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Abstract

In this paper, I investigate polynomial solutions to the Diophantine equa
tion, I 2 +  7 3 -  6912Z2, where X  ~ g(x,y), Y  — h(x,y) and Z — f(x ,y)  are 
polynomials with integer coefficients. The focus is on the greatest common di
visors for the integer values of these polynomials when the polynomials f (x ,y ), 
g{x,y) and h(x, y) are relatively prime in Q[x, y]. However, for a fixed integer 
pair xo, i/o, the integer values f(xo,yo), <7(2:0, yo) and h(xo,yo) are not neces
sarily relatively prime in Z. I investigate the greatest common divisors (GCDs) 
of these three polynomial values for specific integer pairs xq and yo- First, I 
study the cases where yo = 1 and yo = 2. For these cases, a complete distri
bution of the GCDs is given. Furthermore, I use the Euclidean Algorithm and 
Grobner Basis techniques to determine the GCDs for f(xo-,yo), g(xo,yo) and 
h{xo,yo) in Z by obtaining multiples of the GCDs of the polynomials. Then, 
the results from the cases yo — 1 and yo =  2 are generalized to obtain similar 
properties of the GCDs for all possible integer values of x and y. For the cases 
where the integer values are not relatively prime, the possible prime divisors of 
the GCDs and integer bounds for the powers of prime divisors are determined. 
Finally, polynomial solutions to new Diophantine equations axe derived from 
the original Diophantine equation.
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2 Introduction to D iophantine Equations
In this paper, I investigate a certain Diophantine equation and a set of polynomials 

tha t satisfy this equation. Let me first define a Diophantine equation.

D efin ition  2.1 A Diophantine equation is a polynomial equation with integer coeffi
cients to which the only concerned solutions are integers.

There are different types of Diophantine equations, often of the form Axp -f Byq =  
Czr, where A, B ,C  are non-zero integers. Recent research including [6,7,8] focus on 
Diophantine equations of this form. Some of the famous ones of this type include 
Fermat’s Equation, xn +  yn = zn\ the equation x 2 + y2 =  z2, whose solutions are 
Pythagorean Triples; and, Pell’s Equation x 2 -  ny2 — ±1. Mathematicians who 
have worked on Diophantine equations have focused on obtaining the number of 
solutions to such equations. In [6], Beukers showed that there are at least 25 in
teger solution triples to X 5 +  Y 3 =  Z 2. In [8], Kraus focuses on relatively prime 
solution triples to the Diophantine equation X p +  Y q =  Z r. In particular, he in
vestigates solutions to X{p,q,r) > 0, X (p ,q ,r) — 0 and X  (p, q,r) <  0, where 
X (p, q, r) =  p~l +  q~l +  r~x -  1. In [8], Darmon and Granville investigate integer so
lutions to the equation zm — F (x,y)  and the Diophantine equation A xp +  Byq =  Czr, 
where F is a homogeneous polynomial in Z[x, y] and A, B ,C  are non-zero integers. 
They propose tha t in certain cases, these equations have finitely many solutions such 
that gcd{x,y, z) — 1 .

The particular Diophantine equation I am interested in is

X 2 + Y 3 = 6912Z2, (1)

whose coefficients and power triple were obtained by Cihan Karabulut and Aihua Li 
in [4]. The procedure to find a set of polynomial solutions in Z[x,y] to this equation 
is explained in their paper. In [4], Karabulut and Li showed that if (X ,Y ,Z )  is a 
polynomial solution triple of the equation X p +  Y m — C Zq, where C ,p,m ,q  are 
nonzero integers and p, m, q > 1, then the degree of the polynomial Z  is either 3 ,4 ,6 
or 12.

A lg o rith m  2.2 This algorithm (from [4]) describes a procedure to find the polynomi
als that are relatively prime in Q[rr, y] that satisfy a Diophantine equation X p +  Y rn — 
C Z q, where X  — g{x,y), Y  =  h(x,y), and Z  — f ix ,y ) .

1 . Choose a positive integer n =  3 ,4 ,6  or 12 for the total degree of polynomial
f (x, y)  =  anxn +  an- ix n~ly  + ........ T aixy71" 1 +  a0yn in Z[x,y\,  where the afis
are to be determined.

2. Use the Hessian determinant of f(x ,y )  to construct h(x,y) as follows:

d2f  d ?f

h (x ,y )=  jg _  «
dxdy dir

4



3. Construct g(x,y) using the Jacobian determinant of f(x , y) and h(x,y):

g(x,y)
di §i 
dx dydh &h *
dx dy

4. Choose a0, 01, - , a n such that [g(x, y)]p + [h{x, y)]m -  C[f(x, y)]q is satisfied.

The process to find a set of polynomials tha t solve the Diophantine equation of 
interest is demonstrated in the next example.

Exam ple 2.3 Algorithm 2.2 is applied to determine a set of relatively prime polyno
mial solutions over Q that satisfy

X 2 +  Y3 — 6912Z2.

1. Let f(x , y) =  a3x3 4- a2x2y 4- axxy2 4- a0y3 of a total degree of 3.

2. Construct h(x,y) using the Hessian determinant of f{x ,y ):

, . _  6a3x 4- 2a2y 2a2x-\-2axy
^  2a2x  4- 2axy 2axx  -f 6«o?/

=!2a0a2y2 -  4a\y2 -  4axa2xy  4- 36a^a^xy +  12aia3x2 -  4a2 2̂ 

= ( 12a ia 3 -  4a2)#2 +  (36aoa3 — 4axa2)xy +  (12a0fl2 -  4«2)?/2.

