, vn to the cycle Cn−1 and adding n− 1 edges all adjacent to vn, vnv1, vnv2, . . . , vnvn−1

to Cn−1.

Definition 1.6.5. Let n be a positive integer at least 4. Consider the cycle with n vertices,

Cn−1 = v1v2 . . . vn−1v1. Define Wn to be the resulting graph by adding a vertex vn and

n − 1 edges all adjacent to vn, vnv1, vnv2, vnv3, . . . vnvn−2, vnvn−1, to Cn−1. We call this

graph the wheel graph with n vertices. Precisely, Wn = (V (Wn), E(Wn)), where V (Wn) =

{v1, v2, . . . , vn} and

E(Wn) = {vivi+1, vnvi, for i = 1, 2, . . . , n− 2, vn−1vn}.

11



Example 1.6.6. Wheel graphs on 4, 5, and 6 vertices, W4, W5, and W6.

v3

v1v2

v4

v4v3

v2 v1

v5

v4

v3

v2 v1

v5

v6

Figure 1.5: The graphs W4, W5, and W6.
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Chapter 2

The Interlace Polynomial of the Shell

Graph Tn

Before discussing the interlace polynomial of a shell graph, we discuss basic graph properties

of it.

2.1 Properties of Tn

Some basic graph theory properties about Tn are obvious from the structure of the graph

described in definition 1.6.1.

Proposition 2.1.1. Let Tn be a graph with n vertices,

1. |V (Tn)| = n and |E(Tn)| = 2n− 3;

2. (Maximal/minimal degree) ∆(Tn) = n − 1 and δ(Tn) = 2. In particular, the degree

sequence for Tn is {n− 1, 3, 3, · · · , 3, 2, 2}.

3. (Diameter and radius) diam(Tn) = 2, rad(Tn) = 1;

4. ω(Tn) = 3 (clique number);

13



5. The independent number of Tn is αn =
⌊
n
2

⌋
;

6. The chromatic number of Tn is χ(Tn) = 3;

7. The connectivity of Tn is λ(Tn) = 2.

Proof. (1) -(3) are obvious.

For (4), the maximum clique is the cycle C3 = v1vnvn−1.

For (5), a maximum independent set is Sn = {v1, v3, . . . , vn−1} if n is even and Sn =

{v1, v3, . . . , vn−2} if n is odd. It implies that |Sn| = n/2 if n is even and (n−1)/2 if n is odd.

Thus, αn = bn/2c.

(6): The vertices of Tn can be colored by 3 colors. We can assign color 1 to vn, color 2

to the vertices with odd indices excluding vn if n is odd. Then the rest of the vertices take

color 3.

(7): Since Tn has a Hamiltonian circuit, the connectivity is at least 2. If we remove the

vertices vn and v2, the graph becomes disconnected. Thus, λ(Tn) = 2.

The above properties are verified for T8 in the next example.

Example 2.1.2. Consider T8. Refer to Example 1.6.2, The following can be easily calculated.

|V (T8)| = 8, |E(T8)| = 13;

∆(T8) = 7, δ(T8) = 8, diam(T8) = 2 rad(T8) = 1;

ω(T8) = 3 α(T8) = 4, χ(T8) = 3, λ(T8) = 2.

2.2 Recursive Formulas for q(Tn, x)

Let us first examine the toggling process of T8.

14



Example 2.2.1. Consider the graph T8. We start the toggling process at the edge v1v8. The

decomposition of T8 is as follows:

v1

v2

v3 v4 v5

v6

v7v8
T8

−→ v2

v3 v4 v5

v6

v7v8
T7 ∼= T8 − v1

+

v1

v2

v3 v4 v5

v6

v7
T v1v8
8 − v8

Figure 2.1: Toggling of T8 on v1v8.

v1

v2

v3 v4 v5

v6

v7
T v1v8
8 − v8

−→

v1

v3 v4 v5

v6

v7
P4 ∪ {v1}

+ v2

v3 v4 v5

v6

v7
(T v1v8

8 − v8)v2v1 − v1

Figure 2.2: Toggling of T v1v8
8 on v2v1.

v2

v3 v4 v5

v6

v7
(T v1v8

8 − v8)v2v1 − v1

−→ v2

v4 v5

v6

v7
T5

+ v2

v3 v5

v6

v7
T4{v3}

Figure 2.3: Toggling Process of of (T v1v8
8 − v8)v2v1 − v1 on v3v4.

After the above toggling process, we obtain a recursive formula for q(T8, x):

q(T8, x) = q(T7, x) + xq(P4, x) + q(T5, x) + xq(T4, x).

By similar procedures, we can obtain explicit formulas for the interlace polynomials of

Tn for small values of n.
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Lemma 2.2.2. Formulas for Tn for small n, 3 ≤ n ≤ 11.

1. q(T3, x) = 4x;

2. q(T4, x) = 2x2 + 4x;

3. q(T5, x) = 5x2 + 6x;

4. q(T6, x) = x3 + 9x2 + 10x;

5. q(T7, x)) = 4x3 + 17x2 + 14x;

6. q(T8, x) = x4 + 11x3 + 28x2 + 20x;

7. q(T9, x) = 5x4 + 24x3 + 45x2 + 30x;

8. q(T10, x) = x5 + 15x4 + 46x3 + 74x2 + 44x;

9. q(T11, x) = 6x5 + 36x4 + 85x3 + 118x2 + 64x.

Proof. We focus on q(T8, x). Recursively, we obtain

q(T8, x) = q(T7, x) + xq(P4, x) + q(T5, x) + xq(T4, x)

= (4x3 + 17x2 + 14x) + x(x3 + 5x2 + 2x) + (5x2 + 6x) + x(2x2 + 4x)

= x4 + 11x3 + 28x2 + 20x.

An existing result for any graph G with n vertices, q(G, 2) = 2n. We confirm it with our

graph Tn.

Proposition 2.2.3. q(Tn, 2) = 2n
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Proof. We prove this by mathematical induction. By Lemma 2.2.2, one can check easily that

q(Tn, 2) = 24 for n = 3, 4, 5, 6. Assume that the statement is true for all integers m with

k ≥ 6. Then by the recursive formula given in Theorem 2.2.4,

q(Tk+1, 2) = q(Tk, 2) + q(Tk−2, 2) + 2q(Pk−3, 2) + 2q(Tk−3, 2)

= 2k + 2k−2 + (2)2k−2 + (2)2k−3 = 2k + 2k−2 + 2k−1 + 2k−2 = 2k+1.

Thus the statement if true for all n ≥ 3.

Refer to the pivoting process in Example 2.2.1, a recursive formula for q(Tn, x) is given

below.

Theorem 2.2.4. For n ≥ 7,

q(Tn, x) = q(Tn−1, x) + q(Tn−3, x) + xq(Pn−4, x) + xq(Tn−4, x).

Proof. We begin to perform the toggling process starting at v1vn of Tn. For n ≥ 7, the

decomposition of Tn is as follows:

v1

v2

v3 v4 v5

vn−2

vn−1vn
Tn

−→ v2

v3 v4 v5

vn−2

vn−1vn
Tn−1 ∼= Tn − v1

+

v1

v2

v3 v4 v5

vn−2

vn−1
T v1vn
n − vn

Figure 2.4: Toggling of Tn on v1vn.

The toggling process decomposes Tn into four disjoint graphs, Tn−1, Pn−4 ∪ {v1}, Tn−3,

and Tn−4 ∪ {v3}. Here the two unions are disjoint unions. The corresponding interlace

polynomials are q(Tn−1, x), xq(Pn−4, x), q(Tn−3, x), and q(Tn, x). Thus the formula is true.
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v1

v2

v3 v4 v5

vn−2

vn−1
T v1vn
n − vn

−→

v1

v3 v4 v5

vn−2

vn−1
Pn−4 ∪ {v1}

+ v2

v3 v4 v5

vn−2

vn−1
(T v1vn

n − vn)v2v1 − v1

Figure 2.5: Toggling of T v1vn
n on v2v1.

v2

v3 v4 v5

vn−2

vn−1
(T v1vn

n − vn)v2v1 − v1

−→ v2

v4 v5

vn−2

vn−1
Tn−3

+ v2

v3 v5

vn−2

vn−1
Tn−4{v3}

Figure 2.6: Toggling (T v1vn
n − vn)v2v1 − v1 on v3v4.

Now we define the explicit form of the polynomial q(Tn, x).

Definition 2.2.5. The interlace polynomial of the shell graph Tn is denoted by

q(Tn, x) = an,knx
kn + an,kn−1x

kn−1 + . . .+ an,1x

where kn = deg(q(Tn, x)) and an,i is the coefficient of the xi-term of q(Tn, x).

From Lemma 2.2.2, we observe that when n is even the degree of q(Tn, x) is n/2 and

the leading coefficient is 1 if n = 4, 6, or 8. While, the degree is (n − 1)/2 and the leading

coefficient is (n + 1)/2 for n = 7 or 9. The following proposition shows that it is true in

general.

