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Abstract:

Japanese knotweed, Fallopia japónica, is an herbaceous perennial that is invasive 
on many continents, including North America. Stands of Japanese knotweed are often 
located in riparian regions, disturbed sites, and along roadways. Recent studies have 
evaluated the impact of Japanese knotweed on the hydrologic cycle. Japanese knotweed 
may have the ability to markedly decrease stream discharge, potentially because of its 
high LAI. In the summer of 2010, a two-part study was conducted to determine the 
impact of water availability on the physiology and morphology of Japanese knotweed. A 
greenhouse study of Japanese knotweed measured transpiration and other factors that 
may impact water-use, including photosynthesis, stomatal conductance, vapor pressure 
deficit, leaf water potential, leaf specific conductance, and instantaneous water use 
efficiency. Leaf and root biomass allocation was examined as well. Via a field study of 
Japanese knotweed growing under contrasting moisture regimes, designated dry, 
intermediate, and wet, LMA, node length and diameter, and stem based hydraulic 
conductance were compared for each moisture regime.

The greenhouse study results demonstrated that Japanese knotweed adjusted 
parameters to optimize use of water when available. Leaf specific hydraulic conductivity 
was significantly lower for drought-treated plants, at 0.20±0.01 mmol/s/m2/MPa, 
compared to 0.34±0.01 mmol/s/m2/MPa for watered plants (P=0.0001). Instantaneous 
water use efficiency increased significantly following drought treatment, with a mean of 
24.22±2.05 pmol/mmol for drought-treated plants, and a mean of 17.92±1.4 pmol/mmol 
for the watered plants (P=0.0109). Such findings were supported by field study results. 
Hydraulic conductivity on a stem area basis increased significantly between wet site 
plants, at L16xl06±0.126xl06 mmol/s/MPa/m2, compared to 6.69x105±1.0x105 
mmol/s/MPa/m2 for the intermediate site (P=0.0047) and 4.94x105±0.556xl05 
mmol/s/MPa/m2 for the dry site (P=0.0001). Significant differences in LMA and 
internode length were also found between sites, indicating that variations in morphology 
may promote successful water use and transport in varied environmental conditions. 
Taken together, the results of these studies show that Japanese knotweed could impact 
water supply in invaded areas, whether dry or wet, through alterations in physiological 
responses and biomass allocation that allow for optimal water use under short-term and 
long-term moisture conditions.
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Introduction

The goal of this study was to measure water used by Japanese knotweed as well 

as the physiological and biophysical characteristics associated with water-use by 

Japanese knotweed. In order to address this goal, it was necessary to measure the plants 

in the lab under controlled conditions and to measure the plants in the field under ambient 

conditions. The greenhouse study allowed us to 1) determine the water used by Japanese 

knotweed from dawn until photosynthetic peak at mid-day, 2) calculate and analyze 

transpiration rate, leaf specific hydraulic conductance, and water-use efficiency of 

Japanese knotweed, 3) compare data for watered plants over the growing season to that of 

the same plants following a late summer drought treatment, and 4) collect biomass data. 

The field study samples were gathered from areas of varied water availability located 

within a 3.5 km radius of each other. This aspect of the study allowed us to 1) compare 

morphological features such as leaf mass per area (LMA) and stem structure among 

plants from different sites, and 2) to determine hydraulic conductance for stems from 

each site. Together, the greenhouse and field studies provided data regarding Japanese 

knotweed water-use strategies over the course of a day and in response to drought 

treatment, and the effect of environmental hydrologic conditions on plant morphology 

and water-use traits.

Japanese knotweed, Fallopia japónica, an herbaceous perennial native to Japan, 

China, and Tawain, is considered an invasive species in introduced ranges, including the 

mid-Atlantic region of the United States (Talmage & Kiviat, 2004). Japanese knotweed 

grows in dense, monospecific stands and is characterized by rapid growth and expansion 

(Shaw & Seiger, 2002). Common to riparian regions and disturbed sites, the presence of 

Japanese knotweed may result in altered biogeochemistry, decreases in biodiversity,
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disturbances to food webs (Aguilera et al., 2010; Gerber et al., 2008; Lecerf et al., 2007; 

Maerz et al., 2005), and decreased baseflow of invaded stream sites (Vanderklein et al., 

in review). Previous research illustrated the prodigious water-use capabilities of Japanese 

knotweed and its subsequent impact on stream hydrology in the Bonsai Preserve, in 

Montclair, NJ (Vanderklein et al., in review). In this study, stream base flow along the 

Third River, located in the Bonsai Preserve in Montclair, NJ, was found to be 

significantly higher post-harvesting of a Japanese knotweed patch along the river, both 

during daily highs and lows (Vanderklein et al., in review). The study by Vanderklein et 

al. also found the leaf area index of Japanese knotweed to be 4.96 m2. The purpose of 

this research was to elucidate the relationship between the water-use and physiology of 

Japanese knotweed. The study was conducted from May through September of 2010, a 

period marked by elevated temperatures and annual peaks of photosynthetically active 

radiation. Two parts, a greenhouse study and a field study, were used to assess either 

water-use parameters over time or across sites, respectively. The results of the 

greenhouse study indicated that Japanese knotweed is capable of continuing 

photosynthesis across watered and drought treatments, via physiological adjustments.

The field study results were significantly different in both morphology and hydraulic 

conductivity across varied moisture regimes. Taken together, the greenhouse and field 

studies demonstrate the ability of Japanese knotweed to extract water across a range of 

moisture availabilities, both in the short and long term.

Japanese Knotweed History

Japanese knotweed, alternately classified as Polygonum cuspidatum, and 

Reynoutria japónica, is an herbaceous perennial of the Polygonaceae family (Bailey &
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Conolly, 2000). Other common names include Mexican bamboo and Donkey rhubarb 

(Child & Wade, 2000). It grows in silt, loam, and sandy soils with a pH ranging from 4.5 

to 7.3 (Shaw & Seiger, 2002). Japanese knotweed has elongated, ovate leaves, with 

cuspidate tips and truncate bases, arranged alternately on hollow, woody stems (Bailey & 

Conolly, 2002). The plant may reach 3 meters in height (Shaw & Seiger, 2002). 

Greenish-white inflorescences emerge from axial tips (Child & Wade, 2000). 

Reproduction in the native range is by seed, its winged fruit dispersed by animals and 

wind (Child & Wade, 2000). Vegetative growth by long rhizomes, up to 6 meters in 

length, and dispersed rhizome and stem fragments, are primary means of spread in 

introduced ranges (Child & Wade, 2000).

The expansive range of a single male infertile specimen, which covers many areas 

of the United Kingdom, clearly depicts the success of this strategy (Hollingsworth & 

Bailey, 2000). Clones of this plant, identified by DNA analysis, are located in the United 

States (Gammon et al., 2010), demonstrating the extent to which this plant, without 

genetic variety, can still have a global impact. Though clonal growth has been 

documented widely, the dioecious nature of Japanese knotweed means that ability to 

reproduce by sexual means remains a viable option in introduced ranges (Gammon et al., 

2007), a phenomenon which may provide opportunities for selection in novel habitats.

First described by Houttuyn in 1777 and classified as Reynoutria japonica, 

Japanese knotweed is native to areas of Japan, northern China and Taiwan (Bailey & 

Conolly, 2000). The avid plant collector and physician Phillipe von Siebold imported the 

specimen referred to as Polygonum cuspidatum from Japan through his company, Von 

Siebold & Co. Knotweed was initially introduced in Britain as an ornamental plant in the
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1850s and sold as such by the Royal Botanical Gardens at Kew (Bailey & Conolly,

2000). The popularity of Japanese knotweed in this introduced range gave way to 

notoriety when it naturalized and spread, ultimately attaining invasive species status. In 

1981, it became a criminal offense to knowingly introduce Japanese knotweed in the 

United Kingdom (Hollingsworth and Bailey, 2000). It has subsequently been reported in 

the United States, Britain, Germany, France, Russia, New Zealand, Canada, and the 

Czech Republic (Talmage & Kiviat, 2004).

A pioneer species in its native range (Adachi et al., 1996), Japanese knotweed can 

be found along railway tracks, bare areas, and in volcanic regions (Talmage & Kiviat, 

2002). In the United States and Britain, it is frequently located along roadsides, railways, 

disturbed sites, and riparian areas (Shaw & Seiger, 2002). It has even recently been 

found in salt marshes (Richards et al., 2008). The invasive potential of Japanese 

knotweed enhances its potential for range expansion.

