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A bstract

A magic square is a square table of numbers such that each row, column, or diagonal adds 

up to the same sum. This research is inspired by an open question posed by Martin Labar in 

1984. The open question states: “Can a 3 x 3 magic square be constructed using nine distinct 

perfect squares?” Though unsolved, this question sheds light on the existence of a Magic Square 

of Squares modulo a prime number p. For over two thousand years, many mathematicians have 

looked at these magical properties. In this thesis, the focus is on certain prime numbers p in 

the form of am + 1. We show that there exist Magic Squares of Squares with nine distinct 

elements mod p, for certain primes p. Constructions of such magic squares of squares are given. 

It is known that a magic square of squares can only admit 1, 2, 3, 5, 7, or 9 distinct numbers. 

We show that for infinitely many carefully selected prime numbers, non-trivial magic squares of 

squares with 2, 3, 5, 7, or 9 distinct perfect squares can be constructed. The results provide a 

positive answer to the open question regarding integers modulo certain prime numbers.

The configurations used in the construction all have the appearance of 0, 1, 2, or 4. A 

further study investigates how many times each of these values can occur in a magic square of 

squares using the considered configurations. In addition, the constructions require the existence 

of quadruplet of consecutive quadratic residues. For each prime number considered, a set of 

such quadruplets is provided and used to construct desired magic squares of squares.
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1 In tro d u c tio n

1.1 H istory

A magic square is a square table of numbers such that each row, column, and diagonal adds 

up to the same sum. The topic of magic squares is more than two-thousand centuries old. The 

magic square got its name from the belief that these squares were lucky from civilization to 

civilization and had magical, mystical, or religious properties. Many mathematicians traced 

these influences in China, India, Persia, Arabia, Europe, and America.

The first recorded history of magic squares dated between 2800 and 2200, B. C. E. In ancient 

times, a turtle swam into the Lo River with a design on its shell. The patterns consisted of dots, 

lines, and squares which gave light to what modern mathematicians know as the Lo Shu Magic 

Square. This 3 by 3 magic square consists of every natural number from 1 to 9 and has a magic 

sum (the sum of each row, column, or diagonal) of 15. The number 15 has a special significance 

to the Chinese people because it is the number of days in the 24 cycles of the Chinese Year.

In Europe, a magic square, with the magic sum of 33 can be found on the wall on the exte­

rior of the Sagrada Familia Church in Barcelona. This magic square holds religious properties 

because Jesus Christ was crucified at the age of 33. In the Renaissance Era, Albrecht Diirher, 

a German amateur mathematician and artist, engraved Melancholia I: “It shows many math­

ematical objects including a sphere, a truncated rhombohedron, and in the upper right hand 

corner, a magic square of order 4” (Moler [9]).

Many other mathematicians and scientists have examined the mystical powers of these 

squares, such as Benjamin Franklin, Leonhard Euler, Sir Arthur Cayley, Edouard Lucas, John 

Conway, and Martin Labar.
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4 9 2 

3 5 7 

8 1 6

Figure 1: The Lo Shu Square with magic sum 15 and the matrix format

Figure 2: Sagradia Familia Church Magic Square with magic sum 33

D efinition 1.1 A m,agic square (denoted M.S. herein) over Z is a 3 x 3 matrix denoted M
3 3  3

[ao']3x3 where atj G Z, such that for every i , j  G {1,2,3}, Y2 aij = Y2 ao = Yh a™
i — 1 j =  1 i=l

3

Y2 ai(4-i) = S- We call the constant S the magic sum. If for all i , j  G {1,2,3} aij = b
i — 1

for some blj G Z, then call M a magic square of squares over Z.

Referring to the magic, sum defined above, it is known that S  = 3a22-
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Lemma 1.2 1. Every M.S. [a,ij\ has the magic sum S = 3a22-

2. Consider two m,agic squares A and B. We say A is isomorphic to B if B can be obtained 

by rotations and/or reflections about the rows, columns, main diagonal, or the minor diagonal 

from A.

1.2 T he O pen Q uestion  and R elated  Q uestions

My research is inspired by an open question posed by Martin Labar in 1984 [2] which remains 

unanswered about the existance of a 3 x 3 magic square with nine distinct elements being perfect 

squares, known as a magic square of squares, or, for the purposes of this paper, M.S.S.

Q uestion 1.3 [1] Can a 3 x 3  magic square be constructed using nine distinct perfect squares?

For over thirty years, this question remains unsolved. In lieu of answering the open question 

via the integers, we answer a similar question by working on Zp, where p is a prime number. In 

an earlier work done by Stewart Hengeveld [1], a. similar question was raised:

Question 1.4 Can a 3 x 3  magic square be constructed using nine distinct perfect squares from 

a finite field?

The answer to this question, according to Hengeveld, depends on the chosen prime number. 

A 3 x 3 magic square can be constructed using nine distinct perfect squares from Zp when 

p — 29 or p — 59, but not for many other primes such as p = 17 and p — 19 [1]. In my case, I 

establish the existence of an M.S.S. with nine distinct elements over Zp for many prime numbers 

p, examine how many of what entry appears, determine how many distinct elements this M.S.S. 

can achieve, and examine what other quadratic residues can make an M.S.S.

The next lemma, shows that every 3 by 3 magic square of integers can be determined by 

three integers a, b, c.

Lemma 1.5 A 3x 3 magic square M is determined by three elements, say a,b,c as represented 

below:

c 3a — b — c b

M = M (a,b,c) = a + b — c a a — b + c

2a — b b + c — a 2a — c



If a = 6 =  c, M(a, b, c) = diag(a) is called a trivial M.S. I am interested only in nontrivial 

M.S. I investigate several different types of prime numbers. For each type, quadruplets of

consecutive perfect squares are developed and they are used in constructing M.S.S. over the 

corresponding field. In addition, I construct M.S.S. of all possibles degrees; specifically degrees 

3,5,7 and 9. For certain fixed prime numbers p, I examine how many entries of an M.S.S. can 

admit a special value. Different relationships among a, 6, c may give different types of magic 

squares of squares. For example, when c = 6 — a, M(a, b, c) has the form:

M(a, b,b — a) =

b — a 4a — 2b b

2a a 0

2a — b 2b — 2a 3a — b

which contains 0 as an entry.

1.3 B asic D efin itions and E xisting Theorem s over Zp

For a ring R, M = [a»j]3x3 denotes a three-by-three square matrix with m-f being the entry 

in the (im position  of M  and atj G R. The ring of interest for this thesis is Zp, the p-element 

integral domain with characteristic p.

Definition 1.6 Let p be a prime number and, M be a 3 x3  matrix with entries from Zp. We say 

M is a magic square over Zp if the sum of each row, column, and both diagonals are congruent 

to a constant S  mod p. Furthermore, if all entries of M are quadratic residues mod p, we say 

M is a magic square of squares (denoted as M.S.S. herein) over Zp. Define Sp —{all M.S. over 

Zp} and SSP ={all M.S.S. over Zp}.