3. Construct g(x,y) by using the Jacobian of f{x , y) and h(x,y):

y) =
3 a3x2 + 2 a2xy + axy2 a2x2 + 2axxy + 3 a0y2

(-4a2ai + 36a3a0)t/ + (24tt3ai -  8a|)x (~8af + 24a2a0)y 4- (-4a2ai + 36a3ao)x

- ( 3 a 3x2 4- 2a2xy  +  «iy2) [ ( - 8a2 4- 24 a2ao)y 4- ( - 4 a 2ai +  36a3a0)]
— (a2x2 4- 2aixi/ 4- 3a0?/2)[(-4 a 2ai +  36a^aff)y 4- (24a3ai — 8a2)x]

= ( —36a3axa2 4- 108<z3flo 4" 8u2)x3 
+ (108a3a0a2 — 72a3a2 4- 12a2ai)?/x2 
4- {72ala0 -  12a2a2 -  108aia0a3)y2x 
4- (36aia0a2 — 8a3 — 108oq«3)2/3.

4 . Let a3 =  l , a 2 =  — l ,a x — l,a 0 — — 1. T/ie Diophantine equation has infinitely 
many solutions depending on the values of a i’s. After examining different val
ues of ao, ax, a2, a3, the values chosen above lead to polynomials that have useful 
properties in investigating the integer values of the polynomials, which are dis
cussed in Remark 2-4-
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W ith a3 — 1, a2 = - 1 ,  ar =  1, a0 — -1 ,  one set of polynomial solutions that 
satisfy X 2 +  T 3 =  6912Z2 is:

g(x , y) — -8 0 x 3 +  48rc2y +  4Sx?/2 -  80y3
h(x, y) =  8x2 — 32xy +  8?/2 (2)
f (x ,y )  = x3 -  x2y +  xy2 -  y3,

where (X ,Y ,Z )  — (g1 h, / ) ,  which are polynomials in Z[x, y}. These polynomials 
f(x ,y ) , g(x,y) and h(x,y) are relatively prime in Q [x,2/j. However, they are not 
necessarily relatively prime as integers for a fixed pair of integers x,y . My goal is to 
investigate the greatest common divisors of the integer values of these polynomials 
f(x ,y ) , g{x,y) and h(x,y) in Z.

Rem ark 2.4 Some of the useful properties of the polynomials are shown below.

g(y, x) — -8 0 x 3 +  48x2y +  48xy2 -  80y3 — -1 6 (x  +  y){x2 -  hxy +  y2) 
h(y , x) — 8x2 -  32xy  +  8y2 — 8(x2 — 4xy  +  y2) 
f{ y , x) =  - x 3 +  x2y -  xy2 +  y3 =  (x -  y)(x2 +  ?/2).

Note that g(x,y) =  g(y,x), h(x,y) =  /t(y, x) and f{x ,y )  =  - f ( y , x ). Then, for fixed 
integer values of x and y,

G CD {f(x, y ) , g ( x ,y),  h(x,y)) = , sc), g(y, x), % ,  *)), 

sznce the negative sign does not affect the greatest common divisors of integers.

3 The G reatest Common Divisor: D( x , y )
Since the focus of the paper is on the greatest common divisors of the integer 

values of / ,  g , /i, the next definition introduces notation for the GCDs of the integer 
values of f ( x ,y ), g(x,y) and h(x,y).

D efinition 3.1 (The Greatest Common Divisor)

1. For any integers a,b, GCD(a,b) is the greatest common divisor of a and b.

2. For x ,y  e  Z, let D (x,y) be the greatest common divisor of f(x ,y ) ,g {x ,y )  and 
h(x, y) in Z.

Exam ple 3.2 For x =  4 and y — 2,

D{4,2) =  GCD{f{4,2), $(4 ,2), h{4,2)) =  GCD(40, -3454, -9 6 ) =  8. 

Similarly, by Remark 2.4 D(2,4) =  8.

A special divisibility notation is introduced in the next definition, which can be 
found in [2].
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D efinition 3.3 Letp be prime and n  E Z+. We say pa exactly divides n, if pa divides 
n (denoted by pa \ n), but pa+1 does not, denoted as pa\\n.

Exam ple 3.4 The integer 8 exactly divides 40; that is, 8||40, since 8 divides 40 but 
16 does not divide 40.

All parts of the following lemma will be used extensively throughout the paper, 
which are well-known elementary number theory results.

Lem m a 3.5 Let a,b,c be integers.

1. I f  p is a prime number and p | ab, then p | a or p | b.

2. I f  c\ a and c | b, then c \ sa-\-tb for all s ,t  E Z.

3. I f d =  GCD(a, b), then d = au + bv for some integers u and v.

T  I f ab | c and GCD(a,c) =  17 then b | c.

5. V n e  Z+, n can be written as n — Pi'p*? •••Prr > where a* >  0 and px,...,pr are 
distinct primes.

In particular, the interest of this paper is to determine the possible prime divisors 
of D (x , y) for fixed values of x, y as integers.