Proposition 2.2.6. Consider the shell graph Tn with n ≥ 3. Then

1. kn =
⌊
n
2

⌋
;

18



2. For n ≥ 6, the leading coefficient an,kn of q(Tn, x) is

an,kn =

 1 if n is even

n+1
2

if n is odd
.

Proof. 1. We apply the recursive relation, Theorem 2.2.4 and prove it by mathematical

induction.

From Lemma 2.2.2, both (1) and (2) are true for n with 3 ≤ n ≤ 9. For n ≥

9, assume deg(q(Tn, x)) =
⌊
n
2

⌋
. By Lemma 1.5.4, deg(q(Pn, x)) =

⌊
n+2
2

⌋
. By the

recursive formula given in Lemma 2.2, deg(q(Tn+1, x)) is the maximum of deg(q(Tn, x)),

deg(q(Tn−2, x)), deg(xq(Tn−3, x)), and deg(xq(Pn−3, x)). That is,

deg(q(Tn+1, x)) = max

(⌊n
2

⌋
,

⌊
n− 2

2

⌋
,

(⌊
n− 3

2

⌋
+ 1

)
,

(⌊
n− 1

2

⌋
+ 1

))
=

⌊
n+ 1

2

⌋
.

2. By the analysis in the proof of (1), only the leading term(s) of q(Tn−1, x) or xq(Pn−4, x)

may contribute to the leading term of q(Tn, x). Furthermore, if n is even, bn/2c >

b(n − 1)/2c, so the leading term of of q(Tn, x) is the same as the leading term of

xq(Pn−4), which is xn/2 with leading coefficient 1. When n is odd, bn/2c = b(n−1)/2c.

Then the leading term of q(Tn, x) is the leading term of q(Tn−1, x) + the leading term

of xq(Pn−4, x). Recall that the leading coefficient of q(Pn, x) is n+3
2

if n is odd (1.5.4).

We know n− 1 is even. Then we have

an,kn = an−1,kn−1 +
n− 1

2
= 1 +

n− 1

2
=
n+ 1

2
.
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Next we develop the formulas for the second and third leading coefficients and the coeffi-

cient for the x-term (the last coefficient) of the polynomial q(Tn, x) denoted an,(kn−1), an,(kn−2),

and an,1.

Proposition 2.2.7. The coefficients for the xkn−1-term, the xkn−2-term, and the x-term are

given below.

1. The second leading coefficient is given by

an,kn−1 =


n2+2n

8
if n is even and n ≥ 10

n3+3n2−n+45
48

if n is odd and n ≥ 11
.

2. The third leading coefficient is given by

an,+kn−2 =


n4+4n3−4n2+176n

384
if n is even and n ≥ 14

n5+5n4−10n3+430n2+9n+3405
3840

if n is odd and n ≥ 17
.

3. The last coefficient for n > 3 is given by

an,1 = 2
n−2∑
k=0

(
n− 2− k
bk
2
c

)
.

Proof. By Proposition 2.2.4, for n ≥ 8,

q(Tn+1, x) = q(Tn, x) + q(Tn−2, x) + xq(Tn−3, x) + xq(Pn−3, x).

We apply the mathematical induction idea for the proof using the above recursive formula.

It is straightforward to check that the above theorem is true for all initial values needed for

the initial conditions of the inductive proof.

1. There are two cases.
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Case 1: n is even. Then n+ 1 is odd. In the proof of Proposition 2.2.6, it shows that the

leading term of q(Tn+1, x) is from the leading terms of q(Tn, x) and xq(Pn−3, x),

which are both of degree n
2
. Thus, the second leading coefficients of q(Tn, x) and

q(Pn−3, x) contribute to the second leading coefficient of q(Tn+1, x). From Lemma

1.5.4 and Proposition 2.2.6, deg(q(Tn−2, x)) = n−2
2

= deg(xq(Tn−3, x)). So the

leading coefficients of q(Tn−2, x)) and q(Tn−3, x)) also contribute to the second

leading term of q(Tn+1, x). Note that from Lemma 1.5.4(3), the second leading

term of q(Pn−3, x) is bn−3,n
2
−1 = ((n−3)2−1)((n−3)+9))

48
= n3−28n+48

48
. Thus, inductively,

for n being even and n ≥ 7 we have

an+1,kn+1−1 = an,kn−1 + an−2,kn−2 + an−3,kn−3 + bn−3,jn−3−1

=
n2 + 2n

8
+ 1 +

n− 2

2
+
n3 − 28n+ 48

48

=
(n+ 1)3 + 3(n+ 1)2 − (n+ 1) + 45

48
.

Case 2: n is odd (n + 1 is even.) Similarly to the previous case, the proof of Proposi-

tion 2.2.6 shows that the leading term of q(Tn+1, x) is from the leading term of

that of xq(Pn−3, x) of degree n+1
2

. Thus, the second leading coefficient of q(Pn−3)

contributes to the second leading coefficient of q(Tn, x). From Lemma 1.5.4 and

Proposition 2.2.6, deg(q(Tn, x)) = n−1
2

= deg(xq(Tn−3, x)). So the leading coeffi-

cients of q(Tn, x) and q(Tn−3, x) and the second leading coefficient of q(Pn−3, x)

make up the second leading coefficient of q(Tn+1, x). This implies that
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an+1,kn+1−1 = an,kn + an−3,kn−3 + bn−3,jn−3−1

=
n+ 1

2
+ 1 +

(n− 3)2 + 6(n− 3)

8

=
n2 + 4n+ 3

8
=

(n+ 1)2 + 2(n+ 1)

8
.

2. Similar as in the proof of Part 1 above, by the recursive formula in Proposition 2.2.4,

when n is odd,

an+1,kn+1−2 = an,kn−1 + an−2,kn−2 + an−3,kn−3−1 + bn−3,jn−3−2

=
n3 + 3n2 − n+ 45

48
+
n− 1

2
+
n2 − 4n+ 3

8

+
n4 − 58n2 + 192n− 135

384

=
n4 + 8n3 + 14n2 + 184n+ 177

384

=
(n+ 1)4 + 4(n+ 1)3 − 4(n+ 1)2 + 176(n+ 1)

384

If n is even,

an+1,kn+1−2 = an,kn−2 + an−2,kn−2−1 + an−3,kn−3−1 + bn−3,jn−3−2

=
n4 + 4n3 − 4n2 + 176n

384
+
n2 − 1

8
+
n3 − 6n2 + 8n+ 48

48

+
n5 − 100n3 + 480n2 − 576n

3840

=
n5 + 10n4 + 20n3 + 440n2 + 864n+ 384

3840

=
(n+ 1)5 + 5(n+ 1)4 − 10(n+ 1)3 + 430(n+ 1)2 + 9(n+ 1) + 3405

3840
.
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3. We prove it by mathematical induction.

for n = 4, 2
2∑

k=0

(
2− k
bk
2
c

)
= 2(2) = 4 = a4,1;

for n = 5, 2
3∑

k=0

(
3− k
bk
2
c

)
= 2(3) = 6 = a5,1;

for n = 6, 2
4∑

k=0

(
4− k
bk
2
c

)
= 2(5) = 10 = a6,1;

for n = 7, 2
1∑

k=0

(
5− k
bk
2
c

)
= 2(7) = 14 = a7,1.

Assume that the statement is true for all integers n ≥ 7. Then by the recursive

relationship an,1 = an−1,1 + an−3,1,

an+1,1 = an,1 + an−2,1 = 2
n−2∑
k=0

(
n− 2− k
bk
2
c

)
+ 2

n−4∑
k=0

(
n− 4− k
bk
2
c

)

= 2

[(
n− 2

0

)
+

(
n− 3

0

)
+

n−2∑
k=2

(
n− 2− k
bk
2
c

)
+

n−2∑
k=2

(
n− 2− k
bk−2

2
c

)]

= 2

[(
n− 1

0

)
+

(
n− 2

0

)
+

n−2∑
k=2

[(
n− 2− k
bk
2
c

)
+

(
n− k − 2

bk
2
c − 1

)]]

= 2

[(
n− 1

0

)
+

(
n− 2

0

)
+

n−2∑
k=2

[(
n− 1− k
bk
2
c

)
+

(
0

bn−1
2
c

)]]

=

(n+1)−2∑
k=0

(
(n+ 1)− 2− k

bk
2
c

)
.

In the above proof, we applied the following known formulas:

(
0

j

)
= 0 if j > 0 and

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
(n ≥ k).
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Chapter 3

Other Related Graphs

During the decomposition process of the graph Tn, two related graphs are exposed, called

Dr,s and Wn. There are defined in Definition 1.6.3. In this chapter I study these two graphs.

3.1 Formulas for Dr,s

Refer to the labeled graph Dr,s (r ≥ 3, s ≥ 0) shown in Figure 1.4. When s = 0, Dr,0 = Cr.

Some basic graph theory properties about Dr,s are obvious from the structure of the graph.

Proposition 3.1.1. Consider the graph labeled Dr,s = (V (Dr,s), E(Dr,s)) with s > 0.

