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Abstract—Demand response is a valuable tool for improving the reliability, stability, 

and financial efficiency of smart grids.  With the intention of altering customer power 

consumption patterns, utility companies often implement strategies such as time-of-use 

(TOU) programs.  Although effective in some situations, TOU programs struggle to 

perform in highly developed countries due to the complexity of human behavior.  In this 

study, we analyze power consumption readings from smart meters from 5567 households 

in London, UK from November 2011 to February 2014 to measure the success of the 

TOU program.  We additionally consider the variability of weather conditions and 

customer demographics when determining program outcome.  We establish a relationship 

between time of day and low/high power consumption both in standard (STD) customers 

and TOU customers.  Furthermore, we apply deep learning via a Long short-term memory 

(LSTM) model and determine predictability based on weather features through drill down 

operations. 

Keywords—ToU, sustainability, time-series, data analysis 
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I. INTRODUCTION 

As ToU programs continue to shape the forefront of sustainability efforts led by power 

companies, more studies concerning their retention and acceptance rates are being 

conducted [1].  Although, the complexity of human behavior may bound the general 

efficacy of programs to local changes.  For example, in certain models, heating/cooling 

demands are driven by significant differences between indoor and outdoor temperatures 

[2].  This metric may be ineffective for areas where frequent weather changes occur.  

Likewise, household temperatures may also be kept lower/higher depending on 

sociological factors [1]. 

Like the above example, we also give an analysis of human factors regarding the 

relationship between time of day and power consumption.  We also consider the climate of 

London, UK during the analysis [13].  Contrary to popular belief, London is a relatively 

dry city.  According to the UK’s Meteorological Office climate data, from 1981 to 2010, 

London only experienced around 106 rainy days per year on average [3].  So, any bias 

towards humidity/precipitation was discarded.  Although local perception of climate may 

be a determining factor in power consumption in general. 

Through drill down operations, frequent sequence mining, and association mining, we 

discover that ToU customers accounted for lower total average power use, more low 

consumption hours, relatively more above-average and high consumption hours, and longer 

periods of low power consumption than STD customers.  We also find correlations 

between the hour of day, month and power consumption.  Day of the week is discarded due 

to lack of any significant correlation with power consumption.  We also find a correlation 

between acorn group/socioeconomic class and power consumption.  Furthermore, we use a 
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long short-term memory model to predict power consumption based on the same weather 

feature time-series data for 1, 2, 3, 4, 5, 10, and 20 hourly windows.  We use a stacked 

LSTM approach with a mean squared logarithmic error loss function and adaptive 

optimizer.  We chose to use a stacked LSTM to allow for greater model complexity and 

achieve better results than single layer hierarchies [7].  The primary purpose of these 

predictions is to compare the trainability/predictability of each customer group based on 

the drill down operations from customer type, acorn, and individual customer.   

II. PRIOR WORK 

 Measuring demand side energy flexibility is critical to implementing demand response.  

Due to recent advances in smart meter technology, it is extremely convenient to monitor 

customer power consumption and analyze their individual consumption behaviors down 

the specific appliance [7].  By using smart meters, customer data can be collected, and 

subsequently Deep learning (DL) and Reinforcement learning (RL) algorithms can be 

applied to effectively inform customer on making the right decisions when implementing 

demand response [7].  Demand response at the individual household level is of particular 

importance to researchers due to the ability to predict at the local level.  Previously 

researchers have suggested layering LSTM neural network hierarchies to predict one-hour 

and one-minute time step loads [9].  Standard LSTM architecture was found to be 

insufficient at prediction when compared to two layered implementations.  Prior research 

indicates the importance of integrating weather data into learning algorithms due to 

weather having such a large impact on power consumption.  In short, it remains largely an 

open question as to what DL methods are best, how to choose the number of layers and 

parameters, and which are applicable to a given situation/ dataset. 
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This, coupled with the random aspects of human behavior opens a challenge in the 