Where Japanese knotweed is found, biodiversity may be at risk. Increases in 

height and coverage of invasive plant species have been associated with an increased 

reduction in biodiversity (Hedja et al., 2009). Japanese knotweed, with its dense canopy, 

rapid growth rate, and potential to reach three meters in height, meets these criteria. 

Japanese knotweed can successfully compete with native plants by limiting access to 

light (Siemens & Blossey, 2007). Consequences of the introduction and spread of 

Japanese knotweed have historically mirrored the reductions in biodiversity associated 

with previous species invasion. Maerz et al., (2005), found that green frogs in knotweed 

patches demonstrated reduced foraging success, which could ultimately cause extinction 

and a reduction in amphibian diversity across invaded ranges. Japanese knotweed has
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also been shown to decrease arthropod (Aguilera et al. 2010; Gerber et al., 2008) and 

plant diversity within stands (Gerber et al., 2008). Reduced arthropod biomass has also 

been observed in invaded areas (Gerber et al., 2008).

Japanese knotweed alters biogeochemical cycles and soil quality. Reduced litter 

quality is manifested in an increased C:N ratio in knotweed stands due to resorption of 

foliar nitrogen to rhizomes and by increased lignin concentrations, which may slow 

decomposition rates and therefore nutrient cycling (, Aquilera et al., 2010; Urgenson et 

al., 2009). The presence of allelopathic biochemicals has also been detected in Japanese 

knotweed. Extracts from rhizomes contain phenolic compounds that inhibit germination 

capabilities of white mustard seeds upon exposure (Vrchotová & Será, 2008). These 

biogeochemical alterations are contributing factors to the invasion potential of this 

species and may promote changes in the community structure, which could potentially 

alter energy flow through trophic levels and disrupt ecosystem balance.

Species Invastion, Water Availability, & Ecohydrology

Climate change is predicted to have specific impacts on regional aquatic 

ecosystems, with the mid-Atlantic region poised to become warmer and drier (Meyer et 

al., 1999). In the Northeast region of the United States, predicted temperature increases 

as a result of climate change are expected to result in increased drought, and greater 

extremes in streamflow patterns, with flooding following ice melt and summer droughts 

(Frumhoff et al., 2007).

The field of ecohydrology provides a framework with which to study the 

interactions of ecosystem components, particularly as they pertain to water cycling and
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usage. The benefits of evaluating both the ecology and hydrology of an area are that a 

consideration of ecological processes pertaining to the water cycle may yield more 

sustainable solutions and a decrease in extreme hydrological events associated with 

disruption of biological processes (Zalewski, 2002). Specifically, this approach may help 

determine alterations in water supply and demand in the presence of invasive species. 

Studies on the feedback effects of water supply on ecosystem productivity and nutrient 

cycling and the effects that biotic processes have on hydrologic processes may yield 

valuable insights (D’Odorico et al., 2010).

Vegetation serves to regulate évapotranspiration and precipitation, and can affect 

runoff and soil moisture (D’Odorico et al., 2010). Interception of precipitation by plants, 

combined with the ability of plants to extend roots below the typical evaporative region 

of soil and maintain transpiration rates, can affect the water budget of an area (Loik et al., 

2004). Woody plants have the potential to alter stream flow and évapotranspiration rates 

in some regions (Huxman et al., 2005). The degree and direction of alteration is 

dependent on a variety of factors such as landscape features, climate, runoff, and 

subsurface water supply (Huxman et al., 2005). Conversely, river flow can impact 

species composition, since different plants are adapted to specific hydrologic conditions 

(D’Odorico et al., 2010). Given the close relationships of vegetation and hydrology, and 

water flow and quality, a method of evaluation that integrates these factors would prove 

useful in determining the effect of invasive species on hydrologic processes. In order to 

determine these effects, however, it is first necessary to determine water use of the 

invasive species in question, under a variety of water supply regimes.
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Invasive Plants and Water-Use

An invasive species is an organism that has been introduced to an area, 

naturalized, and expanded its range (Mack et al., 2000). The ability of invasive species to 

use more water as compared to native species (Calder & Dye, 2001) is a detrimental 

effect that may result in ecosystem alteration. The field of ecohydrology may be used to 

study the interactions between the environmental factors of water supply and climate, and 

regional vegetative composition (D’Odorico et al., 2010). Riparian areas are especially 

vulnerable to invasion, which can impact the hydrology of these areas (Tickner et al., 

2001). To compound the issue, water can promote the spread of invasive species 

(Tickner et al., 2001). Climate change models predict the spread of invasive species, 

which could further alter ecosystem functions such as nutrient cycling and productivity in 

aquatic regions (Meyer et al., 1999). Given the necessity of sustaining water supply in 

the face of climate change and increased demand, the potential depletion by invasive 

species is a viable threat.

Invasive species can negatively impact the water cycle via increased 

evapotranspiration resulting in decreased water supply for other organisms. This has 

been especially apparent in Africa, where use of water by invasive plants has decreased 

water supply dramatically in areas that are already under stress due to drought (Gorgens 

& van Wilgen, 2004). In a biome scale assessment, invasive species were found to cause 

a 7% reduction in runoff, resulting in reduced groundwater recharge and livestock 

production (van Wilgen et al., 2008).
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Water-use by invasive plants may differ from that of native species for a variety 

of reasons (Calder & Dye, 2001). For plant species, ability to propagate vegetatively, 

increased means of seed dispersal, rapid growth, tall stature, and high specific leaf area 

are traits that have been associated with increased invasive potential (Lake & Leishman, 

2004; Pysek et al., 2009) that may either directly or indirectly result in increased water 

demand and use. Invasive species may also possess traits that promote faster growth, 

including increased foliar nitrogen and phosphorus levels, leaf area ratio (LAR), and 

assimilation rate when compared to natives (Leishman et al, 2007). Again, water must 

supply these plants as they grow and photosynthesize. On a leaf area scale, invasive 

plants may have increased stomatal conductance, and increased sapflow per unit ground 

area (Cavaleri & Sack, 2010). Invasive exotics are associated with altered water-use and, 

consequently, hydrologic alterations to water sources of invaded ecosystems.

Salt cedar or tamarisk (Tamarix ramossima) is a prominent invader in the 

southwestern United States, predominantly in riparian areas (Sala et al., 1996). Increased 

water-use by Tamarix relative to that of native plants has been the primary concern in this 

arid region. This high water-use has been attributed to high leaf area index (LAI) and 

stand density (Sala et. al., 1996) and increases linearly with leaf area. This pattern 

persists even under water-limited conditions (Nippert et al., 2010, Sala et al., 1996) 

possibly due to a shift in water source to deeper soil levels (Nippert et al., 2010). 

Additionally, a comparative study of Tamarix water-use to that of native species 

suggested that use of groundwater during periods of water stress allowed the invasive to 

maintain transpiration levels while the native species could not (Busch et al., 1992).
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In contrast, evidence of equal water-use (compared to native vegetation) but 

increased salt tolerance by Tamarix also has been put forth as an explanation for its 

persistence in arid regions (Glenn et al., 1998). Tamarix's salt tolerance was cited as an 

advantage when compared to native species such as Populus fremontii, which exhibits 

reduced sapflow under saline conditions (Pataki et ah, 2005). A comparative study of 

hydraulic conductance between native and invasive species under water stress by Pratt 

and Black (2006) showed that values for this were not consistently higher in invasive 

species. In fact, native Salix amygdaloides actually possessed greater resistance to 

cavitation than Tamarix (Pratt & Black, 2006), which implies that it should be able to 

conduct water under greater water stress conditions. Overall, however, the potential of 

Tamarix to exacerbate problems caused by limited water resources has provided impetus 

to quantify its water-use.

Increased water-use and alternate water-use strategies by invasive plants is not 

restricted to the case of Tamarix. Shinus terebinthifolius, an invasive species found in 

Florida, exhibits increased tolerance to flooding during wet seasons compared to native 

species, as demonstrated by steady pre-dawn water potentials (Ewe & Sternberg, 2002). 

Phragmites australis grows well in flooded areas, but is able to tolerate a broad range of 

water conditions via adaptations such as reduced leaf area during drought periods (Pagter 

et ah, 2005). In the state of Washington, the exotic Centurea diffusa, can utilize water 

from different soil layers at different times of the season compared to native species. 