4 Research Goals
Since the goal of the paper is to investigate the greatest common divisors of the 

integer values of f ( x , y), g(x, y) and h{x, y) in Z, the focus is on the specifics of these 
values. Below are some questions I will answer in this paper regarding the greatest 
common divisor of f(x ,y ) , g (x ,y ), h(x,y) in Z.

Recall D (x,y) =  G C D (f(x ,y),g{x ,y),h (x ,y))  as integers. Let x ,y  € Z.

1. For what values of x  and y, does D(x, y) — 1?

2. W hat is D (x,y) when x and y are identical, i.e. if x  =  y l

3. W hat are the possible prime divisors for D (x , y)I

4. W hat is the distribution of the prime divisors of D (x , y)?

5. Can the solution triple ( /, g, h) be used to find solutions for other similar Dio- 
phantine equations?

7



5 Construction of M ultiples o f y)
It is well known that the greatest common divisor of a finite set of integers can be 

written as a linear combination of these integers. And, all prime divisors of the GCD 
will divide any such combination. There are different methods to obtain appropriate 
combinations. In this paper, we apply Grobner basis techniques and the Euclidean 
Algorithm to construct multiples of D(x, y). These multiples will provide information 
on the possible prime divisors of D (x,y).

Grobner bases have been used to find greatest common divisors and solve sys
tems of equations because any set of polynomials can be transformed into a useful 
set that form a Grobner basis. Since my goal is to investigate the greatest com
mon divisors of the polynomials f(x , y), g (x ,y ), h(x,y) in Z, I use a set tha t forms 
a Grobner basis of the ideal generated by f ,g , h in Q[;r, y] to investigate the GCD. 
To transform a set of polynomials into a Grobner basis, one must choose a term order.

Let F be a field and R  =  F [ a q , A  term order (or monomial order), denoted 
as > a , on the set of monomials { xa | a  € Z| 0 } of A, is a total and well ordering such 
tha t x a > (T xP implies x a+7 >a x 0+1 for all a ,/?,7  € Z >0 [5,10].

To transform the polynomials of interest into a Grobner basis, the term  ordering 
used is the following:

D efinition 5.1 Lexicographic Term  O rder Let a  =  (au, ...,0:«) and, (3 — {(3\, ...,(3n) 
be in Z>0. We say that a >1̂  (3 i f i n  the vector difference a  — (3 G Z>0, the left
most non-zero entry is positive. We write x a >iex x^; that is, xfpx^2 • * • > iex  

x ^ x ^  • • • x^n, if a >iex (3 [5,10].

E xam ple 5.2 Let >iex be the lexicographic term order defined as above, where X\ >iex
%2 lex -K3.

1 . x^xlxl >iex x \x \x \, since a  — (5,2,3), (3 — (1,5,5) and a -  (3 =  (4 ,-3 , -2 ) .

2. x ix^xl >iex X1X2X3, since a  — (1,2,3), (3 — (1,1,1) and a — (3 =  (0,1,2).

D efinition 5.3 G robner B asis Let I  be an ideal of R and > a be a term order on 
the monomials of R. Let G — {g \,. . .  ,gs} be a generating set of I. We say G is a 
Grobner basis of I  if the ideal generated by all of the leading terms of elements in I  
is also generated by the leading terms of g i, . . .  ,gs.

If a set of polynomials can be transformed into a Grobner basis, then every element 
in the Grobner basis can be written as a combination of these polynomials. Consider 
/ ,  g, h as before:

g(x,y) =  —80x3 +  48x2y + 4 Hxy2 — 8 Oy3 
h(x, y) =  Sx2 — 32xy  +  8y2 

f(x , y) =  x3 -  x2y +  xy2 -  y3.

8



Let /  be an ideal generated by / ,  g, h\ tha t is, /  = <  g , h, /  > . Then, the Grobner 
basis, G, of /  with lexicographic term order, x >iex y, is

G = {#3, xy2, (x -  y)2 -  2xy}, 

which was computed in Maple.
Then, every element in G can be written as a combination of the polynomials 

f ( x ,y ), g(x,y), h(x, y) as follows, where the computation is done in Maple:

y3 =  (-j^g )9 (z ,2 /) +  (— + 

W  = ( ~ ^ ) g ( x , v )  + (- -  ^ y ) K x ,y )  +

(x -  y f  - 2 x y  = 0 - g{x,y) + -h (x ,y )  +  0 ■ f(x ,  y).

When the denominators are eliminated, so that all polynomials are in Z [x,y], the 
following combinations are obtained in the matrix below:

1---o001S3*
Tf1r—11 ’ 9(x,y) ' 27 * y s

— 1 —4x — 16y —48 h(x,y) = 27 • 3 • xy2
0 48 0 . f ( x , y ) . _ (x -  y)2 -  2xy  _

where the bolded entries will be investigated in Theorem 5.4.

Then, for x  and y in Z, since D (x,y) divides each of f { x ,y ), g(x ,y ), h (x ,y ), it 
will also divide all the entries in the matrix on the right side of the equation; tha t is, 
D (x,y) | 128y3, D (x,y) | 384xy2, and D (x,y) | (x -  y)2 -  2xy.