predictability of power consumption of demand response customers.  Furthermore, it 

creates issues pertaining to the overall effectiveness of the program implemented [7].  For 

example, customers may be more apt stay on a standard plan if offered a demand response 

plan because they prefer are predisposed to the default option [1].  Opt-out programs 

generally fared better in customer acceptance and retention than Opt-in programs for this 

reason.  Factors such as information technology integration into the smart grid is integral to 

higher demand peak reductions.  Technologies such as in-home display (IHDs) and 

programmable communicating thermostats (PCTs) have the potential to lead to greater 

peak demand reductions.  According to the US department of energy’s interim report on 

Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer 

Behavior Studies “Peak demand reductions are generally higher for CPP and CPR 

customers with PCTs (22% to 45%) than they were for customers without PCTs (-1% to 

40%).” [1].  PCTs can provide a window into customer power consumption patterns.  Also, 

some demand response applications such as heat-pump thermostat, are influenced by 

meteorological factors so including meteorological data is essential to our approach [7]. 

While these advances in thermostats are promising towards using machine learning as a 

tool in power consumption prediction, some customers tend to have negative experiences 

with them.  For example, paper [8] has found that customers tend to shut down the 

automation due to things as simple as smart thermostats learning the wrong behaviors.  

Thus, concern arises over what input, output, and level of intelligence to incorporate to 

such sensors.  Integrating PCT’s with known patterns in weather may be a possible 

solution.  Yet, the same issues may develop where a customer feels dissatisfied with the 
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level of complexity of an interface or sensor automation [8].  The primary question that 

emerges is “Accounting for meteorological data, what level of machine-learning is 

necessary for the ideal level of user satisfaction with PCTs while maintaining optimal peak 

demand reduction?”. 

III. DATA SETS 

 Data was collected from by using the “SmartMeter Power Consumption Data in London 

Households” dataset aggregated by UK Power Networks and published by London 

Datastore News [4].  We additionally used the refactorized version of the dataset available 

on Kaggle which includes data taken from the Darksky api and acorn data from 

Consolidated Analysis Center, Incorporated (CACI) [5].  SmartMeter power consumption 

data and Darksky api data were then consolidated and joined on an hourly basis.  All 

customer data was then separated by customer identification number and saved to 

independent CSV files in Acorn>Std or Tou> Cust ID hierarchies.  Entire acorns were 

also concatenated to CSV files for analysis of socioeconomic status.  Categorical data was 

then dropped from original Darksky api resulting in the dataset displayed in figure 1.   

 

Figure 1.  View of merged CSV file containing weather/power consumption data   
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Data including weather summary, precipType, and icon because were dropped they were 

found to have no significant correlation with spikes in power consumption through 

descriptive analytics.  New parameters for descriptive analytics were established by 

binning existing features into categories such as datetime based features (month, day etc.), 

apparent temperature, Beaufort wind force scale (km/h), wind direction, and humidity.  

This categorical data was not used for predictive mining but rather gaining preemptive 

descriptive insight into the data used in the LSTM. 

IV. DESCRIPTIVE MINING 

A. overview 

Figures 2 and 3 provide histograms of energy usage in Kilowatt hours (KWH) per hour 

where x is the power consumption in KWH and y is the number of hours at that given 

power consumption level.  Figure 2 is a comprehensive unscaled side by side view of the 

power consumption data while figures 3 utilizes min-max normalization to better visualize 

data when placed into 20 and 5 bins, respectively.  The quantity of 5 bins was chosen to 

visualize data later placed into equal bins for association mining.  
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Figure 2.  Unscaled side by side view of power consumption vs number of hours for Std and ToU customers in 40 bins  

 

Figure 3.  Min-max scaled data comparing ToU and Std customer power consumption in 20 and 5 bins respectively  

Figure 2 reveals that ToU customers generally had lower power consumption hours.  