1. |V (Dr,s)| = r + s = |E(Dr,s)|;

2. ∆(Dr,s) = 3, δ(Dr,s) = 1;

3. diam(Dr,s) = b r
2
c+ s, rad(Dr,s) =

⌊
b r
2
c+s+1

2

⌋
;

4. ω(Dr,s) = 3 if r = 3 and ω(Dr,s) = 2 otherwise;

5. α(Dr,s) = b r+s+1
2
c;

6. χ(Dr,s) = 2 if r is even and χ(Dr,s) = 3 when r is odd;
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7. The connectivity of Dr,s is λ(Dr,s) = 1.

Proof. Refer to the labeled graph Dr,s shown in Definition 1.6.3. (1), (2), (4), (6), (7), and

(8) are obvious.

For (3), diam(Dr,s) = diam(Cr)+s = br/2c+s. The vertex with the minimum eccentricity

is the midpoint in between vs and vk where k = br/2c. Thus,

rad(Dr,s) =

⌊b r
2
c+ s+ 1

2

⌋
.

For (5), α(Dr,s) = α(Cr) + α(Ps) = br/2c+ b(s+ 1)/2c. Then the result holds.

We next investigate the interlace polynomials for the graph Dr,s. It is obvious that

q(Dr,0, x) = q(Cr, x). We examine a few graphs of small sizes.

Example 3.1.2. 1. q(D3,1, x) = 2x2 + 4x;

2. q(D4,1, x) = 3x3 + 7x2 + 6x;

3. q(D3,2, x) = q(D3,1, x) + xq(C3, x) = 6x2 + 4x.

The interlace polynomial of Dr,s, q(Dr,s, x), can be described recursively as follows. The

proof is straightforward by togging the graph at the end leaf. We skip the proof.

Lemma 3.1.3. Let r ≥ 3 and s ≥ 0. Then

1. q(Dr,1, x) = q(Cr, x) + xq(Pr−2, x);

2. q(Dr,2, x) = (1 + x)q(Cr, x) + xq(Pr−2, x);

3. q(Dr,s, x) = q(Dr,s−1, x) + xq(Dr,s−2, x) for x ≥ 2.

From the above Lemma 3.1.3(2), q(Dr,2, x) is expressed as a combination of q(Cr, x) and

q(Pr−2, x), with x+ 1 and x in front of them respectively.
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Definition 3.1.4. For any integer s ≥ −1, define a sequence of functions fs(x) as follows.

f−1(x) ≡ 0, f0(x) = f1(x) ≡ 1, fs(x) = fs−1(x) + xfs−2(x) for s ≥ 2.

An explicit formula for fs(x) is given below.

Proposition 3.1.5. For any integer s ≥ 0,

1. Let y(x) =
√

1 + 4x. Then

fs(x) =
1

y(x)

((
1 + y(x)

2

)s+1

−
(

1− y(x)

2

)s+1
)

=
(1 + y(x))s+1 − (1− y(x))s+1

2s+1y(x)
.

2. deg(fs(x)) =
⌊
s
2

⌋
;

3. The leading coefficient of fs(x) is

 1 if s is even

s+1
2

if s is odd
;

4. fs(0) = 1.

5. fs(−1) = fs−6(−1) = −fs−3(−1) and the value of fs(−1) is given by

fs(−1) =


1 if s ≡ 0, 1 (mod 6)

0 if s ≡ 2, 5 (mod 6)

−1 if s ≡ 3, 4 (mod 6)

;

Proof. 1. We prove it by mathematical induction on s. Obviously the formula is true for

s = 0 and 1. Note that y(x)2 = 1 + 4x and so (1 ± y(x))2 = 1 ± 2y(x) + y(x)2 =

2(1 ± y(x) + 2x). Assume the induction hypothesis. For s ≥ 2, apply the recursive
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formula given in definition 3.1.4, we obtain

fs+1(x) = fs(x) + xfs−1(x)

=
(1 + y(x))s+1 − (1− y(x))s+1

2s+1y(x)
+
x ((1 + y(x))s − (1− y(x))s)

2sy(x)

=
(1 + y(x))s[1 + y(x) + 2x]− (1− y(x))s[1− y(x) + 2x]

2s+1y(x)

=
(1 + y(x))s[1 + y(x)]2/2− (1− y(x))s[1− y(x)]2/2

2s+1y(x)

=
(1 + y(x))s+2 − (1− y(x))s+2

2s+2y(x)
.

Thus the formula is true for all s ≥ 0.

2. We prove it by mathematical induction on s. The formula is true for f0(x) = 1 and

f1(x) = 1. Assume the induction hypothesis and apply the recursive formula given in

definition 3.1.4. Then for fs+1(x),

deg(fs+1(x)) = max (deg(fs(x)), deg(xfs−1(x)))

= max

(⌊s
2

⌋
,

⌊
s− 1

2

⌋
+ 1

)
= max

(⌊s
2

⌋
,

⌊
s+ 1

2

⌋)
=

⌊
s+ 1

2

⌋

Thus the formula is true for all s ≥ 0.

3. By definition 1, f0(x) = f1(x) ≡ 1. Similar to the analysis in the above proof, when s

is even and s > 1, the leading coefficient of fs(x) is that of fs−2(x). Since f0(x) = 1,

we have fs(x) = 1 for all s ≥ 2. When s is odd, the leading coefficient of fs(x) is

the sum of fs−1(x) and fs−2(x). Since f1(x) = 1, and fs−1(x)’s leading coefficient is 1,

inductively, fs(x) has leading coefficient (s+ 1)/2.

4. By the recursive formula, fs(0) = fs−1(0) for all s > 0. Then fs−1(0) = 1 implies
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fs(0) = 1 for all s > 0.

5. By the recursive formula given in Definition 3.1.4, for s > 6, fs(−1) = fs−1(−1) −

fs−2(−1) = (fs−2(−1) − fs−3(−1)) − fs−2(−1) = −fs−3(−1) = −(−fs−6(−1)) =

fs−6(−1). It is straightforward to check that f1(−1) = f6(−1) = 1, f2(−1) = f5(−1) =

0, and f3(−1) = f4(−1) = 1. The result follows.

From Definition 3.1.4, f2(x) = 1 + x. The formula in Lemma 3.1.3(2) can be changed to

q(Dr,2, x) = f2(x)q(Cr, x) + xf1(x)q(Pr−2, x). This result can be generalized to q(Dr,s, x).

Theorem 3.1.6. For any integers r ≥ 3 and s ≥ 0,

q(Dr,s, x) = fs(x)q(Cr, x) + xfs−1(x)q(Pr−2, x).

Proof. The above formula is true by Lemma 3.1.3(1)(2). We prove the rest by mathematical

induction on s. By the recursive relation shown in Lemma 3.1.3 (3), Definition 3.1.4, and

the induction hypothesis, for s ≥ 2

q(Dr,s+1, x) = q(Dr,s, x) + xq(Dr,s−1, x)

= fs(x)q(Cr, x) + xfs−1(x)q(Pr−2, x)

+x[fs−1(x)q(Cr, x) + xfs−2(x)q(Pr−2, x)]

= q(Cr, x)[fs(x) + xfs−1(x)] + xq(Pr−2, x)[fs−1(x) + xfs−2(x)]

= fs+1(x)q(Cr, x) + fs(x)q(Pr−2, x).

The next example confirms Lemma 3.1.3 and Theorem 3.1.6
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Example 3.1.7. 1. q(D3,3, x) = 2x3 + 10x2 + 4x;

2. q(D4,2, x) = 4x3 + 7x2 + 2x;

3. q(D4,3, x) = x4 + 9x3 + 9x2 + 2x.

Here for (1), we use the formula in Theorem 3.1.6 for r = s = 2 and the formula given

in Example 3.1.2(3).

q(D3,3, x) = f3(x)q(C3, x) + xf2(x)q(P1, x) = (1 + 2x)(4x) + x(1 + x)2x = 2x3 + 10x2 + 4x.

For (2), from Lemma 3.1.3,

(D4,2, x) = (1 + x)(C4, x) + x(P2, x) = (1 + x)(3x2 + 2x) + x(x2 + 2x) = 4x3 + 7x2 + 2x.

For (3),

q(D4,3, x) = f3(x)q(C4, x) + xf2(x)q(P2, x) = (1 + 2x)(3x2 + 2x) + x(1 + x)(x2 + 2x)

= x4 + 9x3 + 9x2 + 2x.

Results for q(Cn, x) as well as q(Pn, x) are needed to show other properties of the interlace

polynomial of Dr,s. The recursive formulas for q(Cn, x) and q(Pn, x) are provided in Theorem

1.4.2. Below are other useful properites for q(Cn, x).

Lemma 3.1.8. Consider a cycle Cn with n ≥ 3, then

1. deg(q(Cn, x)) =
⌊
n
2

⌋
;
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2. the leading coefficient of q(Cn, x) is

 2 if n is even

n if n is odd
;

3. the x coefficient of q(Cn, x) is

 n− 2 if n is even

n+ 1 if n is odd
;

Theorem 3.1.9. Consider the interlace polynomial of Dr,s, q(Dr,s, x) with r ≥ 3, s ≥ 0.

