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ABSTRACT

Online Social Networks have completely transformed communication in the
world of social networks. Participation in online social networks have been growing
significantly and is expected to continue to grow in the upcoming years. As user
participation in online social media is on the rise, so is the concern pertaining to
user privacy and information security; users want to interact on social media without
jeopardizing their privacy and personal information. Extensive research has been
conducted in the area of developing privacy-preserving protocols to allow users to
interact in a secure and privacy-preserving environment. One of the elements that
social media have is the feature or ability to befriend other users. While a user may
manually search for friends to “add”, social media networks like Twitter, Facebook,
Instagram, Snapchat and others facilitate friend recommendations to their users based
on different criteria. We examine and compare the advantages and disadvantages of
existing privacy-preserving techniques and schemes. We also analyze different models
used to implement friend recommendation protocols and study proximity measure-
ment metrics used in existing works. This thesis scrutinizes the security weaknesses
and vulnerabilities of three Friend Recommendation Protocols from existing work
and develop a corresponding solution. We propose a (F'SFR) protocol that is based
on Shamir’s Secret Sharing to facilitate friend recommendations in Online Social
Networks in a fast, secure and private manner. After comparing our protocol with
existing protocols in terms of security, computation efficiency, costs, flexibility and
more, we conclude that our F'SF R protocol guarantees a superior and more efficient

friend recommendation protocol.
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1. INTRODUCTION

1.1. BACKGROUND

According to [1],it is estimated that the number of users who are on any form
of social media was recorded to have reached 4.2 billion as of January 2021; the most
popular social network was revealed to be Facebook with a total of about 2.74 billion
user accounts. Social Media allows for users who can be at different locations to
interact with one another. With such a large number of users utilizing Online Social
Networks, there is an abundance of personal information and data that needs to be
protected and kept private. Users can keep personal information such as passwords,
private messages, phone numbers, email addresses and shared content private by
not publicizing it on the network. For instance, on Twitter, users have the option
to limit who may view the content they post by selecting “Protect my Tweets”.
Likewise, if one does not wish to be discovered by other users, they have the ability
to control their discoverability settings and manage contacts imported. Users can
decide whether they would like for people who have their email address or phone
number to find them or not; they also have the ability to limit location information
mined by Twitter through unchecking the feature in the settings. Twitter also offers
the feature of allowing users to choose if they would allow Twitter to keep track of the
sites they visit that incorporate Twitter content such as embedded timelines. Thus,
users have some control over the content they would like to keep private. However,
while users are offered the option to protect certain information, the majority of the
data users provide, even unintentionally, could jeopardize their privacy.

Social media supplies an overwhelming amount of data feeds that are extracted

and utilized to be used for different purposes such as marketing [2]. This results in a



large amount of information exposure of casual social media users. Records of users
such as their identities, friend lists, likes and comments are centrally stored in Social
Data Generation [3].

Several questions are brought up in [4,5] that challenge the credibility of Online
Social Networks (OSN). Questions are raised pertaining to what pieces of information
exactly are supplied by users to the OSNs. Concerns are also raised regarding the de-
fault privacy settings for the framework of the social network. It is important to note
that OSNPs like Twitter and Facebook are needed to allow social networks to function
as these network providers provide the functionalities to the users. Consequently, a
framework that utilizes a central network provider but implements privacy-preserving
techniques to ensure user privacy is required.

In general, many online social networks collect sensitive user profile data and
store the data after having them encrypted on their server. Essentially, users have
no control over what the OSNP chooses to do with the data. OSNs are free to share
this stored data with third parties for business purposes [6]. Moreover, sensitive
information may be obtained through unauthorized methods like hacking. In April
2021, Facebook was met with a surge of individuals threatening legal action after
they decided to not notify more than 530 million users from across 106 countries
of a breach that resulted in their personal information being exposed. The leaked
personal data was obtained through hacking and included phone numbers, locations,

full names, and email addresses [5].

1.2. CONTRIBUTION

This thesis focuses on friend recommendations in online social networks and
proposes a protocol, F'SF R (Fast and Secure Friend Recommendation), that allows to

carry out the friend recommendation process in a more efficient, secure and privacy-



preserving manner than the existing protocols. We propose two F'SF R solutions,
FSFR; and FFSFR; with the latter being a more secure implementation of the
former. While we utilize Shamir’s Secret Sharing in both of our solutions, F'SF R,
utilizes a combination of Shamir’s Secret Sharing with Paillier’s encryption.

Our protocol utilizes a Federated Cloud Model by requiring for the utilization
of more than one cloud server to communicate with the OSNP in order to facilitate the
friend recommendation. When implementing the PAFR protocol [6], the computation
time of the cloud server was negligible as it was used primarily as a storage medium as
opposed to being utilized in the computation process. However, this placed additional
responsibility and burden on the OSNP as it left all the expensive computations such
as decryption to the OSNP. The presence of a single cloud contributed to the OSNP’s
comparatively high computation time.

Our F'SFR protocol will reduce this excess computation time by utilizing an
additional cloud server. By adopting a federated cloud environment, we introduce a
framework based on the collaboration of multiple public cloud environments. Thus,
the OSNP can be spared of some of it’s responsibilities by allowing the additional
cloud server to perform some of the computations. By adopting a federated cloud en-
vironment, the responsibilities will now be distributed across three parties as opposed
to only two parties.

The FSFR protocol is expected to maintain the following:

e Security: the proposed protocol utilizes Shamir’s Secret Sharing to prevent any
single party from having access to user’s information or the entire data of any
single user. It also utilizes permutations and randomization to ensure higher
security. More information on the security of our protocol will be discussed in

Section 5.

e Efficiency: the proposed protocol does not encrypt the entire matrix of each



user; rather, we split the data. This is more efficient and less expensive. For
our second solution, we utilize Paillier’s encryption; however, we limit the en-
cryption to only encrypting the random values instead of encrypting the whole
matrix which would have been expensive. A comparative analysis on the effi-
ciency of our protocol in comparison to other existing protocols can be seen in

Section 6.

e User convenience: the protocol does not require users to be online throughout

the friend recommendation process.

e Distributed Computation: As discussed earlier, utilizing a collaboration be-
tween the OSNP and federated cloud environment will allow for computation
time to be significantly less while allowing for the computations to be distributed

fairly equally.