However, when min-max normalization was applied, figure 3 shows that ToU customers 

tended to have relatively more high use hours.  Parameters for association mining were 

established by binning meteorological and power consumption data into categories.  Power 
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consumption was first binned by equal width relative to each drill down operation on 

general population data.  That is, Std and ToU customers followed by acorns.  For 

example, figure 4 demonstrates binning for power consumption for ToU customers in lines 

46 through 50 by applying a mask to the Dataframe. 

 

 

Figure 4.  Example code snippet of equal width binning method applied to ToU power consumption data  

Like figure 4, all power consumption data was binned into 5 buckets, but this time being 

labeled “low”, “bel_avg” (below average), “avg” (average), “abv_avg” (above average), or 

“high”.  Like all min-max normalized data, equal width binned ToU customers had 

relatively more high hours of power consumption.  Although on average each customer had 

a lower lifetime power consumption.   

Equal width bins were also created according to “low”, “ideal”, and “high” humidity as in 

figure 4.  Furthermore, equal width bins were applied to apparent temperature as “very 

cold”, “cold”, “cool”, “warm”, “hot”, and “very hot”.  Wind direction was binned upon the 

degree according to direction.  Finally, wind force was then binned according to the 

Beaufort scale.  The Beaufort scale is an empirical measure of wind force as it relates to the 

conditions at sea or on land [6].  Binning was applied similarly through all drill down 

operations of customer and weather data. 

Affluent, comfortable, and adversity acorns were compared generally at first without 

scaling.  As seen in figure 6, comfortable and adversity corn groups were found to have 



16 
 

more low power consumption hours than affluent acorn groups when the bin numbers were 

set to 40.  However, when min-max scaling was applied to all 3 graphs, adversity and 

comfortable acorns comprised most of the high and low consumption hours as seen in 

figure 6. 

 

 

Figure 5.  Unscaled side by side view of power consumption vs number of hours for affluent, comfortable and adversity 
customers in 40 bins 

 



17 
 

 

Figure 6. Min-max scaled view of power consumption vs number of hours for affluent, comfort, and adversity of 20 and 5 bins 
respectively 

 

B. Association Mining  

Association mining was performed using the pymining module which implements the 

relim algorithm [12].  Significant associations were found between the hour of the day and 

power consumption for both Std and ToU customers.  1:00 am, 5:00 am, and 6:00 am were 

associated with below average power consumption using a minimum support of 500 hours 

and .60 confidence.  Above average consumption hours were centered around hours 5:00 

pm, 6:00 pm, and 7:00 pm but did not meet the minimum support and confidence 

threshold.   If only above average/high usage hours are sampled, then a correlation can be 

established between evening hours and above average power consumption.  This may be 

useful when trying to specifically train models based on high power consumption.  Months 

associated with below average power consumption were June, July, August, and September 
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with a minimum support of 800 and .60 confidence.  This can be accounted for by the mild 

summer months of London [3]. 

Beaufort scale and wind direction were not directly associated with power consumption in 

any way.  This could be due to the complexity of the data not being captured by simple 

binning techniques.  However, warm apparent temperatures for both Std and Tou 

customers was significantly associated with below average power consumption with a 

minimum support of 700 and minimum confidence of .70.  This is not unusual given that 

customers tend to use less electricity as the outdoor temperatures approach indoor 

temperatures. [2].  Humidity had no association with power consumption when equally 

binned.  

Affluent, comfortable, and adversity acorn customers had no considerable differences 

when association mining was applied to each customer grouping despite differences in low 

power consumption hours.  Significant associations with below average power 

consumption were still found for the summer months of June, July, August, and 

September.  Moreover, warm apparent temperatures were also associated with below 

average power consumption.  Hence, leading to the belief that summer months will be 

more predictable across all groups. 