Then

1. deg(q(Dr,s, x)) =
⌊
r+s+1

2

⌋
;

2. the leading coefficient of q(Dr,s, x) is given by



s+4
2

if r, s are even

r+1
2

if r, s are odd

1 if r is even and s is odd

r(s+4)+s
4

if r is odd and s is even

;

3. the x-coefficient of q(Dr,s, x) is

 n− 2 if n is even

n+ 1 if n is odd
.

Proof. 1. From Theorem 3.1.6, q(Dr,s, x) = fs(x)q(Cr, x) + xfs−1(x)q(Pr−2, x).
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deg(q(Dr,s, x)) = max (deg(fs(x)q(Cr, x)), deg(xfs−1(x)q(Pr−2, x)))

= max

(⌊s
2

⌋
+
⌊r

2

⌋
,

⌊
s− 1

2

⌋
+
⌊r

2

⌋
+ 1

)
= max

(⌊
s+ r

2

⌋
,

⌊
s+ r + 1

2

⌋)
=

⌊
s+ r + 1

2

⌋
.

2. The proof is split into 4 cases. For each fixed r, we apply mathematical induction on s

using the recursive formula from Lemma 3.1.3, q(Dr,s, x) = q(Dr,s−1, x) + xq(Dr,s−2, x)

and the above degree result. We first check the initial conditions (s = 1, 2).

(1) For s = 1, by Lemma 3.1.3(1), q(Dr,1, x) = q(Cr, x) + xq(Pr−2, x). Since

deg((q(Cr, x))) = 1 + deg(q(Pr−2, x)), the leading coefficient of q(Dr,1, x) is that

of q(Pr−2, x), denoted as lc(q(Dr,1, x)). By Theorem 1.5.4(2), lc(q(Dr,1, x)) = 1 if

r is even; If r is odd, lc(q(Dr,1, x)) = lc(q(Pr−2, x)) = b r+1
2
c. Thus the result is

true for lc(q(Dr,1, x)) (r ≥ 3).

(2) For s = 2, by Lemma 3.1.3(2), q(Dr,2, x) = (1 + x)q(Cr, x) + xq(Pr−2, x). Since

deg(q(Cr, x)) = 1+deg(q(Pr−2, x)), the leading coefficient lc(q(Dr,2, x)) is the sum

of lc(q(Cr, x)) and lc(q(Pr−2, x)). By Lemma 3.1.8(2) and Theorem 1.5.4(2), if r is

even, lc(q(Dr,2, x)) = 2+1 = 3 = b2+4
2
c. When r is odd, lc(q(Dr,2, x)) = r+ r+1

2
=

3r+1
2

, which also equal to r(2+4)+2
4

. Thus the formula holds for lc(q(Dr,2, x)).

Case 1: Both r, s even. The degree of the interlace polynomial is deg(q(Dr,s+1, x)) =

deg(xq(Dr,s−1, x)) = r+s+2
2

. The leading coefficient of q(Dr,s+1, x) directly comes

from the leading coefficient of xq(Dr,s−2, x) which is 1. We first check the initial

conditions (s = 1, 2. )

Case 2: r, s are both odd. The leading coefficient of q(Dr,s+1, x) is the sum of the leading
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coefficients of q(Dr,s, x and xq(Dr,s−1, x) which is r+1
2

+ r(s+3)+s−1
4

= r(s+5)+s+1
4

.

Case 3: r is even and s is odd. The leading coefficient of q(Dr,s+1, x) is the sum of the

leading coefficients of q(Dr,s, x) and xq(Dr,s−1, x) which is 1 + s+3
2

= s+5
2

.

Case 4: r is odd and s is even. For q(Dr,s+1, x), the degree of the interlace polyno-

mial is deg(q(Dr,s+1, x)) = deg(xq(Dr,s−1, x)) = r+s+1
2

. The leading coefficient

of q(Dr,s+1, x) directly comes from the leading coefficient of xq(Dr,s−1, x) which is

r+1
2

.

3. From Theorem 3.1.6, q(Dr,s, x) = fs(x)q(Cr, x)+xfs−1(x)q(Pr−2, x). Because fs(0) = 1

from Proposition 3.1.4, the x term is from the x-erm of q(Cr, x), which is given in

Lemma 3.1.8.

3.2 Formulas for q(Wn, x)

Some basic graph theory properties about Wn are obvious from the structure of the graph.

Proposition 3.2.1. Consider the graph Wn = (V (Wn), E(Wn)) with n ≥ 4 as described in

definition 1.6.5.

1. |V (Wn)| = n and |E(Wn)| = 2(n− 1);

2. ∆(Wn) = n− 1, δ(Wn) = 3;

3. diam(Wn) = 2 if n > 4 and diam(Wn) = 1 if n = 4. rad(Wn) = 1;

4. ω(Wn) = 4 if n = 4 and ω(Wn) = 4 otherwise;

5. α(Wn) =
⌊
n−1
2

⌋
;

6. for n ≥ 6, χ(Wn) = 4 if n is even and χ(Wn) = 3 if n is odd;
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7. λ(Wn) = 3.

Proof. (1) -(3) are obvious.

For (4), the maximum clique is the cycle C3 = v1vnvn−1 for n > 4. For n = 4, the

maximum clique is the complete graph K4.

For (5), if n is odd the maximum independent set is Sn = {v1, v3, . . . , vn−1}. If n is even

the maximum independent set is Sn = {v1, v3, . . . , vn−2}. This implies that |Sn| = (n− 1)/2

if n is odd and (n− 2)/2 if n is even. Thus, α(Wn) = b(n− 1)/2c.

(6): The vertices of Wn can be colored by 3 colors if n is odd. We can assign color 1

to vn, color 2 to the vertices with odd indices excluding vn. Then the rest of the vertices

take color 3. For even n, assign color 1 to vn, color 2 to v1 and color 3 to vertices with even

indices excluding vn. Then the rest of the vertices take color 4.

(7): Since Wn has a Hamiltonian circuit, the connectivity is at least 2. If we remove the

vertices vn, v2, and vn−1, the graph becomes disconnected. Thus, λ(Wn) = 3.

Lemma 3.2.2. Formulas for Wn for small n, 4 ≤ n ≤ 13.

1. q(W4, x) = 2q(T3, x) = 8x;

2. q(W5, x) = q(T4, x) + xq(P2, x) = x3 + 4x2 + 4x;

3. q(W6, x) = q(T5, x) + q(P3, x) + q(T3, x) + xq(P1, x) = 10x2 + 12x;

4. q(W7, x) = q(T6, x) + q(P3, x) + 2q(T3, x) + xq(P2, x) + 2xq(P1, x) = 2x3 + 18x2 + 20x;

5. q(W8, x) = q(T7, x) + q(W4, x) + 2q(T4, x) + xq(P3, x) + 3xq(T3, x) = 7x3 + 35x2 + 30x;

6. q(W9, x) = q(T8, x)+q(W5, x)+2q(T5, x)+xq(P4, x)+3xq(T4, x) = 2x4+23x3+56x2+

36x;

7. q(W10, x) = q(T9, x) + q(W6, x) + 2q(T6, x) + xq(P5, x) + 3xq(T5, x) = 9x4 + 48x3 +

93x2 + 62x;
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8. q(W11, x) = q(T10, x) + q(W7, x) + 2q(T7, x) + xq(P6, x) + 3xq(T6, x) = 2x5 + 27x4 +

92x3 + 158x2 + 92x

9. q(W12, x) = q(T11, x) + q(W8, x) + 2q(T8, x) + xq(P7, x) + 3xq(T7, x) = 11x5 + 66x4 +

176x3 + 253x2 + 134x

10. q(W13, x) = q(T12, x) + q(W9, x) + 2q(T9, x) + xq(P8, x) + 3xq(T8, x) = 2x6 + 38x5 +

147x4 + 318x3 + 393x2 + 190x

A recursive formula for q(Wn, x) is given below.

Lemma 3.2.3. For n ≥ 9,

q(Wn, x) = q(Tn−1, x) + q(Wn−4, x) + 2q(Tn−4, x) + xq(Pn−5, x) + 3xq(Tn−5, x).

Proof. We begin by performing the toggling process starting at v1vn−1 of Wn. The toggling

process decomposes Wn into 8 disjoint graphs, Tn−1,Wn−4, Tn−4, Tn−4, {v1} ∪ Pn−5, {vn−2} ∪

Tn−5, {v2} ∪ Tn−5, and {v3} ∪ Tn−5. Here the four unions are disjoint unions. For n ≥ 9 the

toggling process is as follows:
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v1

v2

v3 v4 v5

vn−3

vn−2vn−1

vn −→ v2

v3 v4 v5

vn−3

vn−2vn−1

vn
+

v1

v2

v3 v4 v5

vn−3

vn−2

vn

Figure 3.1: Toggle of Wn on v1vn−1.

v1

v2

v3 v4 v5

vn−3

vn−2

vn

W v1v8
9 − v8

−→ v2

v3 v4 v5

vn−3

vn−2

vn
+

v1

v2

v3 v4 v5

vn−3

vn−2

Figure 3.2: Toggle of W v1vn−1
n − vn−1 on v1vn.

v2

v3 v4 v5

vn−3

vn−2

vn −→

v3 v4 v5

vn−3

vn−2

vn
+ v2

v3 v4 v5

vn−3
vn

Figure 3.3: Toggle of W v1vn−1
n − vn−1 − v1 on v2v1.

v1

v2

v3 v4 v5

v6

v7

−→ v2

v3 v4 v5

v6

v7

+

v1

v3 v4 v5

v6

v7

Figure 3.4: Toggle of (W v1vn−1
n − vn−1)v1vn − vn on v1v2.