The remaining sections are organized as follows; Section 2 discusses related works,
Section 3 explains the preliminaries, Section 4 explains the framework of our protocol,
Section 5 goes into depth explaining both of the solutions of our F'SF R protocol and
their corresponding steps, Section 6 evaluates the performance of the protocol while
comparing it to existing protocols, and finally, we conclude with future recommen-

dations.



2. RELATED WORKS

There are several existing works in the field of privacy-preservation. This en-
compasses studies related to privacy-preserving techniques, decentralized vs central-
ized architectures, models, frameworks, and actual protocols to implement the friend
recommendation process. We analyzed these topics while studying their advantages
and disadvantages. We refer to three friend recommendation protocols for analysis
and examine the strengths and weaknesses of each of them while identifying secu-
rity weaknesses that we sought to eliminate. The first protocol, Privacy-Preserving
Friend Recommendation with Homomorphic Encryption (PPFRy,) [7] is founded on
the homomorphic encryption scheme which utilizes a universal hash function. The
second protocol, Privacy-Preserving Friend Recommendation with Source Privacy
(PPFRs,) [7] utilizes the concept of protecting source privacy through anonymous
message routing using secret sharing while the third protocol, Privacy-Aware Friend
Recommendation (PAFR) [6], proposes a framework that utilizes the concept of
outsourcing encrypted profiles to a cloud environment in a privacy-aware manner
approaching it by utilizing Paillier’s encryption as well as AES encryption. All three
protocols utilize the common neighbors approach for the proximity measure in the

friend recommendation process.

2.1. PRIVACY PRESERVING FRIEND RECOMMENDATION

This section discusses the implementation of the two Privacy-Preserving Friend

Recommendation Protocols and provide a comparison between the two.

2.1.1. PPFRy,. - The first protocol which utilizes homomorphic encryption

is PPFRy,. The fundamental procedures associated with PPF' Ry, is to first encrypt



the ID of each friend independently and perform a homomorphic addition on the
encrypted data. Each user generates an encrypted matrix that contains his/her friend
list information and forwards it to target user A. Then, A aggregates the encrypted
friend lists component-wise to get the encrypted frequency for each potential friend.
The first column entry contains an actual user ID while the row stores the hashed
value of the user ID. After this, with the help of the third party who holds the private
key pk, A securely retrieves the IDs of users whose frequency is greater than or equal
to the threshold. One of the biggest limitations of the PPF Rj, protocol is that there
is no off-line support. The recommendation process can be carried out only when all
parties involved are online. Also, the protocol leaks the common neighbor score to a
third part violating the privacy of all the users involved.

2.1.2. PPFR,,. The next protocol is the (PPFR,,) protocol. Alkanhal et
al. [7] discusses the protocol as the following; they denote the user waiting for friend
recommendations as A, the friend of A as B, and a single friend of B (potential friend
candidate to A) as C;; in the subset of C' (all of B’s friends). In this protocol, it
is assumed that each user in the network generates a public-private key pair using
the RSA public key system. Each C;; uses an AES encryption algorithm to encrypt
his/her data. The secret key is divided into a number of individual shares; the
maximum number of shares is the number of friends in the friend list of C;;. This
results in requiring a number of minimum shares to be reconstructed in order to obtain
the key. The main idea of the PPF R, protocol is to allow C' to introduce themselves
to A in manner that preserves the privacy of the source, or user seeking the friend
recommendation; this is done through anonymous communication. This method is
similar to the Onion Routing method. Here, A waits for the self introductions to
come. B, which is the intermediate user between A and C;;, arranges a random path
along which C;; will pass the self introduction to A. The random path can hide the

identities of all C;; in the subset of C' by preventing A from tracking back to them.



Once again, the goal of this protocol is founded on allowing for C' to make friends
and pass introductions to A to without disclosing who they are sending introductions
to. This preserves the privacy of both A and B. Moreover, as User A cannot trace
back to Cj;, the privacy of all C;; in C' is preserved. However, although none of the
parties involved can be identified, users who have a common neighbor score greater
than the threshold are revealed. These are users who are likely to be recommended

as friends to the target user.

2.2. PAFR

In [6], the authors discuss the Privacy-Aware Friend Recommendation protocol
(PAFR) framework which allows users to outsource their encrypted profile data to a
cloud environment. The framework utilizes a hybrid encryption approach which is a
combination of homomorphic encryption scheme with Paillier’s encryption and AES.
This protocol utilizes a decentralized architecture and involves three components:
the user, a cloud, and an OSNP. The user’s role is to encrypt his/her profile data
and outsource it in it’s encrypted form to the cloud which stores and manages all of
the encrypted profile data. The cloud is also the entity that will be communicating
with the OSNP when facilitating the friend recommendation process. The OSNP
will create as well as share the cryptographic keys with users. The PAF R protocol
is divided into two stages; Secure Outsourcing Profile Data and Secure Collaborative
Friend Recommendation (SCFR). The Outsourcing stage defines what is needed to
be done before sending the profile data to the cloud. The SCFR stage defines the
communication phase and explains the collaboration between the cloud and OSNP.

Zhou et al. [8] discuss the homomorphic encryption scheme on Integer Vectors.
They discuss some implementations of computation tasks such as feature extraction

and data aggregation. Upon discussing the features, they agree that while it is dif-



ficult to develop universal homomorphic encryption-schemes due to it’s computation
and communication costs, homomorphic-encryption schemes may be able to be devel-
oped for specific applications. Homomorphic encryption differs from general encryp-
tion methods by having the ability to perform computations directly onto encrypted
data without accessing the data itself. The scheme supports both “addition” and
“multiplication” operations on encrypted data. Thus, when using the homomorphic
encryption scheme, addition and multiplication operations can be performed on a
cipher-text rather than accessing the actual plain-text. This is significant and advan-
tageous as it prevents any encounter with the actual data eliminating the possibility
of tampering with the data that is meant to be protected during the computation
process.