Definition 1.7 Let p be any prime and M = [a*j] G A73X3(ZP) be a magic square over Zp. We 

define the degree of M , denoted deg(M), to be the number of distinct entries in M. The degree 

of Sp, denoted a(Sp), is the maximum degree of all magic squares in Sp. That is, a(Sp) = 

max (deg (M) |M G Sp} . Similarly, a(SSp) is defined as a(SSp) — max {deg (M) |M G SSP} .

Stewart Hengeveld, in a prior thesis, indicated that nontrivial magic squares only odd degrees 

for any prime p > 5.

9



Theorem  1.8 [1] Let M  £ Sp, where p > 5, M is nontrivial, and p is prime. Then deg(M) is 

odd.

In order to construct M.S.S. over 7LP for a prime number p, we need to test whether a 

given integer is a quadratic residue or not, which is where the Legendre Symbol and the rules 

associated with it come into play.

Definition 1.9 Let p be an odd prime and a be an integer not divisible by p. The Legendre 

Symbol ( is defined as

1 if a is a quadratic residue of p

— 1 if a is a quadratic nonresidue of p.

Legendre symbols are useful in testing an integer is a perfect square modulo p or not. The 

following results can be found in any number theory book.

Theorem  1.10 (Rules of Legendre Symbols) Let p and q be odd primes. Then

= <

= <

=

=

=

1 if p = 1 (mod 4)

— 1 if p = 3 (mod 4),

1 if p = 1 or 7 (mod 8)

— 1 if p = 3 or 5 (mod 8),

1 if p = 1  or 11 (mod 12)

— 1 if p = 5 or 7 (mod 12),

1 if P = 1,3 or 9 (mod 28)

-1  if p = 5,11 or 13 (mod 28),

-  if p = l or q = 1 mod 4
v ;

— ) if p = 3 and q =  3 mod 4 . 
p ;

Obviously, for every M  £ Sp, 1 < deg (M) < a  (SSP) < 9.
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Dirichlet’s theorem provides useful tools for us to determine the existence and the number 

of a special type of primes for our investigation.

Theorem  1.11 [4] Dirichlet’s theorem: Let a,b 6 Z with a, b > 0 and gcd(a,b) =  1. Then, the 

following arithmetic progression contains infinitely many prime numbers:

a, a + b, a + 2b, ■ ■ ■ , a + nb, • • • ,

where n runs for all positive integers.

In particular, for any given positive integer a > 1, there are infinitely many primes of the 

form am + 1 where m  is a natural number.

Consider a given form of the vector (a, b, c) such as (a, b,b — a) or (a, b, 2a — b) for the matrix 

M(a, b, c). I propose the following research questions for this project:

Question 1.12 For what number p can we construct an M.S.S. in the form of M(a,b,c) with 

nine distinct elements mod p?

Q uestion 1.13 If, for a prime p a(SSp) = 9, can it achieve degrees 3, 5, or 1? In other words, 

what is the maximum number of distinct elements an M.S.S. mod p can admit?

Question 1.14 In any given configuration, how many entries of a special value, such as 0, 1, 

or 2 can an M.S. or an M.S.S. contain?

To answer the first question, we determine that we can construct an M.S.S. with all possible 

degrees with certain prime numbers p of the form am + 1, as described by Dirichlet’s theorem. 

For instance, we examine cases where p = 168m + 1 or p = 9240m -f 1. As for the second 

question, if p does not produce an M.S.S. of degree 9, some can have degrees 7, 5, or 3. This 

idea is evident within our configurations in subsequent sections. We look at three different 

configurations; but, as stated before, we can have at most three zero entries in a non-trivial 

M.S. or an M.S.S. over Zp for p < 5. First, we give conditions under which all entries an M.S.S. 

are distinct.
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2 E x istence  of D egree 9 M .S.S.

The basics are not basic, but they form a strong foundation for this section. The theorems, 

corollaries, and lemmas that follow all focus on M.S. as a whole with some examples in between. 

Let M  = [aij] £ Sp be an M.S. Then we can assume every entry aij £ M  satisfies \atj\ < p. In 

order to better understand what happens, we have the following lemma:

Lemma 2.1 Let M  = [dij]3x3 be a matrix in Sp where p is a prime number. If for every 

i , j , s , t  £ {1,2,3}, 0 < | — ast| < p — 1 whenever (i , j ) ^  (s ,t) , then all entries of M are 

different in Zp.

Proof. Because 0 < |aij — ast| < p — 1, we have that p \ | aij — ast| which also means that 

P t (aij —o-st)- The fact that p is not a divisor shows that aij ^  a,st mod p. Therefore, ^  ast. 

in Zp.

Lemma 2.1 examines distinctiveness of the elements of any M.S. satisfying the above given 

condition, p \ \aij — ast|. In fact, it is a critical lemma in the proof of one of the cases in theorem 

2.4, in which we discuss the degree of an M.S.S.

Lemma 2.2 Assume | aij |< p for every i ,j ,  \aij — ast\ ^  p, and a,ij ^  ast for all (i , j ) ^  (s, t). 

Then, aij ^  ast in Zp.

This lemma is similar to the previous lemma in that we are arriving at the same conclusion. 

However, there are different conditions in play.

Proof. By the triangle inequality, |aij — ast| < |aij| + |ast| < 2p. From there, —2p < a-¿j — 

ast < 2p. Within these two boundaries, there are only three multiples of p: 0 and ±p. Thus, 

aij ^  ast mod p because |a%j — ast| ^  p or 0.

Definition 2.3 (Configuration 1) Fix any prime p. Let a = k2,k  £ Zp, be a nonzero quadratic 

residue mod p. Consider the matrix M(a, b, c) defined in lemma 1.5. Set b = ar and c = a(r — 1)

12



where r € Zp, then M(a,b,c) becomes

r -  1 2 (2 -  r) r

M (a, ar, a (r — 1)) = a 2 1 0

to 1 2( r - l ) 1CO

Theorem  2.4 There are infinitely many primes p such that a(SSp) — 9.

Here, we use the Rules of Legendre Symbols, Dirichlet’s theorem, and, of utmost importance, 

the previous analysis about M  in SSP. Dirichlet’s theorem and the Rules of Legendre Symbols 

also hold important information that will shed light on each result. Dirichlet’s theorem will be 

used to make these certain prime numbers p. The Rules of Legendre Symbols will also be used 

to determine which elements are quadratic residues and see if we have an M.S.S.

Proof.

First, there are infinitely many primes of the form p = 168rn + l,m  G Z by Dirichlet’s 

theorem because 168 and 1 are relatively prime to each other.

To construct a degree 9 M.S.S., we select r — 9 and any nonzero quadratic residue a 6 Zp.

M  (n, 9o,, 8ft) = o,M (1,9,8) = a.

8 -14 9

2 1 0

-7 16 - 6

We claim that M(a, 9a, 8a) or aM (l,9, 8) is an M.S.S. of degree 9 in SSP. The number 168 = 

8 • 3 • 7. Because p = 1 mod 8, by theorem 1.10

= 1, = 1.