C. Frequent Sequence Mining 

 Frequent sequence mining was also completed using the pymining module by 

implementing the relim algorithm [12].  Both Std and ToU customers were most likely to 

have a below average hour followed by at most 4 below average consumption hours.  

Which could be interpreted that most of the average, above average, and high power 

consumption can be relegated to spikes rather than periods of excess consumption.  
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Moreover, it was found that ToU customers had a higher number of consecutive below 

average consumption hours than Std customers.  All acorn groups were most likely to have 

a below average hour followed by at most 4 below average consumption hours as well.  

Although comfortable acorn customers were found to have the highest number of 

consecutive below average consumption hours.  

V. PREDICTIVE MINING 

Long short-term memory models are recurrent neural networks (RNNs) designed to model 

long range dependencies of temporal sequences more accurately than conventional RNNs 

[10].  In the figure below is the basic structure of an LSTM cell.  LSTMs work similarly 

to other RNNs except they do not suffer from the vanishing gradient problem.  Even 

memories from early cells can be carried all the way through to later time steps without 

loss of memory.  As shown in figure 7 and equations 1 through 6, xt, ft, it, ot, ct, c̅t represent 

the input vector, forget gates activation vector, inputs activation vector, outputs activation 

vector, hidden state vector, cell input activation vector, cell state vector, and W and b are 

weight and biases learned during training, respectively [10].   The sigmoid and tanh 

activation functions are denoted by 𝜎𝜎 and 𝑡𝑡𝑡𝑡𝑡𝑡ℎ and ○ is the element-wise operator.   
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Figure 7. Internal view of an LSTM unit 1 [10] 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�    (1) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)    (2) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)    (3) 

c̅𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)    (4) 

c𝑡𝑡 = 𝑓𝑓𝑡𝑡 ○ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ○ c̅𝑡𝑡    (5) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ○ tanh (𝑐𝑐𝑡𝑡)    (6) 

 

The variability and unpredictive nature of sensor data make a long short-term memory 

model the ideal candidate to carry out predictive analytics on the merged weather-power 

consumption data.  The importance of predicting consumer power behavior relative to 

meteorological data over hourly, or even minute-long time steps is crucial to the future of 

PCTs.  Therefore, we chose to implement a stacked LSTM to predict energy usage based 

on meteorological feature data.   
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A. Preprocessing 

Data preprocessing is essential before any data is entered into the model for prediction.  All 

NaN values were removed, data was aggregated, and converted to a supervised learning 

problem.  Features were then normalized from 0 to 1 and subsequently reframed and split 

into 70% training hours and 30% test hours as seen in figure 8.  Features considered were 

time (hourly), visibility (meters), wind bearing (degrees), temperature (Celsius), dewpoint 

(Celsius), pressure (Pa), apparent temperature (Celsius), wind speed (Km/h), humidity (%), 

and power consumption in KWH/h.  

 

Figure 8.  Code snippet of splitting train and test data    

 

 

 

 



22 
 

B. LSTM application 

 

 

Figure 9.   Meteorological features based on the time, visibility, wind bearing, temperature, dewpoint, pressure, apparent 
temperature, wind speed, humidity being passed to two LSTM layers to predict power consumption   

As shown in figure 9, based on varying window size, the number of features being passed 

to the LSTM will vary.  We chose to use at least n LSTM hidden units for each stacked 

layer to match the number of n meteorological features being passed to the LSTM model.  

For example, if we wanted to include the previous 2 time steps, we would have 18 

meteorological features based on the time, visibility, wind bearing, temperature, dewpoint, 

pressure, apparent temperature, wind speed, humidity.  In addition, the training set has 

been divided into batches of 50 and the number of epochs was set to 20 to optimize the 

learning rate.  This was determined by adjusting for overfitting based on the root mean 

squared error, mean absolute error, and mean log squared error values for several batch and 

epoch sizes.   
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Optimizers are algorithms used to change optimize attributes of neural network such as 

weights and learning rate to reduce loss. Adam is currently one of the best known adaptive 

optimizers for sparse gradients on noisy problems [11].  Adam is based on adaptive 

estimates of lower-order moments. Adam is also well suited for problems that are large in 

terms of data and contain many parameters.  Our data contained many parameters, and the 

volume of data was large thus, we chose the Adam optimizer.  