The paper also raises the question aimed to reduce costs of computations and
overall communication time involved with homomorphic encryption operations. In
order to reduce computation time, we propose a protocol that initiates a collaboration
between a federated cloud model and OSNP utilizing Shamir’s Secret Sharing Scheme.
The scheme, like homomorphic encryption, allows for addition and multiplication
operation to be performed on data; however, in contrast to the computations being

performed on encrypted data, it is performed on secret shares.

2.3. PRIVACY-PRESERVING MODEL

Samanthula et al. [7] discusses models used to implement Privacy-Preserving
Friend Recommendation protocols. The authors refer to existing work and reference a
study by Machanavajjhala et al. [9] who mentions of a trade-off between accuracy and
privacy when implementing private friend recommendation using differential privacy.
The model adopted in their work, however, had some limitations; namely, choosing to

maintain accuracy at the expense of privacy and vice versa. The authors [7] propose



a superior model called Secure Multiparty Computation (SMC). The SMC Model is
able to maintain better accuracy while preserving the privacy of all users involved.

(SMC)

2.4. CONTENT-BASED AND TOPOLOGY-BASED ALGORITHMS

There are two ways algorithms can be implemented to recommend new friends
to a user. One of the algorithms is content-based while the other is topology-based.
Friend recommendation algorithms can also utilize a combination of both content-
based and topology-based algorithms.

Yu et al. [10] introduces a framework to allow friend recommendation based
on similarities between user contents. This algorithm utilizes users’ content as the
basis to decide whether to recommend a user by considering users’ profile information
such as interests, education and age. The framework enables friend recommendations
by analyzing the extracted information from user’s profile pages. The protocol will be
able to generate the frequency of keywords and measures the frequency of each word.
This is used to compare with other users who also undergo the same analysis with
their profile pages. Users with the highest level of proximity, or matching keywords,
will be recommended to each other [10]. Thus, the likelihood of A being recommended
to B depends on the similarity between their profiles. Alkanhal et al. [6] discusses the
second option which is based on a topology-based friend recommendation framework.
This framework focuses on the topological structures of social networks and how users
are interconnected on the network. Through topology-based friend recommendation
protocols, the friend recommendation process is implemented by recommending new
friends to a user from a set of their friends’ friends. More details on this framework

can be studied in Section 4.
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2.5. NETWORK ARCHITECTURES

Nilizadeh et al. [11] discusses a decentralized architecture known as Cachet
which uses a combination of hash tables and attribute based encryption to protect
confidentiality, integrity and availability of user content. It also preserves the privacy
of user relationships through a decentralized architecture that involves no network
provider; all communications happen directly between users. Cutillo [14] explains
that while privacy exposures can be eliminated through creating more secure protocols
and frameworks to work with the OSN, the risk of user’s privacy is inevitable due to
the central storage aspect of centralized architectures. Thus, they opt for a Peer-to-
peer architecture as an alternative to the centralized framework.

In contrast, Samanthula et al. [7] opts for a centralized architecture which
allows for users’ data to be encrypted and stored on the server of an OSN. The pa-
per focuses on an OSN framework where the data resides on the OSN as opposed
to Cachet which has no central network provider. The paper [7] argues that decen-
tralization would force users to choose between availability, convenience or reliability
through forcing them to store data on their own systems. If not that, users will be
forced to store data on network providers that they do not know or would have no
more trust in than they would in a centralized network provider. In the case where
users choose to store their data on a separate network provider, they might as well
have a central network provider. The solution [7] opts for a centralized network and
assumes that users can encrypt their profile data before sending it to be stored on
the OSN’s server. However, despite the encryption of users’ profile data, concerns
are raised regarding how trustworthy the provider actually is. As discussed earlier,
we need to rely on network providers as the losses when moving to a decentralized
structure would outweigh the benefits. This creates the incentive to develop protocols

that guarantee efficiency and privacy.
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2.6. FRIENTEGRITY

To address this, Feldman et al. [12] develops a framework called Frientegrity;
under this framework, the service provider sees only the encrypted data and cannot
carry out any operation that is not expected of it without it being detected. However,
Samanthula et al. [6] argues that while the integrity and privacy of the contents of
a user is protected, this model still allows for the relationship between two users to
be revealed to the service provider. The authors [6] develop a solution to counter
this information leakage by creating a protocol that does not reveal the friendship
between any two users to the service provider. Another weakness of the Frientegrity
model is that target user A can search through his/her friends access control list to
search for new friends. The paper [6] identifies this as a violation of user privacy as it
allows for the friend lists of target user A’s friends to be revealed to A and proposes a
solution for that. In their solution, the friend list of a user is never revealed to other
users. However, although the protocol allows for the content of the users’ friend lists
to be kept private, it allows for the possibility of the permuted friend lists to be leaked
to the OSNP.
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3. PRELIMINARIES

In this section, we present some concepts and notations that will be used in

the proposed solution.

3.1. UNIVERSAL HASH FUNCTION

Hashing is a method used to convert a range of key values (using modulo
operator) into a range of array indexes. The goal of hashing is to map the elements
of a domain into a smaller domain. For instance, consider a set of integers in domain
L = {0,1,..-1}. Through hashing, we map these integers into a smaller domain we
denote as V = {0,1,..,s-1} where s < [ with minimum number of collisions. A hash

function is defined as below:

hay(k) = ((ak +b) mod p) mod N (3.1)

In the hash function equation above, p is a prime number > 1 while a and b are
random values.