Thus, 2, —1, 3, 8 are quadratic residues. Furthermore, p = 1 mod 7

So, —6, —7, —14 are quadratic residues.

By the analysis, all elements of M (a, 9a, 8a) are quadratic residues mod p. So, M  is an 

M.S.S.

13



Now, we show that M  has at least nine distinct elements. Obviously max \aij — ast | = 30 < p 

for i , j  € {1, 2, 3} because p > 169. Thus, for every i,j, s ,t € {1, 2,3}, 0 < \ax3 — ast\ < p — 1 and 

p \  |aVj — ast| with (i , j ) (s ,t); then, by theorem 2.1 all entries of M  are different. Therefore,

deg(aM(l, 9 ,8)) = 9 =>• a{SSp) = 9. Since there are infinitely many primes in the form of 

168m + 1, we have an M.S.S. of degree 9 over infinitely many primes p.

Therefore, there are infinitely many primes p such that a(SSp) = 9.

R em ark 2.5 With regard to M [a,9a,—8a), we have a magic sum of 3a. However, we do 

not necessarily have to let r = 9. Other values for r may produce an M.S.S., but it may 

have different degrees. In addition, the two magic squares mentioned in the proof are of the 

form M (a,ar,a(r — 1)), in the general form of M(a,b,c). As we go further, we will find such 

occurrences where we modify a, b, and c.

Next; recall from the proof of theorem 2.4 that there are infinitely many primes p such that 

p = 168m -f 1. This section examines all the possibilities that come from the particular form. 

Throughout this section, a is a quadratic residue modulo the indicated prime p.

Exam ple 2.6 Let p = 168m + 1 be a prime. We examine M(a, 0, —a) or aM (l,0, —1), where 

a is a quadratic residue mod p. Notice that below, we have a matrix M  resulted from r = 0.

- 1 4 0

M (a, 0, —a) = a 2 1 0

2 - 2

CO

where r = 0. This M is an M.S.S. of degree 7 and the magic sum is 3a. Note that p = 1 mod 4 

which means that — 1 is a quadratic residue. Additionally, p = 1 mod 8 which implies that 2 and 

—2 are quadratic residues, which ultimately means that M is an M.S.S.

The next example is of degree 3 for r — 1.

Exam ple 2.7 For M(a, a, 0) = oM (l,l,0 ), we have the following:

0 2 1

M (a, a,0) = a 2 1 0

1 0 2

where r — 1. For the same reasons, the above M is an M.S.S., but of degree 3.
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Lemma 2.8 Let p = 168m + 1 be a prime. Then, the matrix M(a, ar, a(r — 1)) is an M.S.S. if 

and only if the elements r — 3, r — 2, r  — 1, and r are consecutive quadratic residues mod p.

Proof. Obviously, p = 1 mod 4, and p = 1 mod 8; so, —1, 0, 1, and 2 are quadratic residues 

mod p, so M{a,ar,a(r — 1)) in the configuration in definition 2.3 is an M.S.S. if and only if 

r — 3 , r — 2, r — 1, and r are all quadratic residues.

From the two examples above, we obtained M.S.S. of degrees 3 and 9.

Theorem  2.9 Assume p = 168m H-1 is a prime number, where rn £ Z, a is a quadratic residue 

mod p. Then, the M.S.S. given by M(a, ar, a(r — 1)) achieves the degrees 3, 5, 7, and 9, which 

covers all possible degrees an M.S.S may admit. That is, we can use M(a, ar, a(r — 1)) to 

construct an M.S.S. of all possible degrees > 3.

Proof.

From definition 2.3, deg(M) > 3. We start off with r = 0 ,1, 2- 1(3). We construct M.S.S. by 

M — (a, ar, a(r — 1)) with the indicated degrees by taking various values for r.

When r  =  0,

M(a, 0, —a) — a

- 1 4  0

2 1 0 

2 - 2  3

which is an M.S.S. of degree 7.

For r — 1,

M{a, a, 0) = a

0 2 1 

2 1 0 

1 0 2

, an M.S.S. of degree 3.

For r = 4,

M(a, 4a, 3a)

3 - 4  4

2 1 0 

- 2  6 - 1

, degree 9.

15



For r = 2 1(3),

M(a, 2 1(3)a,2 1a) = a , which is of degree 5.

2_1 1 2~1(3)

2 1 0 

2“ 1 1 2_1

Because p = 168m+l, we know from before that 2, —1, 2_1 are all quadratic residues mod p. 

Also, 3 and 2~1(3) are both quadratic residues. Thus, all of the entries of the above matrices 

are perfect squares mod p. Hence, all the resulting M.S. are M.S.S.

We observed that M(a, ar, a(r — 1)) has degree 3 when r = 1 and that r  has degree 5 when 

r = 2_1(3). The maximal degree of 9 occurs when r > 4. Other degree 3 and 7 M.S.S. are given 

below.

When r — 2, then deg(M) =  3. When r = 3, then deg(M) = 7.

Exam ple 2.10 For r = 2 or r = 3,

M(a, 2a, a) = a

which is of degree 3 or 7.

1 0 2 2 - 2  3

2 1 0 or M(a, 3a, 2a) = a 2 1 0

0 2 1 -1  4 0

3 M .S.S. o f T ype M  ar, a(r — 1))

In the previous section, we introduced the first configuration as

r — 1 2(2 — r) r

M (a,ar,a(r — 1)) = a 2 1 0

2 — r 2 (r — 1) 3 — r

Throughout this section, we will let p — 168m +1 be a prime number. In the next subsection, we 

examine how many zero entries we may potentially have in the configuration M(a, ar, a(r — 1)).

3.1 N um ber o f Zero as Entries

From the M.S. constructed from M(a, ar, a(r — 1)) as before a is a quadratic residue. We see 

that the entry at the (2,3) position must be zero. Also, all of the examples we have so far show
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that no M.S.S. of the form M(a, or, a(r — 1)) have more than three zeros. We claim in the next 

proposition that this is the true case.

P roposition  3.1 Consider any M.S. M = M (a,ar,a(r — 1)). Then, when r = 0 or r = 3, M  

contains exactly two zeros. When r =  1 orr =  2, M contains exactly 3 zeros. Forr {0,1, 2, 3}, 

M has exactly one zero.

M(a, ar, a{r — 1)) = a

Proof. From

r -  1 2(2 -  r) r

2 1 0 

2 — r 2(r — 1) 3 - r

if M  has another zero, then r  = 0,1,2, or 3. Refer to the proof of theorem 2.9. r = 0 => 

M(a, 0, — a) has 2 zeros and r =  3 => M(a, 3a, 2a) which has two zeros by example 2.10. 

M(a, ar, a(r — 1)) has exactly three zeros for r  = 1 or r  = 2.

We can check whether or not an integer is a quadratic residue by using the Rules of Legendre 

Symbols. For instance, when r = 3,

M(a, 3a, 2a) = a

to - 2 3

2 1 0

- 1 4 0

We previously showed that the elements —2,—1,0,1,2, and 3 are all quadratic residues mod

168m + 1.