Specifically, Centurea diffusa accesses water in shallow soil layers early in the season 

and extracts water with deep taproots later in the season, depleting resources prior to 

germination for native plants such as Pseudoroegneria spicata (Kulmatiski et ah, 2006).
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The exotic vine, Celastrus orbiculatus, establishes specific conductivity later in the 

growing season than native species, and maintains green leaves longer (Tibbets and 

Ewers, 2000). The Hawaiian grasses, invasive Pennisetum setaceum and native 

Heteropogon contortus, both exhibit a decrease in net photosynthesis with decreasing leaf 

water potential, and an increased allocation to root biomass under drought conditions 

(Williams & Black, 1994). Invasive species may be able to tolerate a broad range of 

water conditions due to physiological and temporal adaptations or altered water-use 

strategies, which may promote invasion and continued water-use under conditions 

unfavorable to natives, or at least a competitive presence.

Based on its preference for riparian regions and ability to transpire large quantities 

of water, Japanese knotweed has the potential to deliver major hydrological impacts. The 

extent to which the invader may impact this aspect of the Mid-Atlantic region, the highly 

populated North Jersey metropolitan and surrounding areas in particular, remains 

unknown. Also unknown are the mechanisms behind this impact.

Ecophysiology & Water-use Parameters

Efficient use of water and maintenance of hydraulics may determine a plant’s 

ability to thrive in an environment. Seasonal and site variations in water availability may 

necessitate altered water-use strategies to facilitate successful establishment of flora. The 

survival and spread of exotics across ranges requires that they successfully extract and 

use water in the introduced ranges.

Many factors interact to determine the water-use of a plant. Given the wide range 

of hydrological conditions that support knotweed growth, it is likely that this invader has
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maximized water-use properties by implementing a variety of strategies across sites. 

Plant water-use may be determined by properties such as hydraulic conductance and 

differences in water potential, regulated by stomatal conductance and leaf area (Hubbard 

et al., 2001; Sperry et al., 2002). One potential limitation to plant water-use occurs at the 

root/soil interface, where hydraulic conductivity decreases as water potential decreases 

(Sperry et al., 1998). Drought tolerant species may exhibit lower hydraulic conductivity, 

and decreased stomatal sensitivity (Sperry et al., 1998). Water may not move quickly, 

but the leaves are supplied with water with reduced risk of cavitation, and photosynthesis 

continues even under high vapor pressure deficits.

In species with lower drought tolerance, an increase in stomatal sensitivity may 

act to protect plants from hydraulic failure (Sperry et. al., 1998; Zimmermann, 1983). 

Comparative studies have demonstrated that varied moisture conditions may result in 

varied water-use strategies, even within species. In populations of Acer grandidentum 

Nutt, growing in adjacent slope and riparian sites, the slope site maintained lower 

stomatal conductance and turgor loss points (Alder et al., 1996). In the slope population, 

stem xylem showed no significant difference in vulnerability to cavitation, while root 

xylem possessed increased vulnerability to cavitation (Alder et al., 1996).

Differences in environmental factors may result in altered leaf morphologies and 

water-use habits. In a study by Kogami et al. (2001), leaf structure and CO2 transfer 

conductance of low and high altitude leaves were compared, and high altitude leaves 

were found to possess a greater leaf mass per area (g/m ). Under contrasting water 

environments, Cakile edentula fitness levels vary according to leaf size and water-use 

efficiency, with large leaf size and intermediate water-use efficiency providing an
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advantage in a wet environment, and small leaf size and high water-use efficiency 

favored under dry conditions (Dudley, 1996).

Plant form and function may be impacted by rainfall and water availability. In 

some cases, adjustments by the plant are a seasonal response to altered water availability, 

at which the plant initiates transient water-use strategies (Ackerly, 2004; Stratton et al., 

2000; Zeppel et al., 2006). In Australia, invasive Eucaplyptus creba used a constant 

fraction of water relative to rainfall, assessed by comparing evapotranspiration and LAI 

values relative to rainfall, giving it an apparent advantage over native Callitris 

glaucophylla (Zeppel et al., 2006). For charparral shrubs, hydraulic conductivity and 

stem hydraulics were related to minimum daily leaf water potential in the rainy season 

(Ackerly, 2004). Morphological traits and function may differ as well. Hydraulic 

conductivity per stem cross-sectional area at different intemodes along the shoots of 

grapevine plants decreased from the base to the apex (Lovisolo & Schubert, 1998). The 

difference was greater in irrigated plants than in plants subjected to drought treatment 

(Lovisolo & Schubert, 1998).

Physiological responses to water availability and traits related to hydraulic 

efficiency interact to determine a plant’s overall water-use habits. For example, in a 

comparative study of Hawaiian species, S. terebinthifolius possessed high leaf specific 

conductivity and hydraulic efficiency, and maintained a relatively high leaf water 

potential during the wet season despite maintaining a high rate of stomatal conductance 

(Stratton et al., 2000). In the dry season, this conductance decreased, indicating a 

physiological shift that allowed for maintenance of leaf water potential under contrasting 

moisture conditions (Stratton et al., 2000). Seasonal and diurnal variations in leaf water
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potential were related to maximum photosynthetic rates, hydraulic efficiency, and leaf 

specific conductivity (Stratton et al., 2000). Water-use habits and plant water status can 

impact physiological processes such as photosynthesis, a key function that must be 

maintained under a range of water conditions.

Ecohydrology and Ecophysiology o f Japanese Knotweed

Despite its prominence along waterways, few studies exist that document water- 

use by Japanese knotweed in these areas. Rhizomatous spread via waterways, from as 

little as 0.7 grams of rhizome (Seiger & Merchant, 1997), renders these habitats both 

prone and conducive to invasion. In some instances, invasion by Japanese knotweed has 

been associated with decreased streamflow and increased flooding (Snyder & Kaufman, 

2004). With a high leaf area, dense stand formation, extensive root system, and rapid 

growth rate, it has the potential to utilize great quantities of water (Lake and Leishman, 

2004; Talmage & Kiviat, 2004). Additionally, given its tolerance for a broad range of 

water regimes, from dry to riparian regions, the effect of this invasive may vary 

depending on location, season, and water availability. Evidence of salt tolerance, as 

found in Tamarix, may allow the introduction of Japanese knotweed in areas that may 

already be water-stressed (Richards, 2008). An understanding of the quantity of water 

used by Japanese knotweed and the strategies employed to obtain this resource may aide 

in determining potential impacts on the hydrology of a region as well as the means by 

which such changes are wrought.

Japanese knotweed is known to have a high LAI and the ability to transpire large 

amounts of water. (Vanderklein et al., in review). Thus, Japanese knotweed has the
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potential to deliver major hydrological impacts in water limited environments and 

riparian sites. The extent to which the invader may impact riparian ecosystems of the 

Mid-Atlantic region, the highly populated North Jersey metropolitan and surrounding 

areas in particular, remains unknown. Also unknown are the sources that allow for the 

mechanism (transpiration) behind this impact.

The study reported here-in is a multi-pronged approach to characterizing the 

water-use strategies of Japanese knotweed. One method employed was a greenhouse 

study of plants selected from the Bonsai Preserve in Montclair, NJ. Water-use and 

hydrologic impact of Japanese knotweed at this site has been previously studied 

(Vanderklein et al., in review). By growing Japanese knotweed in the greenhouse, water- 

use by the plant could be measured independently of confounding factors found in the 

field, such as other vegetation. Physiological measurements of photosynthesis, water 

potential, stomatal conductance, transpiration rate, and water-use were measured. From 

these, traits such as leaf specific hydraulic conductivity and water use efficiency could be 

assessed. Leaf area and leaf and root biomass were also determined to provide insight 

regarding the role of resource allocation and its possible relation to water-use over the 

course of the study period.

The second part of the study examined the hydraulic conductivity of Japanese 

knotweed under a range of naturally occurring water supply regimes. Hydraulic 

conductivity plays a critical role in the ability of plants to maintain photosynthesis, and 

largely determines plant water status. Therefore, an analysis of this trait may provide 

insight into the success of Japanese knotweed in hydrologically diverse sites. Stem 

morphology and leaf biomass data were also compared among sites.
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Between the two studies, questions are addressed, such as: How much water does 

Japanese knotweed use under varied moisture conditions? Why is Japanese knotweed a 

strong competitor under varied water regimes? How does the plant react to water stress? 