Thus the recursive formula is true.

Proposition 3.2.4. Consider the wheel graph Wn with n ≥ 4. Then

1. for n ≥ 6, deg(q(Wn, x)) =
⌊
n−1
2

⌋
;
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2. The leading coefficient of q(Wn, x) is given by

 n− 1 if n is even

2 if n is odd
.

Proof. 1. From Lemma 3.2.2, (1) is true for 6 ≤ n ≤ 13. For n > 13, assume that

deg(q(Wn, x)) =
⌊
n−1
2

⌋
. By Proposition 2.2.6 and Lemma 1.5.4, deg(q(Tn, x)) = bn

2
c

and deg(q(Pn, x)) =
⌊
n+2
2

⌋
. By the recursive formula q(Wn, x) given in Lemma 3.2.3,

the deg(q(Wn+1, x)) is the maximum value shown below:

deg(q(Wn+1, x)) = max{deg(q(Tn, x)), deg(q(Wn−3, x)),

deg(q(Tn−3, x)), deg(xq(Pn−4, x)), deg(xq(Tn−4, x))}.

That is,

deg(q(Wn+1, x)) = max

(⌊n
2

⌋
,

⌊
n− 4

2

⌋
,

⌊
n− 3

2

⌋
,

⌊
n− 2

2

⌋)
=
⌊n

2

⌋
.

2. From Lemma 3.2.2, (2) is true for 9 ≤ n ≤ 13. The result from (1) showed that

only the leading terms of deg(q(Tn−1, x)) and deg(xq(Pn−5, x)), since deg(q(Wn, x)) =⌊
n−1
2

⌋
= deg(q(Tn−1, x)) = deg(xq(Pn−5, x)). We apply the mathematical induction

idea for the proof using the recursive relationship given in Lemma 3.2.3 and the results

for the leading coefficients of q(Tn, x) and q(Pn, x) from Proposition 2.2.6 and Lemma

1.5.4 respectively.

Case: 1 n is even. n+ 1 is odd. The leading coefficient of q(Wn+1, x) is given by

an,kn + bn−4,jn−4 = 1 + 1 = 2.
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Case: 2 n is odd. n+ 1 is even. The leading coefficient of q(Wn+1, x) is given by

an,kn + bn−4,jn−4 =
n+ 1

2
+
n− 1

2
= n.
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Chapter 4

Related Matrices

In this chapter we discuss some results related to the adjacency matrix of Tn. We show how

to generate an explicit formula for the interlace polynomial of Tn using adjacency matrices

of the subgraphs of Tn. We also discuss the rank of some related matrices over the field Z2.

For any graph G, we denote A[G] as the adjacency matrix of G.

4.1 The Adjacency Matrix of Tn

The following example gives A[T3], A[T4], A[T5], A[T6], and a general form of A[Tn] for any

n ≥ 4.

Example 4.1.1. The matrices A[Tn] for n = 3, 4, 5, and 6.

A[T3] =


0 1 1

1 0 1

1 1 0

 , A[T4] =



0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0


,
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A[T5] =



0 1 0 0 1

1 0 1 0 1

0 1 0 1 1

0 0 1 0 1

1 1 1 1 0


, A[T6] =



0 1 0 0 0 1

1 0 1 0 0 1

0 1 0 1 0 1

0 0 1 0 1 1

0 0 0 1 0 1

1 1 1 1 1 0


.

For n ≥ 4, A[Tn] has the following general form:

A[Tn] =



0 1 0 0 · · · 0 1

1 0 1 0 · · · 0 1

0 1 0 1
. . . 0 1

...
. . . . . . . . . . . .

...
...

0 0 · · · 1 0 1 1

0 0 · · · 0 1 0 1

1 1 · · · 1 1 1 0



.

The matrix A[Tn] can be easily constructed from the smaller matrix A[Tn−1].

Lemma 4.1.2. The adjacency matrix of Tn, A[Tn], for n ≥ 5, can be constructed iteratively

as below:

A[Tn] =

 0 v

vT A[Tn−1]

 ,
where vT = [1, 0, . . . , 0, 1] is a row vector with n− 1 components.

Next we investigate the rank of a related matrix, A[Tn]+In, where In is the n×n identity

matrix.
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4.2 The Rank of Matrix A[Tn] + In Modulo 2

We focus on the rank of A[Tn] + In (mod 2). A few matrices A[Tn] + In, for n = 3, 4, 5, 6 are

shown below.

Example 4.2.1.

A[T3] + I3 =


1 1 1

1 1 1

1 1 1

 , A[T4] + I4 =



1 1 0 1

1 1 1 1

0 1 1 1

1 1 1 1


,

A[T5] + I5 =



1 1 0 0 1

1 1 1 0 1

0 1 1 1 1

0 0 1 1 1

1 1 1 1 1


, A[T6] + I6 =



1 1 0 0 0 1

1 1 1 0 0 1

0 1 1 1 0 1

0 0 1 1 1 1

0 0 0 1 1 1

1 1 1 1 1 1


.

Applying Lemma 4.1.2, the general form for n ≥ 5 is given below:

A[Tn] + In =



1 1 0 0 · · · 0 1

1 1 1 0 · · · 0 1

0 1 1 1
. . . 0 1

...
. . . . . . . . . . . .

...
...

0 0 · · · 1 1 1 1

0 0 · · · 0 1 1 1

1 1 · · · 1 1 1 1



=

 1 v

vT A[Tn−1] + In

 ,
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where vT = [1, 0, . . . , 0, 1] is a row vector with n− 1 components.

By Theorem 1.4.3, the value of the interlace polynomial of a graph G at −1 is well related

the rank of of A[G] + I modulo 2. We describe the value q(Tn,−1) below.

Theorem 4.2.2. For n ≥ 9, q(Tn,−1) = q(Tn−6,−1) and for all n ≥ 3,

q(Tn,−1) =


−2 if n ≡ 0, 2, 4 (mod 6)

−1 if n ≡ 1, 5 (mod 6)

−4 if n ≡ 3 (mod 6)

.

.

Proof. We first calculate q(Tn,−1) for 3 ≤ n ≤ 14.

q(T3,−1) = −4, q(T4,−1) = −2, q(T5,−1) = −1,

q(T6,−1) = −2, q(T7,−1) = −1, q(T8,−1) = −2,

q(T9,−1) = −4, q(T10,−1) = −2, q(T11,−1) = −1,

q(T12,−1) = −2, q(T13,−1) = −1, q(T14,−1) = −2.

Thus q(Tn,−1) = q(Tn−6,−1) is true for n = 9 to n = 14.

We apply mathematical induction on n ≥ 9 and assume the induction hypothesis. Note

that q(Pn,−1) = q(Pn−6,−1) for n ≥ 6 from Proposition 1.5.2. By the recursive formula

given in Theorem 2.2.4,

q(Tn,−1) = q(Tn−1,−1) + q(Tn−3,−1)− q(Tn−4,−1)− q(Pn−4,−1)

= q(Tn−7,−1) + q(Tn−9,−1)− q(Tn−10,−1)− q(Pn−10,−1)

= q(Tn−6,−1).

The result holds for the first six values: q(Tn,−1) for n = 3, 4, 5, 6, 7, 8. Thus it holds for all
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n ≥ 3.

Theorem 1.4.3 states that q(Tn,−1) = (−1)n(−2)n−rn , where rn = rank(A[Tn] + In)

modulo 2. We use this formula to calculate the rank rn.

Theorem 4.2.3. For n ≥ 3, the rank rn of A[Tn] + In mod 2 is given by

rn =


n− 1 if n ≡ 0, 2, 4 (mod 6)

n if n ≡ 1, 5 (mod 6)

n− 2 if n ≡ 3 (mod 6)

.

.

Proof. Refer to the values q(Tn,−1) given in Theorem 4.2.2. If n ≡ 0, 2, or 4 (mod 6), n is

even and q(Tn,−1) = −2. Then

q(Tn,−1) = −2 = (−1)n(−2)n−rn = (−2)n−rn =⇒ n− rn = 1 =⇒ rn = n− 1.

Similarly, if n ≡ 1 or 5 (mod 6), n is odd and

q(Tn,−1) = −1 = (−1)n(−2)n−rn = (−1)(−2)n−rn =⇒ n− rn = 0 =⇒ rn = n.

Lastly, if n ≡ 3 (mod 6), n is odd and

q(Tn,−1) = −4 = (−1)(−2)n−rn = −(−2)n−rn =⇒ n− rn = 2 =⇒ rn = n− 2.