The loss function chosen for our proposed model was the root mean squared logarithmic 

error function as shown in equation 7 where N is the number of data points.  It was chosen 

because the outliers contained in the data have far less effect on the loss. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁��𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖 + 1) − log(𝑦𝑦𝑖𝑖′ + 1)�

2
𝑁𝑁

𝑖𝑖=1

 

(7) 

The potential drawback to this function is that when points of data are underestimated there 

is a greater penalty than the root mean squared error function.  Yet, if points are over 

estimated penalties are much less severe than the RMSE function.  The RMSE loss 

function was also chosen because the target data conditioned on input was assumed to be 

mostly normally distributed.     

C. Analysis of Results 

To justify the correctness and feasibility of the stacked LSTM approach, meteorological 

times series data is used to calculate power consumption for each category of data.  Testing 

is done by comparing the accuracy of predicted and actual data.  The different group 
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accuracy metrics are presented in Table 1, and loss/model prediction curves shown in 

figures 10 through 24.  Experiments were run for Std, ToU, affluent, comfortable, and 

adversity groups as well as a randomly sampled customer.  Although power consumption 

behavior was different throughout each group of customers, all customer groupings were 

similarly predictable.  Which shows that hourly demand response can be effectively carried 

out at the building level using LSTM models.  Application of the random customer model 

to summer data yielded similar results to all season data.  Which also shows that although 

power consumption is lower in the summer, it is not any more predictable when creating a 

model based exclusively on summer data. 

D. All Customers 

 

Figure 10.  Graph of train vs test loss for all customers. 



25 
 

 

Figure 11.  Graph of actual vs predicted power consumption for all customers. 

 

E. Std Customers 

 

Figure 12.  Graph of train vs test loss for std. customers. 
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Figure 13.  Graph of actual vs predicted power consumption for std. customers. 

F. ToU Customers 

 

Figure 14.  Graph of train vs test loss for ToU customers. 
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Figure 15.  Graph of actual vs predicted power consumption for ToU customers. 

 

 

G. Affluent Customers 

 

Figure 16.  Graph of train vs test loss for affluent customers. 
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Figure 17.  Graph of actual vs predicted power consumption for affluent customers. 

H. Comfortable Customers 

 

Figure 18. Graph of train vs test loss for comfortable customers. 
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Figure 19.  Graph of actual vs predicted power consumption for comfortable customers. 

I. Adversity 

 

Figure 20.  Graph of train vs test loss for adversity customers. 
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Figure 21.  Graph of actual vs predicted power consumption for adversity customers. 

J. Randomly Sampled Customer 

 

Figure 22.  Graph of train vs test loss for randomly the sampled customer. 
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Figure 23.  Graph of actual vs predicted power consumption for the randomly sampled customer. 

K. Randomly Sampled Customer Summer  

 

Figure 24.  Graph of train vs test loss for the randomly sampled customer. 
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Figure 25.  Graph of actual vs predicted power consumption for the randomly sampled customer (summer months only). 

 

 

 

 

 

 ALL STD TOU AFF COMF ADV R.CUST R.CUST 
SUMMER  

RMSE 402.450 330.229 79.050 382.196 231.621 209.787 0.275 0.294 

MAE 298.407 244.027 58.201 286.384 170.948 157.290 0.207 0.220 

MSLE 0.123 0.133 0.126 0.119 0.147 0.133 0.036 0.041 

Table 1. Table of Root mean squared error, mean absolute error, and mean squared log error values for each model run. 