In general, for any combination of the polynomials f ( x ,y ), g(x ,y ), h (x ,y ), such 
as

f ( x , y)s{x, y) +  g{x, y)t(x , y) +  h(x, y)u{x, y) =  w{x, ij),

where s ,t ,u ,w  E Z [x,y\, for integer values of x  and y , then D (x,y) | w(x,y). In 
other words, w(x , y) is a multiple of D(x, y) in Z. Any combination of the polynomi
als f ( x , y ), g(x , y), h(x , y) will be multiples of D(x, y), which will lead to the possible 
prime divisors of D (x,y).

Several combinations of f { x ,y ), g(x ,y ), h(x,y) are obtained by using the Eu
clidean Algorithm, computed by Maple, in order to determine more multiples of 
D (x,y). These combinations are represented in the matrix equation below:

—x2 — xy — 2 y2 
0

5# — 19 y

0
—3a;2 +  2 xy  — 3 y 2
50a;2 — 20 xy — 4 6y2

80a;2 — 112a;?/ — 96?/2 ' #0,2/) ’
24a; — 88 y h{x,y)

0 . f ( x , y ) .
' 26 • 32 yb 

26 y4
27 • 32 • y4

9



where the entries in bold will be investigated in the theorem below. All the combina
tions obtained by the Grobner basis or the Euclidean Algorithm yield to the following 
theorem.

Theorem  5.4 For any x, y € Z,

D (x,y) | 64 -GCD{x3,y 3).

Proof. Consider the following combinations, which were in bold in the previous 
matrix equations.

0 • g(x, y) +  { -3 x2 +  2xy  -  3y2)f{x , y ) +  (24x -  88y)h(x, y) =  64y4 
( -1  )9 (x,y) +  ( - 4 y)h{z,y) + ( -8 0  ) f(x ,y )  =  128 y \

Since D (x,y) | 64y4 and D (x,y) | 128y3, then D{x,y) \ 64y3. By Remark 2.4, 
D (x,y) | 64x3. Therefore,

D (x ,y ) \6 4 -G C D (x \y 3).

Then, by the theorem above, the only prime divisors of D (x,y) are 2 or those 
prime divisors that divide both x  and y.

6 Special Cases
The first, case I investigate is y =  1, where I observe the different values of the 

greatest common divisors of the three polynomials as integers. For different values of 
x , there is a pattern for D{x11), where the only possible prime divisor is 2. Another 
interesting fact about D(x, 1) is that the values have a period of 8. Also, when x 
is even, the three polynomials are relatively prime, which means D (x , 1) =  1. (See 
Table 1 in the Appendix for the distribution of D (x , 1).) These observations lead to 
the following theorem.

Theorem  6.1 For y =  1 and x  € Z,

11 if x  =  0, 2,4 ,6 ( mod 8)
22 if x  =  3 or 7 ( mod 8)

23 if x  =  5 ( mod 8)
24 if x  =  1 ( mod 8).

Proof Consider the two cases where x  is even or odd.

1. If x  is even, x  =  0 ,2 ,4 ,6 ( mod 8), then f(x ,  1) =  1 ( mod 2)
2 \ f(x ,  2) and D{x, 1) — 1.

2. For x  =  8k +  r, where r  =  1,3,5,7,

f(S k  +  r) =  (r -  1 +  8k)(64k2 +  16Ar +  1 +  r 2).

Therefore,

(3)

10



For r =  7, 4 || f ( 8k +  7,1). Also, 4 divides both #(8/c +  7,1) and h(8fc +  7 ,1). 
Therefore, D(x, 1) =  4.

For r =  3, 4|| / ( 8/c -F 3,1). Furthermore, 4 | g(8fc +  3,1) and 4 | h(8fc +  3,1). 
Then, D{x, 1) =  4.

For r  =  5, 8|| /(8& + 5,1). In addition, 8 divides both #(8fc+5,1) and h(8fc+5,1). 
Thus, D (x , 1) =  8.

Lastly, for r  =  1, 16|| h(8k + 1,1). And, 16 divides #(8A; + 1 ,1) and h(8k-\-1,1). 
Therefore, D(x, 1) =  16.

If y = 2, then the greatest common divisor of the three polynomials as integers 
exhibit the same pattern as the case where y =  1. The period of D(x,2) is 8 and 
the only prime divisor of D (x , 2) is 2. However, in this case, the polynomials are 
relatively prime when x  is odd. (See Table 2 in the Appendix for the details on the 
distribution of D (x , 2).) The following theorem reveals all possible values of D(x, 2).

T h eo rem  6.2 For y =  2 and x  G Z,

11 if x  =  1 ,3 ,5 ,7  ( mod 8)
23 ¿/ i  =  0 or 4 ( mod 8)

25 if x  = 6 ( mod 8)
26 if x  =  2 ( mod 8).

Proof. There are two cases to consider.

1. If x is odd, x  =  1 ,3 ,5 ,7  ( mod 8), then /(x , 2) =  x3 =  1 ( mod 2). Therefore, 
2 { /(x , 2) and £>(x, 2) =  1 .

2. If x is even, then x =  8k +  r  for some integer k and r  =  0 ,2 ,4 ,6. Then,

f ( 8k +  r, 2) =  (r -  2 +  8A:)(64fc2 +  16fcr +  r 2 +  4) (4)

For r =  6, 321| / ( 8A: +  6, 2) and 32 divides both g(8k +  6, 2) and h(8k +  6, 2). 
Therefore, D(x, 2) — 32.