In turn, this information may be used to target regions that are at risk for invasion, 

estimate hydraulic costs in terms of water use, predict future impact from both a financial 

and ecological standpoint, and weigh the cost benefit ratio of control and eradication of 

established stands of Japanese knotweed.
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Materials and Methods

1. Greenhouse Study:

Plant Material

In late May, 2010, Japanese knotweed specimens were removed from the Third 

River Basin of the Bonsai Preserve, located in Montclair, NJ, 40.850 0 N, 74.187 °W, 

elevation 64 masl (Figure 1). Plastic containers (39.7 x 33.3 x 33.7 cm; 44.6 liters in 

volume) were filled to a height of 6 cm with Vi inch pea gravel, to act as a reservoir for 

water (Figure 2). Approximately 12 cm of soil from the site, roughly assessed to be a 

sandy loam with a sizeable organic component based on visual appraisal, was added to 

the containers. Root clumps of twenty emerging plants standing about one half meter in 

height were removed from roughly the center of a stand measuring about 100 m and 

planted in the containers on site.

The twenty Japanese knotweed root clumps were grown in the Science Hall 

greenhouse on the Montclair State University Campus. Upon arrival, plants were well- 

watered and kept in a low light corridor outside of the greenhouse to prevent excess 

desiccation and heat shock. For the first week, plants were moved to the greenhouse for 

several hours in the morning, then removed from full-light around midday. Once the 

plants had established themselves in the containers, they were moved to the greenhouse 

for the duration, with the exception of several excessively hot days. Plants were watered 

at least every two days, the soil kept moist and the gravel reservoir wet, based on visual 

assessment. In August, the plants were subjected to a drought treatment, during which 

they received water only once in course of the week, to prevent the soil from drying 

completely.
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Methods

Day-long measurements of photosynthesis, stomatal conductance, transpiration, 

and leaf water potential were conducted in 2010 on 6/23, 7/16, 7/27 and 9/4 for ten 

randomly selected plants out of nineteen established plants. The 9/4 measurements were 

taken on plants following drought-treatment. For all other dates, the plants were watered. 

The night before each measurement, the plants were watered, soil was covered with 

plastic, and plants were covered in black plastic bags for the purpose of maintaining dark 

conditions for each plant until initial readings were taken beginning at sunrise the 

following day.

Physiological Measurements

Gas exchange measurements included photosynthesis, stomatal conductance, and 

vapor pressure deficit (VPD). Gas exchange measurements were taken using a LiCor 

6400 (LiCor, Lincoln, NE) portable infrared gas analyzer (IRGA), ([CCLlrei^OOppm), at 

roughly one-hour intervals from sunrise to sunset. Leaves in ambient full light were used 

for the readings. Water potential was measured using a Scholander-type pressure 

chamber (PMS Instrument Co., Albany, OR) at predawn and midday. Leaves toward the 

upper end of the stem (non-terminal leaves located mid-canopy) were cut using a razor, 

and re-cut immediately prior to placement of the leaf within the chamber. Pre-dawn 

water potential was assumed to equal soil water potential. At midday, the area and mass 

of the removed leaves were also measured so as to ensure accuracy of total leaf area and 

water use data.
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Transpiration rate and leaf specific hydraulic conductivity were calculated using 

data collected from the measurement period. Transpiration rate (mmol/m /s) was 

determined for each plant on three dates. Amount of water used, time, and total leaf area 

were used to calculate transpiration rate on a leaf area basis for the plants. On 7/16, 7/27, 

and 9/4, water use was determined by weighing containers containing the plants at 

sunrise and at midday. The soil was covered with plastic so as to eliminate evaporation 

from the soil. Therefore, the difference between the two measurements equaled the 

weight of water lost through transpiration. Leaf specific hydraulic conductivity, KL 

(mmol H20/m2/s/MPa) was calculated by dividing transpiration rate on a leaf area basis 

by leaf water potential difference between the pre-dawn and mid-day measurements and 

the time period between the morning and afternoon water potential readings.

Biomass Analysis

Leaf area was measured using a CI-202 Leaf Area Scanner (CID, Inc. Vancouver, 

WA.). Within seven days of each day course, the areas of all un-furled leaves were 

measured. At the end of the experimental period, all plants were harvested. Of the 

original 20 plants, 18 were used for the biomass analysis. Leaves were removed, dried in 

a forced-air oven for a minimum of one week, at 52 degrees C, and weighed. Roots were 

dried as described for leaves and weighed both as a total clump and as coarse and fine 

roots separately. Fine roots were considered anything under roughly 0.2 mm.
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2. Field Collection of Japanese Knotweed

Plant Material

Plants from sites of varying moisture conditions were collected (Figure 3). These 

were labeled as dry, intermediate, and wet. Characterization of sites was based upon 

apparent distance from the water table, visible water source, and prevailing light 

conditions. The wet site was located at a midstream delta, roughly equal to the water 

table, the same site from which the greenhouse plants were obtained. The intermediate 

site was located at the shaded end of a street known to be slightly above the water table 

on average, on a dry day, based on personal observation an a history of flooding. The dry 

site was located on the top of a hill in a sunny clearing.

Measurements

Stem Hydraulic Conductivity

Intact stems of approximately 50 cm long were cut from all three field sites and 

immediately put in water (n=18 for each site). Once in the lab, stems from the main 

shoot were re-cut under water to reestablish hydraulic connection, and to contain at least 

3 nodes. Japanese knotweed possesses a hollow stem structure, divided into nodes and 

separated by what is assumed to be an impermeable septum at each node. For added 

precaution, the thickest, most basal end was plugged to prevent water transport through 

the hollow stem segment instead of the xylem. Physical examination of bisected stems 

revealed that the node segments were transected with a solid tissue, indicating that 

perhaps plugging might be bypassed in future studies. This basal end was then fitted to a 

length of tubing. A balance was located at the distal end. A solution of degassed water
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and 0.1 molar KC1 flowed through the tube at a pressure of approximately 0.5 MPa 

(Sperry et al., 1988). For each sample, hydraulic conductance was measured by using 

gravity to push the 10% solution of KC1 through a segment of stem containing three 

nodes, and measuring the rate of flow. The rate of flow was determined by collecting 

water from the distal end of the stem and weighing it simultaneously while keeping track 

of the time elapsed between starting and ending the weighing. Length of the stem, 

diameter at mid-node, and thickness of the stem were measured. Cross-sectional area of 

the stem was calculated using these figures. The stem was then trimmed, and the 

procedure was repeated for two nodes and then one node. Cuts were always made mid­

sheath between nodes.

Biomass Analysis

Leaf and stem morphology were studied to compare differences between sites. 

Different leaf and stem structures may directly impact water use. Between 20-30 leaves 

were collected from each site, and scanned for leaf area. Dry mass was measured 

following drying in a forced air oven at 52 degrees C for at least 48 hours. Ten stems 

each were collected from the dry, intermediate and wet sites. Total stem segment length, 

number of nodes, distance between intemodes, and mid-intemode diameter were 

measured for each stem.

3. Statistical Analyses

Statistical analyses were performed using JMP 9.0 software (2010, SAS Institute, 

Inc.) For comparison of single parameters across treatments, one-way ANOVA’s were
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performed. Multivariate correlations were modeled using a scatterplot matrix. Means, 

standard error, P-values, and R were also calculated using JMP 9.0.
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Results

The data obtained from the greenhouse and field studies indicated significant 

differences between plant physiology and structure under varying moisture conditions. 

Key traits and water-use strategies were revealed through an examination of the 

greenhouse data for watered and drought-treated dates. IRGA measurements and plant 

water use data for watered and drought-treated plants, when combined with 

measurements taken for varying moisture sites, pointed towards significant differences in 

water-use strategy across environmental conditions pertaining to water availability.

1. Greenhouse Study

Gas Exchange Measurements, Water-Use Results, and Biomass Analyses

Gas exchange measurements revealed that while average stomatal conductance 

for drought-treated plants was significantly lower than watered plants (P=0.056), average 

photosynthesis for both treatments was not significantly different (Figure 4). Average 

stomatal conductance for the drought-treated plants was 9.1xl0'2±0.9xl0'2mmol/m2/s and 

0.11 l±5.0x 10"3 mmol/m2/s for the watered treatment. Average photosynthesis was 

2.92±0.18 |imol/m2/s for the water treatment and 3.04±0.32 pmol/m2/s for the drought 

treatment. Average vapor pressure deficit, VPD, varied significantly between the drought 

and watered treatments at 2.15±0.07 kPa and 1.81±0.04 kPa, respectively (P=0.0001) 

(Table 1). The fact that photosynthesis was maintained during drought treatment 

indicates a potential compensatory mechanism.