One can easily check that the ranks (mod 2) of the matrices given in Example 4.4.1 are:

rank(A[T3] + I3) = 1 = 3 − 2, rank(A[T4] + I4) = 3 = 4 − 1, rank(A[T5] + I5) = 5, and

rank(A[T6] + I6) = 5 = 6− 1 (all (mod 2)). It confirms the result of Theorem 4.2.3.
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4.3 An Explicit Formula for q(Tn, x)

Definition 4.3.1. Consider any graph G. For S ⊆ V (G), we denote by G[S] the subgraph

of G induced by S. Let m(G[S]) and r(G[S]) denote the nullity and rank of the adjacency

matrix A[G[S]] respectively. Also, m(G[∅]) = 0.

Example 4.3.2. The graph of T4 is below, while A[T4] is given in Example 4.1.1.

v2v1

v4 v3

T4

The subgraphs of T4 may have one vertex, two vertices, three vertices, T4, and the null

graph ∅.

Singleton subgraphs are P0: {v1}, {v2}, {v3}, {v4},

The subgraphs with two vertices are P1 or E2: v1v2, {v1} ∪ {v3}, v1v4, v2v3, v2v4, v3v4,

The subgraphs with three vertices are P2 or C3: v1v2v3, v1v4v3, v1v2v4v1, v2v3v4v2.

By Definition 4.3.1, for each singleton subgraph {vi}, m(A[{vi}]) = 1 and r(m(A[{vi}]) = 0.

For subgraphs of two vertices, r(A[P1]) = 2 and m(A[P1]) = 0, r(A[E2]) = 0 and m(A[E2]) =

2. For subgraphs of 3 vertices, r(A[P2]) = 2 and m(A[P2]) = 1; r(A[C3]) = 2, m(A[C3]) = 1

Lastly, r(A[T4]) = 2, m(A[T4]) = 2.

Theorem 4.3.3. [1] Let G be a simple graph. then

q(G, x) =
∑

S⊆V (G)

(x− 1)m(G[S]).

43



Example 4.3.4. Using the formula from Theorem 4.3.3 the interlace polynomial q(T4, x)

can be described explicitly as

q(T4, x) =
∑

T⊆V (T4)

(x− 1)m(T4[S])

= 6(x− 1)0 + 8(x− 1) + 2(x− 1)2

= 2x2 + 4x.

From Example 4.3.2, there are 6 sugbraphs of T4 having nullity 0 for the adjacency matrix:

five P1 graphs of two vertices and the null graph. Thus the coefficient for the (x− 1)0-term

is 6. There are 8 subgraphs whose adjacency matrices have nullity 1: the 4 subgraphs of 3

vertices two P2 graphs and two C3 graphs and the four singleton subgraphs. It gives 8 for

the coefficient of (x− 1)1.

It is straightforward to check that any maximum independent set of a graph G also

admits the maximum nullity of adjacency matrices among all the subgraphs of G. It implies

the following: Recall that α(G) is the independence number of G.

Lemma 4.3.5. For any simple graph G, deg(q(G, x)) = α(G) and the leading coefficient of

q(Tn, x) is the number of maximum independent sets of Tn.

By applying our previous results about the polynomial q(Tn, x), we obtain the following

results related to the independence subsets of Tn. It shows a connection between the interlace

polynomial and its underlying graph.

Theorem 4.3.6. Assume n ≥ 6.

1. When n is even, Tn has exactly one maximum independent subset and the independence

number is α(Tn) = n
2
.

2. When n is odd, there are (n + 1)/2 maximum independent subsets of V (Tn) with the

independence number α(Tn) = n−1
2

.
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3. The value of q(Tn, 1) is the number of subgraphs of Tn whose adjacency matrices are

of full rank (mod 2).

The following example confirms the above theorem.

Example 4.3.7. Refer to the graphs T7 and T8 shown in Example 1.6.2. The 4 maximum

independent subsets of T7 are

{v1, v3, v5}, {v1, v3, v6}, {v1, v4, v6}, {v2, v4, v6}.

Refer to Lemma 2.2.2, deg(q(T7, x)) = 3 = 7−1
2

= α(T4) and the leading coefficient of q(T7, x)

is 7+1
2

= 4.

Obviously, the graph T8 has one maximum independent set, {v1, v3, v5, v7}, of size 4. So

α(T8) = 4. Lemma 2.2.2 shows deg(q(T8, x)) = 48
2

and the leading coefficient of q(T7, x) is

1.

Corollary 4.3.8. Assume n ≥ 10. If n is even, then Tn has exactly n2+6n
8

subsets of V (Tn)

with nullity n
2
− 1. If n is odd, Tn has exactly n3+15n2−n+33

48
subsets of V (Tn) with nullity

n−1
2
− 1.

Proof. We first write q(Tn, x) in terms of (x− 1) by setting x = (x− 1) + 1:

q(Tn, x) = an,knx
kn + an,kn−1x

kn−1 + lower terms

= an,kn(x− 1)kn + (knan,kn + an,kn−1) (x− 1)kn−1 + lower terms in (x− 1),

where kn = bn
2
c. The number of the independent sets with the second largest size (α(Tn)−1)

is the second leading coefficient of q(Tn, x) in terms of (x− 1), that is, the number knan,kn +

an,kn−1. Then by Proposition 2.2.6 and Proposition 2.2.7(1), when n is even,

knan,kn + an,kn−1 =
n

2
· 1 +

n2 + 2n

2
=
n2 + 6n

8
.
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When n is odd,

knan,kn + an,kn−1 =
n− 1

2
· n+ 1

2
+
n3 + 3n2 − n+ 45

48
=
n3 + 15n2 − n+ 33

48
.

4.4 Related Matrices for Wn

A few matrices A[Wn] + In, for n = 4, 5, 6, 7 are shown below.

Example 4.4.1.

A[W4] + I4 =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


, A[W5] + I5 =



1 1 0 1 1

1 1 1 0 1

0 1 1 1 1

1 0 1 1 1

1 1 1 1 1



A[T6] + I6 =



1 1 0 0 1 1

1 1 1 0 0 1

0 1 1 1 0 1

0 0 1 1 1 1

1 0 0 1 1 1

1 1 1 1 1 1


A[W7] + I7 =



1 1 0 0 0 1 1

1 1 1 0 0 0 1

0 1 1 1 0 0 1

0 0 1 1 1 0 1

0 0 0 1 1 1 1

1 0 0 0 1 1 1

1 1 1 1 1 1 1



.

The general form for n ≥ 7 is given below:
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A[Wn] + In =



1 1 0 0 · · · 1 1

1 1 1 0 · · · 0 1

0 1 1 1
. . . 0 1

...
. . . . . . . . . . . .

...
...

0 0 · · · 1 1 1 1

1 0 · · · 0 1 1 1

1 1 · · · 1 1 1 1


We next calculate the value of q(Wn, x) at x = −1.

Theorem 4.4.2. Consider the graph Wn for n ≥ 3.

q(Wn,−1) =


−2 if n ≡ 0, 2 (mod 6)

−1 if n ≡ 1, 3, 5 (mod 6)

−8 if n ≡ 4 (mod 6)

.

.

Proof. We first calculate q(Wn,−1) for 4 ≤ n ≤ 15.

q(W4,−1) = −8, q(W5,−1) = −1, q(W6,−1) = −2,

q(W7,−1) = −4, q(W8,−1) = −2, q(W9,−1) = −1,

q(W10,−1) = −8, q(W11,−1) = −1, q(W12,−1) = −2,

q(W13,−1) = −4, q(W14,−1) = −2, q(W15,−1) = −1.

Thus q(Wn,−1) = q(Wn−6,−1) is true for n = 10 to n = 15.
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We apply mathematical induction on n ≥ 10 and assume the induction hypothesis. Note

that q(Pn,−1) = q(Pn−6,−1) (Theorem 1.5.2 (7)) for n ≥ 6 and q(Tn,−1) = q(Tn−6,−1) for

n ≥ 9 (Theorem 4.2.2). By the recursive formula given in Theorem 3.2.3,

q(Wn,−1) = q(Tn−1,−1) + q(Wn−4,−1) + 2q(Tn−4,−1)− q(Pn−5,−1)− 3q(Tn−5,−1)

= q(Tn−7,−1) + q(Wn−10,−1) + 2q(Tn−10,−1)− q(Pn−11,−1)− 3q(Tn−11,−1)

= q(Wn−6,−1).

The result holds for the first six values: q(Wn,−1) for n = 4, 5, 6, 7, 8, 9. Thus it holds for

all n ≥ 10.

From Theorem 1.4.3, q(Wn,−1) = (−1)n(−2)n−r(Wn). Where r(Wn) is the rank of

A[Wn] + In over Z2. We use q(Wn,−1) from Theorem 4.4 to calculate r(Wn).

Theorem 4.4.3. For n ≥ 3, the rank rn = r(Wn) of A[Wn] + In (mod 2) is given by

rn =


n− 1 if n ≡ 0, 2 (mod 6)

n if n ≡ 1, 3, 5 (mod 6)

n− 3 if n ≡ 4 (mod 6)

.

.