While all experiments saw similar results, the difference in behavior is apparent when 

viewing the predicted versus actual for the randomly sampled customer.  The behavior of 

the Std, ToU, and acorn groups do little to model individual customer power consumption 
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at an adequate level.  The randomly sampled customer was using a standard plan and from a 

comfortable socioeconomic acorn.  Machine learning customer behavior must be done on 

an individual basis and scaled to build a system of separate models that consider 

meteorological data.  If no previous data is available, then models may be generalized based 

on similar household profiles and further adjusted. 

Next, we analyze the results from applying varying size windows to the random customer 

data to test if any correlation between window size and predictability on an individual 

household basis in table 2. 

 2 HOUR 3 HOUR 4 HOUR 5 HOUR 10 HOUR 20 HOUR 

RMSE 0.269 0.237 0.284 0.319 0.335 0.263 

MAE 0.204 0.169 0.237 0.279 0.295 0.208 

MSLE 0.035 0.027 0.041 0.052 0.057 0.034 

Table 2. Table of Root mean squared error, mean absolute error, and mean squared log error values for random customer for 
each size time window. 

Table 2 shows that for the randomly sampled household adjusting window size did not 

make a substantial difference except for the 3-hour window.  Yet, when different window 

sizes were applied to ToU customers, RMSE and MAE improved for all expect the 20-hour 

window.  The most improvement was shown for ToU customers using a 10-hour window.  

A larger window size may be used to monitor groups of customers on ToU plans with 

individual household monitoring in combination to prevent ToU customers from creating 
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spikes in power consumption amongst themselves.  PCTs could then provide customers 

with suggestions based around a reasonable timescale without intrusive load monitoring. 

 

 2 HOUR 3 HOUR 4 HOUR 5 HOUR 10 HOUR 20 HOUR 

RMSE 62.648 66.821 58.521 59.688 46.196 228.139 

MAE 48.412 50.615 46.312 48.077 35.773 180.879 

MSLE 0.166 0.148 0.199 0.215 0.107 0.861 

Table 3.  Table of Root mean squared error, mean absolute error, and mean squared log error values for ToU customers 
for each size time window. 

VI. FUTURE WORK 

Demand response programs and PCTs are a dependable solution with room for future 

development.  Allowing customers to make informed decisions while maintaining an 

optimal level of control over decisions regarding peak energy usage is the primary purpose 

of introducing automation.  Finding the appropriate level of artificial intelligence while 

considering external variables such as weather has long been a goal of researchers [8].  Not 

only is it imperative for researchers to find the proper level of AI, but it is also necessary to 

find the appropriate parameters, windows of prediction, and provide an accessible and 

mobile application for consumers to access. 

We provided a foundation for the predictability for each hierarchy of consumers drilled 

down to the household level.  The next logical steps forward are further applying LSTMs 

towards live data to facilitate real time predictions to the smallest possible window.  After 
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which, applications could be developed for scalable real-time systems where LSTMs are 

continuously trained based on household, acorn, and customer type given some external 

parameters such as meteorological data.  From there, UX/UI researchers could develop 

such applications to fit customer needs such as the appropriate level of input, output, and 

control [8].  The future of home energy management includes building a simple and 

intuitive PCT control that integrates home appliances with devices such as cell phones. 

VII. CONCLUSION 

We have shown that although consumer behavior patterns may differ through descriptive mining, 

both ToU and Std groups are equally as trainable down to the household level when LSTM models 

are applied to power consumption/ meteorological data.  We also show that ToU customers are 

more prone to lower power consumption in general.  We find that socioeconomic status affects 

power consumption but, is not a contributing factor to the predictability of customer groupings.  In 

conclusion, customer groupings are not a determining factor in the predictability of power 

consumption.  To continue the success of demand response programs and PCTs, machine learning 

must be integrated with weather data so that customers are able to make informed decisions about 

their power consumption.  In total, demand response can greatly benefit from the implementation 

of scalable machine learning platforms.  
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