The daily course of photosynthesis and stomatal conductance for July 27th are 

plotted in Figure 5. The other dates follow a similar curve, with a peak reached around
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mid-day followed by a slow decline. On the July 27th date, a mid-day depression was 

recorded, with a steep drop mid-day for both photosynthesis and stomatal conductance, 

followed by a slight elevation in both towards late afternoon. This decoupling occurred 

on a day with elevated temperatures and full sun.

Transpiration rate exhibited a significant (P=0.0001) decline when the plants were 

subjected to drought treatment. Transpiration means by treatment were 0.13±0.005 

mmol/m2/s for the drought treatment and 0.19±0.004 mmol/m2/s for the water treated 

plants (Figure 6). Average transpiration for July 27th (0.20 ±0.004 mmol/m /s )nand 

September 4th (0.13±.005 mmol/m2/s ) were significantly different (P=0.0001).

Conditions on July 27th, led to adjustments in stomatal conductance and photosynthesis 

throughout the day, did not lead to a decline in transpiration rate, indicating that water 

availability may have limited transpiration during the September 4th drought treatment.

Though pre-dawn and mid-day leaf water potentials were significantly lower for 

the drought-treated plants, compared to the average for all watered plants (P=0.0001), 

change in water potential was not significantly different, and was in fact very close to 

identical. Average pre-dawn leaf water potential for watered plants was -0.02±0.04 MPa. 

The value for drought-treated plants was -0.74±1.7xl0’2 MPa. Mid-day value for 

watered plants had was -0.68±0.01 MPa, while drought-treated plants had a value o f- 

1.39±0.02 MPa. Change in water potential for watered plants was 0.659±0.01 MPa, and 

for drought-treated plants was 0.655±0.02 MPa.

Leaf specific conductivity was lower following drought treatment (Figure 7) 

indicating a reduced ability of the plants to supply water to the leaves on September 4th. 

For the drought treatment, mean Kl was 0.20±0.01 mmol/s/m2/MPa. The drought
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treatment was significantly different from the pooled water treated dates (P=0.0001), for 

which the average Kl was 0.34±0.01 mmol/s/m2/MPa (Figure 7). The Kl for drought- 

treated plants was also significantly lower (P=0.0001) than that of the last watered date,
•y

for which average Kl was 0.39±0.01 mmol/s/m /MPa.

Instantaneous water use efficiency (photosynthesis divided by transpiration) varied 

significantly (P=0.0308), between treatments, with a value of 17.92±1.41 pmol/mmol for 

water treated plants, compared to the drought treated value of 24.22±2.05 pmol/mmol 

(Figure 8).

Following the study, the harvest biomass comparison showed a close correlation 

between leaf mass and root mass, and also leaf mass and fine root mass (Figure 9). Leaf
'y

mass correlated positively with both total root mass (R =0.62, P=0.0002) and fine root 

mass (R2=0.61, P=0.0002).

2. Field Study

Hydraulic conductivity was assessed on a stem area and stem length basis, by site 

type, and by number of nodes (Figures 10, 11, 12). Stem based hydraulic conductivity 

decreased exponentially as number of nodes increased from one to three for three sites 

(Figure 10). Discrepancies for the initial wet site resulted in removal of these data from 

the final analysis. On a stem area basis, the dry site possessed a significantly lower 

hydraulic conductivity (Figure 11). Stem area based hydraulic conductivity was only 

significant between the wet and the other two sites. However, there was a trend of 

increasing stem area-based conductivity with increasing moisture. The average for the 

dry site was 4.94x105±0.556x105 mmol/s/MPa/m2 the intermediate site value was
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6.69x105±1.Oxl05 mmol/s/MPa/m2 and the wet site value was 1.16x106±0.126x106 

mmol/s/MPa/m . The average values for stem area based hydraulic conductivity between 

the intermediate and wet sites were significantly different (P=0.0047). Average stem area 

based hydraulic conductivity was also significantly different between the wet and dry 

sites (P=0.0001). Length based hydraulic conductivity was not significantly different 

between any of the sites. Values were 79.6±17.4 mmol/s/MPa/m for the dry site, 

58.9±13.9 mmol/s/MPa/m for the intermediate site, and 88.7±19.3 mmol/s/MPa/m for the 

wet site.

Intemode length comparisons between the dry, intermediate and wet sites 

revealed that the intemode length for the dry sites was significantly less than those of the 

intermediate and wet sites (Figure 12). The dry site had an average intemode length of 

6.3x1 O'2 ±0.002 m, compared to 9.2x10'2±0.3xlO'2 m and 0.101± 3.0x1 O'3 m for the 

intermediate and wet sites, respectively. The ratio of diameter at mid-node to length of 

the corresponding node was also significantly higher for the dry site, with a value of 

6.8x10’2±0.lxl0"2 (Figure 13) compared to 5.2xl0'2 ±0.1xl0'2 and 5.1xl0'2 ±0.1xl0'2 for 

the intermediate and wet sites, respectively. This difference was apparent based on visual 

appraisal as well (Figure 14).

A trend of increased leaf area with increasing site moisture was present (Table 2). 

The wet site possessed larger leaves 6.9x10 '3±0.3xl0'3 m2, compared to dry site values 

of 3.3xl0'3 ± 0.3xl0'3 m2 and intermediate site values of 5.2xl0'3 ± 0.4xl0'3 m2. The 

only significant difference was between values for the dry site and wet site (P=0.0001). 

Leaf mass per area increased with moisture. Only the dry site differed significantly from
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the other three sites (P=0.0001). Leaf mass per area ratios for the dry, intermediate, and 

wet sites were 86.5±3.5, 43.2±6.7, and 39.3±1.0, respectively (Table 2).
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Table 1. Average photosynthesis, stomatal conductance, and VPD by date for the 
greenhouse study.

Date Photosynthesis Stomatal Conductance VPD
gmol/m2/s mmol/m2/s kPa

23-Jun 2.26±0.28 0.14±0.01 1.58±0.06
16-Jul 3.81±0.35 0.13±0.01 1.57±0.08
27-Jul 3.01±0.29 o o H? o o 2.25±0.06

±S£E __________ 3.04±0.32 0.09±0.01 2.15±0.07

Table 2. Leaf area and LMA for field sites and greenhouse harvest.
Leaf Area (m2) LMA (kg/m2)

Dry Site |3.3xl0'3±1.4xl0'3 86.5 ±3.5
Intermediate Site 5.2xl0'3±1.9xl0'3 43.2± 6.7
Wet Site 6.9x10'3±2.1x10"3 33.2 ±0.9
Greenhouse 3.4x10'3±2.2xl0-3* n.a.

* Greenhouse data was for leaf area of plants from the 9/04 readings and leaves harvested 
from these plants only.
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Figure 1. Site of collection for greenhouse study samples. In May of 2010, samples 
were obtained from the patch indicated by the black rectangle.