To this point, we looked at how many entries of zero any M.S.S. admits. It is true that we 

can have exactly one entry of zero in this configuration. In the next subsection we examine how 

many entries of one M  can admit. Tt

3.2 N um ber o f Ones as Entries

For this section, we answer the question of how many entries of the number 1 the configuration 

M (a,ar, a(r — 1)) may have. We show that we can either have exactly one entry of 1 fixed in 

the (2,2) position or three entries of 1 as demonstrated in the next proposition. Without loss 

of generality, we assume a = 1.
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Proposition  3.2 All M.S.S. in the form o /M (l,r , (r — 1)) must admit exactly three entries of 

1, or a single entry of 1. It has 3 entries of 1 if and only if r £ {1,2,2- 1(3)}.

Proof. By the setting M (l,r, (r — 1)) has 1 as the middle entry. If more than one entry of 1 is 

achieved, then one of the elements r — 1,2 — r, r, 2(r — 1), or 3 — r is equal to 1. The resulting 

values for r  are 1, 2, or 2_1(3). For r = 1,

For r = 2,

For r = 2 1(3),

Af (1,1,0) =

Af (1,2,1)) =

Af(l, 2~1(3), 2_1) =

0 2 1 

2 1 0 

1 0 2

1 0 2 

2 1 0  

0 2 1

2" 1 1 2- 1(3) 

2 1 0

2_1 1 2~1(3)

Each of the three M.S.S. have exactly three entries of 1. Thus, all M.S.S. in the form of 

M{1, r, (r — 1)) must contain three entries of 1, or a single entry of 1.

3.3 N um ber o f Tw os as Entries

In the configuration, we have a single 2 fixed in the (2,1) position. In addition to this single 

entry of 2, we can have two or three entries of 2 depending on what r  is. The next proposition 

examines these possibilities.

P roposition  3.3 Consider any M.S. in the configuration of M [l,r, r — 1). Then, M  contains 

no more than three 2 ’s as entries. In particular, M  has exactly one entry of 2 if and only if 

r (f (0,1,2,3}. M has two entries of 2 when r — 0 or r = 3. M  has three entries of 2 when 

r = 1 or r = 2 .

The proof for this proposition follows the same steps from proposition 3.1 and we attain the 

same r-values that differentiate the number of 2’s.
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Proof. From the proof of theorem 2.9, we see M( 1,0 ,—1) and M (l,3 ,2) have exactly two 

entries of 2 (r = 0 or r  =  3). M( 1,1,0) and M( 1, 2,1) have exactly three 2’s (r = 1 and r =  2). 

If M  has another entry of 2, then one of the following elements must equal 2: r — 1, 2(2 — r), 

r, 2 — r, 2(r — 1) or 3 — r. Ultimately, it implies r E {0,1,2, 3}.

3.4 M .S .S . o f D egrees < 9

A full degree M.S.S. is a degree 9 M.S.S. By theorem 1.8, when p is a prime > 5, the degree 

of an M.S. (or M.S.S.) must be 3, 5, 7, or 9. In section 2, we showed that a full degree M.S.S. 

exists mod some prime numbers. Next, we show that for any prime number in the form of 

p = 840rn + 1, m  £ Z, there are M.S.S. achieving the degrees of 3, 5 or 7.

Theorem  3.4 Define So = {0,1, 2, 3 ,2_1(3), 3“ 1 (4), 3- 1(5)}. If M  is an M.S.S. of degree 9, 

then r £ So.

Proof. Assume that r E So- Then, by proposition 3.1, M — M (a,ar,a(r — 1)) produces two 

zeros if r  = 0 or r = 3, three zeros if r  = 1 or r = 2. It implies that deg(M) < 9. Also, by 

proposition 3.2, if r  = 2 —1 (3), then deg(M) < 9 because M  has three ones. When r = 3_1(4) 

or r = 3_1(5), M  has two 2’s shown in proposition 3.6. Therefore, if M  is of degree 9, then 

r £ S0.

R em ark 3.5 For M(a, ar, a(r —1)) to be an M.S.S., we need all entries to be quadratic residues. 

In the previous proposition, we assumed that r,r — l , r  — 2 ,r — 3 are all quadratic residues. A 

natural question to ask is “For what values of r are the four consecutive numbers r, r —1, r —2, r —3 

all quadratic residues m,odulo a given prime number?” We will answer this question in a later 

section.

Theorem  3.6 Let p = 840m+l, m  E Z, be a prime. Let So = {0,1, 2, 3, 2 1(3),3 1(4),3 1(5)}. 

If r G So, then M(a,,a,r,a(r — 1)) E SS(fLp) and has degree 3, 5, or 7.

Proof.

Let r = 1. Then,

M (l, 1, 0)

0 2 1 

2 1 0 

1 0 2
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Similarly, for r = 2. Then,

M (l, 2, 1) =

1 0 2 

2 1 0

0 2 1

Note that the above two M.S. are isomorphic. Obviously, each M  is an M.S. of degree 3. 

Furthermore,

---
---

1
to 1 H-* to 1
/O0 __

__
1

1 2 3

M (l, 2_1(3), 2-1) = 2 1 0 = 2_1 4 2 0

2-1 1 2- 1(3) 1 2 3

This is the only occurrence of a degree 5 M.S. given the values at hand. When r = 0 or r — 3, 

we obtain two isomorphic M.S. of degree 7. Note that this result can also be obtained by 

proposition 3.2:

M (l,0, - 1) =

For r — 3 (4) or r  = 3 1(5), M  achieves degree 7.

- 1 4 0 2 -2  3

2 1 0 Si M (l, 3, 2) = 2 1 0

2 -2  3 - 1 4 0

1 4 4 2 2 5

M (l,3 _1(4),3_1) = 3-1 6 3 0 

2 2 5

Si M (l, 3_1(5), 3_1(2)) = 3_1 6 3 0 

I 4 4

In the last two M.S., two of the elements after factoring out 3” 1 are 5 and 6. Since 6 = (2)(3) 

and 2,3 are quadratic residues, 6 is a quadratic residue. The element 5 is also a quadratic 

residue because 840 = 168 • 5; and after applying Legendre Symbols,

( 5 \  _  /  5 \  _  / 168 • 5m + 1\  _  i l  \  _
\ p j  ~  Vl68-5m + iy  -  V 5 J " \ 5 y "  '

Therefore, if r  6 So, M is an M.S.S. with a degree 3, 5, or 7.