For r  =  4, 8|| / ( 8/c +  4,2). Since 8 | g{8k + 4,2) and 8 | h(8A: +  4,2), D (x ,2) =  8.

For r  =  0, 8|| f(8k,2). Then, D(x,2) — 8, since 8 divides both g(8k,2) and 
/i(8A;,2). Therefore, T>(x, 2) =  8.

Lastly, for r = 2, 64|| h(8A: +  2,2). Also, 64 | f ( 8k +  2,2) and 64 | h(8k + 2,2). 
Therefore, D(x, 2) =  64.

In the next section, the distribution of £>(x, y) is determined for any integer values 
of x and y. 11



7 General Cases and M ain R esults for D(x,y)
The special cases tha t I have investigated and other observations tha t were made 

about the GCD of the integer values of the polynomials lead to the following theorem 
that generalize to results regarding D (x,y) for any x  and y in Z.

T h eo rem  7.1 Let x , y , a be in Z and recall polynomials / ,  g , h:

g(x , y) — -80a:3 -f 48x2y +  48xy2 -  80y3 
h(x , y) — Sx2 — 32 xy + 8 y2 
f (x ,y )  =  x3 -  x2y +  xy2 -  y3,

where D{x,y) -  <7 C F>(/(x,y),y(x,y), h(x,y)) for x ,y  in Z.

1 , If GCD (x , y) =  1 and x +  y ¿9 odd, ¿/ien D (x , y) — 1.

2. For x  — y, D (x , y) =  h(x, y).

5. I f  a =  G CD (x,y), then a2 | F (x ,y ).

4- I f  a =  GCD(x , y) with x  =  am, y =  an, and m + n  =  1( mod 2), F (x , y) =  a2d, 
w/iere d — GCD(a, h(m, n)).

Froo/. Let a: and y be any integers in Z and /(x ,y ) , y(x,y) and h(x, y) defined as 
in the previous sections.

1. Factor /(x ,y )  as /(ar, y) =  (a: -  y)(x2 +  y2). If x +  y is odd, then a: -  y and 
a:2 +  y2 are odd. Therefore, /(x ,y )  2  1( mod 2). Then, 2 f D (x,y).

2. If a: =  y, then

/(x , y) =  0, y(x,y) = -6 4 x 3 and h(x,y) =  16x2.

Thus,
D (x,y) = 16x2 — h(x,y), for x — y.

3. If GCD(x, y) =  a, then x — ma and y — na for some integers m, n, which are 
relatively prime. Then,

/(x , y) =  /(m a , na) =  a3(m — n)(m 2 +  n2)
g(x , y) =  y(ma, na) =  — 16a3(n +  m)(5n2 -  8mn +  5m2)
h(x, y) =  h(ma, na) =  8a2(n2 -  4mn +  m2).

Therefore, a2 divides all of /(x , y), y(x,y) and h(x, y) for all x, y G Z. Thus, 
a2 | F (x ,y ).

12



4. For G CD (a,h(m ,n)) -  d, d | a and d | h{m,n). Thus, d | a f(m ,n )  and 
d | ag{m,n). Since d | G C D (af(m ,n),ag(m ,ri),h(m ,n)) and a2 | D (x,y),

a2d | D (x , y).

Now, let a — qid and h — q2d, where q\,q2 G Z and GCD(qi,q2) — 1. Then, d 
divides each of qidf(m ,n), q\dg(m,n), q2d. Thus,

D (x , y) =  a2d * GCD(qxf(m , n), m (™, n), <?2).

Assume there exists cfi >  1 such tha t

di | GCD (qif(m , n), qig(m, n),q2).

Since di | g2 and GCD{q1 ,q2) =  1, GCD(dx, qi) =  1. Then, cfi divides both 
/(m ,n )  and g(m,n). Furthermore, cfi | </2d — h(m ,n). Therefore,

di =  G C D (f(m ,n),g (m ,n),h (m ,n))  — D (m ,n) =  1,

which is a contradiction, since di >  1. Then,

D (x , ?/) =  a2d • G CD (af(m , n), ag(ra, n), fi(m, n) — a2d • 1 =  a2d.

In the next section, I investigate all possible prime divisors of D (x,y) and deter
mine the lowest and highest power of each prime divisor tha t divides D (x,y).

8 Behavior of Prim e D ivisors of D(x, y)
Any positive integer can be written as a product of its prime divisors. Then, 

for fixed values of x  and y, the greatest common divisor of integer values of f(x ,y ) ,  
g(x ,y ), h(x,y) can also be written as a product of its prime divisors. Each of the 
prime divisors of D (x , y) can be investigated individually in order to obtain integer 
bounds on the powers of these prime divisors of D (x , y).

Theorem  8.1 For fixed integer values of x and y, let

D {x ,y )= 2 e°qef i - - - q es%

where the q% Js are distinct odd primes and e* >  0. Then, the following cases give the 
possible integer values of eo-

1. Case I: I f  x + y is odd, 2 \ D (x , y). Then, eo = 0.

2. Case II: Assume x ,y  are both even such that 2n j| x, 2r2|| y. Without loss of 
generality, let r\ < r 2.

• For 0 <  n  <  r2, e0 =  ram {3ri, 2ri +  3}.

13



• For 0 < ri =  r2, e0 >  mm{3r! +  2 ,2ri +  4}.