3.1.1. Hash Table. A hash table, also known as a hash map, is a data
structure that maps keys to values. It is used to store an index into an array of
buckets or slots from which the desired value can be found. The index, or hash code,
is computed by using the hash function. For our protocol, we utilize a hash table to
store the user’s information (ID and friend lists). An example is provided below. We

denote the following:
e X as the set of all possible keys (k).

e Table T as the Hash Table with S positions. These positions or slots will contain

the hash value.
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Frequently Used Notations

PPFRy, | Privacy-preserving Friend Recommendation with Homomorphic Encryption
PPFR;, Privacy-preserving Friend Recommendation with Source Privacy
PAFR Privacy-Aware Friend Recommendation
FSFR, Fast and Secure Friend Recommendation Solution;
FSFR, Fast and Secure Friend Recommendation Solutions

Cl C’loudl

C2 ClOudg
OSNP Online Social Network Provider

m C4’s and Cy’s random permutation function

o OSN P’s random permutation function

Table 3.1: Frequently Used Notations

e Hash function h(k): The function maps X to {0,1,..,S—1}. In this step, function

h(k) will map any key (k) to one of the slots in table 7". After the mapping is

complete, We use h(k) to refer to the location in T where the key is stored.

Suppose we want to map 4 user IDs to a hash table. Let us define the hash

function as: the (sum of the digits in ID mod 10). In this example, the user IDs are

our key values. We will map these keys to indexes in our array. The user IDs are:

e 7250903661

e 7302383966

e 7754321661

o 2740487840

For each entry, h(k) = (sum of id digits mod 10) is computed. An example is

shown below using the first entry ID: 9014638161.

h(k) = (7T4+2+5+04+9+0+34+6+6+1 mod 10) = (39 mod 10) =9
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H Element  Key(k) Sum of digits Hash Value h(k) H

1 7250903661 39 9
2 7302383966 48 8
3 7754321661 42 2
4 2740487840 44 4

Table 3.2: Mapping User IDs to Hash Table

As reflected in the table, each of the keys or User IDs are mapped to a specific
index in the hash table. The index serves as a reference to the key value.

3.1.2. Hash vs Encryption. Hashing and encryption are two separate cryp-
tographic processes that utilizes an algorithm and key, Encryption allows to convert
plaintext data into something indecipherable. You can, however, decrypt the data by
using a corresponding cryptographic key. On the other hand, once data is hashed, it

cannot be restored to its original format as it is a one-way process.

3.2. COMMON NEIGHBOR SCORE

As discussed in the Section 2, the common neighbor proximity states that
two strangers who have a friend in common are more likely to be introduced to
each other than those who do not have any friends in common. The algorithm
contains a threshold that allows only users with scores more than or equal to ¢ to
be recommended as friends to A. When computing the common neighbors score,
it is important to note that only nodes that are two-hop neighboring nodes [6] are
considered. This means that only nodes that are two nodes apart from the user is
considered. Thus, if we would like to recommend A new potential friends, we will
only take account of the users who are two nodes away from it.The function below

represents how the Common Neighbors Score is calculated.

S(z,y) = |N(x) N N(y)|
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In the function, N(z) denotes the set of adjacent nodes to node x while N(y)
denotes the set of adjacent nodes to node y. The intersection element of Set theory
(N) is used to indicate the intersection or common adjacent nodes identified by im-
plementing the formula. The common nodes or intersecting nodes will be candidates
that can be recommended to the target user. A common neighbor score of 0 would
indicate that the users are not close and will thus not be recommended. The higher
the score is, the higher the likelihood is for a friend recommendation to be made.
More details on the Common Neighbors Approach can be found in the upcoming

Section.

3.3. SHAMIR’S SECRET SHARING SCHEME

Shamir’s Secret Sharing is a scheme that enables a private crypto key to be
split into separate pieces, or shards, rendering each shard useless unless enough are
assembled to reconstruct the original key. Shamir’s Secret Sharing allows participants
to share ownership of a secret by distributing shares; consequently, it prevents any
single party from having sole ownership over the data. In order to gain access to
the original secret, a minimum number of shares must be combined together; this
is known as the threshold denoted as ¢t. This scheme splits a secret S into n parts
known as shares, such that with any k& of n pieces (that satisfies the requirement
of t), one can reconstruct the original secret. However, with any k — 1 pieces, no
information is exposed about S and the secret will not be able to be reconstructed.

That is generally called a (n, k) threshold scheme [13].

3.4. RANDOM PERMUTATION

A permutation refers to an arrangement of elements. The number of permu-

tations of n distinct objects is n!, which is the product of all positive integers less
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than or equal to n. So for 3 distinct objects, there are 6 total possible permutations
as 3! =6

A random permutation is a permutation containing a fixed number of a ran-
dom selection from a given set of elements. Permutation functions are used to
strengthen the security of the user’s data and to prevent data leakage. When im-
plementing the friend recommendation process, the incorporating on random permu-
tation functions prevents the unauthorized party from knowing which piece of data
corresponds to which user in order to guarantee the privacy of the user’s data. More

details on the utilizing of random permutation functions can be seen in Section 5.
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4. PROTOCOL FRAMEWORK

This section will discuss the framework of our protocol; it will elaborate on
the model used, parties involved, metrics and algorithms used, privacy-preserving

technique adopted as well as explain the justifications.

4.1. PROTOCOL MODEL

Our Protocol utilizes a centralized three party model consisting of two cloud
servers (C} , C3) and an Online Social Network Provider (OSNP). Through commu-
nication between C7,C5, and the OSNP, friend recommendations can be implemented

in a privacy-preserving manner. The basic role of each of the parties is as follows:

e User: Each user’s information will be stored in a matrix after being hashed.
This is the only intervention the user will have in the friend recommendation
process implemented by the F.SF R Protocol. Once the matrix is created, it is
now ready to be split into shares. Each of the three parties of the model will

be receiving a single share.

e (; and C5: Once the shares are received by each of the parties, all the com-
putations will take place via the federated cloud environment and the OSNP.