Figure 2. Diagram of container contents used in the greenhouse study. Bottom was filled 
with 6.0 cm of gravel to act as a reservoir. Roughly 12 cm of soil from the Bonsai 
Preserve site was added above the gravel.
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Figure 3. Locations of varied moisture sites for field study. Samples were harvested 
in August of 2010. Measurements of stem based hydraulic conductivity were taken on 
the date of harvest.
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Figure 4a and b. Greenhouse Study: Photosynthesis and stomatal conductance by 
treatment. Bars are the mean ±1 SE. 4a. Change in photosynthesis between the 
watered and drought-treated plants. For photosynthesis, there was not a significant 
statistical difference between the two treatments. 4b. Change in stomatal conductance 
between the watered and drought-treated plants. For stomatal conductance, a significant 
statistical difference existed between treatments (P=0.0001). Note that though there was 
a decrease in stomatal conductance following drought treatment, the rate of 
photosynthesis was not significantly different between treatments.
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Figure 5. Greenhouse Study: Average photosynthesis and stomatal conductance for 
each reading on July 27th 2010. There was a mid-day depression and mid-afternoon 
peak on July 27th.
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Figure 6. Greenhouse Study: Transpiration rate on a leaf area basis by treatment.
Bars are the mean ±1 SE. Values were significantly different between treatments 
(P=0.0001). A decrease in transpiration followed drought treatment.
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Figure 7. Greenhouse Study: Leaf specific hydraulic conductivity by treatment.
Bars are the mean ±1 SE. The mean KL for the September 4th drought treatment was 
significantly different from the pooled water treated dates (P=0.0001). A decrease in leaf 
specific hydraulic conductivity followed drought treatment.
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Figure 8. Greenhouse Study: Instantaneous water use efficiency by treatment.
Bars are the mean ±1 SE. Mean instantaneous WUE was significantly different between 
treatments (P=0.0109). There was an increase in instantaneous WUE following drought 
treatment.
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Figure 9a and b. Greenhouse Study: Comparison of total root and fine root 
between leaf biomass allocation. 9a. Leaf mass correlated positively with both total 
root mass, (y=l .362x -  2942, R2=0.62, P=0.0002). 9b. Leaf mass also correlated 
positively with fine root mass (y=0.562x + 100.8, R2=0.614, P=0.0002).
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Figure 10. Field Study: Hydraulic conductivity on a length basis by number of 
nodes. Values decreased exponentially as the number of nodes increased (y = -135 ln(x) 
+ 156.6, R2=0.969).
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Figure 11a and b. Field Study: Stem hydraulic conductivity for varied moisture 
sites. Bars are the mean ±1 SE. 11a: A significant statistical difference in stem area 
based hydraulic conductivity existed only between the wet site and the dry and 
intermediate site (P = 0.0356). lib : Length based hydraulic conductivity did not differ 
significantly between sites. On a stem area basis, hydraulic conductivity increased 
significantly for the wet site as compared to the dry and intermediate sites.
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Figure 12a and b. Field Study: Stem morphology at varied moisture sites, node 
length and node diameter. Bars are the mean ±1 SE. 12a: A significant statistical 
difference existed between the dry site and pooled intermediate and wet sites (P=0.0001). 
A significant statistical difference was also present between the intermediate and wet 
sites (P=0.025). 12b: A significant statistical difference in stem diameter was present 
between the dry site and pooled intermediate and wet sites (P=0.0097), but not between 
the intermediate and wet sites. Note that node length and diameter were significantly 
lower for the dry site.
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Figure 13. Field Study: Relationship of stem morphology characteristics at varied 
moisture sites. Bars are the mean ±1 SE. The diameter/length ratio was statistically 
significant for the dry site values as compared to the intermediate and wet site plants 
(P=0.0001). The increased ratio of node length to node diameter for dry site plants 
indicated a truncated yet wider stem structure.
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Figure 14. Field Study: Moisture varied site stem sections, top: intermediate; 
bottom: dry. Note the increased node length for the intermediate site.
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Discussion

The success of Japanese knotweed as an invasive species may be attributed to 

several characteristic traits. The results of this study suggest that shifts in physiological 

functions under variable environmental conditions and phenotypic plasticity may, in part, 

contribute to the prolific range expansion exhibited by Japanese knotweed. The presence 

of Japanese knotweed in disturbed sites and along waterways is consistent with 

colonization patterns associated with other invasive plants. That Japanese knotweed 

may, in fact, be drought tolerant, would set it apart from some species of opportunistic 

exotics. One of the few widely studied invasive plants to owe some degree of success to 

drought tolerance is Tamarix. Should the ubiquitous invader Japanese knotweed fall into 

this category as well, the risk of water depletion under conditions of water stress might 

very well become an issue for the Mid-Atlantic region, particularly in a time of 

population growth and climate change.

Gas Exchange

The comparison of watered and drought-treated plant physiological measurements 

in the greenhouse revealed that Japanese knotweed is able to regulate its physiological 

functions in ways that allow it to persist under a range of moisture conditions. Such 

adjustments included decreases in stomatal conductance, transpiration rate, and leaf 

specific hydraulic conductivity under the drought-treatment (Figures 3, 6, and 7). An 

increase in instantaneous water use efficiency was seen as well (Figure 8). While the 

drought-treated plants in our study displayed a decreased stomatal conductance relative to 

watered plants, the plants exhibited no significant difference in photosynthetic rate
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(Figure 4). In all, over the course of each day, photosynthesis, stomatal conductance, and 

water-use parameters followed characteristic patterns that typically maximize carbon 

gain, whether through a single or bimodal peak (Figure 5). The ability of a plant to 

supply water to its tissues is a limiting factor for maximum photosynthetic rates 

(Brodribb & Field, 2000; Bacelar et al., 2007). This may be attributed to decreases in 

stomatal conductance, followed by a decrease in photosynthetic rates, as exhibited by 

some water stressed plants. (Bacelar et al., 2007). However, increases in WUE may 

allow some species to adjust to low water conditions and increase their success under 

such circumstances (Bacelar et al., 2007).

In our study, average stomatal conductance was lower for the drought-treated 

plants (Figure 4). This may have been a protective mechanism. One possible 

explanation for decreased stomatal conductance lies in the higher mean VPD for this 

treatment. Average stomatal conductance was also lower on July 27th, when average 

VPD was higher than that of the September 4th drought-treated plants (Table 1). Other 

studies have shown that stomatal conductance exponentially decreases with increasing 

VPD, which is thought to be regulated primarily by transpiration and leaf water potential 

(Monteith, 1995; Oren et al., 1999). This is consistent with Alder et al. (1996), who 

found that plants of the same species growing on a slope (dry) site maintain lower 

stomatal conductance relative to those on an adjacent riparian site. An increased rate of 

transpiration facilitated by a high VPD would result in a lower leaf water potential, 

possibly causing signals to be released that trigger stomatal closure. Our results indicate 

a correlation between stomatal conductance and VPD. Reductions in stomatal
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conductance under conditions of water stress would limit transpiration and conserve 

water.

One other parameter that can be used to examine drought tolerance is stomatal 

sensitivity. Species with high stomatal sensitivity will exhibit a steeper decline in 

stomatal conductance with increasing VPD (Sperry et al., 1998). In species with lower 

drought tolerance, an increase in stomatal sensitivity may act to protect plants from 

hydraulic failure (Sperry et al., 1998). Data obtained for the day courses and between 

treatments indicate that knotweed exhibits a degree of sensitivity. A mid-day depression 

and mid-afternoon second peak in photosynthesis occurred on July 27th (Figure 5). Such 

strategies allow plants to shut down during bright, hot parts of the day, then resume 

function when damage to photosynthetic apparatus is less likely, thus maximizing carbon 

gain (Hodges, 1966). The mid-day depression under hot, sunny conditions, and reduced 

stomatal conductance under drought-treatment, indicate that Japanese knotweed is not 

impervious to water stress.

The maintenance of the photosynthetic rate across treatments (Figure 4) indicated 

that Japanese knotweed was able to adjust not only to the drought conditions but to 

actively reduce stomatal conductance as well. Japanese knotweed was able to adjust to 

lower water levels and continue photosynthesis at a decreased, though not ceased, rate of 

stomatal conductance, indicating a degree of drought tolerance. Also of note, though 

photosynthesis was maintained at a lower stomatal conductance, there remained a 

positive correlation between the two, as can be seen in the closely matched peaks (Figure 

5).
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Water Use

Physiology impacts the ability of a plant to transport water, and this was evident 

in the Japanese knotweed in our study. Water-use strategies specific to water availability 

were evident in both the greenhouse and field studies. In the greenhouse study, such 

strategies were manifested in a reduced transpiration rate and leaf specific hydraulic 

conductivity, and an increased instantaneous water use efficiency following drought 

treatment. An increased stem hydraulic conductivity on a stem area basis for wet sites 

and maintenance of stem hydraulic conductivity on a length basis across sites in the field 

study further demonstrated that Japanese knotweed exhibits varied water transport ability 

according to water availability (Figure 11). A corresponding increase in LMA (Table 2) 

and decrease in intemode length (Figure 12) with decreasing water availability was also 

evident.