Proof. Refer to the values q(Tn,−1) given in the proof of Theorem 4.4. If n ≡ 0 or 2

(mod 6), n is even and q(Wn,−1) = −2. Then

q(Wn,−1) = −2 = (−1)n(−2)n−rn = (−2)n−rn =⇒ n− rn = 1 =⇒ rn = n− 1.

Similarly, if n ≡ 1, 3 or 5 (mod 6), n is odd and

q(Wn,−1) = −1 = (−1)n(−2)n−rn = (−1)(−2)n−rn =⇒ n− rn = 0 =⇒ rn = n.
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Lastly, if n ≡ 4 (mod 6), n is even and

q(Tn,−1) = −8 = (−1)n(−2)n−rn = (−2)n−rn =⇒ n− rn = 3 =⇒ rn = n− 3.
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Chapter 5

Appendix

Python software was used to generate the formulas provided here.
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5.1 Interlace Polynomials of Pn for 0 ≤ n ≤ 22

q(P0, x) = x

q(P1, x) = 2x

q(P2, x) = x2 + 2x

q(P3, x) = 3x2 + 2x

q(P4, x) = x3 + 5x2 + 2x

q(P5, x) = 4x3 + 7x2 + 2x

q(P6, x) = x4 + 9x3 + 9x2 + 2x

q(P7, x) = 5x4 + 16x3 + 11x2 + 2x

q(P8, x) = x5 + 14x4 + 25x3 + 13x2 + 2x

q(P9, x) = 6x5 + 30x4 + 36x3 + 15x2 + 2x

q(P10, x) = x6 + 20x5 + 55x4 + 49x3 + 17x2 + 2x

q(P11, x) = 7x6 + 50x5 + 91x4 + 64x3 + 19x2 + 2x

q(P12, x) = x7 + 27x6 + 105x5 + 140x4 + 81x3 + 21x2 + 2x
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5.2 Interlace Polynomials of Cn for 3 ≤ n ≤ 25

q(C3, x) = 4x

q(C4, x) = 3x2 + 2x

q(C5, x) = 5x2 + 6x

q(C6, x) = 2x3 + 10x2 + 4x

q(C7, x) = 7x3 + 14x2 + 8x

q(C8, x) = 2x4 + 16x3 + 21x2 + 6x

q(C9, x) = 9x4 + 30x3 + 27x2 + 10x

q(C10, x) = 2x5 + 25x4 + 50x3 + 36x2 + 8x

q(C11, x) = 11x5 + 55x4 + 77x3 + 44x2 + 12x

q(C12, x) = 2x6 + 36x5 + 105x4 + 112x3 + 55x2 + 10x

q(C13, x) = 13x6 + 91x5 + 182x4 + 156x3 + 65x2 + 14x

q(C14, x) = 2x7 + 49x6 + 196x5 + 294x4 + 210x3 + 78x2 + 12x

q(C15, x) = 15x7 + 140x6 + 378x5 + 450x4 + 275x3 + 90x2 + 16x

q(C16, x) = 2x8 + 64x7 + 336x6 + 672x5 + 660x4 + 352 ∗ x3 + 105x2 + 14x

q(C17, x) = 17x8 + 204x7 + 714x6 + 1122x5 + 935x4 + 442x3 + 119x2 + 18x

q(C18, x) = 2x9 + 81x8 + 540x7 + 1386x6 + 1782x5 + 1287x4 + 546x3 + 136x2 + 16x

q(C19, x) = 19x9 + 285x8 + 1254x7 + 2508x6 + 2717x5 + 1729x4 + 665x3 + 152x2

+ 20x

q(C20, x) = 2x10 + 100x9 + 825x8 + 2640x7 + 4290x6 + 4004x5 + 2275x4 + 800x3

+ 171x2 + 18x

q(C21, x) = 21x10 + 385x9 + 2079x8 + 5148x7 + 7007x6 + 5733x5 + 2940x4 + 952x3

+ 189x2 + 22x
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5.3 Interlace Polynomials of Tn for 3 ≤ n ≤ 20

q(T3, x) = 4x

q(T4, x) = 2x2 + 4x

q(T5, x) = 5x2 + 6x

q(T6, x) = x3 + 9x2 + 10x

q(T7, x) = 4x3 + 17x2 + 14x

q(T8, x) = x4 + 11x3 + 28x2 + 20x

q(T9, x) = 5x4 + 24x3 + 45x2 + 30x

q(T10, x) = x5 + 15x4 + 46x3 + 74x2 + 44x

q(T11, x) = 6x5 + 36x4 + 85x3 + 118x2 + 64x

q(T12, x) = x6 + 21x5 + 77x4 + 150x3 + 185x2 + 94x

q(T13, x) = 7x6 + 57x5 + 152x4 + 256x3 + 291x2 + 138x

q(T14, x) = x7 + 28x6 + 133x5 + 283x4 + 432x3 + 455x2 + 202x

q(T15, x) = 8x7 + 85x6 + 281x5 + 509x4 + 719x3 + 706x2 + 296x

q(T16, x) = x8 + 36x7 + 218x6 + 555x5 + 892x4 + 1181x3 + 1093x2 + 434x

q(T17, x) = 9x8 + 121x7 + 499x6 + 1044x5 + 1531x4 + 1927x3 + 1688x2 + 636x

q(T18, x) = x9 + 45x8 + 339x7 + 1053x6 + 1893x5 + 2593x4 + 3126x3 + 2598x2

+ 932x

q(T19, x) = 10x9 + 166x8 + 838x7 + 2092x6 + 3342x5 + 4348x4 + 5040x3

+ 3989x2 + 1366x

q(T20, x) = x10 + 55x9 + 505x8 + 1891x7 + 3971x6 + 5784x5 + 7229x4 + 8089x3

+ 6113x2 + 2002x
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5.4 Interlace Polynomials of Dr,s (3 ≤ r ≤ 10, 1 ≤ s ≤ 3)

q(D3,1, x) = 2x2 + 4x

q(D4,1, x) = x3 + 5x2 + 2x

q(D5,1, x) = 3x3 + 7x2 + 6x

q(D6,1, x) = x4 + 7x3 + 12x2 + 4x

q(D7,1, x) = 4x4 + 14x3 + 16x2 + 8x

q(D8,1, x) = x5 + 11x4 + 25x3 + 23x2 + 6x

q(D9,1, x) = 5x5 + 25x4 + 41x3 + 29x2 + 10x

q(D10,1, x) = x6 + 16x5 + 50x4 + 63x3 + 38x2 + 8x

q(D3,2, x) = 6x2 + 4x

q(D4,2, x) = 4x3 + 7x2 + 2x

q(D5,2, x) = 8x3 + 13x2 + 6x

q(D6,2, x) = 3x4 + 17x3 + 16x2 + 4x

q(D7,2, x) = 11x4 + 28x3 + 24x2 + 8x

q(D8,2, x) = 3x5 + 27x4 + 46x3 + 29x2 + 6x

q(D9,2, x) = 14x5 + 55x4 + 68x3 + 39x2 + 10x

q(D10,2, x) = 3x6 + 41x5 + 100x4 + 99x3 + 46x2 + 8x

q(D3,3, x) = 2x3 + 10x2 + 4x

q(D4,3, x) = x4 + 9x3 + 9x2 + 2x

q(D5,3, x) = 3x4 + 15x3 + 19x2 + 6x

q(D6,3, x) = x5 + 10x4 + 29x3 + 20x2 + 4x

q(D7,3, x) = 4x5 + 25x4 + 44x3 + 32x2 + 8x
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5.5 Interlace Polynomials of Dr,s (3 ≤ r ≤ 10, 3 ≤ s ≤ 5)

q(D8,3, x) = x6 + 14x5 + 52x4 + 69x3 + 35x2 + 6x

q(D9,3, x) = 5x6 + 39x5 + 96x4 + 97x3 + 49x2 + 10x

q(D10,3, x) = x7 + 19x6 + 91x5 + 163x4 + 137x3 + 54x2 + 8x

q(D3,4, x) = 8x3 + 14x2 + 4x

q(D4,4, x) = 5x4 + 16x3 + 11x2 + 2x

q(D5,4, x) = 11x4 + 28x3 + 25x2 + 6x

q(D6,4, x) = 4x5 + 27x4 + 45x3 + 24x2 + 4x

q(D7,4, x) = 15x5 + 53x4 + 68x3 + 40x2 + 8x

q(D8,4, x) = 4x6 + 41x5 + 98x4 + 98x3 + 41x2 + 6x

q(D9,4, x) = 19x6 + 94x5 + 164x4 + 136x3 + 59x2 + 10x

q(D10,4, x) = 4x7 + 60x6 + 191x5 + 262x4 + 183x3 + 62x2 + 8x

q(D3,5, x) = 2x4 + 18x3 + 18x2 + 4x

q(D4,5, x) = x5 + 14x4 + 25x3 + 13x2 + 2x

q(D5,5, x) = 3x5 + 26x4 + 47x3 + 31x2 + 6x

q(D6,5, x) = x6 + 14x5 + 56x4 + 65x3 + 28x2 + 4x

q(D7,5, x) = 4x6 + 40x5 + 97x4 + 100x3 + 48x2 + 8x

q(D8,5, x) = x7 + 18x6 + 93x5 + 167x4 + 133x3 + 47x2 + 6x

q(D9,5, x) = 5x7 + 58x6 + 190x5 + 261x4 + 185x3 + 69x2 + 10x

q(D10,5, x) = x8 + 23x7 + 151x6 + 354x5 + 399x4 + 237x3 + 70x2 + 8x
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5.6 Explicit Formulas for fs(x) (0 ≤ s ≤ 20)