Communications between all parties are secure and privacy-preserving.

e OSNP: The OSNP has the responsibility for providing the functionality to the
user. The OSNP will perform computations on the shares it receives from
the cloud servers. Moreover, the OSNP has a crucial role in the final steps
of implementing the protocol when utilizing Paillier’s Encryption. A detailed

breakdown can be seen in Section 5.
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4.2. TOPOLOGY-BASED ALGORITHM,

For our protocol, we adopt the topology-based algorithm which means that
our protocol will rely on the topological structures of social networks and how users
are interconnected on the network. The topological approach identifies existing links
among users on a network in order to facilitate new ones. The proximity metric used

in our topology based protocol is the Common Neighbors Score.

4.3. COMMON NEIGHBORS SCORE

One of the most notable metrics used to measure the proximity between any
two users is obtaining their Common Neighbors score. Topology-based friend recom-
mendation protocols are based on the Common Neighbors measure. This proximity
measure provides a means to recommend friends to users in a privacy-preserving man-
ner. In simple terms, this measure states that the closer one user is to another, the
more likely they are to be recommended as a potential friend to them. The common
neighbor approach also states that two strangers who have a friend in common are
more likely to be introduced to each other than those who do not have any friends in
common. If user A and a potential friend candidate, user B, have a common neigh-
bors score of 10 and a threshold of 8, user A and B have a higher chance of being
recommended to each other.

The figure below represent a sample toplogical network with a total of 9 users.
Each user on this network has at least one friend while some users have multiple
friends. Some of the users have common friends with other users. As mentioned
in Section 2, the Common Neighbors Score can be computed by only considering
two-hop neighboring nodes or nodes that are only two nodes apart from the target
user.

We take User B as our target user that we would like to make friend recom-
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Figure 4.1: A sample topological network

mendations for.

The table shows how the Common Neighbors Score is found. We take each
node z in the network and put in into the function N(x). The function will note
all the nodes adjacent to the specified node. We denote y as the target user; in this
example, we seek to make friend recommendations for Node B. Thus, N(y) lists
the adjacent nodes of Node B. We will use this to compare it to other users on the
network. We assume that no new friendships are being made or broken during the
period of computing the Common Neighbors Score. Finally, the final column reflects
the number of common nodes found between each x node and target user B. For
node C' and node H, note that a null value was stored. This is due to the fact that
Node B already maintains a friendship with both nodes. Friend Recommendation

are only to be applied to users who are not existing friends. If the friendship is to be



20

| @] N@) [N |S@y) |

A E, D H,C 0
B H, C H,C | N/A
C B,.D.G | H,C null
D | A CEG| HC 1
E A D H,C 0
F I H,C 0
G | HCD | HC 2
H B,G H,C null
I F H,C 0

Table 4.1: Common Neighbor Score Computations

broken, a new common neighbor score may be calculated.

4.4. SHAMIR’S SECRET SHARING

We use Shamir’s Secret Sharing scheme in implementing our protocol. As
briefly discussed in the Preliminaries, Shamir’s Secret Sharing prevents a single party
from having full authority over a secret by distributing shares among a number of
users such that with any k& of n pieces, the original secret can be reconstructed.

For instance, if S has been split into 7 shards and the scheme chooses t = 4,
only 4/7 of the shards are required to reconstruct the original secret and the holders
of any 4 shards can combine their shards for access. Any less number of shards will
not allow access. Thus, if only 3/7 of the shards are combined, S will not be able to
be reconstructed.

4.4.1. Multiplication and Addition. Multiplication and addition are two
forms of computations that could be implemented on shares under Shamir’s Secret
Sharing Scheme. The basis of these computations rely on them being performed on

split data, known as shares.
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Addition. An example of the implementation of addition under the scheme
is shown below. Suppose we have two secret messages, 5 and 8. Let us denote F
for 5 and P; for 8. Under Shamir’s Secret Sharing, we split both of the values into

shares. We split P, into Ag and A; and do the same to P; as shown below

P0:5 P1:8

CLQZS b0:9

(1,1:2 blz-l

As shown in the table above, Alice and Bob both have two split shares instead
of their single original message. Now, Alice and Bob can send one of their own shares

to each other, although this is not required. Alice and Bob own the shares as shown

below:

Alice and Bob can do addition computations locally. The calculations expand

to look like the equation below:

a+b=(ag+ay)+ (b + b1) (4.1)

We can easily rearrange the order of the values into

a+b=(ap+by) + (a1 + by) (4.2)

Py will compute (ag + by) using the shares it owns while P, will solve (a; + b;)
using the shares it owns. Thus, by the end of the computation, P, will have only
received one share from b while P; only gets one share of a. All computations are

performed locally with no interactions between the parties after the initial exchange
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of shares. Most of the computations of our F'SF'R protocol require only additive
computations; however, some may require more complex operations such as multipli-

cation to be implemented.

Multiplication. While doing additive computations are fairly simple, multi-
plicative computations are more complex because it requires for the parties to com-
municate during the computation. When applying multiplication to the shares, the

formula is expanded as shown below:

axb= (ag+ar)(bo+b1) = (ag*by) + (ag *by) + (ar * by) + (ay * by) (4.3)

In the expanded formula above, (ag * bg) can be computed by Py locally while
P, can compute (a; * by) in the same manner. However, an obstacle is encountered
upon trying to compute (ag * by) + (a; * by). Neither party has both of the shares
it is being asked to compute. In order to execute this computation, the party that
attempts it will have to possess an additional share. For instance, if Py were to solve
for (ag * b1), it would need to acquire b; from P;. However, Py already has b; in it’s
ownership; acquiring the additional share, b;, would allow for P, to have ownership
over the complete secret as it now possessed all the shares required to reconstruct the
message. This defeats the sole purpose of Shamir’s Secret Sharing which prevents
any single party of having complete ownership over the data.