3. Case III: I f  x ,y  are both odd, such that 2r i || (x  — 1), 2r2|| (y — 1) with r\ < r2, 
then

• For 0 <  r i <  r 2, e0 =  fm n{rj +  1,4}.

•  For 0 <  7*1 — r 2, e0 >  m in{ri +  2,4}.

Proof.

1 . If x +  y is odd, then either one of x  or y is even and the other one is odd. Let 
x  be odd and y be even with

x — 2k +  1 and y — 21,

for k, l in Z. Then,

f{x , y) =  f(2k  +  1 ,21) *= (2fc +  1 -  2/)(4/c2 +  2/c +  1 +  2/).

Since, f (x ,y )  =  1 ( mod 2), 2 f D (x,y). Then D (x,y) does not have 2 as a 
prime divisor. Therefore, eo =  0.

Similarly, if x  is even and y is odd, by Remark 2.4, f{x ,y )  =  1( mod 2). 
Therefore, eo =  0.

2. The second case is where both x  and y are even, write both x  and y so that

x — 2rik and y =  2 r2l,

where k ,l (E Z and 2 \ k , l .  Then

g{2rik, 2rH) =  -16 (2 rifc +  2rH){5k222ri -  8A:/2ri+ra +  5/222ra) (5)
f(2 rik, 2rH) =  (2ri/e -  2rH){22rik2 +  22ra/2) (6)
h{2rik, 2r2l) =  8((2riA: -  2r2/)2 -  2n+r2+1fc/). (7)

Since D (x,y) =  D (y,x), it is sufficient to consider only the case where r x <  r 2. 
For this case, the polynomials (5), (6), (7) lead to the following:

23ri+4|[ g(x,y)
23r,|| f(x ,y )

22ri+31| h(x,y).

Then,
eo =  m«n{3ri, 2ri +  3}.

14



For r*i =  r2, using (5), (6), (7), the following holds:

23ri+6 | g(x,y)
23ri+2 | f (x ,y )
22ri+4 | h(x,y).

Unlike the other case, instead of an exact value, there is a lower bound for e0 
such tha t e0 >  min{3ri +  2 ,2r\ +  4}.

3. For the last case where both x  and y are odd, x  and y can be represented as 
follows:

x — 2rik +  1 and y =  2r2/ +  1 ,

where k,1 in Z. Then

5(2n fc +  1,2 rH +  1) =  -64(2  ri- 'k  +  2r2~1; +  l)(2’'1- 1m 1 +  1) (8)
f(2 rik +  1,2 TH +  1) =  2n+1(fc -  2r*~rH)(2rimi + 1) (9)

h(2n k + l , 2r2l +  1) =  -16(2 rim3 -  1), (10)

where m i, m 2, m3 G Z.

For <  r 2, e0 =  m in{ri +  1,4} since

26 |
2ri+1|| f{x ,y )

24||

For r i  =  r2,

26|| g(x,y)
2ri+2 | /(ar,2/)

24||

Then, similar to the other case, there is a lower bound for e0, such tha t e0 >  
m m {ri +  2,4}.

Results obtained in Theorem 8.1 can be restated using 64y3 and 64a:3 as the 
maximum integer bounds on the powers of prime divisors by Remark 2.4. For the 
case where x  and y are both even, 64a:3 =  26+3ri k3, and for the case where both x  and 
y are odd, 64a:3 =  26(2rik +  1).

C o ro lla ry  8.2 (Minimum and Maximum Values of gq)

1. Case I: I f x + y is odd, eo — 0.

15



2. Case II: I f  x , y are both even, then

for n  < r 2, f I f  n  < 2 ,  e0 — 3ri 
\  I f  n  > 2, e0 =  2r x +  3,

f I f  n  =  1, 5 < e0 <  9
\  / /  r i  >  1, 2ri +  4 < e0 <  3 n  +  6.

3. Case III: I f x, y are both odd, then

,  f / /  n  <  2,
/o r  n  <  n ,  { / /  n  >  2,

for n  =  r 2> { |  =  J;

e0 =  r i  +  1 
eo =  4,

3 <  eo <  6.
ri +  2 <  eo < 6.

The following section gives the distribution of the powers of the odd prime divisors 
of D (x,y).

9 Odd Prim e Divisors o f D(x, y)
Recall tha t D (x,y) can be written as a product of its prime divisors as in the 

previous section:
D{x, y) — 2e°ql1 *••(£*.

T h eo rem  9.1 Let p be an odd prime divisor of D (x,y), i.e. p € {tfi, and
pe\\D(x,y) with e >  0. Also, let pri \\x andpr2\\y, with 0 < r x < r 2. Then,

2ri <  e < 3ri.

Proof. Let x  =  prik and y ~  pr21, where k ,l € Z and p { A:, L We then substitute 
these values of x  and y into / ,  g, h and obtain the following factorizations:

f(x,y) = f(p n k , fH )  =  {¡Tk-  prn 
g(x,y) =  g(prik,pTH) =  - 1 6 (pr'k  +  prH)(5p2r‘k2 -  8pri+r2l:i +  5p2rH2) 
h(x,y) = h(pn k,prn) = 8{p2rik2 - 4 p ri+nk l+ p 2r2l2).