If M(a, ar, a(r — 1)) is of degree 9, then r ^ So- If r € {0,3, 3_1(4), 3- 1(5)}, then we obtain

an M.S.S. of degree 7 M.S.S. If r  6 (1,2}, then M.S.S. of degree 3 are produced. If r = 2_1(3),

then we have a degree 5 M.S.S. In these constructions, we see that r, r — 1, r — 2, r — 3 must be

quadratic residues.
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3.5 Q uadruplets of Q uadratic R esidues

Previously, we showed that M(a, ar, a(r— 1)) is an M.S.S for infinitely many primes p and certain 

integers r. Some of the construction of M.S.S. require the existence of four consecutive integers 

which are all quadratic residues mod a prime p. A natural question is: “For what values of r 

are the four consecutive numbers r, r — 1, r — 2, r  — 3 all quadratic residues?” We attempt to 

obtain some values of r which can do it.

Definition 3.7 For a prime number p, say 5 (r) = (r — 3, r  — 2, r  — 1, r) is a quadruplet of 

quadratic residues if all r — 3, r  — 2,r  — 1 ,r  are quadratic residues mod p.

With this definition and all of the previously tested values for r, we give a set of quadruplets of 

quadratic residues mod primes of the form 168m 4- 1.

P roposition  3.8 Let Si = {-7, - 6, — 1,0,1,2,3,4, 9, 2“ 1(3)}. Consider a prime number p = 

168m + l,m  G Z. Then B (r) is a quadruplet of quadratic residues mod p whenever r e Si. 

Consequently, M(a, ar, a(r — 1)) is an M.S.S. over Zp for r G Si.

Proof. It is obvious that 0, 1, 4 are quadratic residues mod p. In the proof of theorem 2.4, it 

is shown that —1, 2,3, 7 are all quadratic residues mod p. Assume r  G Si. We prove 5 ( r ) is a 

quadruplet of quadratic residues.

For r  = 2— 1 (3), we examine r — 1, r  — 2, r  — 3 by the definition of 5(r): 2_1(3) — 3 =

2~1(3 )-2 “ 1(6) =  —2- 1(3). Similarly, 2_1(3)-2 = - 2 _1 and 2_1(3)-1 = 2“ 1. So, 5 (2_1(3)) = 

2 — 1 (—3, —1,1,3). For M(a, ar, a{r — 1)) to be an M.S.S. over Zp, — 1, r, r — 1, r — 2, r  — 3 all have 

to be quadratic residues in Zp.

For any r G Si and i = 0,1,2,3, r — i G ( —6, — 1, 0,1, 2, 3,4, 5, 9, 2_1(3)} (see table 1). Thus, 

j9(t') is a quadruplet of quadratic residues. Previously, we gave the degree of M(a, ar, a(r — 1)) 

for all r G Si.

R em ark 3.9 In table 1, there are only three cases of isomorphic M.S.: M( 1,1, 0) with M( 1, 2,1), 

M(1,0, — 1) with M{ 1,3,2), M (l, — 1,— 2), and M( 1 ,- 6 ,—7) with M( 1,9,8). Some pairs of 

M.S. with the same degree are not isomorphc. Table 1 shows that M ( l ,r ,r — 1) can achieve all 

possible degrees 3, 5, 7, 9 taking r G So- For instance; B (—6), 5(4) and 5(9) yield degree 9

21



M.S.S.; B( — l), 13(0), and B(3) yield degree 7 M.S.S.; and B{1) and B{2) both yield degree 3 

M.S.S., and B{2_1(3)) yields a degree 5 M.S.S.

Now, we consider a different prime p = 840m + 1, m £ Z. Sin'ce p = 1 mod 4, = ( |)  ,

( p ) = ( I ) ’ an<̂  (p )  = (?)• But 5, and ? are divisors of 840. T hen ,-(|) =  ( |)  =  1, 

(I)  =  (g) =  1» and (f)  =  (7) =  1. Therefore, 3, 5, and 7 are all quadratic residues mod p.

Let S2 = { —7, — 6, — 5, — 4, — 3, —2, — 1,0,1, 2, 3,4, 5,6,7, 8, 9,10, 2_1(3), 3- 1(4), 3_1(5)}.

Proposition  3.10 For any prime in the form of p — 840m  + 1, m G Z, B{r) is a quadruplet 

of quadratic residues whenever r G ST

Proof. We consider the elements 3 1(4) and 3 1(5) from the set

For r = 3_1(4); r -  1 =  3- 1(4) -  1 = 3^(4 ) -  3_1(3) = 3_1; r -  2 =  3~x(4) -  2 = - 3 “ 1(2), 

and r - 3  = 3“ x(4) -  3 = - 3 - x(5). Hence, 5 (3 -x(4)) -  3“ 1(—5, —2,1,4).

For r = 3“ 1(5); r - 1  = 3 -x(5 )- l = 3 -1(5)-3~1(3) = 3“ x(2), r - 2  = 3“ 1(5)-2 = - 3 _1, and 

r —3 = 3_1(5) —3 = —3~1(4). It is obvious that 5 (3_1(5)) is a quadruplet of quadratic residues 

mod p. For table 2, we list B(r) with r  G 52 and attain some additional pairs of M.S.S. that are 

isomorphic to each other in addition to the four aforementioned M.S.S.: M (l, 3_1(4), 3-1) with 

M (l, 3 1 (5), 3- 1(2)). In this case, we have six non-isomorphic M.S.S. mod 840m + 1. Please 

note that M (l, 2_1(3), 2_1) is not isomorphic to any of the other M (l,r, r — 1) in either Table 

1 or 2. Consider the example below:

Exam ple 3.11 When r — 1 or r — 2,

---
---

1
o 2 1

1____ 0

1------
04

2 1 0 and M (l, 2, 1) = 2 l 0

1 0 to
1 __

__

1 o 2 1 _

M( 1, 1, 0) =

The above two M.S.S. are isomorphic to each other. 

Exam ple 3.12 Degree 9 M.S.S. when r = — 7 or r = 10.

M (l, —7, —8) =

- 8 18 -7 9 -16 10

2 1 0 is isomorphic to M (l, 10,9) = 2 1 0

9 -16 10 - 8  18 -7
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Examples of M.S.S. of different degrees derived from B (r) for r  6 S2 are summarized in

Table 2. Here are the M.S.S. in detail.

Exam ple 3.13 M(1,1,0) is a degree 3 M.S.S. built from elements of B{ 1).

M (l, 1,0) -

0 2 1 

2 1 0 

1 0 2

Exam ple 3.14 An M.S.S. of degree 5 using elements from B (2~ (3));

1 2 3

4 2 0

1 2 3

In spite of factoring out 2_1, S(2- 1(3)) =  2_1(—3, —1,1,3). It produces an M.S.S. of degree 5.

M (l, 2—1 (3), 2—1 ) =  2_1

Exam ple 3.15 When r — 3 1(4),

M (l, 3_1(4), 3_1) = 3_1

1 4 4

6 3 0

2 2 5

Here, B(3_ 1(4)) = 3- 1(—5, —2,1,4) and M( 1, 3_1(4), 3_1) is an M.S.S. of degree 7.

Exam ple 3.16 When r — 4,

M (l, 4, 3) =

3 -4 4

2 1 0

- 2 6 - 1

is a degree 9 M.S.S. where 13(4) = (1,2, 3,4).