In order to solve this problem, two steps are required; masking and the pres-
ence of an additional party. Through masking, we are able to introduce a new un-
known number to each party. This number will be eliminated once the shares are
combined. However, if either of the parties generate the unknown value, that would
violate the privacy-preserving component of the protocol as the party that is gener-

ating the unknown number will have knowledge of the value of the number. Thus,
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a third party is required to generate these unknown numbers which will be utilized
to hide the data the parties do not wish to disclose to one another. As a result, b;
is masked from F, while ag is masked from P;. These masks are denoted as s and ¢
while the masked values are referred to as o and 3

The multiplication of a * b performed by Py becomes:

20 = sto+ (so * ) + (axty) + (a* ) (4.4)

While the multiplication performed by P; becomes:

21 = sty + (s1% ) + (a*xtq) (4.5)

At this point, a third party is needed to create some values for masking; We
denote this "helper” as P,. This party will generate three new values. The first
two values generated will be arbitrary while the third will be the product of the two
numbers. As an implementation, let us assume P, choose random values of 7 and 11.
The third value will be 77. The table below reflects the shares all parties currently

OwIl

Py Py P,

ap=3|a1=2| s=7

bp=9 |0 =-1| t=11

At this point, the P, values will be split into shares.

80:4 t0:5

81:3 t1:6
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The way these values are used is that it is subtracted from the original data

as follows

a = (ag — so) + (a1 — s1) (4.6)

B = (bo —to) + (b1 — 1) (4.7)

Then, P, will send sy and ¢y to Py while it sends s; and ¢; to P;. By the end
of this step, each party has the following

At this point, the three values will be split into shares.

Py Py

80:4 81:3

t0:5 t1:6

Now, Py can compute (ag — Sg) in the equation for our v value and compute
(bg — to) for our § value while P, can calculate the (a; — s1) for the remaining
computations of the « value and similarly compute (b; — t1) for the 5 value.

So,

a=(ag—s0)+ (a1 —s1)=0B—-4)+(2-3)=-2 (4.8)

while

B=(bp—ty) +(by—t1)=(9—-5)+(-1—-6)=-3 (4.9)

The values of a and 3 are -2 and -3 respectively. F, and P; now uses the
values to compute the final output. We revisit formulas 4.4 and 4.5 to calculate the
following

20 = sto + (so * ) + (axty) + (a* ) (4.10)
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zo =44+ (4% =3) + (=2 5) + (—2 % —3)

20:28

While the computation performed by P, becomes:

21 = sty + (s1 * beta) + (alpha * ty) (4.11)
21 =334+ (3% —3)+ (—2%6) (4.12)
5 =12 (4.13)

Finally, we combine the values after combining the shares to get:

20421 = 28412 = 40

which is the product of the value of the original secret.

4.5. COMPARISON BETWEEN SHAMIR’S SECRET SHARING AND
HOMOMORPHIC BASED ENCRYPTION

4.5.1. Homomorphic Encryption.

1. Size: Homomorphic encryption has a larger computational overhead than plain-
text operations. Also, homomorphic encryption based schemes requires to in-

dividually encrypt each input in it’s own cipher-text.

2. Computation: Public key encryption schemes are based on computationally
difficult problems and thus, require expensive operations such as modular expo-
nentiation. It also makes it commercially infeasible for computationally-heavy

applications.
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4.5.2. Shamir’s Secret Sharing Scheme.

1. Size: This scheme creates n shares of each input, where each share is of the

same size as the secret.

2. Computation: the computations under this scheme consists of choosing a ran-
dom polynomial and evaluating it in n points. When seeing this computation
graphically, the polynomial is chosen along the same function of graph of the
secret itself; this means that usually all computations are done with ordinary

integers [15].

One of the greatest advantages of Shamir’s Secret Sharing is that the individual
shards or pieces can be dynamically added or deleted without affecting the other
pieces. It is also dynamic as security can be easily enhanced without changing the
secret; this is done by simply changing the polynomial and constructing new shares
to the participants. It is also flexible as it can be organized based on hierarchy; we
can supply each participant different number of pieces according to their importance

inside the organization [15].
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5. PROPOSED FSFR PROTOCOL

The protocol we propose requires a number of communications between our
three parties: ', C5 and the OSNP. The steps of FSFR; and F'SF Ry are defined in
this section. Before the communications among the OSNP and cloud servers begin,
the user’s friend-lists from the matrix must be split and outsourced as shown in Fig.

5.1.

5.1. FSFR,

1. All parties know n users
e In this model, we use 2 Cloud Servers as well as an OSNP; all three parties
know the users that are selected.

e Each user will split their matrices and send them to C, C5 and the OSNP.

(we do not encrypt them as done in PAFR protocol)

e All parties will now have their respective shares.

2. The OSNP wants to make friend recommendations for n-users. It then picks

shares of corresponding matrices of those n users (their unique IDs) and sends

it to C2

e (5 and (] agree on a permutation that is only known to themselves ex-

clusively.
3. (5 will add those shares with its own corresponding shares

4. Now, C and C5 will separately permute those matrices shares and send them

to the OSNP.



Outsourced Profiles of Share 1

Users with their friend lists

Share 3

Figure 5.1: Users outsourcing data

L1 - C1

Matrix
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C2

L3 > OSNP

Figure 5.2: Sending matrix shares to the parties
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OSNP

1:}_1
R
= T
= +
&

*Unique ID shares represent the converted c1 _— > _I_
hash of the ID of the user

mA1

Figure 5.3: Permutation on shares from the OSNP

e (5 and (] apply a permutation to the share they receive from the OSNP
and sends them separately/individually to the OSNP. We refer to the

permutation function as 7.

e The permutation value is added to each entry in the first column of the
matrices to prevent the OSNP from obtaining information on the corre-

spondence of friend-lists.

5. The OSNP reconstructs the matrices and identifies the permuted friend-lists.

e In this step, the OSNP will know the matrices and friend-lists but in its

permuted form.
6. The OSNP permutes the lists again and sends them back to both € and Cs.
e Each list will consist of users and the aggregated matrices

7. C; and Cy will separately add the shares of the corresponding matrices locally.
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11.