f0(x) = 1

f1(x) = 1

f2(x) = x+ 1

f3(x) = 2x+ 1

f4(x) = x2 + 3x+ 1

f5(x) = 3x2 + 4x+ 1

f6(x) = x3 + 6x2 + 5x+ 1

f7(x) = 4x3 + 10x2 + 6x+ 1

f8(x) = x4 + 10x3 + 15x2 + 7x+ 1

f9(x) = 5x4 + 20x3 + 21x2 + 8x+ 1

f10(x) = x5 + 15x4 + 35x3 + 28x2 + 9x+ 1

f11(x) = 6x5 + 35x4 + 56x3 + 36x2 + 10x+ 1

f12(x) = x6 + 21x5 + 70x4 + 84x3 + 45x2 + 11x+ 1

f13(x) = 7x6 + 56x5 + 126x4 + 120x3 + 55x2 + 12x+ 1

f14(x) = x7 + 28x6 + 126x5 + 210x4 + 165x3 + 66x2 + 13x+ 1

f15(x) = 8x7 + 84x6 + 252x5 + 330x4 + 220x3 + 78x2 + 14x+ 1

f16(x) = x8 + 36x7 + 210x6 + 462x5 + 495x4 + 286x3 + 91x2 + 15x+ 1

f17(x) = 9x8 + 120x7 + 462x6 + 792x5 + 715x4 + 364x3 + 105x2 + 16x+ 1

f18(x) = x9 + 45x8 + 330x7 + 924x6 + 1287x5 + 1001x4 + 455x3 + 120x2 + 17x+ 1

f19(x) = 10x9 + 165x8 + 792x7 + 1716x6 + 2002x5 + 1365x4 + 560x3 + 136x2 + 18x+ 1

f20(x) = x10 + 55x9 + 495x8 + 1716x7 + 3003x6 + 3003x5 + 1820x4 + 680x3 + 153x2 + 19x

+ 1
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5.7 Interlace Polynomials of Wn for 4 ≤ n ≤ 21

q(W4, x) = 8x

q(W5, x) = x3 + 4x2 + 4x

q(W6, x) = 10x2 + 12x

q(W7, x) = 2x3 + 18x2 + 20x

q(W8, x) = 7x3 + 35x2 + 30x

q(W9, x) = 2x4 + 23x3 + 56x2 + 36x

q(W10, x) = 9x4 + 48x3 + 93x2 + 62x

q(W11, x) = 2x5 + 27x4 + 92x3 + 158x2 + 92x

q(W12, x) = 11x5 + 66x4 + 176x3 + 253x2 + 134x

q(W13, x) = 2x6 + 38x5 + 147x4 + 318x3 + 393x2 + 190x

q(W14, x) = 13x6 + 104x5 + 299x4 + 546x3 + 624x2 + 288x

q(W15, x) = 2x7 + 51x6 + 247x5 + 569x4 + 933x3 + 983x2 + 422x

q(W16, x) = 15x7 + 155x6 + 533x5 + 1048x4 + 1568x3 + 1523x2 + 618x

q(W17, x) = 2x8 + 66x7 + 402x6 + 1078x5 + 1874x4 + 2587x3 + 2352x2 + 900x

q(W18, x) = 17x8 + 221x7 + 935x6 + 2074x5 + 3264x4 + 4233x3 + 3638x2 + 1328x

q(W19, x) = 2x9 + 83x8 + 623x7 + 2009x6 + 3836x5 + 5597x4 + 6887x3 + 5601x2 + 1946x

q(W20, x) = 19x9 + 304x8 + 1558x7 + 4066x6 + 6897x5 + 9481x4 + 11115x3 + 8588x2

+ 2852x

q(W21, x) = 2x10 + 102x9 + 927x8 + 3567x7 + 7861x6 + 12132x5 + 15877x4 + 17838x3

+ 13145x2 + 4174x
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5.8 Explicit Form of q(Tn, x) in Terms of x − 1 for 6 ≤

n ≤ 16

q(T6, x) = (x− 1)3 + 12(x− 1)2 + 31(x− 1) + 20(x− 1)0

q(T7, x) = 4(x− 1)3 + 29(x− 1)2 + 60(x− 1) + 35(x− 1)0

q(T8, x) = (x− 1)4 + 15(x− 1)3 + 67(x− 1)2 + 113(x− 1) + 60(x− 1)0

q(T9, x) = 5(x− 1)4 + 44(x− 1)3 + 147(x− 1)2 + 212(x− 1) + 104(x− 1)0

q(T10, x) = (x− 1)5 + 20(x− 1)4 + 116(x− 1)3 + 312(x− 1)2 + 395(x− 1) + 180(x− 1)0

q(T11, x) = 6(x− 1)5 + 66(x− 1)4 + 289(x− 1)3 + 649(x− 1)2 + 729(x− 1) + 309(x− 1)0

q(T12, x) = (x− 1)6 + 27(x− 1)5 + 197(x− 1)4 + 688(x− 1)3 + 1322(x− 1)2 + 1333(x− 1)

+ 528(x− 1)0

q(T13, x) = 7(x− 1)6 + 99(x− 1)5 + 542(x− 1)4 + 1574(x− 1)3 + 2626(x− 1)2 + 2423(x− 1)

+ 901(x− 1)0

q(T14, x) = (x− 1)7 + 35(x− 1)6 + 322(x− 1)5 + 1403(x− 1)4 + 3489(x− 1)3 + 5220(x− 1)2

+ 4380(x− 1) + 1534(x− 1)0

q(T15, x) = 8(x− 1)7 + 141(x− 1)6 + 959(x− 1)5 + 3469(x− 1)4 + 7545(x− 1)3 + 10170(x− 1)2

+ 7872(x− 1) + 2604(x− 1)0

q(T16, x) = (x− 1)8 + 44(x− 1)7 + 498(x− 1)6 + 2675(x− 1)5 + 8267(x− 1)4 + 15975(x− 1)3

+ 19592(x− 1)2 + 14074(x− 1) + 4410(x− 1).

58



Bibliography

[1] M. Aigner, H. Holst, Interlace polynomials, Linear Algebra and its Applications, 377

(2004) 11-30.

[2] R Arratia, B Bollobas, and G Sorkin The Interlace Polynomial of a Graph, The Journal

of Combinatorial Theory, 92, 2004, 199–233.

[3] R Arratia, B. Bollobas and G. B. Sorkin, The interlace polynomial: A new graph

polynomial, Proceedings of the Eleventh Annual ACMC-SIAM Symposium on Discrete

Algorithms (San Francisco, CA), January(2000), 237-245.

[4] R. Arratia, B. Bollobas, D. Coppersmith, G. B. Sorkin, Euler circuits and DNA se-

quencing by hybridization, Discrete Appl. Math., 104 (1-3) (2000) 63-96.

[5] P. N. Balister, B. Bollobas, J. Cutler and L. Pebody, The Interlace Polynomial of Graphs

at −1, Europ. J. Combinatorics, (2002) 23, 761-767.

[6] J. A. Ellis-Monaghan and I. Sarmiento, Distance Hereditary Graphs and the Interlace

Polynomial, Combinatorics, Probability and Computing (2007) 16, 947-973.

[7] A. Li and Q. Wu, Interlace Polynomials of Ladder Graphs, Journal of Combinatorics,

Information & System Sciences (2010), Vol. 35, No. 1-2, 261-273.

[8] S. Nomani and A. Li, Interlace Polynomials of n-Claw Graphs, Journal of Combinatorial

Mathematics and Combinatorial computing; (2014) 88, 111-122.

59



[9] C. Uiyyasathian, S. Saduakdee, Perfect Glued Graphs at Complete Clones, Journal of

Mathematics Research, (2009), Vol. 1, No. 1, 25-30.

[10] A. Bouchet, Graph polynomials derived from Tutte’s Martin polynomials, Discrete

Mathematics, 302 (2005) 32-38.

[11] J. A. Ellis-Monaghan, Identities for circuit partition polynomials, with applications to

the Tutte polynomial, Advances in Applied Mathematics, 32 (2004) 188-197.

[12] R. Glantz, M. Pelillo, Graph polynomials from principal pivoting, Discrete Mathematics,

306 (2006) 3253-3266.

[13] C. Eubanks-Turner and A. Li, Interlace polynomials of friendship graphs, Electronic

Journal of Graphs Theory and Applications 6 (2) (2018), 269-281.

60


	Interlace Polynomials of Certain Graphs
	Recommended Citation

	tmp.1624555997.pdf.fS_cA