Throughout this section, we investigated different features of M(a, ar, a(r — 1)). We learned 

that an M.S.S. over Zp,p = 840m + 1 can have a maximum of three entries of zero, either 

one or three entries of the number 1, and can achieve degrees 3, 5, 7, and 9 depending on 

different values of r. Furthermore, we discussed how certain values of r  can yield a quadruplet 

of quadratic residues and which results in an isomorphic M.S.S. In the next section, we examine 

another configuration with another prime number and construct M.S.S. by this configuration.
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4 M .S.S. o f T ype L(r)

For further sections, we will look at other configurations which are based on the basic definition 

of a magic square:

c 2>a — b — c b 

M(a,,b,c) = a + 6 —c a a —6 + c

2a — b b + c — a 2a — c 

where a, 6, c 6 for some prime p. The matrix M(a, 6, c) as demonstrated above is the basic 

form of a magic square, we examine special configurations with specific numbers of a, b, c. This 

entire section over Zp is based on this new configuration, called L(r).

Definition 4.1 Let a — 1, b = r, and c — 3 + r. Then, M(a, b, c) becomes

3 + r —2r r

-2  1 4

2 — r 2(r + 1) — (r + 1)

We discuss for what values of r,L(r) is an M.S.S. We show that L(r) can achieve M.S.S. of 

degrees 3, 5, 7, and 9 among other similar ideas discussed in the previous section. Throughout 

this section, we let p — 840m + 1 be a prime number, m £ Z. We are also interested in the 

appearance of the numbers 0, 1, —2, and 4 in any M.S.S. over Zp.

M (l, r, 3 + r) = L(r)

4.1 N um ber o f Ones as Entries

In this configuration, the middle number is 1 (in the (2,2) position); but how many l ’s can 

we have? The next proposition will answer this question.

Proposition  4.2 L(r) can only have three entries of 1 or one entry of 1. It contains three l ’s 

if and only if r £ {1, —2, —2-1}.

Proof. If there is another entry of 1 in L(r), then it must be r, 3 + r, — 2r, 2 — r, — (r + 1), or 

2(r + 1). Each case gives r — l , r  = —2, or r = —2_1. As shown below, L(1),L(2) and L(2“1) 

all contain three entries of one.
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First, let r  = —2. Then,

L{~  2) =

1 4 -2

-2  1 4

4 -2  1

Similarly,

2- 1(5) 1 —2-1 4 -2  1

L ( - 2"1) = -2  1 4 , £(!) = -2  1 4

2- 1(5) 1 —2“ 1 1 4 -2

Thus, L(r) has only three l ’s if and only if r  € {1, —2, —2“ 1} mod p = 840m + 1.

Note that here, by example 2.10, 1, 2,4, —2, 2-15, 2_1 are all quadratic residues, so L(—2), 

L(—2~1), and L( 1) are all M.S.S. In particular, L(—2) is of degree 3 and is isomorphic to L( 1). 

L(—2_1) is of degree 5.

4.2 N um ber o f Zeros A s Entries

In the previous section, all M.S.S. mod p — 840m + 1 constructed have either one zero or 

three zeros. In the next proposition, we show that L(r) can not have more than two zero entries, 

depending on what r is.

P roposition  4.3 Modulo any prime p — 840m + 1, L(—3), isomorphic to L(2), are M.S.S. 

and have one zero. L{0), isomorphic to L(1), are M.S.S. and have two zeros. Otherwise, if 

r £ {2,0, —1, —3}, then L(r) has no zero entries.

Proof. By the structure of L(r), if zero is an element, then we must have 3 + r, r + 1,2 — r or 

r  = 0 which implies r = 0, —1, 2 or —3.

0 6 - 3 5 - 4  2

-2  1 4 -  L( 2) = -2  1 4

5 - 4  2 0 6 - 3

Hence, L(—3) and L{2) has a single entry of zero and both M.S. are of degree 9.
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3 0 0 2 2 - 1

m  = -2  1 4 = £ ( - ! )  = -2  1 4

2 2 - 1 3 0 0

Thus, L(0) and L(—1) have two entries of zero. Additionally, both M.S. above are of degree 7. 

If r (£ {2,0, —1, —3}, then L(r) will not have any zero entries.

4.3 N um ber o f Fours as Entries

Notice that in L(r), there is a number 4 fixed in the (2,3) position. That is why we examine 

different possibilities of resulting fours in other places.

P roposition  4.4 L{r) Has more than one 4 as entries if and only if r G {—5, —2,1,4}.

Proof. Obviously, L(l) and L{2) has three entries of 4.

4 -2  1 1 4 -2

£ (i) = -2  1 4 “  L ( - 2) = -2  1 4

1 4 -2 4 -2  1

Also, L(4) and L(—5) have two entries of 4 and are isomorphic to each other

7 - 8  4 -2  10 -5

L(4) = -2  1 4 = £ (—5) = -2  1 4

-2  10 -5 7 - 8  4

For any r, if L(r) has more than one entry of 4, then one of the following is true: r  = 4,3 + r = 

4, —2r =  4, 2 — r = 4, 2(r + 1) = 4, or —(r + 1) = 4. It implies that r  G { — 5, —2,1,4}.

4.4 N um ber o f —2 as Entries

In this configuration, L(r) has an entry of —2 at the (2,1) position. However, another —2 

may appear in other places. The next proposition answers the question of how many entries of 

—2 we can have for certain r-values.
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Proposition  4.5 L(r) has more than one entry of —2 if and only if r G { — 5 ,4 ,—2,1}. Fur­

thermore, L(—5), isomorphic to 1/(4), has two entries of —2 and L{—2), isomorphic to L( 1), 

has three entries o f— 2.

Proof. If there is another entry of —2 in L(r), then it must be one of the following: r, —2r, 3 + 

r, 2 — r, 2(r — 1), or —(r + 1). Each case gives r = —5, r = 1, r = —2, or r  = 4. It is obvious 

that if r  ^ {—5,4, —2, 1}, then L(r) has only one entry of —2. As shown in the next matrices, 

L{—5) has two entries of —2 and L( 1) has three entries of —2.

L (-5) =

L(l) =

-2  10 -5

-2  1 4

7 - 8  4

4 -2  1

-2  1 4

1 4 -2

“  L(4)

Si L ( - 2)

7 - 8

- 2  1 

- 2  10

1 4 -2

-2  1 4

4 -2  1

4.5 M .S .S . o f D egree 9 D erived From L(r)

In this section, we construct M.S.S. of degree 9. In order to construct these M.S.S., we define 

a new set S3 = { — 1, —5, —2,1, — 2- 1, 0,4}.

Theorem  4.6

• Let p = 840m + 1 be a prime number and r G S3. Then, L(r) is an M.S.S. of degree < 9 

over Zp. Furthermore, deg(L(l)) = deg(L(—2)) = 3, deg(L(-2-1)) = 5 and deg(L(0)) = 

deg(L(—5)) =  deg(L(4)) =  deg(L(-l)) =  deg(L(0)) = 7.