Then for all 0 <  r\ < r 2,

p3ri | f(x ,y ) , p3ri | g(x,y), and p2ri \ h{x,y),

which implies p*ri | D (x,y). Since D{x,y) | 64a:3 and D (x,y) \ 64y3, we get 3ri as 
the upper bound on e. Then,

2r i  <  e <  3ri-

16



E x am ple  9.2 Let x — 25 - 32 and y =  27 • 34. Then, p =  3, n  =  2 and r2 =  4. 
on ¿/¿e theorem,

2 • 2 < e < 2 • 3,

Based

which means e =  4 ,5 ,6 . Then, 34||£>(25 • 32,27 ■ 34), 35||L>(25 • 32,2 7 ■ 34) or 36||D(25 • 
32,27 • 34). On the other hand,

/ ( 25 • 32,27 • 34) =  —215 • 36 • 5 ■ 7 ■ 1297 
S(25 • 32,2 7 • 34) =  —219 • 36 • 37 • 6197 
h(25 • 32,27 • 34) =  213 • 34 • 1153.

Then, D(25 • 32,2 7 • 34) =  213 • 34, where e =  4. Then, 34||/J(25 ■ 32,2 7 • 34), which 
confirms our results.

10 N ew  D iophantine Equations D erived from the  
Original Equation and R esulting Polynom ial So
lutions

Recall tha t polynomials f{x , y), g(x, y), h(x, y) below satisfy the Diophantine equa
tion

x 2 + Y 3 = 6912

where

g(x , y) =  -8 0 x3 +  48x2y +  48xy2 -  80y3 
h(x, y) — 8x2 — 32xy  +  8y2 
f ( x , y) -  x 3 -  x2y +  xy2 -  y3.

For the cases where D{x,y) ^  1, new polynomials tha t are relatively prime in 
Z [x,y\ can be obtained. For example, when y — 1 and x — 8k +  1, by Theorem 6.1, 
D(8k +  1,1) =  16. Thus,

Zi =
f(8 k  +  1,1) 

16
g(8k +  1,1) 

16
h(8k + 1 ,1 )  

16

— 32k3 -f* 8 k2 *F k 

=  -2560k3 -  768k2 -  48k -  4 

= 32k2 -  8k -  1,

which satisfy the following Diophantine equation:

X x2 +  16Ti3 =  6912Z!2.

Given specific values of x and y, the next example shows new Diophantine equation 
and integer polynomial solutions derived from the original polynomials of interest and 
the Diophantine equation X 2 +  Y 3 =  6912Z2.

17



Exam ple 10.1 For x  =  8fc +  1 and y =  1, let k = 1. Tfows, £ =  9 and D(9,1) — 16. 
The following are the integer values of the new polynomials:

n -M 9 .l l  -

Zl =  A (9,1)

16
/ ( M )

16
656

=  41,
16 16

which are relatively prime in Z and are solutions to the new equation: X i2 +  16Yx3 — 
6912Z!2.

The solutions to the original Diophantine equations result in solutions to new 
Diophantine equations derived from the original equation. For example, the triple 
(g(9,1), h(9,1), /(9 ,1 )) =  (-54080,368,656) is a solution to the original Diophantine 
equation X 2 +  Y 3 = 6912Z2. When the triple (-54080,368,656) is divided by their 
GCD; which is 16, the new triple is obtained: (—3380,23,41), whose values are now 
relatively prime and a solution to the new Diophantine equation: X 2 +  16Yi3 =  
6912Z]2. This is true for all the new equations shown below and their corresponding 
solutions.

1. For x = 8k +  3 we can write / ,  g, h in the following form: 

/(8fc +  3, 1) -,OOJ„3 , ioo7.21 2 8 r +  1 2 8 r  +  U k  +  5

x 2 =  t n l  =  — 10240fc3 -  I0752fc2 -  3648fc -  416 

y3 =  fe(8fc +  3’ 1) =  128fc2 +  32k -  4,

which satisfy the following Diophantine equation:

X 22 +  4y23 =  6912Z22.

Also, the case where x  =  8k +  7 leads to the same Diophantine equation, where 
the polynomials are evaluated at x = 8k +  7 and y = 1, since by Theorem 6.1, 
D(8k +  1 ,3 )=  D(8k +  7,1) =  4.

2. The Diophantine equation

X 32 +  8y33 =  6912Z32

is obtained for x  =  8k + 5, with the following polynomials:

Z3 = ^ 8k +  —  =  64fc3 +  112fc2 +  66fc +  13 
8

X 3 =  g 8̂fc +  5’H  =  -5120A:3 -  9216 -  5472fc -  1080
8

h{Sk +  5,1) 
8

64 k2 +  4Sk +  6,
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since D(8k +  5,1) =  8 by Theorem 6.1.

3. For x  =  8k +  6, with D(8k +  6,2) =  32, we write the three polynomials in the 
following form:

=  /(8fc +  6,2) _  16fcS +  32fc2 +  22k + 5
32

_  gfikf 0, 2) _  _ 12g0fc3 _  2688 -  1824 -  416
32

h(8k +  6,2) 
32

16fc2 +  8fc -  2,

which satisfy the following equation:

X42 +  32y43 =  6912Z42.

4. For x  =  8kand x  =  Hk +  4, with D(Hk, 2) =  D(8k 4,2) =  8, the Diophantine
equation becomes:

X 52 + 8 y 53 =  6912Z52,
with the following polynomials where x — 8k:

f{ 8k, 2) =  64fc3 _  m k 2 +  4k _  !
^5 =  

*5 =

8
2)

8
h(8k, 2) 

8

=  —5120/fc3 +  768A;2 +  192/c -  80

64fc2 — 64 k +  4.