12.

13.
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e Both €} and Cy will know that the friend-list belongs to some users (per-

muted n-lists)

Cy will take all the users in the friend-lists and add their matrices/combine

them then send its aggregated shares to Cj.
C5 combines them with its own aggregated shares and send it to the OSNP.
e ('} and (5 will now have one aggregated matrix.

The OSNP does inverse permutation, combines them with its own shares (now

possessing all of the shares) and checks the frequencies in the final matrix.

e The OSNP decrypts the second columns and checks whether the com-
mon neighbors score frequency is greater than or equal to t. If it is, the

corresponding randomized ID will be added to the new friend-list.

e The OSNP now knows the permuted new friend-lists for n users but it
does not know which friend-list corresponding to which user due to the

permutation.

The OSNP sends the list to C4.
e Each ID is split among the parties (C; and Cy). C} and Cy cannot collude.

C inversely permutes the list to obtain the correct order of the randomized

new friend-lists.

e Now, (' has the correct order of the new friend-list; however it is in it’s

randomized form.

We want to get the friend-list non-randomized AND in correct order.
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permutes +
combines
with own

share

Check the frequency and

c2 generates the
> | OSNP recommended
(C1(m1)+ A friend list
c2(m1) + Permuted
own Friend-list
\_shares l l
OSNP _I_

c1 of inverse inverse

permutation permutation

Figure 5.4: OSNP permutation and frequency computation

A second solution was developed utilizing a hybrid approach of the combina-
tion of Shamir’s Secret Sharing scheme with Paillier’s encryption and utilizes random
numbers. The Paillier cryptosystem is advantageous as it provides fast encryption
and decryption algorithms.

Random numbers are used to inject unpredictability or non-deterministic data
to make the resulting data virtually unguessable. In this case, we encrypt the random
values with the friend-lists. The goal of this modified solution is to allow C5 to be

able to receive the random numbers in the order of the OSNP’s permutation function.

5.2. FSFR,

1. All parties know n users
e In this model, we use 2 Cloud Servers as well as an OSNP; all three parties
know the users that are selected.

e Each user will split their matrices and send them to C, C5 and the OSNP.

(we do not encrypt them as done in PAFR protocol)

e All parties will now have their respective shares.



OSNP Permutes the Random

numbers
C2 encrypts negative
values of R1, R2, R3 in m
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\_shares
OSNP +

\
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Figure 5.5: FSFR,
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. The OSNP wants to make friend recommendations for n-users. It then picks
shares of corresponding matrices of those n users (their unique IDs) and sends

it to C2
e (5 and (] agree on a permutation that is only known to them exclusively.
. Oy will add those shares with its own corresponding shares

. Now, C and C; will separately permute those matrices shares and send them

to the OSNP.

e (5 and (] apply a permutation to the share they receive from the OSNP
and sends them separately/individually to the OSNP. We refer to the

permutation function as 7.

e The permutation value is added to each entry in the first column of the
matrices to prevent the OSNP from obtaining information on the corre-

spondence friend-lists.

. The OSNP reconstructs the matrices and identifies the permuted friend-lists.

e In this step, the OSNP will know the matrix and friend-lists but in its

permuted form.

. The OSNP permutes the lists again and sends them back to both C; and Cj.
e Each list will consist of users and the aggregated matrices

. C1 and C5 will separately add the shares of the corresponding matrices locally.

e Both () and Cy will know that the friend-list belongs to some users (per-

muted n-lists)

. €y will take all the users in the friend-lists and add their matrices/combine

them then send its aggregated shares to Cj.
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9. C5 combines them with its own aggregated shares and encrypts negative values
of random numbers in some order using its own Paillier’s public key and sends
them to the OSNP. Paillier’s scheme are known for their efficiency; they also

allow to achieve the highest security level for homomorphic encryption schemes.

e We encrypt using C5’s public key rather than the OSNP’s because our
final destination is Cs; we want C5 to receive the values in proper order by
the end. If our final goal was for the OSNP to receive the values in proper
order, we would encrypt using the OSNP’s public key. However, Cy cannot

let the OSNP know the value of R. Thus, we encrypt it as described.

10. The OSNP does inverse permutation and combines them with its own shares

and checks the frequencies in the final matrix before sending it to C}.

e The OSNP now has the encrypted permuted and randomized new friend-

list; it also has the encrypted random numbers in correct order.

11. Cy performs an inverse permutation on the encrypted list, re-randomizes it and

sends the result to the OSNP.

e (] now knows the randomized friend-list

e After this step, the OSNP will not be able to compare the friend-list or
encounter any information leakage due to the re-randomization that took
place in previous step —the OSNP now has the encrypted random numbers

with the randomized list.
12. The OSNP will randomly split the encrypted values into shares

e The OSNP adds new random numbers (R) and send the results to Cs

e (5 decrypts the values and gets its share (L2) while OSNP retrieves it’s
own share (L3).
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e (U5 decrypts with the private key that is known only to itself

e 12 4+ L3 = negative value of the random numbers (what C5 encrypted)
13. C5 decrypts and gets the random numbers in correct order.