• There exists r £ S3 such that L{r) is an M.S.S. of degree 9.

The proof for this theorem follows a similar process as that of theorem 3.4.

Proof. Suppose r E S3. We will show that L{r) is an M.S.S. of degree less than 9 shown before.
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For example, L(0), L( 1) have degree 7. It remains to check r = — 5 and r  = 4.

7 - 8  4 -2  10 -5

L(4) = -2  1 4 , L(-5) = -2  1 4

-2  10 -5 7 - 8  4

Both of these M.S. are degree 7. In fact, L(4) and L(—5) are M.S.S. as each element including 5 

and 7 are quadratic residues mod 840m + 1. Hence, if r  £ S3, then L(r) is an M.S.S. of degree 

less than 9; or, if L(r) is an M.S.S. of degree 9, then r ^ S3.

Now, let r = 2 or r = —3; 2, —3 ^ S3. Then,

5 - 4  2 0 6 3

-2  1 4 , L(—3) = - 2 1 4

0 6 - 3 5 -4  2

L(2) and L(—3) are both M.S,S, of degree 9.

Though the results are different than those in the previous section, the idea is the same. 

The degrees for this configuration are 3, 5, 7, and 9.

5 M .S.S. of T ype U(r)

Let p = 9240m + 1 be a prime number. From the general form of a magic square, that is,

c 3a — b — c b 

M{a,b,c) = a 4-b — c a a — b + c

2a — b b + c — a 2a — c

we derive our last configuration.

Definition 5.1 Let a = 1,6 = 2, and c — r. Then, M (a,b,c) becomes the following magic 

square:

U(r) =

Similar to the other two configurations, we show that i/(r) can achieve M.S.S. of 3, 5, 7, and

r 1 — r 2

3 -  r 1 r -  1

0 1 + r 2 -  r

9.
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5.1 N um ber o f Zeros as Entries

The entries of 0, 1, and 2 sit on the minor diagonal of the magic square represented by U{r). In 

this configuration, we can have at most three zero entries. The proposition below best explains 

what values can gives us these entries.

P roposition  5.2 Modulo any prime, p = 9240m + 1, (7(0), (7(2), 1/(3), and (7(—1) all contain 

two entries of 0 and (7(1) contains three entries of zero. When r £ { — 1,0,1,2, 3}, U(r) has 

only one entry of zero.

Proof. By the structure of (7(r), if there are more than one zero as an entry, then we must 

have r  =  —1,0,1,2, or 3. (7( 1) contains 3 zeros:

U( 1) =

1 0 2 

2 1 0  

0 2 1

(7(0), (7(2), (7(3), and (7(—1) all contain two entries of 0:

0 1 2 2 - 1 2

3 1 - 1 , U(2 1 1 1

0 1 2 0 3 0

3 -2 2 - 1 2  2

U( 3) = 0 1 2 , m - 1) = 4 1 -2

0 4 - 1 0 0 3

5.2 N um ber o f Ones as Entries

In this configuration, the middle number (in the (2,2) position) is 1. So U(r) has at least 

one entry of 1. The proposition determines the number of entries of 1.

Proposition  5.3 U(r) can either have exactly three entries of 1 or a single entry of 1. It 

contains exactly three entries of 1 if and only if r 6 {0, 1, 2}.
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Proof. If there is another entry of 1 in U(r), then it must be r, 1 — r, 3 — r, r  — 1,1 + r, or 2 — r. 

Each case gives us the following results: r = 0 ,r = 2, r = 1. As shown below, U(0),U(1) and 

[/(2) all contain three entries of 1:

0 1 2 1 0 2 2 - 1 2

U( 0) = 3 1 -1 . U( 1) = 2 1 0 , U( 2) = 1 1 1

0 1 2 0 2 1 0 3 0

U(r) either contains exactly one entry of 1 or three entries of 1. Additionally, U(r) contains 

three entries of 1 if and only if r £ {0, 1, 2}.

5.3 N um ber o f Tw os as Entries

Recall that p =  9240m +1. Note that the entry 2 is fixed in the (1,3) position of U(r). However 

we can have other entries of 2 as with 0 or 1.

P roposition  5.4 For every r £ Zp, U(r) can have a maximum of three entries of 2. Further­

more, U(r) has exactly one 2 if and only if r £ {—1,0,1, 2, 3}.

Proof. If there are additional entries of 2, then 2 is equal to one of the following elements: 

r, 1 —r, 3 —r, r — 1,1+r, or 2 —r which implies r € ( —1,0,1, 2, 3}. Thus, when r  ^ {—1,0,1, 2,3}, 

we are guaranteed to have only one entry of 2. For r  6 {—1,0, 2,3}, U(r) has exactly two entries 

of 2.

- 1 2  2 0 1 2

t / ( - l )  = 4 1 -2 , U{ 0) = 3 1 - 1

0 0 3 0 1 2

to II

2 - 1 2  

1 1 1

IICO

5

1

3 - 2  

0 1

1--------------------

CM
 

CM

0 3 0 0 4 l

When r = 1,

tf(l) =

1 0 2 

2 1 0 

0 2 1

gives three entries of 2.
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Therefore, we are guaranteed at most three entries of 2. The values r = —1, 0, 2. 3 give two 

entries of 2 and the value r — 1 gives three entries of 2. For r ^ { —1, 0,1, 2,3}, U(r) contains 

exactly one 2.

5.4 M .S .S . o f D egree 9 derived from U(r)

Let 54={0, 1, 2, 3, 2 , 2_1(3), — 1}. Recall throughout this section that some r-values make

U(r) a magic square of squares. In this section, we examine what r-values can produce an 

M.S.S. of a given degree.

Theorem  5.5

• Let p = 9240m + 1 be a prime number and r € S4. Then, U{r) is an M.S.S. of degree 

< 9 over TLV. Furthermore deg(C/(r)) = 3 if r  — 1, deg((7(r)) = 5 if r = 0 and r = 2, 

and deg((7(r)) = 7 if r = 3,r — — l , r  = 2_1, and r — 2- 1(3). IfU{r) is of degree 9, then 

r <£ S4.

• There exists an M.S.S. of degree 9 mod p.

Proof. Suppose r 6 S4. We will show that U(r) is an M.S.S. of degree less than 9. By the 

proofs of propositions 5.2, 5.3 and 5.4, U(0) and U{2) have degree 5. Additionally, 17(1) is the 

only M.S.S. of degree 3. Finally, 17(3) and 17(—1) are both of degree 7. Subsequently, 17(2-1) 

and {7(2_1(3)) both remain to be checked.

1 1 4 3 -1  4

5 2 - 1 “  (7(2_1(3)) =  2“ 1 3 2 1

0 3 3 0 5 1

Both of these M.S. are degree 7. Also U(2_1) and U(2- 1(3)) are both M.S.S. as each element 

is a quadratic residue mod 9240m + 1 as well as a multiple of 9240. From the above, if U(r) is 

an M.S.S. of degree 9, then r S4. Now, we choose r S4, say, r £ {—3,4}. Then, we have the 

following:

-3  4 2 4 - 3  2

U(~ 3) = 6 1 -4 , 17(4) = -1  1 3

0 - 2  5 0 5 - 2
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Hence, U(—3) and f/(4) are M.S.S. of degree 9 over Zp as each entry are all quadratic 

residues.