In the greenhouse, drought-treated plants transpired at a significantly lower rate 

on a leaf area basis than watered plants, but did not completely shut down (Figure 6). As 

a result, leaf specific hydraulic conductivity was also lower for drought-treated plants 

(Figure 7). Instantaneous water use efficiency was higher for drought-treated plants, 

allowing knotweed to assimilate more carbon per unit water loss than observed under 

well-watered conditions (Figure 8). Higher water use efficiency tends to be favored in 

dry environments, while intermediate water use efficiency is favored in moderately wet 

environments where higher transpiration rates allow for higher assimilation rates 

(Dudley, 1996; Donovan et al., 2007). Our findings of an increased instantaneous water 

use efficiency following drought treatment agree with this research.
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Japanese knotweed continued to transpire and carry out photosynthesis under 

reduced leaf water potentials in the drought treatment (Figure 4). The lower pre-dawn 

water potential in drought-treated plants did not prevent further transpiration. Change in 

water potential between pre-dawn and midday readings was the same for both treatments. 

This indicates that Japanese knotweed will function at lower leaf water potential values. 

However, the amount of water lost is decreased under drought stress conditions. These 

findings are consistent with previous reporting of plants exhibiting reductions in water 

potential following drought stress (Wilson et al., 1980), and a subsequent decrease in 

photosynthetic rate, and stomatal conductance (Bacelar et al., 2007).

Water transport ability varied across sites in the field study component. Stem 

hydraulic conductance on a stem area basis was significantly higher for the wet site, and 

was lower for all others (Figure 11). On the other hand, stem hydraulic conductivity on a 

length basis was maintained across sites (Figure 11). Leaf area decreased as water 

availability decreased (Table 2). A reduction in leaf area should result in a higher leaf 

specific conductivity, which would reduce the driving force necessary to supply leaves 

with water, even under drought stress. In contrast, the drought-treated plants in the field 

study exhibited decreased leaf specific hydraulic conductivity. Another possible 

explanation, which was not measured in the current study, is that there may have been a 

reduction in vessel diameter, which would decrease conductivity while protecting plants 

from embolism (Lovisolo & Shubert, 1998).

Hydraulic conductivity varied among nodes of stems from different sites. There 

was an exponential increase in hydraulic conductivity with one node as opposed to three 

(Figure 10). This agrees with the idea that conductance may be positively related to
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diameter and inversely related to height (Mencuccini & Grace, 1996). In trees, resistance 

has been shown to increase near branch ends (Mencuccini & Grace, 1996). The single 

node was closer to the base of the shaft, and possessed greater area. The third node 

would have been nearer the plant tip, an area of greater stress and therefore subject to 

greater resistance. This also suggests that the nodes increase resistance. Recent work by 

Petit et al. (2007) shows that in trees the xylem tapers from the base to the top of the tree. 

This would be similar to what we are seeing here in the knotweed. The idea is that as you 

get closer to the tip, the hydraulic stresses increase. If the xylem diameter decreases as 

well, then the water column has less chance of cavitating. Given that these plants have 

high conductivities, this might be a mechanism to prevent cavitation under high water 

demand.

Stomatal conductance and photosynthesis are linked to hydraulic conductance, 

and hydraulic conductivity on a leaf area basis has been linked to photosynthetic rate 

(Brodribb & Feild, 2000). Decreases in hydraulic conductance can result in decreased 

stomatal conductance and subsequently a decreased photosynthesis rate (Hubbard et al., 

2001). In contrasting mesic and xeric sites, higher leaf specific conductivity may result 

in higher primary productivity values (Van der Willigen & Pammenter, 1998). Higher 

leaf specific conductivity allows for better supply of water to the leaves, possibly 

permitting increased stomatal conductance and therefore greater growth efficiency 

(Pammenter & Van der Willigen, 1998). This relationship partially held for the Japanese 

knotweed in our study. Photosynthetic rates were not significantly different between 

treatments while stomatal conductance and leaf specific hydraulic conductance were 

significantly lower for drought treated plants. Whether this ability to maintain
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photosynthetic rates despite reductions in stomatal conductance would result in increased 

primary productivity in the long term is uncertain.

Biomass and Morphology Analyses

Leaf and stem morphology in the field varied across sites of contrasting water, 

and in some cases, light, availability. Leaf area, LMA, intemode length, and stem 

diameter measured at our sites indicated characteristic morphology under specific 

environmental conditions. Our data agreed with functional traits found in previous 

research, and may explain the measurements that were obtained for hydraulic 

conductivity. In the greenhouse, leaf and root mass analyses indicated that knotweed 

effectively allocated biomass, with greater root mass corresponding to greater leaf mass 

(Figure 9). Thus, the water uptake tissue (the roots) was proportional to the tissue 

through which carbon was gained and water was lost (the leaves). Adjustments to 

biomass allocation and morphology are possible ways in which Japanese knotweed 

persists across introduced ranges.

The Japanese knotweed in our study displayed adjustments in leaf structure and 

physiology, indicating that this trait may determine the success of Japanese knotweed in 

introduced ranges. Leaf structure is a key characteristic in determining plant response to 

environmental conditions such as seasonal water deficit and light levels (Ackerly et al., 

2002; Mitchell et al., 2008; Pierce et. al., 1994), and corresponds with photosynthetic 

capacity of plants (Reich et. al., 1999). Leaf structure and function can also affect the 

environmental impact of a plant species. Leaf area may determine the amount of water
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lost due to évapotranspiration, a potential environmental issue should a plant with high 

leaf area continue to transpire under drought conditions (Sala et al., 1996). Research by 

Vanderklein et al. (in review) indicates that not only does Japanese knotweed have a low 

LMA but that this plant can alter stream base-flow in invaded areas.

Leaf area decreased with decreasing water availability (Table 2). This may serve 

to minimize water loss through transpiration (Bacelar et al., 2006). Greater water supply 

may allow for greater transpiration rates, which would support larger leaves. Conversely, 

smaller leaf area may correspond with higher levels of insolation (Ackery et al., 2002), 

and low water supply, also supported by our data. Larger leaves are functionally ideal for 

shade plants in that they increase light capture. This is supported by the fact that leaf area 

values were lowest in our dry site, which was also the most exposed. The variable light 

and moisture conditions experienced by the field sites may also explain differences in 

leaf structure.

LMA varied across sites. LMA was greatest for the dry site leaves (Table 2).

This may benefit dry site plants in several ways. Thicker leaves concentrate the 

photosynthetic tissue, and result in greater light capture per unit leaf area, ideal under 

high light, such as that found in our dry site. A higher LMA has been shown to 

correspond with higher levels of insolation (Ackerly et al., 2002). The higher LMA may 

also increase water use efficiency in dry environments (Pierce et. al., 1994). In addition, 

the inverse of LMA, SLA, positively correlates with photosynthetic maximum and 

stomatal conductance (Reich et. al., 1999).

Greater LMA for Japanese knotweed has been recorded for plants growing at 

higher altitudes due to greater leaf thickness, thicker mesophyll cell walls and higher
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mesophyll cell density (Kogami et al, 2001). As noted above, our greenhouse plants 

continued to transpire under low leaf water potentials following drought treatment. 

Modifications to LMA could result in a lower internal CO2 transfer conductance without 

a change in stomatal conductance (Kogami et al., 2001). While the difference in altitude 

for our plants was on a much smaller scale, it is possible that similar strategies may have 

been invoked under water stressed conditions. Leaf structural differences may have 

allowed the plants to make physiological adjustments that permitted altered water 

potential and transpiration profiles.

The leaf area of the greenhouse plants was only slightly greater than that of the 

dry site plants in the field study (Table 2). The LMA value obtained fell between those 

of the dry and intermediate sites (Table 2). The water transport capacity and physiology 

of our plants, which were removed from the same patch as those used in the wet site 

analysis, adjusted to the environment of the greenhouse, which could be characterized by 

high light intensity, heat, and moderate wind speeds. Greenhouse plants exhibited 

smaller stature and reduced leaf area relative to field site plants from the same cohort 

throughout the summer (Table 2). One reason for such differences may have been 

because the roots of our plants were cut from parts of a more extensive underground 

system. Therefore, they did not have the same water extracting capacity as field grown 

plants. Under different conditions, transpiration rate may have been higher, since a 

higher LMA tends to correspond to lower stomatal conductance and higher water-use 

efficiency (Pierce et. al., 1994). This may also explain the fact that our greenhouse plants 

faired well under drought conditions.
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In the greenhouse, leaf mass correlated positively with both fine and total root 

mass. The role of the roots in determining water supply, which can drive photosynthesis, 

indicates that such a complimentary relationship could be adaptive in nature. Differential 

allocation to biomass under drought conditions has been previously witnessed (Bacelar et 

al., 2006). The prolific root system and aboveground expansion of Japanese knotweed 

stands may be similarly correlated. The wet site plants possessed visibly larger leaves 

than dry site plants, and attained higher stature. The implications of this in terms of 

resource allocation and water-use are that Japanese knotweed could be a water hog and 

waster, growing as tall as hydraulic limitations will allow, while expanding outward 

belowground, allowing for greater water extraction. For future studies, a comparison 

between plants grown under drought conditions and watered conditions would provide 

greater insight into the biomass allocation of Japanese knotweed under different water 

supply regimes.