14. Three parties will send their shares individually to the user.

5.3. SECURITY ANALYSIS

Our protocol was able to eliminate one crucial information leakage through
developing F'SF'Ry;. However, we were unable to successfully eliminate a a case
of information leakage in Step 5 and Step 6, although is arguably less significant.
In Step 5 of FSF Ry, the OSNP is able to identify the friend-lists in its permuted
form. Although it is in its permuted form, there is still information leakage taking
place as the OSNP can identify the permuted friend-list. Likewise, in Step 6, the
permuted friend-list is being vulnerable to leakage once it is sent to C and Cs. In Step
10, once the OSNP performs inverse permutation and combines the shares received
from Cy (which has previously been combined with shares from C}), the permuted
friend-list will be exposed and susceptible to information leakage once again. In all
three instances, there is a possibility of user privacy being jeopardized. However,
the potential leakage in Step 10 was able to be eliminated through the utilization of
random values in our modified solution, F'SF Ry. The reason we were only able to
eliminate the weakness in Step 10 is that we could add random numbers only because
no computations needed to be performed involving the contents of the friend-list.
However, in Step 5 and 6, the cloud needs to know which matrices to choose to begin
computing the common neighbor score. It can not randomly choose the matrices;
thus, we could not add a random value to it. Future research on eliminating the
leakages in Step 5 and 6 could strengthen the privacy-preserving component of the

protocol.
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6. PERFORMANCE EVALUATION

PPFR), provides a strong security guarantee and utilizes a universal hash
function for improving the efficiency. However, this efficiency comes at the expense
of degraded accuracy due to the involved hash collisions. On the other hand, the sec-
ond method utilizes the concept of protecting the source privacy through anonymous
message routing and recommends friends accurately. Both of the proposed protocols
preserve the privacy of each user. Nonetheless, both protocols leak different addi-
tional information. While the hashing and random permutation prevents the third
party from identifying the actual source of the scores, the PPF R), protocol leaks the
common neighbors scores to a third party while the PPF R, protocol reveals the
common neighbors scores which are more than the threshold to user A. This may
allow a significant amount of information to be deduced. However, since the protocol
guarantees the source privacy, A cannot determine the sources corresponding to the

scores.

Our protocol protects the friend-lists and user profiles from being leaked to any
party in a secure and efficient manner. In addition, we do not utilize any expensive
computations other than encrypting the random values with Paillier’s encryption for
FSFRy. Moreover, computations can be performed conveniently while preserving
the privacy of all the shards that make up the secret as Shamir’s Secret Sharing
scheme allows for computations to be performed of split shares.

The table below reflects some key differences among the protocols discussed

in this thesis.
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PPFR(h) PPFR(sp) PAFR FRFS_1 FRFS_2
Reveals Reveals the Leaks Leaks Permuted Reveals
Leaked Info common common neighbors = Permuted friend listto  Permuted friend
neighbor score | scores which are > | friend list to OSNP three list to OSNP
to third party threshold to user OSNP times only once
A
Homomorphic = Depends on the Matrixes must | Secret sharing doesn't require
Computation Encryption number of public be sent only any expensive operations. Note
Cost requires key encryptions after it 1s that Paillier’s encryption
Expensive which depends on | encrypted. The operations are only limited to the
Operations the size of the encryption random values. Thus, expensive
friend list of B. scheme used  operations are kept to a
The time required | utilizes minimum
to generate the Paillier’s
shares are encryption
negligible which 1s
compared to the expensive.
encryption cost
Privacy- Homomorphic | Secret sharing Homomorphic = Secret Sharing = Secret sharing
Preserving encryption encryption with Paillier’s
Technique Encryption
Confidentiality User’s profile data 1s encrypted User’s profile 1s split using secret
sharing
Scalability Does not scale well; requires a lot | Highly scalable as the entire friend recommendation
of users to be mvolved in the process 1s done by the Cloud and OSNP.
friend recommendation process
Flexibility The user and all his/her friends Users are not required to be online;
need to be online recommendation 1s computed by utilizing a

collaborative approach between OSNP and the
Cloud severs.

Table 6.1: Protocol Comparison: PPFRy,, PPFR,,, PAFR, FSFR, and FSFR,
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7. CONCLUSION

7.1. SUMMARY

Due to increased participation and growth of Online Social Networks, many
people are concerned about their privacy and how well it is being preserved. People
want to interact freely with other users without having to worry about their privacy
being jeopardized; they want to be guaranteed that their information is kept private
and undisclosed to anyone, including any third party. This proves to be a challenge as
user information is needed to compute different types of data on OSN. A key example
of this is the friend recommendation feature.

While users are capable of manually creating friendships with other users by
going to the profile of the user they wish to befriend, social media platforms like
Twitter, Instagram and Facebook utilize an effective ”automatic” feature known as
friend recommendation. Although this seems automatic and may be perceived to be
random, it is far from being an arbitrary procedure. Friend recommendations on an
OSN is carried out through the implementations of protocols and algorithms in a
measured and detailed manner. Several protocols exist to allow for the implemen-
tations of friend recommendations. Nonetheless, due to one reason or another, they
fail to meet stringent user-privacy standards. This calls for the need to develop more
secure and efficient friend recommendation protocols which this thesis develops and
elaborates on.

We refer to three existing friend recommendation protocols known as PPF' Ry,
PPFR,, and PAFR and identified weaknesses with each protocol. We were able
to successfully eliminate a number of key weaknesses while increasing efficiency and

strengthening the privacy-preserving components through developing the F'SF'R pro-
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tocol. Our protocol adopts a Federated cloud environment which coordinates with an
OSNP to carry out computations on shares in a cooperative manner using Shamir’s
Secret Sharing scheme. By incorporating a collaboration of an OSNP with multi-
ple public cloud environments, our protocol sees more balanced and comparatively
equally distributed computation across the parties.We also performed a comparative
analysis between the protocols and scrutinized their security implications, efficiency,

performance, cost and more.

7.2. FUTURE WORK

As we have yet to actually implement the FSFR protocol, future research could
focus on the execution of the friend recommendation protocol through adopting the
FSFR protocol. The resulting performance details would yield more accurate results.
In Section 5, we discuss the information leakages that may take place in Step 5 and 6.
Developing a method to prevent these leakages would help make the protocol more
secure. Another direction of research could be based on developing protocols that
utilizes users content based algorithms to recommend friends to users using Shamir’s
Secret Sharing scheme. Under such a framework, an algorithm that considers users’
hobbies, education and age will be required. Another direction that can be pursued to
expand this research is to develop a Secret Sharing based protocol that does not rely
on any form of encryption whatsoever. Although our protocol relies fundamentally
on Shamir’s Secret Sharing, F'SF Ry adopts a hybrid framework This would require

to discover a way to allow the secret shares to be received in it’s original order.
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