Similar to L(r), U(r) achieves the degrees of 3, 5, 7, and 9 and when r E £>4 or r  = 3 or 

r = 4, U(r) are M.S.S. over Zp.

5.5 Q uadruplets of Q uadratic R esidues mod 9240m +  1

Recall from section 3 that B(r) = (r — 3, r — 2, r — 1, r) denotes a quadruplet of quadratic 

residues. We have the following proposition:

Proposition  5.6 Let S5 — {0,1, 2, 3, 2 , 2- 1(3), —1}. Consider the prime number p = 9240m+

l,m  G Z. Then, B (r) is a quadruplet of quadratic residues mod p whenever r € 5s.

Proof. Assume r E S5.

For r  = 2 — 1 (3), we examine r — 1, r — 2, r — 3 by the definition of B(r): 2- 1(3) — 1 = 2- 1(3) — 

2- 1(2) = 2-1 . Similarly, 2_1(3) —2 =  —2_1 and 2- 1(3) —3 = —2- 1(3). Shown in table 4, the val­

ues of B(r) when r E S5 are as follows: —4, —3, —2, —1, 0, 1, 2, 3, —2_1(5), —2- 1(3), — 2~1, 2_1, 

and 2~1(3). Obviously, the values 0, ±1, ±2, ±3, and ±4 are quadratic residues mod p. We 

need to check whether the element 5 is a quadratic residue using Legendre Symbols.

f  5 \  = / 9240m + l \  = / 1 \  =
\9240m + 1 y ~ \  5 /  \ 5 )  ~  ‘

Thus, B(r) is a quadruplet of quadratic residues mod p whenever r  E S5. Note that in f/(r), 

we need r + 1 to be a quadratic residue mod p = 9240m + 1. The quadruplet of quadratic 

residues in table 4 produce M.S.S. because r  + 1 is a quadratic residue in Zp. For L(r), the 

quadruplet of quadratic residues in table 3 produce M.S.S. in the similar way.

6 C onclusions

Throughout this thesis, we construct several types of M.S.S. using different positive integers 

modulo certain prime numbers p of the form am + l , a £ N,  m € Z b y  Dirichlet’s theorem such 

that there are infinitely many primes. We show that modulo these selected prime numbers, there
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exist M.S.S. of all possible degrees, i.e. 1, 2, 3, 5, 7, and 9. In each considered configuration, 

we investigate the number of appearances of special values in an M.S.S. For example, in one 

configuration, we show that a maximum of three entries of 0, 1, and 2 can appear. Similarly, 

L(r) has a maximum of 3 entries of —2 and 4. In addition to examining degrees of M.S.S. and 

special values in each configuration, we study what values of r, r — 1, r — 2 and r — 3 give us a 

quadruplet of quadratic residues and how we can apply them to construct M.S.S. of a desired 

degree. This research answers the question of whether a 3 x 3 magic square can be constructed 

using nine distinct perfect squares in a different, but similar setting. Many questions remain to 

be answered. For example, how many non-isomorphic M.S.S. are there modulo a fixed prime 

number? Two thousand years later, the magic squares problem will remain to be “more than 

magic.” They will continue to serve as a foundation to other games, puzzles, and other concepts 

in the field of applied mathematics.
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r B(r) deg(M(l, r, r — 1))

- 7 ( - 1 0 , - 9 , - 8 , - 7 ) 10

- 6 ( -9 ,  -8 ,  - 7 ,  -6 ) 9

- 1 ( - 4 , - 3 , - 2 , - 1 ) 7

0 (—3, —2, —1,0) 7

1 ( - 2 , - 1 ,0 ,1 ) 3

2 ( -1 ,0 ,1 ,2 ) 3

2- 1 (3) 2“ 1 (—3, —1,1,3) 5

3 (0,1,2,3) 7

4 (1,2,3,4) 9

5 (2,3,4,5) 9

6 (3,4,5,6) 9

7 (4,5,6,7) 9

8 (5,6,7,8) 9

9 (6,7,8,9) 9

Table 1: Quadruplet Table for M ( r ) mod p — 168m  +  1
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r B ( r ) deg(M(l, r, r  — 1))

-7 ( -1 0 ,-9 ,-8 ,-7 ) 9

-6 ( - 9 ,- 8 ,-7 ,- 6 ) 9

-5 1 O
O 1 1 1 C
n 9

-4 ( - 7 ,- 6 ,- 5 ,- 4 ) 9

-3 1 1 1 1 03 9

-2 1 1 1 C
O 1 9

- 1 ( -4 ,- 3 ,-2 ,- 1 ) 7

0 ( -3 ,-2 ,-1 ,0 ) 7

1 (-2 ,-1 ,0 ,1 ) 3

2 (-1,0,1,2) 3

3 (0,1,2,3) 7

4 (1,2,3,4) 9

5 (2,3,4,5) 9

6 (3,4,5,6) 9

7 (4,5,6,7) 9

8 (5,6,7,8) 9

9 (6,7,8,9) 9

2 -‘(3) 2-1 (—3, —1,1,3) 5

3"1(4) 3—1 (—5, —2,1,4) 7

3_1(5) 3-1(—4, —1,2,5) 7

Table 2: Quadruplet Table for M ( r )  mod p  =  840m + 1
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r B ( r ) deg(L(r))

- 3 ( - 6 , - 5 , - 4 , - 3 ) 9

-1 1 £». 1 CO 1 to 1 7

- 5 ( - 8 , - 7 , - 6 , - 5 ) 7

- 2 ( - 5 , - 4 , - 3 , - 2 ) 3

1 ( - 2 , - 1 , 0 , 1 ) 3

- 2 - 1 —2 ” 1( 7 ,5 ,3 ,1 ) 5

0 ! 00 1 to 1 l—1 o 7

4 (1 ,2 ,3 ,4 ) 7

7 (4 ,5 , 6 ,7 ) 9

2 ( - 1 , 0 , 1 , 2 ) 9

Table 3: Quadruplets of Quadratic Residues in L(r) mod p  =  840m + 1

r B(r) deg(C/(r))

-3 ( -6 ,- 5 ,-4 ,- 3 ) 9

-1 ( -4 ,- 3 ,-2 ,- 1 ) 7

0 ( -3 ,-2 ,-1 ,0 ) 5

1 ( -4 ,- 3 ,-2 ,- 1 ) 3

2 (-1,0,1,2) 5

3 (0,1, 2,3) 7

2 -1 2—1 (—5, —3, —1,1) 7

2 - ‘(3) 2~1(—3, —1,1,3) 7

4 (1,2, 3, 4) 9

Table 4: Quadruplets in U (r) mod p — 9240m + 1
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