Stem morphology varied across sites as well. The most significant difference was 

in the reduced node length of the dry site plants (Figure 12, Figure 14). Drought treated 

plants have been shown to exhibit shorter intemode length (Perry and Larson, 1974).

This may provide a functional advantage. Xylem tapering near the tops of plants has 

been shown by Petit et al., (2007). While this tapering increases hydraulic resistance, it 

also decreases the risk of cavitation at areas of the plant that are subject to the greatest 

tension (Petit et al., 2007). A similar situation may be seen within shoots in our Japanese 

knotweed. Shorter intemode length and a less steep decline in hydraulic conductance 

with additional nodes may serve to preserve water transport. Shorter intemodes may be 

less prone to cavitation. If this increase in nodes does not result in a corresponding
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increase in resistance along the water pathway, the water-use may be facilitated, 

maximizing photosynthetic ability and ultimately enhancing growth and reproduction. 

However, our data seem to indicate that hydraulic conductance exhibits a marked 

decrease (Figure 10). The decrease does not appear to be more extreme for dry plants 

with shorter intemodes than for wet site plants. This is in contrast to previous research 

(Lovisolo & Schubert, 1998). However, structurally, the average length of nodes for the 

wet site plants was greater than the average of the dry site plants.

Knotweed structure may be tied closely to function and hold key implications for 

the impact of knotweed on water depletion. Shorter vessel elements near the top of plants 

may serve as a protective mechanism against cavitation, since these areas are subject to 

greater tension. Longer water pathways lead to increased stress (Van der Willigen & 

Pammenter, 1998), which may account for shorter intemodes at the dry (xeric) site. 

Together, the exponential decrease in hydraulic conductivity and decreased intemode 

length in dry sites may relate to the hydraulic limitation hypothesis, as set forth by Ryan 

and Yoder (1997). In our study, the longer vessel length in the wet site did not result in 

increased stem length based hydraulic conductivity, as the shorter nodes in the drier sites 

may have provided an adaptive advantage. Environmental conditions determined the 

hydraulic architecture and therefore conductance. Adjustments in vessel length and 

diameter, combined with alterations in stem hydraulic conductivity, could permit 

Japanese knotweed to extract water efficiently across a range of water regimes. Under 

arid conditions, Japanese knotweed could exacerbate already drought strained resource 

depletion.
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Biomass allocation can directly impact water use and physiology. Plant water use 

may be determined by properties such as hydraulic conductance and differences in water 

potential, both of which may be regulated by stomatal conductance and leaf area (Sperry 

et ah, 2002). Another potential limitation to plant water use occurs at the root/soil 

interface, where hydraulic conductivity decreases as water potential decreases (Sperry et 

al., 1998). Drought tolerant species may exhibit a greater ability to extract water under 

water-limited environments via adaptive physiological and morphological strategies. The 

correlations observed in our study indicate that Japanese knotweed may adjust root 

biomass, stem structure and functional traits, and leaf area and structure accordingly.

The findings of this study may have significant implications in terms of water 

resource management. Increases in évapotranspiration in areas invaded by Japanese 

knotweed may result in water depletion. The presence of Japanese knotweed along 

riparian corridors and along roadways where it can intercept runoff allows the plants to 

utilize water that might otherwise supply other organisms or replenish water resources. 

Such depletion may prove critical in future droughts in the mid-Atlantic region.

In order to manage water resources, it is crucial to identify losses. The impacts of 

invasive species are varied and far-reaching, as it modifies riparian habitats and utilizes 

water that might have been used elsewhere. The true extent of water-use by Japanese 

knotweed requires further evaluation, as do strategies for removal and control. Should 

water become less readily available, the relative cost of continued proliferation could 

increase. While the findings discussed here indicate that Japanese knotweed utilizes 

water under varied moisture conditions and has significant impacts on water supply, 

further assessment is required.
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Conclusion

In this current era of climate change and population growth, invasive species may 

further stress environments due to increased opportunities (Walther et al., 2009) and 

create greater environmental and economic costs (Pimentel et al., 2005). Taken together, 

the greenhouse and field studies paint a picture of an invasive plant that will continue to 

efficiently use a large amount of water across a wide range of water regimes. When 

placed in a water-saturated area, such as a riparian region, Japanese knotweed will 

potentially transpire vast amounts of water, reducing streamflow and output. Under arid 

conditions, Japanese knotweed will still transpire water, utilizing limited resources. 

Based on the findings from this research, Japanese knotweed may impact water yield in 

both riparian and disturbed sites. It may do so via relatively high transpiration rates 

facilitated by efficient hydraulic architecture and a high leaf area index coupled with an 

intrinsic ability to thrive under a variety of water supply regimes

Because our greenhouse plants exhibited similar morphology to dry site plants, it 

may be that water-use habits and amounts were less than would have been detected had 

greenhouse conditions mirrored wet site conditions. This being the case, the true 

transpiration potential of Japanese knotweed was most likely underestimated. However, 

the amount used and conditions under which the greenhouse plants continued to use 

water made clear that this invasive will use water if any is available, and continue to 

transpire, albeit at a reduced rate, under stress.

Observed growth in dry field sites and continued function under drought 

treatment in our study indicates that Japanese knotweed may be able to adjust to 

conditions of water stress in ways that impart some drought tolerance. The implications
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of this are that should our area be subject to drought stress, the presence of Japanese 

knotweed could place further demands on our water supply. Continued transpiration by a 

prolific invader could prove disadvantageous to our ecosystems and communities.

The question of whether a change in vegetation from native to exotic species will 

impact the water cycle remains of particular interest. Alterations in vegetation can 

impact deep soil drainage and runoff, key factors in determining water yield (Wilcox & 

Thurow, 2006.) In riparian corridors, such changes may impact stream flow in the event 

that native plants are replaced by invasives with a fundamentally different 

evapotranspiration profiles (Wilcox & Thurow, 2006). Climate change models for 

Japanese knotweed in Great Britain indicate that increases in carbon dioxide may allow 

range expansion to higher altitudes and regions where current growth is patchy (Beerling 

& Woodward, 1994). Japanese knotweed is present in overwhelming abundance in 

riparian and roadside areas of the mid-Atlantic region, yet has not received the degree of 

inquiry accorded invasives such as Tamarisk in the Southeast. Studies carried out in arid 

regions are largely inconclusive, yet have led to governmental policy change and funding 

allocation. The water profile of the northeast region is largely ignored excepting the 

occasional drought. In the future, the priority level of this issue may increase. A 

proactive approach to assessing the impact of Japanese knotweed on our water budget 

may serve to prevent future complications.

Results from the greenhouse study and field study demonstrated that Japanese 

knotweed will continue to use water even in arid conditions. While it grows taller and 

displays greater leaf area under wet conditions, it will draw water from the ground and 

transpire even when subject to drought treatments and can thrive under dry conditions.
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Physiological adjustments, altered hydraulic conductivity, and varied morphology may 

allow for continued function and explain such diverse range expansion. The ecological 

implications of such use may create a situation analogous to that of Tamarisk in the 

southeast should a drought or drier climate conditions strike the mid-Atlantic region.

The ability of Japanese knotweed to extract water across a range of moisture 

conditions and vary both morphology and physiology to do so may render it a necessary 

area of concern in terms of water resource management. Vegetation plays a key role in 

local hydrology and ecosystem function and composition. The presence of a prolific 

invader capable of intercepting and utilizing vast quantities of water poses a threat to both 

ecosystem balance and water supply. In an urban area such as the North Jersey region, 

under drought conditions, the threat extends to our human population. Greater 

understanding of the nature and extent of water-use by Japanese knotweed would aid in 

determining its viability as a target for water resource management.
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