Same equation is derived when x — 8k +  4:

Z5 =  ^ 8fc +  =  16 A:3 +  32/c2 +  22A; +  5
5 32

X 5 =  9(<Sk +  —  =  -1280A:3 -  2688k2 -  1824/c -  416 
b 32

=  h{8k + 6,2) =  x 2 8fc _  2 
32

5. For x =  8k +  2, the following polynomials are obtained:

=  / ( 8fc +  2,_2) _  gk3
64

=  g(8fc +  ??.?_). =  _64ofc3 _  384A:2 -  48k -  8 
64

h(8k T  2,2) 
64

8k2 -  4k -  1,

satisfying the Diophantine equation:

X 62 +  64T63 =  6912Z62, 

since D(8k +  2,2) =  64 by Theorem 6.2.
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11 Future Work
I would like to develop an explicit formula for D(x, y ) for all x  and y in Z. For any 

given values of x  and y , is it possible to get the exact value of D(x, y) by examining 
the values of x  and y l

I would like to examine D (x,y) when the triple f{x ,y ), g{x:y ), h(x,y) satisfy 
specific conditions.

If there is no explicit formula for D (x,y), are there any other techniques tha t are 
applicable to improve the bounds on the powers of the prime divisors of D (x , y)?
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A Tables

Table 1: GCD for 1: 1)
X D(x, 1) X D(x, 1) X D(x, 1) X D(x, 1) X

~T~ — Tl) "36" 71 4 JL ~T4T~ 8 ^
2 1 37 8 72 1 107 4 142 1
3 4 38 1 73 16 108 1 143 4
4 1 39 4 74 1 109 8 144 1
5 8 40 1 75 4 n o 1 145 16
6 1 41 16 76 1 111 4 146 1
7 4 42 1 77 8 112 1 147 4
8 1 43 4 78 1 113 16 148 1
9 16 44 1 79 4 114 1 149 8
10 1 45 8 80 1 115 4 150 1
11 4 46 1 81 16 116 1 151 4
12 1 47 4 82 1 117 8 152 1
13 8 48 1 83 4 118 1 153 16
14 1 49 16 84 1 119 4 154 1
15 4 50 1 85 8 120 1 155 4
16 1 51 4 86 1 121 16 156 1
17 16 52 1 87 4 122 1 157 8
18 1 53 8 88 1 123 4 158 1
19 4 54 1 89 16 124 1 159 4
20 1 55 4 90 1 125 8 160 1
21 8 56 1 91 4 126 1 161 16
22 1 57 16 92 1 127 4 162 1
23 4 58 1 93 8 128 1 163 4
24 1 59 4 94 1 129 16 164 1
25 16 60 1 95 4 130 1 165 8
26 1 61 8 96 1 131 4 166 1
27 4 62 1 97 16 132 1 167 4
28 1 63 4 98 1 133 8 168 1
29 8 64 1 99 4 134 1 169 16
30 1 65 16 100 1 135 4 170 1
31 4 66 1 101 8 136 1 171 4
32 1 67 4 102 1 137 16 172 1
33 16 68 1 103 4 138 1 173 8
34 1 69 8 104 1 139 4 174 1
35 4 70 1 105 16 140 1 175 4

22



Table 2: GCD for =  2: £>(x,2)
D(x, 2 X D(x ,2) X 0 (x ,2 ) X D(x, 2) X

~T~ ---- 1* ~T2T 8 “TUT 1 “ 142 32
3 1 38 32 73 1 108 8 143 1
4 8 39 1 74 64 109 1 144 8
5 1 40 8 75 1 110 32 145 1
6 32 41 1 76 8 111 1 146 64
7 1 42 64 77 1 112 8 147 1
8 8 43 1 78 32 113 1 148 8
9 1 44 8 79 1 114 64 149 1
10 64 45 1 80 8 115 1 150 32
11 1 46 32 81 1 116 8 151 1
12 8 47 1 82 64 117 1 152 8
13 1 48 8 83 1 118 32 153 1
14 32 49 1 84 8 119 1 154 64
15 1 50 64 85 1 120 8 155 1
16 8 51 1 86 32 121 1 156 8
17 1 52 8 87 1 122 64 157 1
18 64 53 1 88 8 123 1 158 32
19 1 54 32 89 1 124 8 159 1
20 8 55 1 90 64 125 1 160 8
21 1 56 8 91 1 126 32 161 1
22 32 57 1 92 8 127 1 162 64
23 1 58 64 93 1 128 8 163 1
24 8 59 1 94 32 129 1 164 8
25 1 60 8 95 1 130 64 165 1
26 64 61 1 96 8 131 1 166 32
27 1 62 32 97 1 132 8 167 1
28 8 63 1 98 64 133 1 168 8
29 1 64 8 99 1 134 32 169 1
30 32 65 1 100 8 135 1 170 64
31 1 66 64 101 1 136 8 171 1
32 8 67 1 102 32 137 1 172 8
33 1 68 8 103 1 138 64 173 1
34 64 69 1 104 8 139 1 174 32
35 1 70 32 105 1 140 8 175 1
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